|  | /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 1986-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "inferior.h" | 
|  | #include "target.h" | 
|  | #include "gdbcore.h" | 
|  | #include "symfile.h" | 
|  | #include "objfiles.h" | 
|  | #include "bfd.h" | 
|  | #include "gdb-stabs.h" | 
|  | #include "regcache.h" | 
|  | #include "arch-utils.h" | 
|  | #include "inf-child.h" | 
|  | #include "inf-ptrace.h" | 
|  | #include "ppc-tdep.h" | 
|  | #include "rs6000-aix-tdep.h" | 
|  | #include "exec.h" | 
|  | #include "observable.h" | 
|  | #include "xcoffread.h" | 
|  |  | 
|  | #include <sys/ptrace.h> | 
|  | #include <sys/reg.h> | 
|  |  | 
|  | #include <sys/dir.h> | 
|  | #include <sys/user.h> | 
|  | #include <signal.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <fcntl.h> | 
|  |  | 
|  | #include <a.out.h> | 
|  | #include <sys/file.h> | 
|  | #include <sys/stat.h> | 
|  | #include "gdb_bfd.h" | 
|  | #include <sys/core.h> | 
|  | #define __LDINFO_PTRACE32__	/* for __ld_info32 */ | 
|  | #define __LDINFO_PTRACE64__	/* for __ld_info64 */ | 
|  | #include <sys/ldr.h> | 
|  | #include <sys/systemcfg.h> | 
|  |  | 
|  | /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for | 
|  | debugging 32-bit and 64-bit processes.  Define a typedef and macros for | 
|  | accessing fields in the appropriate structures.  */ | 
|  |  | 
|  | /* In 32-bit compilation mode (which is the only mode from which ptrace() | 
|  | works on 4.3), __ld_info32 is #defined as equivalent to ld_info.  */ | 
|  |  | 
|  | #if defined (__ld_info32) || defined (__ld_info64) | 
|  | # define ARCH3264 | 
|  | #endif | 
|  |  | 
|  | /* Return whether the current architecture is 64-bit.  */ | 
|  |  | 
|  | #ifndef ARCH3264 | 
|  | # define ARCH64() 0 | 
|  | #else | 
|  | # define ARCH64() (register_size (target_gdbarch (), 0) == 8) | 
|  | #endif | 
|  |  | 
|  | class rs6000_nat_target final : public inf_ptrace_target | 
|  | { | 
|  | public: | 
|  | void fetch_registers (struct regcache *, int) override; | 
|  | void store_registers (struct regcache *, int) override; | 
|  |  | 
|  | enum target_xfer_status xfer_partial (enum target_object object, | 
|  | const char *annex, | 
|  | gdb_byte *readbuf, | 
|  | const gdb_byte *writebuf, | 
|  | ULONGEST offset, ULONGEST len, | 
|  | ULONGEST *xfered_len) override; | 
|  |  | 
|  | void create_inferior (const char *, const std::string &, | 
|  | char **, int) override; | 
|  |  | 
|  | ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void post_startup_inferior (ptid_t ptid) override | 
|  | { /* Nothing.  */ } | 
|  |  | 
|  | private: | 
|  | enum target_xfer_status | 
|  | xfer_shared_libraries (enum target_object object, | 
|  | const char *annex, gdb_byte *readbuf, | 
|  | const gdb_byte *writebuf, | 
|  | ULONGEST offset, ULONGEST len, | 
|  | ULONGEST *xfered_len); | 
|  | }; | 
|  |  | 
|  | static rs6000_nat_target the_rs6000_nat_target; | 
|  |  | 
|  | /* Given REGNO, a gdb register number, return the corresponding | 
|  | number suitable for use as a ptrace() parameter.  Return -1 if | 
|  | there's no suitable mapping.  Also, set the int pointed to by | 
|  | ISFLOAT to indicate whether REGNO is a floating point register.  */ | 
|  |  | 
|  | static int | 
|  | regmap (struct gdbarch *gdbarch, int regno, int *isfloat) | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  |  | 
|  | *isfloat = 0; | 
|  | if (tdep->ppc_gp0_regnum <= regno | 
|  | && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) | 
|  | return regno; | 
|  | else if (tdep->ppc_fp0_regnum >= 0 | 
|  | && tdep->ppc_fp0_regnum <= regno | 
|  | && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) | 
|  | { | 
|  | *isfloat = 1; | 
|  | return regno - tdep->ppc_fp0_regnum + FPR0; | 
|  | } | 
|  | else if (regno == gdbarch_pc_regnum (gdbarch)) | 
|  | return IAR; | 
|  | else if (regno == tdep->ppc_ps_regnum) | 
|  | return MSR; | 
|  | else if (regno == tdep->ppc_cr_regnum) | 
|  | return CR; | 
|  | else if (regno == tdep->ppc_lr_regnum) | 
|  | return LR; | 
|  | else if (regno == tdep->ppc_ctr_regnum) | 
|  | return CTR; | 
|  | else if (regno == tdep->ppc_xer_regnum) | 
|  | return XER; | 
|  | else if (tdep->ppc_fpscr_regnum >= 0 | 
|  | && regno == tdep->ppc_fpscr_regnum) | 
|  | return FPSCR; | 
|  | else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum) | 
|  | return MQ; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Call ptrace(REQ, ID, ADDR, DATA, BUF).  */ | 
|  |  | 
|  | static int | 
|  | rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf) | 
|  | { | 
|  | #ifdef HAVE_PTRACE64 | 
|  | int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf); | 
|  | #else | 
|  | int ret = ptrace (req, id, (int *)addr, data, buf); | 
|  | #endif | 
|  | #if 0 | 
|  | printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", | 
|  | req, id, (unsigned int)addr, data, (unsigned int)buf, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Call ptracex(REQ, ID, ADDR, DATA, BUF).  */ | 
|  |  | 
|  | static int | 
|  | rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf) | 
|  | { | 
|  | #ifdef ARCH3264 | 
|  | #  ifdef HAVE_PTRACE64 | 
|  | int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); | 
|  | #  else | 
|  | int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); | 
|  | #  endif | 
|  | #else | 
|  | int ret = 0; | 
|  | #endif | 
|  | #if 0 | 
|  | printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n", | 
|  | req, id, hex_string (addr), data, (unsigned int)buf, ret); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Fetch register REGNO from the inferior.  */ | 
|  |  | 
|  | static void | 
|  | fetch_register (struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | int addr[PPC_MAX_REGISTER_SIZE]; | 
|  | int nr, isfloat; | 
|  | pid_t pid = regcache->ptid ().pid (); | 
|  |  | 
|  | /* Retrieved values may be -1, so infer errors from errno.  */ | 
|  | errno = 0; | 
|  |  | 
|  | nr = regmap (gdbarch, regno, &isfloat); | 
|  |  | 
|  | /* Floating-point registers.  */ | 
|  | if (isfloat) | 
|  | rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0); | 
|  |  | 
|  | /* Bogus register number.  */ | 
|  | else if (nr < 0) | 
|  | { | 
|  | if (regno >= gdbarch_num_regs (gdbarch)) | 
|  | gdb_printf (gdb_stderr, | 
|  | "gdb error: register no %d not implemented.\n", | 
|  | regno); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Fixed-point registers.  */ | 
|  | else | 
|  | { | 
|  | if (!ARCH64 ()) | 
|  | *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0); | 
|  | else | 
|  | { | 
|  | /* PT_READ_GPR requires the buffer parameter to point to long long, | 
|  | even if the register is really only 32 bits.  */ | 
|  | long long buf; | 
|  | rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf); | 
|  | if (register_size (gdbarch, regno) == 8) | 
|  | memcpy (addr, &buf, 8); | 
|  | else | 
|  | *addr = buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!errno) | 
|  | regcache->raw_supply (regno, (char *) addr); | 
|  | else | 
|  | { | 
|  | #if 0 | 
|  | /* FIXME: this happens 3 times at the start of each 64-bit program.  */ | 
|  | perror (_("ptrace read")); | 
|  | #endif | 
|  | errno = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Store register REGNO back into the inferior.  */ | 
|  |  | 
|  | static void | 
|  | store_register (struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | int addr[PPC_MAX_REGISTER_SIZE]; | 
|  | int nr, isfloat; | 
|  | pid_t pid = regcache->ptid ().pid (); | 
|  |  | 
|  | /* Fetch the register's value from the register cache.  */ | 
|  | regcache->raw_collect (regno, addr); | 
|  |  | 
|  | /* -1 can be a successful return value, so infer errors from errno.  */ | 
|  | errno = 0; | 
|  |  | 
|  | nr = regmap (gdbarch, regno, &isfloat); | 
|  |  | 
|  | /* Floating-point registers.  */ | 
|  | if (isfloat) | 
|  | rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0); | 
|  |  | 
|  | /* Bogus register number.  */ | 
|  | else if (nr < 0) | 
|  | { | 
|  | if (regno >= gdbarch_num_regs (gdbarch)) | 
|  | gdb_printf (gdb_stderr, | 
|  | "gdb error: register no %d not implemented.\n", | 
|  | regno); | 
|  | } | 
|  |  | 
|  | /* Fixed-point registers.  */ | 
|  | else | 
|  | { | 
|  | /* The PT_WRITE_GPR operation is rather odd.  For 32-bit inferiors, | 
|  | the register's value is passed by value, but for 64-bit inferiors, | 
|  | the address of a buffer containing the value is passed.  */ | 
|  | if (!ARCH64 ()) | 
|  | rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0); | 
|  | else | 
|  | { | 
|  | /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte | 
|  | area, even if the register is really only 32 bits.  */ | 
|  | long long buf; | 
|  | if (register_size (gdbarch, regno) == 8) | 
|  | memcpy (&buf, addr, 8); | 
|  | else | 
|  | buf = *addr; | 
|  | rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (errno) | 
|  | { | 
|  | perror (_("ptrace write")); | 
|  | errno = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read from the inferior all registers if REGNO == -1 and just register | 
|  | REGNO otherwise.  */ | 
|  |  | 
|  | void | 
|  | rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | if (regno != -1) | 
|  | fetch_register (regcache, regno); | 
|  |  | 
|  | else | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  |  | 
|  | /* Read 32 general purpose registers.  */ | 
|  | for (regno = tdep->ppc_gp0_regnum; | 
|  | regno < tdep->ppc_gp0_regnum + ppc_num_gprs; | 
|  | regno++) | 
|  | { | 
|  | fetch_register (regcache, regno); | 
|  | } | 
|  |  | 
|  | /* Read general purpose floating point registers.  */ | 
|  | if (tdep->ppc_fp0_regnum >= 0) | 
|  | for (regno = 0; regno < ppc_num_fprs; regno++) | 
|  | fetch_register (regcache, tdep->ppc_fp0_regnum + regno); | 
|  |  | 
|  | /* Read special registers.  */ | 
|  | fetch_register (regcache, gdbarch_pc_regnum (gdbarch)); | 
|  | fetch_register (regcache, tdep->ppc_ps_regnum); | 
|  | fetch_register (regcache, tdep->ppc_cr_regnum); | 
|  | fetch_register (regcache, tdep->ppc_lr_regnum); | 
|  | fetch_register (regcache, tdep->ppc_ctr_regnum); | 
|  | fetch_register (regcache, tdep->ppc_xer_regnum); | 
|  | if (tdep->ppc_fpscr_regnum >= 0) | 
|  | fetch_register (regcache, tdep->ppc_fpscr_regnum); | 
|  | if (tdep->ppc_mq_regnum >= 0) | 
|  | fetch_register (regcache, tdep->ppc_mq_regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Store our register values back into the inferior. | 
|  | If REGNO is -1, do this for all registers. | 
|  | Otherwise, REGNO specifies which register (so we can save time).  */ | 
|  |  | 
|  | void | 
|  | rs6000_nat_target::store_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | if (regno != -1) | 
|  | store_register (regcache, regno); | 
|  |  | 
|  | else | 
|  | { | 
|  | ppc_gdbarch_tdep *tdep = (ppc_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  |  | 
|  | /* Write general purpose registers first.  */ | 
|  | for (regno = tdep->ppc_gp0_regnum; | 
|  | regno < tdep->ppc_gp0_regnum + ppc_num_gprs; | 
|  | regno++) | 
|  | { | 
|  | store_register (regcache, regno); | 
|  | } | 
|  |  | 
|  | /* Write floating point registers.  */ | 
|  | if (tdep->ppc_fp0_regnum >= 0) | 
|  | for (regno = 0; regno < ppc_num_fprs; regno++) | 
|  | store_register (regcache, tdep->ppc_fp0_regnum + regno); | 
|  |  | 
|  | /* Write special registers.  */ | 
|  | store_register (regcache, gdbarch_pc_regnum (gdbarch)); | 
|  | store_register (regcache, tdep->ppc_ps_regnum); | 
|  | store_register (regcache, tdep->ppc_cr_regnum); | 
|  | store_register (regcache, tdep->ppc_lr_regnum); | 
|  | store_register (regcache, tdep->ppc_ctr_regnum); | 
|  | store_register (regcache, tdep->ppc_xer_regnum); | 
|  | if (tdep->ppc_fpscr_regnum >= 0) | 
|  | store_register (regcache, tdep->ppc_fpscr_regnum); | 
|  | if (tdep->ppc_mq_regnum >= 0) | 
|  | store_register (regcache, tdep->ppc_mq_regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the to_xfer_partial target_ops method.  */ | 
|  |  | 
|  | enum target_xfer_status | 
|  | rs6000_nat_target::xfer_partial (enum target_object object, | 
|  | const char *annex, gdb_byte *readbuf, | 
|  | const gdb_byte *writebuf, | 
|  | ULONGEST offset, ULONGEST len, | 
|  | ULONGEST *xfered_len) | 
|  | { | 
|  | pid_t pid = inferior_ptid.pid (); | 
|  | int arch64 = ARCH64 (); | 
|  |  | 
|  | switch (object) | 
|  | { | 
|  | case TARGET_OBJECT_LIBRARIES_AIX: | 
|  | return xfer_shared_libraries (object, annex, | 
|  | readbuf, writebuf, | 
|  | offset, len, xfered_len); | 
|  | case TARGET_OBJECT_MEMORY: | 
|  | { | 
|  | union | 
|  | { | 
|  | PTRACE_TYPE_RET word; | 
|  | gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; | 
|  | } buffer; | 
|  | ULONGEST rounded_offset; | 
|  | LONGEST partial_len; | 
|  |  | 
|  | /* Round the start offset down to the next long word | 
|  | boundary.  */ | 
|  | rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); | 
|  |  | 
|  | /* Since ptrace will transfer a single word starting at that | 
|  | rounded_offset the partial_len needs to be adjusted down to | 
|  | that (remember this function only does a single transfer). | 
|  | Should the required length be even less, adjust it down | 
|  | again.  */ | 
|  | partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; | 
|  | if (partial_len > len) | 
|  | partial_len = len; | 
|  |  | 
|  | if (writebuf) | 
|  | { | 
|  | /* If OFFSET:PARTIAL_LEN is smaller than | 
|  | ROUNDED_OFFSET:WORDSIZE then a read/modify write will | 
|  | be needed.  Read in the entire word.  */ | 
|  | if (rounded_offset < offset | 
|  | || (offset + partial_len | 
|  | < rounded_offset + sizeof (PTRACE_TYPE_RET))) | 
|  | { | 
|  | /* Need part of initial word -- fetch it.  */ | 
|  | if (arch64) | 
|  | buffer.word = rs6000_ptrace64 (PT_READ_I, pid, | 
|  | rounded_offset, 0, NULL); | 
|  | else | 
|  | buffer.word = rs6000_ptrace32 (PT_READ_I, pid, | 
|  | (int *) (uintptr_t) | 
|  | rounded_offset, | 
|  | 0, NULL); | 
|  | } | 
|  |  | 
|  | /* Copy data to be written over corresponding part of | 
|  | buffer.  */ | 
|  | memcpy (buffer.byte + (offset - rounded_offset), | 
|  | writebuf, partial_len); | 
|  |  | 
|  | errno = 0; | 
|  | if (arch64) | 
|  | rs6000_ptrace64 (PT_WRITE_D, pid, | 
|  | rounded_offset, buffer.word, NULL); | 
|  | else | 
|  | rs6000_ptrace32 (PT_WRITE_D, pid, | 
|  | (int *) (uintptr_t) rounded_offset, | 
|  | buffer.word, NULL); | 
|  | if (errno) | 
|  | return TARGET_XFER_EOF; | 
|  | } | 
|  |  | 
|  | if (readbuf) | 
|  | { | 
|  | errno = 0; | 
|  | if (arch64) | 
|  | buffer.word = rs6000_ptrace64 (PT_READ_I, pid, | 
|  | rounded_offset, 0, NULL); | 
|  | else | 
|  | buffer.word = rs6000_ptrace32 (PT_READ_I, pid, | 
|  | (int *)(uintptr_t)rounded_offset, | 
|  | 0, NULL); | 
|  | if (errno) | 
|  | return TARGET_XFER_EOF; | 
|  |  | 
|  | /* Copy appropriate bytes out of the buffer.  */ | 
|  | memcpy (readbuf, buffer.byte + (offset - rounded_offset), | 
|  | partial_len); | 
|  | } | 
|  |  | 
|  | *xfered_len = (ULONGEST) partial_len; | 
|  | return TARGET_XFER_OK; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return TARGET_XFER_E_IO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Wait for the child specified by PTID to do something.  Return the | 
|  | process ID of the child, or MINUS_ONE_PTID in case of error; store | 
|  | the status in *OURSTATUS.  */ | 
|  |  | 
|  | ptid_t | 
|  | rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, | 
|  | target_wait_flags options) | 
|  | { | 
|  | pid_t pid; | 
|  | int status, save_errno; | 
|  |  | 
|  | do | 
|  | { | 
|  | set_sigint_trap (); | 
|  |  | 
|  | do | 
|  | { | 
|  | pid = waitpid (ptid.pid (), &status, 0); | 
|  | save_errno = errno; | 
|  | } | 
|  | while (pid == -1 && errno == EINTR); | 
|  |  | 
|  | clear_sigint_trap (); | 
|  |  | 
|  | if (pid == -1) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Child process unexpectedly missing: %s.\n"), | 
|  | safe_strerror (save_errno)); | 
|  |  | 
|  | /* Claim it exited with unknown signal.  */ | 
|  | ourstatus->set_signalled (GDB_SIGNAL_UNKNOWN); | 
|  | return inferior_ptid; | 
|  | } | 
|  |  | 
|  | /* Ignore terminated detached child processes.  */ | 
|  | if (!WIFSTOPPED (status) && pid != inferior_ptid.pid ()) | 
|  | pid = -1; | 
|  | } | 
|  | while (pid == -1); | 
|  |  | 
|  | /* AIX has a couple of strange returns from wait().  */ | 
|  |  | 
|  | /* stop after load" status.  */ | 
|  | if (status == 0x57c) | 
|  | ourstatus->set_loaded (); | 
|  | /* signal 0.  I have no idea why wait(2) returns with this status word.  */ | 
|  | else if (status == 0x7f) | 
|  | ourstatus->set_spurious (); | 
|  | /* A normal waitstatus.  Let the usual macros deal with it.  */ | 
|  | else | 
|  | *ourstatus = host_status_to_waitstatus (status); | 
|  |  | 
|  | return ptid_t (pid); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set the current architecture from the host running GDB.  Called when | 
|  | starting a child process.  */ | 
|  |  | 
|  | void | 
|  | rs6000_nat_target::create_inferior (const char *exec_file, | 
|  | const std::string &allargs, | 
|  | char **env, int from_tty) | 
|  | { | 
|  | enum bfd_architecture arch; | 
|  | unsigned long mach; | 
|  | bfd abfd; | 
|  |  | 
|  | inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); | 
|  |  | 
|  | if (__power_rs ()) | 
|  | { | 
|  | arch = bfd_arch_rs6000; | 
|  | mach = bfd_mach_rs6k; | 
|  | } | 
|  | else | 
|  | { | 
|  | arch = bfd_arch_powerpc; | 
|  | mach = bfd_mach_ppc; | 
|  | } | 
|  |  | 
|  | /* FIXME: schauer/2002-02-25: | 
|  | We don't know if we are executing a 32 or 64 bit executable, | 
|  | and have no way to pass the proper word size to rs6000_gdbarch_init. | 
|  | So we have to avoid switching to a new architecture, if the architecture | 
|  | matches already. | 
|  | Blindly calling rs6000_gdbarch_init used to work in older versions of | 
|  | GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to | 
|  | determine the wordsize.  */ | 
|  | if (current_program_space->exec_bfd ()) | 
|  | { | 
|  | const struct bfd_arch_info *exec_bfd_arch_info; | 
|  |  | 
|  | exec_bfd_arch_info | 
|  | = bfd_get_arch_info (current_program_space->exec_bfd ()); | 
|  | if (arch == exec_bfd_arch_info->arch) | 
|  | return; | 
|  | } | 
|  |  | 
|  | bfd_default_set_arch_mach (&abfd, arch, mach); | 
|  |  | 
|  | gdbarch_info info; | 
|  | info.bfd_arch_info = bfd_get_arch_info (&abfd); | 
|  | info.abfd = current_program_space->exec_bfd (); | 
|  |  | 
|  | if (!gdbarch_update_p (info)) | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("rs6000_create_inferior: failed " | 
|  | "to select architecture")); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Shared Object support.  */ | 
|  |  | 
|  | /* Return the LdInfo data for the given process.  Raises an error | 
|  | if the data could not be obtained.  */ | 
|  |  | 
|  | static gdb::byte_vector | 
|  | rs6000_ptrace_ldinfo (ptid_t ptid) | 
|  | { | 
|  | const int pid = ptid.pid (); | 
|  | gdb::byte_vector ldi (1024); | 
|  | int rc = -1; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | if (ARCH64 ()) | 
|  | rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (), | 
|  | ldi.size (), NULL); | 
|  | else | 
|  | rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (), | 
|  | ldi.size (), NULL); | 
|  |  | 
|  | if (rc != -1) | 
|  | break; /* Success, we got the entire ld_info data.  */ | 
|  |  | 
|  | if (errno != ENOMEM) | 
|  | perror_with_name (_("ptrace ldinfo")); | 
|  |  | 
|  | /* ldi is not big enough.  Double it and try again.  */ | 
|  | ldi.resize (ldi.size () * 2); | 
|  | } | 
|  |  | 
|  | return ldi; | 
|  | } | 
|  |  | 
|  | /* Implement the to_xfer_partial target_ops method for | 
|  | TARGET_OBJECT_LIBRARIES_AIX objects.  */ | 
|  |  | 
|  | enum target_xfer_status | 
|  | rs6000_nat_target::xfer_shared_libraries | 
|  | (enum target_object object, | 
|  | const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, | 
|  | ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) | 
|  | { | 
|  | ULONGEST result; | 
|  |  | 
|  | /* This function assumes that it is being run with a live process. | 
|  | Core files are handled via gdbarch.  */ | 
|  | gdb_assert (target_has_execution ()); | 
|  |  | 
|  | if (writebuf) | 
|  | return TARGET_XFER_E_IO; | 
|  |  | 
|  | gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid); | 
|  | result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf.data (), | 
|  | readbuf, offset, len, 1); | 
|  |  | 
|  | if (result == 0) | 
|  | return TARGET_XFER_EOF; | 
|  | else | 
|  | { | 
|  | *xfered_len = result; | 
|  | return TARGET_XFER_OK; | 
|  | } | 
|  | } | 
|  |  | 
|  | void _initialize_rs6000_nat (); | 
|  | void | 
|  | _initialize_rs6000_nat () | 
|  | { | 
|  | add_inf_child_target (&the_rs6000_nat_target); | 
|  | } |