| // dwarf_reader.cc -- parse dwarf2/3 debug information |
| |
| // Copyright (C) 2007-2020 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <algorithm> |
| #include <utility> |
| #include <vector> |
| |
| #include "elfcpp_swap.h" |
| #include "dwarf.h" |
| #include "object.h" |
| #include "reloc.h" |
| #include "dwarf_reader.h" |
| #include "int_encoding.h" |
| #include "compressed_output.h" |
| |
| namespace gold { |
| |
| // Class Sized_elf_reloc_mapper |
| |
| // Initialize the relocation tracker for section RELOC_SHNDX. |
| |
| template<int size, bool big_endian> |
| bool |
| Sized_elf_reloc_mapper<size, big_endian>::do_initialize( |
| unsigned int reloc_shndx, unsigned int reloc_type) |
| { |
| this->reloc_type_ = reloc_type; |
| return this->track_relocs_.initialize(this->object_, reloc_shndx, |
| reloc_type); |
| } |
| |
| // Looks in the symtab to see what section a symbol is in. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Sized_elf_reloc_mapper<size, big_endian>::symbol_section( |
| unsigned int symndx, Address* value, bool* is_ordinary) |
| { |
| const int symsize = elfcpp::Elf_sizes<size>::sym_size; |
| gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_); |
| elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize); |
| *value = elfsym.get_st_value(); |
| return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(), |
| is_ordinary); |
| } |
| |
| // Return the section index and offset within the section of |
| // the target of the relocation for RELOC_OFFSET. |
| |
| template<int size, bool big_endian> |
| unsigned int |
| Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target( |
| off_t reloc_offset, off_t* target_offset) |
| { |
| this->track_relocs_.advance(reloc_offset); |
| if (reloc_offset != this->track_relocs_.next_offset()) |
| return 0; |
| unsigned int symndx = this->track_relocs_.next_symndx(); |
| typename elfcpp::Elf_types<size>::Elf_Addr value; |
| bool is_ordinary; |
| unsigned int target_shndx = this->symbol_section(symndx, &value, |
| &is_ordinary); |
| if (!is_ordinary) |
| return 0; |
| if (this->reloc_type_ == elfcpp::SHT_RELA) |
| value += this->track_relocs_.next_addend(); |
| *target_offset = value; |
| return target_shndx; |
| } |
| |
| static inline Elf_reloc_mapper* |
| make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab, |
| off_t symtab_size) |
| { |
| if (object->elfsize() == 32) |
| { |
| if (object->is_big_endian()) |
| { |
| #ifdef HAVE_TARGET_32_BIG |
| return new Sized_elf_reloc_mapper<32, true>(object, symtab, |
| symtab_size); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| return new Sized_elf_reloc_mapper<32, false>(object, symtab, |
| symtab_size); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else if (object->elfsize() == 64) |
| { |
| if (object->is_big_endian()) |
| { |
| #ifdef HAVE_TARGET_64_BIG |
| return new Sized_elf_reloc_mapper<64, true>(object, symtab, |
| symtab_size); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_64_LITTLE |
| return new Sized_elf_reloc_mapper<64, false>(object, symtab, |
| symtab_size); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // class Dwarf_abbrev_table |
| |
| void |
| Dwarf_abbrev_table::clear_abbrev_codes() |
| { |
| for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code) |
| { |
| if (this->low_abbrev_codes_[code] != NULL) |
| { |
| delete this->low_abbrev_codes_[code]; |
| this->low_abbrev_codes_[code] = NULL; |
| } |
| } |
| for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin(); |
| it != this->high_abbrev_codes_.end(); |
| ++it) |
| { |
| if (it->second != NULL) |
| delete it->second; |
| } |
| this->high_abbrev_codes_.clear(); |
| } |
| |
| // Read the abbrev table from an object file. |
| |
| bool |
| Dwarf_abbrev_table::do_read_abbrevs( |
| Relobj* object, |
| unsigned int abbrev_shndx, |
| off_t abbrev_offset) |
| { |
| this->clear_abbrev_codes(); |
| |
| // If we don't have relocations, abbrev_shndx will be 0, and |
| // we'll have to hunt for the .debug_abbrev section. |
| if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0) |
| abbrev_shndx = this->abbrev_shndx_; |
| else if (abbrev_shndx == 0) |
| { |
| for (unsigned int i = 1; i < object->shnum(); ++i) |
| { |
| std::string name = object->section_name(i); |
| if (name == ".debug_abbrev" || name == ".zdebug_abbrev") |
| { |
| abbrev_shndx = i; |
| // Correct the offset. For incremental update links, we have a |
| // relocated offset that is relative to the output section, but |
| // here we need an offset relative to the input section. |
| abbrev_offset -= object->output_section_offset(i); |
| break; |
| } |
| } |
| if (abbrev_shndx == 0) |
| return false; |
| } |
| |
| // Get the section contents and decompress if necessary. |
| if (abbrev_shndx != this->abbrev_shndx_) |
| { |
| if (this->owns_buffer_ && this->buffer_ != NULL) |
| { |
| delete[] this->buffer_; |
| this->owns_buffer_ = false; |
| } |
| |
| section_size_type buffer_size; |
| this->buffer_ = |
| object->decompressed_section_contents(abbrev_shndx, |
| &buffer_size, |
| &this->owns_buffer_); |
| this->buffer_end_ = this->buffer_ + buffer_size; |
| this->abbrev_shndx_ = abbrev_shndx; |
| } |
| |
| this->buffer_pos_ = this->buffer_ + abbrev_offset; |
| return true; |
| } |
| |
| // Lookup the abbrev code entry for CODE. This function is called |
| // only when the abbrev code is not in the direct lookup table. |
| // It may be in the hash table, it may not have been read yet, |
| // or it may not exist in the abbrev table. |
| |
| const Dwarf_abbrev_table::Abbrev_code* |
| Dwarf_abbrev_table::do_get_abbrev(unsigned int code) |
| { |
| // See if the abbrev code is already in the hash table. |
| Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code); |
| if (it != this->high_abbrev_codes_.end()) |
| return it->second; |
| |
| // Read and store abbrev code definitions until we find the |
| // one we're looking for. |
| for (;;) |
| { |
| // Read the abbrev code. A zero here indicates the end of the |
| // abbrev table. |
| size_t len; |
| if (this->buffer_pos_ >= this->buffer_end_) |
| return NULL; |
| uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| if (nextcode == 0) |
| { |
| this->buffer_pos_ = this->buffer_end_; |
| return NULL; |
| } |
| this->buffer_pos_ += len; |
| |
| // Read the tag. |
| if (this->buffer_pos_ >= this->buffer_end_) |
| return NULL; |
| uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| this->buffer_pos_ += len; |
| |
| // Read the has_children flag. |
| if (this->buffer_pos_ >= this->buffer_end_) |
| return NULL; |
| bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes; |
| this->buffer_pos_ += 1; |
| |
| // Read the list of (attribute, form) pairs. |
| Abbrev_code* entry = new Abbrev_code(tag, has_children); |
| for (;;) |
| { |
| // Read the attribute. |
| if (this->buffer_pos_ >= this->buffer_end_) |
| return NULL; |
| uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| this->buffer_pos_ += len; |
| |
| // Read the form. |
| if (this->buffer_pos_ >= this->buffer_end_) |
| return NULL; |
| uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len); |
| this->buffer_pos_ += len; |
| |
| // A (0,0) pair terminates the list. |
| if (attr == 0 && form == 0) |
| break; |
| |
| if (attr == elfcpp::DW_AT_sibling) |
| entry->has_sibling_attribute = true; |
| |
| entry->add_attribute(attr, form); |
| } |
| |
| this->store_abbrev(nextcode, entry); |
| if (nextcode == code) |
| return entry; |
| } |
| |
| return NULL; |
| } |
| |
| // class Dwarf_ranges_table |
| |
| // Read the ranges table from an object file. |
| |
| bool |
| Dwarf_ranges_table::read_ranges_table( |
| Relobj* object, |
| const unsigned char* symtab, |
| off_t symtab_size, |
| unsigned int ranges_shndx) |
| { |
| // If we've already read this abbrev table, return immediately. |
| if (this->ranges_shndx_ > 0 |
| && this->ranges_shndx_ == ranges_shndx) |
| return true; |
| |
| // If we don't have relocations, ranges_shndx will be 0, and |
| // we'll have to hunt for the .debug_ranges section. |
| if (ranges_shndx == 0 && this->ranges_shndx_ > 0) |
| ranges_shndx = this->ranges_shndx_; |
| else if (ranges_shndx == 0) |
| { |
| for (unsigned int i = 1; i < object->shnum(); ++i) |
| { |
| std::string name = object->section_name(i); |
| if (name == ".debug_ranges" || name == ".zdebug_ranges") |
| { |
| ranges_shndx = i; |
| this->output_section_offset_ = object->output_section_offset(i); |
| break; |
| } |
| } |
| if (ranges_shndx == 0) |
| return false; |
| } |
| |
| // Get the section contents and decompress if necessary. |
| if (ranges_shndx != this->ranges_shndx_) |
| { |
| if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL) |
| { |
| delete[] this->ranges_buffer_; |
| this->owns_ranges_buffer_ = false; |
| } |
| |
| section_size_type buffer_size; |
| this->ranges_buffer_ = |
| object->decompressed_section_contents(ranges_shndx, |
| &buffer_size, |
| &this->owns_ranges_buffer_); |
| this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size; |
| this->ranges_shndx_ = ranges_shndx; |
| } |
| |
| if (this->ranges_reloc_mapper_ != NULL) |
| { |
| delete this->ranges_reloc_mapper_; |
| this->ranges_reloc_mapper_ = NULL; |
| } |
| |
| // For incremental objects, we have no relocations. |
| if (object->is_incremental()) |
| return true; |
| |
| // Find the relocation section for ".debug_ranges". |
| unsigned int reloc_shndx = 0; |
| unsigned int reloc_type = 0; |
| for (unsigned int i = 0; i < object->shnum(); ++i) |
| { |
| reloc_type = object->section_type(i); |
| if ((reloc_type == elfcpp::SHT_REL |
| || reloc_type == elfcpp::SHT_RELA) |
| && object->section_info(i) == ranges_shndx) |
| { |
| reloc_shndx = i; |
| break; |
| } |
| } |
| |
| this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab, |
| symtab_size); |
| this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type); |
| this->reloc_type_ = reloc_type; |
| |
| return true; |
| } |
| |
| // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET. |
| |
| Dwarf_range_list* |
| Dwarf_ranges_table::read_range_list( |
| Relobj* object, |
| const unsigned char* symtab, |
| off_t symtab_size, |
| unsigned int addr_size, |
| unsigned int ranges_shndx, |
| off_t offset) |
| { |
| Dwarf_range_list* ranges; |
| |
| if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx)) |
| return NULL; |
| |
| // Correct the offset. For incremental update links, we have a |
| // relocated offset that is relative to the output section, but |
| // here we need an offset relative to the input section. |
| offset -= this->output_section_offset_; |
| |
| // Read the range list at OFFSET. |
| ranges = new Dwarf_range_list(); |
| off_t base = 0; |
| for (; |
| this->ranges_buffer_ + offset < this->ranges_buffer_end_; |
| offset += 2 * addr_size) |
| { |
| off_t start; |
| off_t end; |
| |
| // Read the raw contents of the section. |
| if (addr_size == 4) |
| { |
| start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_ |
| + offset); |
| end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_ |
| + offset + 4); |
| } |
| else |
| { |
| start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_ |
| + offset); |
| end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_ |
| + offset + 8); |
| } |
| |
| // Check for relocations and adjust the values. |
| unsigned int shndx1 = 0; |
| unsigned int shndx2 = 0; |
| if (this->ranges_reloc_mapper_ != NULL) |
| { |
| shndx1 = this->lookup_reloc(offset, &start); |
| shndx2 = this->lookup_reloc(offset + addr_size, &end); |
| } |
| |
| // End of list is marked by a pair of zeroes. |
| if (shndx1 == 0 && start == 0 && end == 0) |
| break; |
| |
| // A "base address selection entry" is identified by |
| // 0xffffffff for the first value of the pair. The second |
| // value is used as a base for subsequent range list entries. |
| if (shndx1 == 0 && start == -1) |
| base = end; |
| else if (shndx1 == shndx2) |
| { |
| if (shndx1 == 0 || object->is_section_included(shndx1)) |
| ranges->add(shndx1, base + start, base + end); |
| } |
| else |
| gold_warning(_("%s: DWARF info may be corrupt; offsets in a " |
| "range list entry are in different sections"), |
| object->name().c_str()); |
| } |
| |
| return ranges; |
| } |
| |
| // Look for a relocation at offset OFF in the range table, |
| // and return the section index and offset of the target. |
| |
| unsigned int |
| Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off) |
| { |
| off_t value; |
| unsigned int shndx = |
| this->ranges_reloc_mapper_->get_reloc_target(off, &value); |
| if (shndx == 0) |
| return 0; |
| if (this->reloc_type_ == elfcpp::SHT_REL) |
| *target_off += value; |
| else |
| *target_off = value; |
| return shndx; |
| } |
| |
| // class Dwarf_pubnames_table |
| |
| // Read the pubnames section from the object file. |
| |
| bool |
| Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab, |
| off_t symtab_size) |
| { |
| section_size_type buffer_size; |
| unsigned int shndx = 0; |
| const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames"; |
| const char* gnu_name = (this->is_pubtypes_ |
| ? "gnu_pubtypes" |
| : "gnu_pubnames"); |
| |
| for (unsigned int i = 1; i < object->shnum(); ++i) |
| { |
| std::string section_name = object->section_name(i); |
| const char* section_name_suffix = section_name.c_str(); |
| if (is_prefix_of(".debug_", section_name_suffix)) |
| section_name_suffix += 7; |
| else if (is_prefix_of(".zdebug_", section_name_suffix)) |
| section_name_suffix += 8; |
| else |
| continue; |
| if (strcmp(section_name_suffix, name) == 0) |
| { |
| shndx = i; |
| break; |
| } |
| else if (strcmp(section_name_suffix, gnu_name) == 0) |
| { |
| shndx = i; |
| this->is_gnu_style_ = true; |
| break; |
| } |
| } |
| if (shndx == 0) |
| return false; |
| |
| this->buffer_ = object->decompressed_section_contents(shndx, |
| &buffer_size, |
| &this->owns_buffer_); |
| if (this->buffer_ == NULL) |
| return false; |
| this->buffer_end_ = this->buffer_ + buffer_size; |
| |
| // For incremental objects, we have no relocations. |
| if (object->is_incremental()) |
| return true; |
| |
| // Find the relocation section |
| unsigned int reloc_shndx = 0; |
| unsigned int reloc_type = 0; |
| for (unsigned int i = 0; i < object->shnum(); ++i) |
| { |
| reloc_type = object->section_type(i); |
| if ((reloc_type == elfcpp::SHT_REL |
| || reloc_type == elfcpp::SHT_RELA) |
| && object->section_info(i) == shndx) |
| { |
| reloc_shndx = i; |
| break; |
| } |
| } |
| |
| this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size); |
| this->reloc_mapper_->initialize(reloc_shndx, reloc_type); |
| this->reloc_type_ = reloc_type; |
| |
| return true; |
| } |
| |
| // Read the header for the set at OFFSET. |
| |
| bool |
| Dwarf_pubnames_table::read_header(off_t offset) |
| { |
| // Make sure we have actually read the section. |
| gold_assert(this->buffer_ != NULL); |
| |
| if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_) |
| return false; |
| |
| const unsigned char* pinfo = this->buffer_ + offset; |
| |
| // Read the unit_length field. |
| uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo); |
| pinfo += 4; |
| if (unit_length == 0xffffffff) |
| { |
| unit_length = this->dwinfo_->read_from_pointer<64>(pinfo); |
| this->unit_length_ = unit_length + 12; |
| pinfo += 8; |
| this->offset_size_ = 8; |
| } |
| else |
| { |
| this->unit_length_ = unit_length + 4; |
| this->offset_size_ = 4; |
| } |
| this->end_of_table_ = pinfo + unit_length; |
| |
| // If unit_length is too big, maybe we should reject the whole table, |
| // but in cases we know about, it seems OK to assume that the table |
| // is valid through the actual end of the section. |
| if (this->end_of_table_ > this->buffer_end_) |
| this->end_of_table_ = this->buffer_end_; |
| |
| // Check the version. |
| unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo); |
| pinfo += 2; |
| if (version != 2) |
| return false; |
| |
| this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_, |
| &this->cu_offset_); |
| |
| // Skip the debug_info_offset and debug_info_size fields. |
| pinfo += 2 * this->offset_size_; |
| |
| if (pinfo >= this->buffer_end_) |
| return false; |
| |
| this->pinfo_ = pinfo; |
| return true; |
| } |
| |
| // Read the next name from the set. |
| |
| const char* |
| Dwarf_pubnames_table::next_name(uint8_t* flag_byte) |
| { |
| const unsigned char* pinfo = this->pinfo_; |
| |
| // Check for end of list. The table should be terminated by an |
| // entry containing nothing but a DIE offset of 0. |
| if (pinfo + this->offset_size_ >= this->end_of_table_) |
| return NULL; |
| |
| // Skip the offset within the CU. If this is zero, but we're not |
| // at the end of the table, then we have a real pubnames entry |
| // whose DIE offset is 0 (likely to be a GCC bug). Since we |
| // don't actually use the DIE offset in building .gdb_index, |
| // it's harmless. |
| pinfo += this->offset_size_; |
| |
| if (this->is_gnu_style_) |
| *flag_byte = *pinfo++; |
| else |
| *flag_byte = 0; |
| |
| // Return a pointer to the string at the current location, |
| // and advance the pointer to the next entry. |
| const char* ret = reinterpret_cast<const char*>(pinfo); |
| while (pinfo < this->buffer_end_ && *pinfo != '\0') |
| ++pinfo; |
| if (pinfo < this->buffer_end_) |
| ++pinfo; |
| |
| this->pinfo_ = pinfo; |
| return ret; |
| } |
| |
| // class Dwarf_die |
| |
| Dwarf_die::Dwarf_die( |
| Dwarf_info_reader* dwinfo, |
| off_t die_offset, |
| Dwarf_die* parent) |
| : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset), |
| child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(), |
| attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL), |
| linkage_name_off_(-1), string_shndx_(0), specification_(0), |
| abstract_origin_(0) |
| { |
| size_t len; |
| const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset); |
| if (pdie == NULL) |
| return; |
| unsigned int code = read_unsigned_LEB_128(pdie, &len); |
| if (code == 0) |
| { |
| if (parent != NULL) |
| parent->set_sibling_offset(die_offset + len); |
| return; |
| } |
| this->attr_offset_ = len; |
| |
| // Lookup the abbrev code in the abbrev table. |
| this->abbrev_code_ = dwinfo->get_abbrev(code); |
| } |
| |
| // Read all the attributes of the DIE. |
| |
| bool |
| Dwarf_die::read_attributes() |
| { |
| if (this->attributes_read_) |
| return true; |
| |
| gold_assert(this->abbrev_code_ != NULL); |
| |
| const unsigned char* pdie = |
| this->dwinfo_->buffer_at_offset(this->die_offset_); |
| if (pdie == NULL) |
| return false; |
| const unsigned char* pattr = pdie + this->attr_offset_; |
| |
| unsigned int nattr = this->abbrev_code_->attributes.size(); |
| this->attributes_.reserve(nattr); |
| for (unsigned int i = 0; i < nattr; ++i) |
| { |
| size_t len; |
| unsigned int attr = this->abbrev_code_->attributes[i].attr; |
| unsigned int form = this->abbrev_code_->attributes[i].form; |
| if (form == elfcpp::DW_FORM_indirect) |
| { |
| form = read_unsigned_LEB_128(pattr, &len); |
| pattr += len; |
| } |
| off_t attr_off = this->die_offset_ + (pattr - pdie); |
| bool ref_form = false; |
| Attribute_value attr_value; |
| attr_value.attr = attr; |
| attr_value.form = form; |
| attr_value.aux.shndx = 0; |
| switch(form) |
| { |
| case elfcpp::DW_FORM_flag_present: |
| attr_value.val.intval = 1; |
| break; |
| case elfcpp::DW_FORM_strp: |
| { |
| off_t str_off; |
| if (this->dwinfo_->offset_size() == 4) |
| str_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| else |
| str_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &str_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = str_off; |
| break; |
| } |
| case elfcpp::DW_FORM_sec_offset: |
| { |
| off_t sec_off; |
| if (this->dwinfo_->offset_size() == 4) |
| sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| else |
| sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = sec_off; |
| ref_form = true; |
| break; |
| } |
| case elfcpp::DW_FORM_addr: |
| { |
| off_t sec_off; |
| if (this->dwinfo_->address_size() == 4) |
| sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| else |
| sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = sec_off; |
| ref_form = true; |
| break; |
| } |
| case elfcpp::DW_FORM_ref_addr: |
| { |
| off_t sec_off; |
| if (this->dwinfo_->ref_addr_size() == 4) |
| sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| else |
| sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = sec_off; |
| ref_form = true; |
| break; |
| } |
| case elfcpp::DW_FORM_block1: |
| attr_value.aux.blocklen = *pattr++; |
| attr_value.val.blockval = pattr; |
| pattr += attr_value.aux.blocklen; |
| break; |
| case elfcpp::DW_FORM_block2: |
| attr_value.aux.blocklen = |
| this->dwinfo_->read_from_pointer<16>(&pattr); |
| attr_value.val.blockval = pattr; |
| pattr += attr_value.aux.blocklen; |
| break; |
| case elfcpp::DW_FORM_block4: |
| attr_value.aux.blocklen = |
| this->dwinfo_->read_from_pointer<32>(&pattr); |
| attr_value.val.blockval = pattr; |
| pattr += attr_value.aux.blocklen; |
| break; |
| case elfcpp::DW_FORM_block: |
| case elfcpp::DW_FORM_exprloc: |
| attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len); |
| attr_value.val.blockval = pattr + len; |
| pattr += len + attr_value.aux.blocklen; |
| break; |
| case elfcpp::DW_FORM_data1: |
| case elfcpp::DW_FORM_flag: |
| attr_value.val.intval = *pattr++; |
| break; |
| case elfcpp::DW_FORM_ref1: |
| attr_value.val.refval = *pattr++; |
| ref_form = true; |
| break; |
| case elfcpp::DW_FORM_data2: |
| attr_value.val.intval = |
| this->dwinfo_->read_from_pointer<16>(&pattr); |
| break; |
| case elfcpp::DW_FORM_ref2: |
| attr_value.val.refval = |
| this->dwinfo_->read_from_pointer<16>(&pattr); |
| ref_form = true; |
| break; |
| case elfcpp::DW_FORM_data4: |
| { |
| off_t sec_off; |
| sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.intval = sec_off; |
| break; |
| } |
| case elfcpp::DW_FORM_ref4: |
| { |
| off_t sec_off; |
| sec_off = this->dwinfo_->read_from_pointer<32>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = sec_off; |
| ref_form = true; |
| break; |
| } |
| case elfcpp::DW_FORM_data8: |
| { |
| off_t sec_off; |
| sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.intval = sec_off; |
| break; |
| } |
| case elfcpp::DW_FORM_ref_sig8: |
| attr_value.val.uintval = |
| this->dwinfo_->read_from_pointer<64>(&pattr); |
| break; |
| case elfcpp::DW_FORM_ref8: |
| { |
| off_t sec_off; |
| sec_off = this->dwinfo_->read_from_pointer<64>(&pattr); |
| unsigned int shndx = |
| this->dwinfo_->lookup_reloc(attr_off, &sec_off); |
| attr_value.aux.shndx = shndx; |
| attr_value.val.refval = sec_off; |
| ref_form = true; |
| break; |
| } |
| case elfcpp::DW_FORM_ref_udata: |
| attr_value.val.refval = read_unsigned_LEB_128(pattr, &len); |
| ref_form = true; |
| pattr += len; |
| break; |
| case elfcpp::DW_FORM_udata: |
| case elfcpp::DW_FORM_GNU_addr_index: |
| case elfcpp::DW_FORM_GNU_str_index: |
| attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len); |
| pattr += len; |
| break; |
| case elfcpp::DW_FORM_sdata: |
| attr_value.val.intval = read_signed_LEB_128(pattr, &len); |
| pattr += len; |
| break; |
| case elfcpp::DW_FORM_string: |
| attr_value.val.stringval = reinterpret_cast<const char*>(pattr); |
| len = strlen(attr_value.val.stringval); |
| pattr += len + 1; |
| break; |
| default: |
| return false; |
| } |
| |
| // Cache the most frequently-requested attributes. |
| switch (attr) |
| { |
| case elfcpp::DW_AT_name: |
| if (form == elfcpp::DW_FORM_string) |
| this->name_ = attr_value.val.stringval; |
| else if (form == elfcpp::DW_FORM_strp) |
| { |
| // All indirect strings should refer to the same |
| // string section, so we just save the last one seen. |
| this->string_shndx_ = attr_value.aux.shndx; |
| this->name_off_ = attr_value.val.refval; |
| } |
| break; |
| case elfcpp::DW_AT_linkage_name: |
| case elfcpp::DW_AT_MIPS_linkage_name: |
| if (form == elfcpp::DW_FORM_string) |
| this->linkage_name_ = attr_value.val.stringval; |
| else if (form == elfcpp::DW_FORM_strp) |
| { |
| // All indirect strings should refer to the same |
| // string section, so we just save the last one seen. |
| this->string_shndx_ = attr_value.aux.shndx; |
| this->linkage_name_off_ = attr_value.val.refval; |
| } |
| break; |
| case elfcpp::DW_AT_specification: |
| if (ref_form) |
| this->specification_ = attr_value.val.refval; |
| break; |
| case elfcpp::DW_AT_abstract_origin: |
| if (ref_form) |
| this->abstract_origin_ = attr_value.val.refval; |
| break; |
| case elfcpp::DW_AT_sibling: |
| if (ref_form && attr_value.aux.shndx == 0) |
| this->sibling_offset_ = attr_value.val.refval; |
| default: |
| break; |
| } |
| |
| this->attributes_.push_back(attr_value); |
| } |
| |
| // Now that we know where the next DIE begins, record the offset |
| // to avoid later recalculation. |
| if (this->has_children()) |
| this->child_offset_ = this->die_offset_ + (pattr - pdie); |
| else |
| this->sibling_offset_ = this->die_offset_ + (pattr - pdie); |
| |
| this->attributes_read_ = true; |
| return true; |
| } |
| |
| // Skip all the attributes of the DIE and return the offset of the next DIE. |
| |
| off_t |
| Dwarf_die::skip_attributes() |
| { |
| gold_assert(this->abbrev_code_ != NULL); |
| |
| const unsigned char* pdie = |
| this->dwinfo_->buffer_at_offset(this->die_offset_); |
| if (pdie == NULL) |
| return 0; |
| const unsigned char* pattr = pdie + this->attr_offset_; |
| |
| for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i) |
| { |
| size_t len; |
| unsigned int form = this->abbrev_code_->attributes[i].form; |
| if (form == elfcpp::DW_FORM_indirect) |
| { |
| form = read_unsigned_LEB_128(pattr, &len); |
| pattr += len; |
| } |
| switch(form) |
| { |
| case elfcpp::DW_FORM_flag_present: |
| break; |
| case elfcpp::DW_FORM_strp: |
| case elfcpp::DW_FORM_sec_offset: |
| pattr += this->dwinfo_->offset_size(); |
| break; |
| case elfcpp::DW_FORM_addr: |
| pattr += this->dwinfo_->address_size(); |
| break; |
| case elfcpp::DW_FORM_ref_addr: |
| pattr += this->dwinfo_->ref_addr_size(); |
| break; |
| case elfcpp::DW_FORM_block1: |
| pattr += 1 + *pattr; |
| break; |
| case elfcpp::DW_FORM_block2: |
| { |
| uint16_t block_size; |
| block_size = this->dwinfo_->read_from_pointer<16>(&pattr); |
| pattr += block_size; |
| break; |
| } |
| case elfcpp::DW_FORM_block4: |
| { |
| uint32_t block_size; |
| block_size = this->dwinfo_->read_from_pointer<32>(&pattr); |
| pattr += block_size; |
| break; |
| } |
| case elfcpp::DW_FORM_block: |
| case elfcpp::DW_FORM_exprloc: |
| { |
| uint64_t block_size; |
| block_size = read_unsigned_LEB_128(pattr, &len); |
| pattr += len + block_size; |
| break; |
| } |
| case elfcpp::DW_FORM_data1: |
| case elfcpp::DW_FORM_ref1: |
| case elfcpp::DW_FORM_flag: |
| pattr += 1; |
| break; |
| case elfcpp::DW_FORM_data2: |
| case elfcpp::DW_FORM_ref2: |
| pattr += 2; |
| break; |
| case elfcpp::DW_FORM_data4: |
| case elfcpp::DW_FORM_ref4: |
| pattr += 4; |
| break; |
| case elfcpp::DW_FORM_data8: |
| case elfcpp::DW_FORM_ref8: |
| case elfcpp::DW_FORM_ref_sig8: |
| pattr += 8; |
| break; |
| case elfcpp::DW_FORM_ref_udata: |
| case elfcpp::DW_FORM_udata: |
| case elfcpp::DW_FORM_GNU_addr_index: |
| case elfcpp::DW_FORM_GNU_str_index: |
| read_unsigned_LEB_128(pattr, &len); |
| pattr += len; |
| break; |
| case elfcpp::DW_FORM_sdata: |
| read_signed_LEB_128(pattr, &len); |
| pattr += len; |
| break; |
| case elfcpp::DW_FORM_string: |
| len = strlen(reinterpret_cast<const char*>(pattr)); |
| pattr += len + 1; |
| break; |
| default: |
| return 0; |
| } |
| } |
| |
| return this->die_offset_ + (pattr - pdie); |
| } |
| |
| // Get the name of the DIE and cache it. |
| |
| void |
| Dwarf_die::set_name() |
| { |
| if (this->name_ != NULL || !this->read_attributes()) |
| return; |
| if (this->name_off_ != -1) |
| this->name_ = this->dwinfo_->get_string(this->name_off_, |
| this->string_shndx_); |
| } |
| |
| // Get the linkage name of the DIE and cache it. |
| |
| void |
| Dwarf_die::set_linkage_name() |
| { |
| if (this->linkage_name_ != NULL || !this->read_attributes()) |
| return; |
| if (this->linkage_name_off_ != -1) |
| this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_, |
| this->string_shndx_); |
| } |
| |
| // Return the value of attribute ATTR. |
| |
| const Dwarf_die::Attribute_value* |
| Dwarf_die::attribute(unsigned int attr) |
| { |
| if (!this->read_attributes()) |
| return NULL; |
| for (unsigned int i = 0; i < this->attributes_.size(); ++i) |
| { |
| if (this->attributes_[i].attr == attr) |
| return &this->attributes_[i]; |
| } |
| return NULL; |
| } |
| |
| const char* |
| Dwarf_die::string_attribute(unsigned int attr) |
| { |
| const Attribute_value* attr_val = this->attribute(attr); |
| if (attr_val == NULL) |
| return NULL; |
| switch (attr_val->form) |
| { |
| case elfcpp::DW_FORM_string: |
| return attr_val->val.stringval; |
| case elfcpp::DW_FORM_strp: |
| return this->dwinfo_->get_string(attr_val->val.refval, |
| attr_val->aux.shndx); |
| default: |
| return NULL; |
| } |
| } |
| |
| int64_t |
| Dwarf_die::int_attribute(unsigned int attr) |
| { |
| const Attribute_value* attr_val = this->attribute(attr); |
| if (attr_val == NULL) |
| return 0; |
| switch (attr_val->form) |
| { |
| case elfcpp::DW_FORM_flag_present: |
| case elfcpp::DW_FORM_data1: |
| case elfcpp::DW_FORM_flag: |
| case elfcpp::DW_FORM_data2: |
| case elfcpp::DW_FORM_data4: |
| case elfcpp::DW_FORM_data8: |
| case elfcpp::DW_FORM_sdata: |
| return attr_val->val.intval; |
| default: |
| return 0; |
| } |
| } |
| |
| uint64_t |
| Dwarf_die::uint_attribute(unsigned int attr) |
| { |
| const Attribute_value* attr_val = this->attribute(attr); |
| if (attr_val == NULL) |
| return 0; |
| switch (attr_val->form) |
| { |
| case elfcpp::DW_FORM_flag_present: |
| case elfcpp::DW_FORM_data1: |
| case elfcpp::DW_FORM_flag: |
| case elfcpp::DW_FORM_data4: |
| case elfcpp::DW_FORM_data8: |
| case elfcpp::DW_FORM_ref_sig8: |
| case elfcpp::DW_FORM_udata: |
| return attr_val->val.uintval; |
| default: |
| return 0; |
| } |
| } |
| |
| off_t |
| Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx) |
| { |
| const Attribute_value* attr_val = this->attribute(attr); |
| if (attr_val == NULL) |
| return -1; |
| switch (attr_val->form) |
| { |
| case elfcpp::DW_FORM_sec_offset: |
| case elfcpp::DW_FORM_addr: |
| case elfcpp::DW_FORM_ref_addr: |
| case elfcpp::DW_FORM_ref1: |
| case elfcpp::DW_FORM_ref2: |
| case elfcpp::DW_FORM_ref4: |
| case elfcpp::DW_FORM_ref8: |
| case elfcpp::DW_FORM_ref_udata: |
| *shndx = attr_val->aux.shndx; |
| return attr_val->val.refval; |
| case elfcpp::DW_FORM_ref_sig8: |
| *shndx = attr_val->aux.shndx; |
| return attr_val->val.uintval; |
| case elfcpp::DW_FORM_data4: |
| case elfcpp::DW_FORM_data8: |
| *shndx = attr_val->aux.shndx; |
| return attr_val->val.intval; |
| default: |
| return -1; |
| } |
| } |
| |
| off_t |
| Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx) |
| { |
| const Attribute_value* attr_val = this->attribute(attr); |
| if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr) |
| return -1; |
| |
| *shndx = attr_val->aux.shndx; |
| return attr_val->val.refval; |
| } |
| |
| // Return the offset of this DIE's first child. |
| |
| off_t |
| Dwarf_die::child_offset() |
| { |
| gold_assert(this->abbrev_code_ != NULL); |
| if (!this->has_children()) |
| return 0; |
| if (this->child_offset_ == 0) |
| this->child_offset_ = this->skip_attributes(); |
| return this->child_offset_; |
| } |
| |
| // Return the offset of this DIE's next sibling. |
| |
| off_t |
| Dwarf_die::sibling_offset() |
| { |
| gold_assert(this->abbrev_code_ != NULL); |
| |
| if (this->sibling_offset_ != 0) |
| return this->sibling_offset_; |
| |
| if (!this->has_children()) |
| { |
| this->sibling_offset_ = this->skip_attributes(); |
| return this->sibling_offset_; |
| } |
| |
| if (this->has_sibling_attribute()) |
| { |
| if (!this->read_attributes()) |
| return 0; |
| if (this->sibling_offset_ != 0) |
| return this->sibling_offset_; |
| } |
| |
| // Skip over the children. |
| off_t child_offset = this->child_offset(); |
| while (child_offset > 0) |
| { |
| Dwarf_die die(this->dwinfo_, child_offset, this); |
| // The Dwarf_die ctor will set this DIE's sibling offset |
| // when it reads a zero abbrev code. |
| if (die.tag() == 0) |
| break; |
| child_offset = die.sibling_offset(); |
| } |
| |
| // This should be set by now. If not, there was a problem reading |
| // the DWARF info, and we return 0. |
| return this->sibling_offset_; |
| } |
| |
| // class Dwarf_info_reader |
| |
| // Begin parsing the debug info. This calls visit_compilation_unit() |
| // or visit_type_unit() for each compilation or type unit found in the |
| // section, and visit_die() for each top-level DIE. |
| |
| void |
| Dwarf_info_reader::parse() |
| { |
| if (this->object_->is_big_endian()) |
| { |
| #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG) |
| this->do_parse<true>(); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE) |
| this->do_parse<false>(); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| |
| template<bool big_endian> |
| void |
| Dwarf_info_reader::do_parse() |
| { |
| // Get the section contents and decompress if necessary. |
| section_size_type buffer_size; |
| bool buffer_is_new; |
| this->buffer_ = this->object_->decompressed_section_contents(this->shndx_, |
| &buffer_size, |
| &buffer_is_new); |
| if (this->buffer_ == NULL || buffer_size == 0) |
| return; |
| this->buffer_end_ = this->buffer_ + buffer_size; |
| |
| // The offset of this input section in the output section. |
| off_t section_offset = this->object_->output_section_offset(this->shndx_); |
| |
| // Start tracking relocations for this section. |
| this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_, |
| this->symtab_size_); |
| this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_); |
| |
| // Loop over compilation units (or type units). |
| unsigned int abbrev_shndx = this->abbrev_shndx_; |
| off_t abbrev_offset = 0; |
| const unsigned char* pinfo = this->buffer_; |
| while (pinfo < this->buffer_end_) |
| { |
| // Read the compilation (or type) unit header. |
| const unsigned char* cu_start = pinfo; |
| this->cu_offset_ = cu_start - this->buffer_; |
| this->cu_length_ = this->buffer_end_ - cu_start; |
| |
| // Read unit_length (4 or 12 bytes). |
| if (!this->check_buffer(pinfo + 4)) |
| break; |
| uint32_t unit_length = |
| elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| pinfo += 4; |
| if (unit_length == 0xffffffff) |
| { |
| if (!this->check_buffer(pinfo + 8)) |
| break; |
| unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| pinfo += 8; |
| this->offset_size_ = 8; |
| } |
| else |
| this->offset_size_ = 4; |
| if (!this->check_buffer(pinfo + unit_length)) |
| break; |
| const unsigned char* cu_end = pinfo + unit_length; |
| this->cu_length_ = cu_end - cu_start; |
| if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1)) |
| break; |
| |
| // Read version (2 bytes). |
| this->cu_version_ = |
| elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo); |
| pinfo += 2; |
| |
| // Read debug_abbrev_offset (4 or 8 bytes). |
| if (this->offset_size_ == 4) |
| abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| else |
| abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| if (this->reloc_shndx_ > 0) |
| { |
| off_t reloc_offset = pinfo - this->buffer_; |
| off_t value; |
| abbrev_shndx = |
| this->reloc_mapper_->get_reloc_target(reloc_offset, &value); |
| if (abbrev_shndx == 0) |
| return; |
| if (this->reloc_type_ == elfcpp::SHT_REL) |
| abbrev_offset += value; |
| else |
| abbrev_offset = value; |
| } |
| pinfo += this->offset_size_; |
| |
| // Read address_size (1 byte). |
| this->address_size_ = *pinfo++; |
| |
| // For type units, read the two extra fields. |
| uint64_t signature = 0; |
| off_t type_offset = 0; |
| if (this->is_type_unit_) |
| { |
| if (!this->check_buffer(pinfo + 8 + this->offset_size_)) |
| break; |
| |
| // Read type_signature (8 bytes). |
| signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| pinfo += 8; |
| |
| // Read type_offset (4 or 8 bytes). |
| if (this->offset_size_ == 4) |
| type_offset = |
| elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo); |
| else |
| type_offset = |
| elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo); |
| pinfo += this->offset_size_; |
| } |
| |
| // Read the .debug_abbrev table. |
| this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx, |
| abbrev_offset); |
| |
| // Visit the root DIE. |
| Dwarf_die root_die(this, |
| pinfo - (this->buffer_ + this->cu_offset_), |
| NULL); |
| if (root_die.tag() != 0) |
| { |
| // Visit the CU or TU. |
| if (this->is_type_unit_) |
| this->visit_type_unit(section_offset + this->cu_offset_, |
| cu_end - cu_start, type_offset, signature, |
| &root_die); |
| else |
| this->visit_compilation_unit(section_offset + this->cu_offset_, |
| cu_end - cu_start, &root_die); |
| } |
| |
| // Advance to the next CU. |
| pinfo = cu_end; |
| } |
| |
| if (buffer_is_new) |
| { |
| delete[] this->buffer_; |
| this->buffer_ = NULL; |
| } |
| } |
| |
| // Read the DWARF string table. |
| |
| bool |
| Dwarf_info_reader::do_read_string_table(unsigned int string_shndx) |
| { |
| Relobj* object = this->object_; |
| |
| // If we don't have relocations, string_shndx will be 0, and |
| // we'll have to hunt for the .debug_str section. |
| if (string_shndx == 0) |
| { |
| for (unsigned int i = 1; i < this->object_->shnum(); ++i) |
| { |
| std::string name = object->section_name(i); |
| if (name == ".debug_str" || name == ".zdebug_str") |
| { |
| string_shndx = i; |
| this->string_output_section_offset_ = |
| object->output_section_offset(i); |
| break; |
| } |
| } |
| if (string_shndx == 0) |
| return false; |
| } |
| |
| if (this->owns_string_buffer_ && this->string_buffer_ != NULL) |
| { |
| delete[] this->string_buffer_; |
| this->owns_string_buffer_ = false; |
| } |
| |
| // Get the secton contents and decompress if necessary. |
| section_size_type buffer_size; |
| const unsigned char* buffer = |
| object->decompressed_section_contents(string_shndx, |
| &buffer_size, |
| &this->owns_string_buffer_); |
| this->string_buffer_ = reinterpret_cast<const char*>(buffer); |
| this->string_buffer_end_ = this->string_buffer_ + buffer_size; |
| this->string_shndx_ = string_shndx; |
| return true; |
| } |
| |
| // Read a possibly unaligned integer of SIZE. |
| template <int valsize> |
| inline typename elfcpp::Valtype_base<valsize>::Valtype |
| Dwarf_info_reader::read_from_pointer(const unsigned char* source) |
| { |
| typename elfcpp::Valtype_base<valsize>::Valtype return_value; |
| if (this->object_->is_big_endian()) |
| return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source); |
| else |
| return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source); |
| return return_value; |
| } |
| |
| // Read a possibly unaligned integer of SIZE. Update SOURCE after read. |
| template <int valsize> |
| inline typename elfcpp::Valtype_base<valsize>::Valtype |
| Dwarf_info_reader::read_from_pointer(const unsigned char** source) |
| { |
| typename elfcpp::Valtype_base<valsize>::Valtype return_value; |
| if (this->object_->is_big_endian()) |
| return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source); |
| else |
| return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source); |
| *source += valsize / 8; |
| return return_value; |
| } |
| |
| // Look for a relocation at offset ATTR_OFF in the dwarf info, |
| // and return the section index and offset of the target. |
| |
| unsigned int |
| Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off) |
| { |
| off_t value; |
| attr_off += this->cu_offset_; |
| unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value); |
| if (shndx == 0) |
| return 0; |
| if (this->reloc_type_ == elfcpp::SHT_REL) |
| *target_off += value; |
| else |
| *target_off = value; |
| return shndx; |
| } |
| |
| // Return a string from the DWARF string table. |
| |
| const char* |
| Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx) |
| { |
| if (!this->read_string_table(string_shndx)) |
| return NULL; |
| |
| // Correct the offset. For incremental update links, we have a |
| // relocated offset that is relative to the output section, but |
| // here we need an offset relative to the input section. |
| str_off -= this->string_output_section_offset_; |
| |
| const char* p = this->string_buffer_ + str_off; |
| |
| if (p < this->string_buffer_ || p >= this->string_buffer_end_) |
| return NULL; |
| |
| return p; |
| } |
| |
| // The following are default, do-nothing, implementations of the |
| // hook methods normally provided by a derived class. We provide |
| // default implementations rather than no implementation so that |
| // a derived class needs to implement only the hooks that it needs |
| // to use. |
| |
| // Process a compilation unit and parse its child DIE. |
| |
| void |
| Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*) |
| { |
| } |
| |
| // Process a type unit and parse its child DIE. |
| |
| void |
| Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*) |
| { |
| } |
| |
| // Print a warning about a corrupt debug section. |
| |
| void |
| Dwarf_info_reader::warn_corrupt_debug_section() const |
| { |
| gold_warning(_("%s: corrupt debug info in %s"), |
| this->object_->name().c_str(), |
| this->object_->section_name(this->shndx_).c_str()); |
| } |
| |
| // class Sized_dwarf_line_info |
| |
| struct LineStateMachine |
| { |
| int file_num; |
| uint64_t address; |
| int line_num; |
| int column_num; |
| unsigned int shndx; // the section address refers to |
| bool is_stmt; // stmt means statement. |
| bool basic_block; |
| bool end_sequence; |
| }; |
| |
| static void |
| ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt) |
| { |
| lsm->file_num = 1; |
| lsm->address = 0; |
| lsm->line_num = 1; |
| lsm->column_num = 0; |
| lsm->shndx = -1U; |
| lsm->is_stmt = default_is_stmt; |
| lsm->basic_block = false; |
| lsm->end_sequence = false; |
| } |
| |
| template<int size, bool big_endian> |
| Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info( |
| Object* object, |
| unsigned int read_shndx) |
| : data_valid_(false), buffer_(NULL), buffer_start_(NULL), |
| reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(), |
| current_header_index_(-1) |
| { |
| unsigned int debug_shndx; |
| |
| for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx) |
| { |
| // FIXME: do this more efficiently: section_name() isn't super-fast |
| std::string name = object->section_name(debug_shndx); |
| if (name == ".debug_line" || name == ".zdebug_line") |
| { |
| section_size_type buffer_size; |
| bool is_new = false; |
| this->buffer_ = object->decompressed_section_contents(debug_shndx, |
| &buffer_size, |
| &is_new); |
| if (is_new) |
| this->buffer_start_ = this->buffer_; |
| this->buffer_end_ = this->buffer_ + buffer_size; |
| break; |
| } |
| } |
| if (this->buffer_ == NULL) |
| return; |
| |
| // Find the relocation section for ".debug_line". |
| // We expect these for relobjs (.o's) but not dynobjs (.so's). |
| unsigned int reloc_shndx = 0; |
| for (unsigned int i = 0; i < object->shnum(); ++i) |
| { |
| unsigned int reloc_sh_type = object->section_type(i); |
| if ((reloc_sh_type == elfcpp::SHT_REL |
| || reloc_sh_type == elfcpp::SHT_RELA) |
| && object->section_info(i) == debug_shndx) |
| { |
| reloc_shndx = i; |
| this->track_relocs_type_ = reloc_sh_type; |
| break; |
| } |
| } |
| |
| // Finally, we need the symtab section to interpret the relocs. |
| if (reloc_shndx != 0) |
| { |
| unsigned int symtab_shndx; |
| for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx) |
| if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB) |
| { |
| this->symtab_buffer_ = object->section_contents( |
| symtab_shndx, &this->symtab_buffer_size_, false); |
| break; |
| } |
| if (this->symtab_buffer_ == NULL) |
| return; |
| } |
| |
| this->reloc_mapper_ = |
| new Sized_elf_reloc_mapper<size, big_endian>(object, |
| this->symtab_buffer_, |
| this->symtab_buffer_size_); |
| if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_)) |
| return; |
| |
| // Now that we have successfully read all the data, parse the debug |
| // info. |
| this->data_valid_ = true; |
| this->read_line_mappings(read_shndx); |
| } |
| |
| // Read the DWARF header. |
| |
| template<int size, bool big_endian> |
| const unsigned char* |
| Sized_dwarf_line_info<size, big_endian>::read_header_prolog( |
| const unsigned char* lineptr) |
| { |
| uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr); |
| lineptr += 4; |
| |
| // In DWARF2/3, if the initial length is all 1 bits, then the offset |
| // size is 8 and we need to read the next 8 bytes for the real length. |
| if (initial_length == 0xffffffff) |
| { |
| header_.offset_size = 8; |
| initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr); |
| lineptr += 8; |
| } |
| else |
| header_.offset_size = 4; |
| |
| header_.total_length = initial_length; |
| |
| gold_assert(lineptr + header_.total_length <= buffer_end_); |
| |
| header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr); |
| lineptr += 2; |
| |
| if (header_.offset_size == 4) |
| header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr); |
| else |
| header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr); |
| lineptr += header_.offset_size; |
| |
| header_.min_insn_length = *lineptr; |
| lineptr += 1; |
| |
| if (header_.version < 4) |
| header_.max_ops_per_insn = 1; |
| else |
| { |
| // DWARF 4 added the maximum_operations_per_instruction field. |
| header_.max_ops_per_insn = *lineptr; |
| lineptr += 1; |
| // TODO: Add support for values other than 1. |
| gold_assert(header_.max_ops_per_insn == 1); |
| } |
| |
| header_.default_is_stmt = *lineptr; |
| lineptr += 1; |
| |
| header_.line_base = *reinterpret_cast<const signed char*>(lineptr); |
| lineptr += 1; |
| |
| header_.line_range = *lineptr; |
| lineptr += 1; |
| |
| header_.opcode_base = *lineptr; |
| lineptr += 1; |
| |
| header_.std_opcode_lengths.resize(header_.opcode_base + 1); |
| header_.std_opcode_lengths[0] = 0; |
| for (int i = 1; i < header_.opcode_base; i++) |
| { |
| header_.std_opcode_lengths[i] = *lineptr; |
| lineptr += 1; |
| } |
| |
| return lineptr; |
| } |
| |
| // The header for a debug_line section is mildly complicated, because |
| // the line info is very tightly encoded. |
| |
| template<int size, bool big_endian> |
| const unsigned char* |
| Sized_dwarf_line_info<size, big_endian>::read_header_tables( |
| const unsigned char* lineptr) |
| { |
| ++this->current_header_index_; |
| |
| // Create a new directories_ entry and a new files_ entry for our new |
| // header. We initialize each with a single empty element, because |
| // dwarf indexes directory and filenames starting at 1. |
| gold_assert(static_cast<int>(this->directories_.size()) |
| == this->current_header_index_); |
| gold_assert(static_cast<int>(this->files_.size()) |
| == this->current_header_index_); |
| this->directories_.push_back(std::vector<std::string>(1)); |
| this->files_.push_back(std::vector<std::pair<int, std::string> >(1)); |
| |
| // It is legal for the directory entry table to be empty. |
| if (*lineptr) |
| { |
| int dirindex = 1; |
| while (*lineptr) |
| { |
| const char* dirname = reinterpret_cast<const char*>(lineptr); |
| gold_assert(dirindex |
| == static_cast<int>(this->directories_.back().size())); |
| this->directories_.back().push_back(dirname); |
| lineptr += this->directories_.back().back().size() + 1; |
| dirindex++; |
| } |
| } |
| lineptr++; |
| |
| // It is also legal for the file entry table to be empty. |
| if (*lineptr) |
| { |
| int fileindex = 1; |
| size_t len; |
| while (*lineptr) |
| { |
| const char* filename = reinterpret_cast<const char*>(lineptr); |
| lineptr += strlen(filename) + 1; |
| |
| uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len); |
| lineptr += len; |
| |
| if (dirindex >= this->directories_.back().size()) |
| dirindex = 0; |
| int dirindexi = static_cast<int>(dirindex); |
| |
| read_unsigned_LEB_128(lineptr, &len); // mod_time |
| lineptr += len; |
| |
| read_unsigned_LEB_128(lineptr, &len); // filelength |
| lineptr += len; |
| |
| gold_assert(fileindex |
| == static_cast<int>(this->files_.back().size())); |
| this->files_.back().push_back(std::make_pair(dirindexi, filename)); |
| fileindex++; |
| } |
| } |
| lineptr++; |
| |
| return lineptr; |
| } |
| |
| // Process a single opcode in the .debug.line structure. |
| |
| template<int size, bool big_endian> |
| bool |
| Sized_dwarf_line_info<size, big_endian>::process_one_opcode( |
| const unsigned char* start, struct LineStateMachine* lsm, size_t* len) |
| { |
| size_t oplen = 0; |
| size_t templen; |
| unsigned char opcode = *start; |
| oplen++; |
| start++; |
| |
| // If the opcode is great than the opcode_base, it is a special |
| // opcode. Most line programs consist mainly of special opcodes. |
| if (opcode >= header_.opcode_base) |
| { |
| opcode -= header_.opcode_base; |
| const int advance_address = ((opcode / header_.line_range) |
| * header_.min_insn_length); |
| lsm->address += advance_address; |
| |
| const int advance_line = ((opcode % header_.line_range) |
| + header_.line_base); |
| lsm->line_num += advance_line; |
| lsm->basic_block = true; |
| *len = oplen; |
| return true; |
| } |
| |
| // Otherwise, we have the regular opcodes |
| switch (opcode) |
| { |
| case elfcpp::DW_LNS_copy: |
| lsm->basic_block = false; |
| *len = oplen; |
| return true; |
| |
| case elfcpp::DW_LNS_advance_pc: |
| { |
| const uint64_t advance_address |
| = read_unsigned_LEB_128(start, &templen); |
| oplen += templen; |
| lsm->address += header_.min_insn_length * advance_address; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_advance_line: |
| { |
| const uint64_t advance_line = read_signed_LEB_128(start, &templen); |
| oplen += templen; |
| lsm->line_num += advance_line; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_set_file: |
| { |
| const uint64_t fileno = read_unsigned_LEB_128(start, &templen); |
| oplen += templen; |
| lsm->file_num = fileno; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_set_column: |
| { |
| const uint64_t colno = read_unsigned_LEB_128(start, &templen); |
| oplen += templen; |
| lsm->column_num = colno; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_negate_stmt: |
| lsm->is_stmt = !lsm->is_stmt; |
| break; |
| |
| case elfcpp::DW_LNS_set_basic_block: |
| lsm->basic_block = true; |
| break; |
| |
| case elfcpp::DW_LNS_fixed_advance_pc: |
| { |
| int advance_address; |
| advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start); |
| oplen += 2; |
| lsm->address += advance_address; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_const_add_pc: |
| { |
| const int advance_address = (header_.min_insn_length |
| * ((255 - header_.opcode_base) |
| / header_.line_range)); |
| lsm->address += advance_address; |
| } |
| break; |
| |
| case elfcpp::DW_LNS_extended_op: |
| { |
| const uint64_t extended_op_len |
| = read_unsigned_LEB_128(start, &templen); |
| start += templen; |
| oplen += templen + extended_op_len; |
| |
| const unsigned char extended_op = *start; |
| start++; |
| |
| switch (extended_op) |
| { |
| case elfcpp::DW_LNE_end_sequence: |
| // This means that the current byte is the one immediately |
| // after a set of instructions. Record the current line |
| // for up to one less than the current address. |
| lsm->line_num = -1; |
| lsm->end_sequence = true; |
| *len = oplen; |
| return true; |
| |
| case elfcpp::DW_LNE_set_address: |
| { |
| lsm->address = |
| elfcpp::Swap_unaligned<size, big_endian>::readval(start); |
| typename Reloc_map::const_iterator it |
| = this->reloc_map_.find(start - this->buffer_); |
| if (it != reloc_map_.end()) |
| { |
| // If this is a SHT_RELA section, then ignore the |
| // section contents. This assumes that this is a |
| // straight reloc which just uses the reloc addend. |
| // The reloc addend has already been included in the |
| // symbol value. |
| if (this->track_relocs_type_ == elfcpp::SHT_RELA) |
| lsm->address = 0; |
| // Add in the symbol value. |
| lsm->address += it->second.second; |
| lsm->shndx = it->second.first; |
| } |
| else |
| { |
| // If we're a normal .o file, with relocs, every |
| // set_address should have an associated relocation. |
| if (this->input_is_relobj()) |
| this->data_valid_ = false; |
| } |
| break; |
| } |
| case elfcpp::DW_LNE_define_file: |
| { |
| const char* filename = reinterpret_cast<const char*>(start); |
| templen = strlen(filename) + 1; |
| start += templen; |
| |
| uint64_t dirindex = read_unsigned_LEB_128(start, &templen); |
| |
| if (dirindex >= this->directories_.back().size()) |
| dirindex = 0; |
| int dirindexi = static_cast<int>(dirindex); |
| |
| // This opcode takes two additional ULEB128 parameters |
| // (mod_time and filelength), but we don't use those |
| // values. Because OPLEN already tells us how far to |
| // skip to the next opcode, we don't need to read |
| // them at all. |
| |
| this->files_.back().push_back(std::make_pair(dirindexi, |
| filename)); |
| } |
| break; |
| } |
| } |
| break; |
| |
| default: |
| { |
| // Ignore unknown opcode silently |
| for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++) |
| { |
| size_t templen; |
| read_unsigned_LEB_128(start, &templen); |
| start += templen; |
| oplen += templen; |
| } |
| } |
| break; |
| } |
| *len = oplen; |
| return false; |
| } |
| |
| // Read the debug information at LINEPTR and store it in the line |
| // number map. |
| |
| template<int size, bool big_endian> |
| unsigned const char* |
| Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr, |
| unsigned int shndx) |
| { |
| struct LineStateMachine lsm; |
| |
| // LENGTHSTART is the place the length field is based on. It is the |
| // point in the header after the initial length field. |
| const unsigned char* lengthstart = buffer_; |
| |
| // In 64 bit dwarf, the initial length is 12 bytes, because of the |
| // 0xffffffff at the start. |
| if (header_.offset_size == 8) |
| lengthstart += 12; |
| else |
| lengthstart += 4; |
| |
| while (lineptr < lengthstart + header_.total_length) |
| { |
| ResetLineStateMachine(&lsm, header_.default_is_stmt); |
| while (!lsm.end_sequence) |
| { |
| size_t oplength; |
| bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength); |
| if (add_line |
| && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx)) |
| { |
| Offset_to_lineno_entry entry |
| = { static_cast<off_t>(lsm.address), |
| this->current_header_index_, |
| static_cast<unsigned int>(lsm.file_num), |
| true, lsm.line_num }; |
| std::vector<Offset_to_lineno_entry>& |
| map(this->line_number_map_[lsm.shndx]); |
| // If we see two consecutive entries with the same |
| // offset and a real line number, then mark the first |
| // one as non-canonical. |
| if (!map.empty() |
| && (map.back().offset == static_cast<off_t>(lsm.address)) |
| && lsm.line_num != -1 |
| && map.back().line_num != -1) |
| map.back().last_line_for_offset = false; |
| map.push_back(entry); |
| } |
| lineptr += oplength; |
| } |
| } |
| |
| return lengthstart + header_.total_length; |
| } |
| |
| // Read the relocations into a Reloc_map. |
| |
| template<int size, bool big_endian> |
| void |
| Sized_dwarf_line_info<size, big_endian>::read_relocs() |
| { |
| if (this->symtab_buffer_ == NULL) |
| return; |
| |
| off_t value; |
| off_t reloc_offset; |
| while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1) |
| { |
| const unsigned int shndx = |
| this->reloc_mapper_->get_reloc_target(reloc_offset, &value); |
| |
| // There is no reason to record non-ordinary section indexes, or |
| // SHN_UNDEF, because they will never match the real section. |
| if (shndx != 0) |
| this->reloc_map_[reloc_offset] = std::make_pair(shndx, value); |
| |
| this->reloc_mapper_->advance(reloc_offset + 1); |
| } |
| } |
| |
| // Read the line number info. |
| |
| template<int size, bool big_endian> |
| void |
| Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx) |
| { |
| gold_assert(this->data_valid_ == true); |
| |
| this->read_relocs(); |
| while (this->buffer_ < this->buffer_end_) |
| { |
| const unsigned char* lineptr = this->buffer_; |
| lineptr = this->read_header_prolog(lineptr); |
| lineptr = this->read_header_tables(lineptr); |
| lineptr = this->read_lines(lineptr, shndx); |
| this->buffer_ = lineptr; |
| } |
| |
| // Sort the lines numbers, so addr2line can use binary search. |
| for (typename Lineno_map::iterator it = line_number_map_.begin(); |
| it != line_number_map_.end(); |
| ++it) |
| // Each vector needs to be sorted by offset. |
| std::sort(it->second.begin(), it->second.end()); |
| } |
| |
| // Some processing depends on whether the input is a .o file or not. |
| // For instance, .o files have relocs, and have .debug_lines |
| // information on a per section basis. .so files, on the other hand, |
| // lack relocs, and offsets are unique, so we can ignore the section |
| // information. |
| |
| template<int size, bool big_endian> |
| bool |
| Sized_dwarf_line_info<size, big_endian>::input_is_relobj() |
| { |
| // Only .o files have relocs and the symtab buffer that goes with them. |
| return this->symtab_buffer_ != NULL; |
| } |
| |
| // Given an Offset_to_lineno_entry vector, and an offset, figure out |
| // if the offset points into a function according to the vector (see |
| // comments below for the algorithm). If it does, return an iterator |
| // into the vector that points to the line-number that contains that |
| // offset. If not, it returns vector::end(). |
| |
| static std::vector<Offset_to_lineno_entry>::const_iterator |
| offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets, |
| off_t offset) |
| { |
| const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 }; |
| |
| // lower_bound() returns the smallest offset which is >= lookup_key. |
| // If no offset in offsets is >= lookup_key, returns end(). |
| std::vector<Offset_to_lineno_entry>::const_iterator it |
| = std::lower_bound(offsets->begin(), offsets->end(), lookup_key); |
| |
| // This code is easiest to understand with a concrete example. |
| // Here's a possible offsets array: |
| // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0 |
| // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1 |
| // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2 |
| // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3 |
| // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4 |
| // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5 |
| // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6 |
| // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7 |
| // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8 |
| // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9 |
| // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10 |
| // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11 |
| // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12 |
| // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13 |
| // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14 |
| // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15 |
| // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16 |
| // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17 |
| // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18 |
| // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19 |
| // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20 |
| // The entries with line_num == -1 mark the end of a function: the |
| // associated offset is one past the last instruction in the |
| // function. This can correspond to the beginning of the next |
| // function (as is true for offset 3232); alternately, there can be |
| // a gap between the end of one function and the start of the next |
| // (as is true for some others, most obviously from 3236->5764). |
| // |
| // Case 1: lookup_key has offset == 10. lower_bound returns |
| // offsets[0]. Since it's not an exact match and we're |
| // at the beginning of offsets, we return end() (invalid). |
| // Case 2: lookup_key has offset 10000. lower_bound returns |
| // offset[21] (end()). We return end() (invalid). |
| // Case 3: lookup_key has offset == 3211. lower_bound matches |
| // offsets[0] exactly, and that's the entry we return. |
| // Case 4: lookup_key has offset == 3232. lower_bound returns |
| // offsets[4]. That's an exact match, but indicates |
| // end-of-function. We check if offsets[5] is also an |
| // exact match but not end-of-function. It is, so we |
| // return offsets[5]. |
| // Case 5: lookup_key has offset == 3214. lower_bound returns |
| // offsets[1]. Since it's not an exact match, we back |
| // up to the offset that's < lookup_key, offsets[0]. |
| // We note offsets[0] is a valid entry (not end-of-function), |
| // so that's the entry we return. |
| // Case 6: lookup_key has offset == 4000. lower_bound returns |
| // offsets[8]. Since it's not an exact match, we back |
| // up to offsets[7]. Since offsets[7] indicates |
| // end-of-function, we know lookup_key is between |
| // functions, so we return end() (not a valid offset). |
| // Case 7: lookup_key has offset == 5794. lower_bound returns |
| // offsets[19]. Since it's not an exact match, we back |
| // up to offsets[16]. Note we back up to the *first* |
| // entry with offset 5793, not just offsets[19-1]. |
| // We note offsets[16] is a valid entry, so we return it. |
| // If offsets[16] had had line_num == -1, we would have |
| // checked offsets[17]. The reason for this is that |
| // 16 and 17 can be in an arbitrary order, since we sort |
| // only by offset and last_line_for_offset. (Note it |
| // doesn't help to use line_number as a tertiary sort key, |
| // since sometimes we want the -1 to be first and sometimes |
| // we want it to be last.) |
| |
| // This deals with cases (1) and (2). |
| if ((it == offsets->begin() && offset < it->offset) |
| || it == offsets->end()) |
| return offsets->end(); |
| |
| // This deals with cases (3) and (4). |
| if (offset == it->offset) |
| { |
| while (it != offsets->end() |
| && it->offset == offset |
| && it->line_num == -1) |
| ++it; |
| if (it == offsets->end() || it->offset != offset) |
| return offsets->end(); |
| else |
| return it; |
| } |
| |
| // This handles the first part of case (7) -- we back up to the |
| // *first* entry that has the offset that's behind us. |
| gold_assert(it != offsets->begin()); |
| std::vector<Offset_to_lineno_entry>::const_iterator range_end = it; |
| --it; |
| const off_t range_value = it->offset; |
| while (it != offsets->begin() && (it-1)->offset == range_value) |
| --it; |
| |
| // This handles cases (5), (6), and (7): if any entry in the |
| // equal_range [it, range_end) has a line_num != -1, it's a valid |
| // match. If not, we're not in a function. The line number we saw |
| // last for an offset will be sorted first, so it'll get returned if |
| // it's present. |
| for (; it != range_end; ++it) |
| if (it->line_num != -1) |
| return it; |
| return offsets->end(); |
| } |
| |
| // Returns the canonical filename:lineno for the address passed in. |
| // If other_lines is not NULL, appends the non-canonical lines |
| // assigned to the same address. |
| |
| template<int size, bool big_endian> |
| std::string |
| Sized_dwarf_line_info<size, big_endian>::do_addr2line( |
| unsigned int shndx, |
| off_t offset, |
| std::vector<std::string>* other_lines) |
| { |
| if (this->data_valid_ == false) |
| return ""; |
| |
| const std::vector<Offset_to_lineno_entry>* offsets; |
| // If we do not have reloc information, then our input is a .so or |
| // some similar data structure where all the information is held in |
| // the offset. In that case, we ignore the input shndx. |
| if (this->input_is_relobj()) |
| offsets = &this->line_number_map_[shndx]; |
| else |
| offsets = &this->line_number_map_[-1U]; |
| if (offsets->empty()) |
| return ""; |
| |
| typename std::vector<Offset_to_lineno_entry>::const_iterator it |
| = offset_to_iterator(offsets, offset); |
| if (it == offsets->end()) |
| return ""; |
| |
| std::string result = this->format_file_lineno(*it); |
| gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s", |
| result.c_str()); |
| if (other_lines != NULL) |
| { |
| unsigned int last_file_num = it->file_num; |
| int last_line_num = it->line_num; |
| // Return up to 4 more locations from the beginning of the function |
| // for fuzzy matching. |
| for (++it; it != offsets->end(); ++it) |
| { |
| if (it->offset == offset && it->line_num == -1) |
| continue; // The end of a previous function. |
| if (it->line_num == -1) |
| break; // The end of the current function. |
| if (it->file_num != last_file_num || it->line_num != last_line_num) |
| { |
| other_lines->push_back(this->format_file_lineno(*it)); |
| gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s", |
| other_lines->back().c_str()); |
| last_file_num = it->file_num; |
| last_line_num = it->line_num; |
| } |
| if (it->offset > offset && other_lines->size() >= 4) |
| break; |
| } |
| } |
| |
| return result; |
| } |
| |
| // Convert the file_num + line_num into a string. |
| |
| template<int size, bool big_endian> |
| std::string |
| Sized_dwarf_line_info<size, big_endian>::format_file_lineno( |
| const Offset_to_lineno_entry& loc) const |
| { |
| std::string ret; |
| |
| gold_assert(loc.header_num < static_cast<int>(this->files_.size())); |
| gold_assert(loc.file_num |
| < static_cast<unsigned int>(this->files_[loc.header_num].size())); |
| const std::pair<int, std::string>& filename_pair |
| = this->files_[loc.header_num][loc.file_num]; |
| const std::string& filename = filename_pair.second; |
| |
| gold_assert(loc.header_num < static_cast<int>(this->directories_.size())); |
| gold_assert(filename_pair.first |
| < static_cast<int>(this->directories_[loc.header_num].size())); |
| const std::string& dirname |
| = this->directories_[loc.header_num][filename_pair.first]; |
| |
| if (!dirname.empty()) |
| { |
| ret += dirname; |
| ret += "/"; |
| } |
| ret += filename; |
| if (ret.empty()) |
| ret = "(unknown)"; |
| |
| char buffer[64]; // enough to hold a line number |
| snprintf(buffer, sizeof(buffer), "%d", loc.line_num); |
| ret += ":"; |
| ret += buffer; |
| |
| return ret; |
| } |
| |
| // Dwarf_line_info routines. |
| |
| static unsigned int next_generation_count = 0; |
| |
| struct Addr2line_cache_entry |
| { |
| Object* object; |
| unsigned int shndx; |
| Dwarf_line_info* dwarf_line_info; |
| unsigned int generation_count; |
| unsigned int access_count; |
| |
| Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d) |
| : object(o), shndx(s), dwarf_line_info(d), |
| generation_count(next_generation_count), access_count(0) |
| { |
| if (next_generation_count < (1U << 31)) |
| ++next_generation_count; |
| } |
| }; |
| // We expect this cache to be small, so don't bother with a hashtable |
| // or priority queue or anything: just use a simple vector. |
| static std::vector<Addr2line_cache_entry> addr2line_cache; |
| |
| std::string |
| Dwarf_line_info::one_addr2line(Object* object, |
| unsigned int shndx, off_t offset, |
| size_t cache_size, |
| std::vector<std::string>* other_lines) |
| { |
| Dwarf_line_info* lineinfo = NULL; |
| std::vector<Addr2line_cache_entry>::iterator it; |
| |
| // First, check the cache. If we hit, update the counts. |
| for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it) |
| { |
| if (it->object == object && it->shndx == shndx) |
| { |
| lineinfo = it->dwarf_line_info; |
| it->generation_count = next_generation_count; |
| // We cap generation_count at 2^31 -1 to avoid overflow. |
| if (next_generation_count < (1U << 31)) |
| ++next_generation_count; |
| // We cap access_count at 31 so 2^access_count doesn't overflow |
| if (it->access_count < 31) |
| ++it->access_count; |
| break; |
| } |
| } |
| |
| // If we don't hit the cache, create a new object and insert into the |
| // cache. |
| if (lineinfo == NULL) |
| { |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo)); |
| } |
| |
| // Now that we have our object, figure out the answer |
| std::string retval = lineinfo->addr2line(shndx, offset, other_lines); |
| |
| // Finally, if our cache has grown too big, delete old objects. We |
| // assume the common (probably only) case is deleting only one object. |
| // We use a pretty simple scheme to evict: function of LRU and MFU. |
| while (addr2line_cache.size() > cache_size) |
| { |
| unsigned int lowest_score = ~0U; |
| std::vector<Addr2line_cache_entry>::iterator lowest |
| = addr2line_cache.end(); |
| for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it) |
| { |
| const unsigned int score = (it->generation_count |
| + (1U << it->access_count)); |
| if (score < lowest_score) |
| { |
| lowest_score = score; |
| lowest = it; |
| } |
| } |
| if (lowest != addr2line_cache.end()) |
| { |
| delete lowest->dwarf_line_info; |
| addr2line_cache.erase(lowest); |
| } |
| } |
| |
| return retval; |
| } |
| |
| void |
| Dwarf_line_info::clear_addr2line_cache() |
| { |
| for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin(); |
| it != addr2line_cache.end(); |
| ++it) |
| delete it->dwarf_line_info; |
| addr2line_cache.clear(); |
| } |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| class Sized_dwarf_line_info<32, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| class Sized_dwarf_line_info<32, true>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| class Sized_dwarf_line_info<64, false>; |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| class Sized_dwarf_line_info<64, true>; |
| #endif |
| |
| } // End namespace gold. |