|  | /* Target-dependent code for the NEC V850 for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 1996-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "inferior.h" | 
|  | #include "gdbcore.h" | 
|  | #include "arch-utils.h" | 
|  | #include "regcache.h" | 
|  | #include "dis-asm.h" | 
|  | #include "osabi.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elf/v850.h" | 
|  | #include "gdbarch.h" | 
|  |  | 
|  | enum | 
|  | { | 
|  | /* General purpose registers.  */ | 
|  | E_R0_REGNUM, | 
|  | E_R1_REGNUM, | 
|  | E_R2_REGNUM, | 
|  | E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM, | 
|  | E_R4_REGNUM, | 
|  | E_R5_REGNUM, | 
|  | E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM, | 
|  | E_R7_REGNUM, | 
|  | E_R8_REGNUM, | 
|  | E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM, | 
|  | E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM, | 
|  | E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM, | 
|  | E_R12_REGNUM, | 
|  | E_R13_REGNUM, | 
|  | E_R14_REGNUM, | 
|  | E_R15_REGNUM, | 
|  | E_R16_REGNUM, | 
|  | E_R17_REGNUM, | 
|  | E_R18_REGNUM, | 
|  | E_R19_REGNUM, | 
|  | E_R20_REGNUM, | 
|  | E_R21_REGNUM, | 
|  | E_R22_REGNUM, | 
|  | E_R23_REGNUM, | 
|  | E_R24_REGNUM, | 
|  | E_R25_REGNUM, | 
|  | E_R26_REGNUM, | 
|  | E_R27_REGNUM, | 
|  | E_R28_REGNUM, | 
|  | E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM, | 
|  | E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM, | 
|  | E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM, | 
|  |  | 
|  | /* System registers - main banks.  */ | 
|  | E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM, | 
|  | E_R33_REGNUM, | 
|  | E_R34_REGNUM, | 
|  | E_R35_REGNUM, | 
|  | E_R36_REGNUM, | 
|  | E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM, | 
|  | E_R38_REGNUM, | 
|  | E_R39_REGNUM, | 
|  | E_R40_REGNUM, | 
|  | E_R41_REGNUM, | 
|  | E_R42_REGNUM, | 
|  | E_R43_REGNUM, | 
|  | E_R44_REGNUM, | 
|  | E_R45_REGNUM, | 
|  | E_R46_REGNUM, | 
|  | E_R47_REGNUM, | 
|  | E_R48_REGNUM, | 
|  | E_R49_REGNUM, | 
|  | E_R50_REGNUM, | 
|  | E_R51_REGNUM, | 
|  | E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM, | 
|  | E_R53_REGNUM, | 
|  | E_R54_REGNUM, | 
|  | E_R55_REGNUM, | 
|  | E_R56_REGNUM, | 
|  | E_R57_REGNUM, | 
|  | E_R58_REGNUM, | 
|  | E_R59_REGNUM, | 
|  | E_R60_REGNUM, | 
|  | E_R61_REGNUM, | 
|  | E_R62_REGNUM, | 
|  | E_R63_REGNUM, | 
|  |  | 
|  | /* PC.  */ | 
|  | E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM, | 
|  | E_R65_REGNUM, | 
|  | E_NUM_OF_V850_REGS, | 
|  | E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS, | 
|  |  | 
|  | /* System registers - MPV (PROT00) bank.  */ | 
|  | E_R66_REGNUM = E_NUM_OF_V850_REGS, | 
|  | E_R67_REGNUM, | 
|  | E_R68_REGNUM, | 
|  | E_R69_REGNUM, | 
|  | E_R70_REGNUM, | 
|  | E_R71_REGNUM, | 
|  | E_R72_REGNUM, | 
|  | E_R73_REGNUM, | 
|  | E_R74_REGNUM, | 
|  | E_R75_REGNUM, | 
|  | E_R76_REGNUM, | 
|  | E_R77_REGNUM, | 
|  | E_R78_REGNUM, | 
|  | E_R79_REGNUM, | 
|  | E_R80_REGNUM, | 
|  | E_R81_REGNUM, | 
|  | E_R82_REGNUM, | 
|  | E_R83_REGNUM, | 
|  | E_R84_REGNUM, | 
|  | E_R85_REGNUM, | 
|  | E_R86_REGNUM, | 
|  | E_R87_REGNUM, | 
|  | E_R88_REGNUM, | 
|  | E_R89_REGNUM, | 
|  | E_R90_REGNUM, | 
|  | E_R91_REGNUM, | 
|  | E_R92_REGNUM, | 
|  | E_R93_REGNUM, | 
|  |  | 
|  | /* System registers - MPU (PROT01) bank.  */ | 
|  | E_R94_REGNUM, | 
|  | E_R95_REGNUM, | 
|  | E_R96_REGNUM, | 
|  | E_R97_REGNUM, | 
|  | E_R98_REGNUM, | 
|  | E_R99_REGNUM, | 
|  | E_R100_REGNUM, | 
|  | E_R101_REGNUM, | 
|  | E_R102_REGNUM, | 
|  | E_R103_REGNUM, | 
|  | E_R104_REGNUM, | 
|  | E_R105_REGNUM, | 
|  | E_R106_REGNUM, | 
|  | E_R107_REGNUM, | 
|  | E_R108_REGNUM, | 
|  | E_R109_REGNUM, | 
|  | E_R110_REGNUM, | 
|  | E_R111_REGNUM, | 
|  | E_R112_REGNUM, | 
|  | E_R113_REGNUM, | 
|  | E_R114_REGNUM, | 
|  | E_R115_REGNUM, | 
|  | E_R116_REGNUM, | 
|  | E_R117_REGNUM, | 
|  | E_R118_REGNUM, | 
|  | E_R119_REGNUM, | 
|  | E_R120_REGNUM, | 
|  | E_R121_REGNUM, | 
|  |  | 
|  | /* FPU system registers.  */ | 
|  | E_R122_REGNUM, | 
|  | E_R123_REGNUM, | 
|  | E_R124_REGNUM, | 
|  | E_R125_REGNUM, | 
|  | E_R126_REGNUM, | 
|  | E_R127_REGNUM, | 
|  | E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM, | 
|  | E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM, | 
|  | E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM, | 
|  | E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM, | 
|  | E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM, | 
|  | E_R133_REGNUM, | 
|  | E_R134_REGNUM, | 
|  | E_R135_REGNUM, | 
|  | E_R136_REGNUM, | 
|  | E_R137_REGNUM, | 
|  | E_R138_REGNUM, | 
|  | E_R139_REGNUM, | 
|  | E_R140_REGNUM, | 
|  | E_R141_REGNUM, | 
|  | E_R142_REGNUM, | 
|  | E_R143_REGNUM, | 
|  | E_R144_REGNUM, | 
|  | E_R145_REGNUM, | 
|  | E_R146_REGNUM, | 
|  | E_R147_REGNUM, | 
|  | E_R148_REGNUM, | 
|  | E_R149_REGNUM, | 
|  | E_NUM_OF_V850E2_REGS, | 
|  |  | 
|  | /* v850e3v5 system registers, selID 1 thru 7.  */ | 
|  | E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS, | 
|  | E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_2_R0_REGNUM, | 
|  | E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_3_R0_REGNUM, | 
|  | E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_4_R0_REGNUM, | 
|  | E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_5_R0_REGNUM, | 
|  | E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_6_R0_REGNUM, | 
|  | E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31, | 
|  |  | 
|  | E_SELID_7_R0_REGNUM, | 
|  | E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31, | 
|  |  | 
|  | /* v850e3v5 vector registers.  */ | 
|  | E_VR0_REGNUM, | 
|  | E_VR31_REGNUM = E_VR0_REGNUM + 31, | 
|  |  | 
|  | E_NUM_OF_V850E3V5_REGS, | 
|  |  | 
|  | /* Total number of possible registers.  */ | 
|  | E_NUM_REGS = E_NUM_OF_V850E3V5_REGS | 
|  | }; | 
|  |  | 
|  | enum | 
|  | { | 
|  | v850_reg_size = 4 | 
|  | }; | 
|  |  | 
|  | /* Size of return datatype which fits into all return registers.  */ | 
|  | enum | 
|  | { | 
|  | E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size | 
|  | }; | 
|  |  | 
|  | /* When v850 support was added to GCC in the late nineties, the intention | 
|  | was to follow the Green Hills ABI for v850.  In fact, the authors of | 
|  | that support at the time thought that they were doing so.  As far as | 
|  | I can tell, the calling conventions are correct, but the return value | 
|  | conventions were not quite right.  Over time, the return value code | 
|  | in this file was modified to mostly reflect what GCC was actually | 
|  | doing instead of to actually follow the Green Hills ABI as it did | 
|  | when the code was first written. | 
|  |  | 
|  | Renesas defined the RH850 ABI which they use in their compiler.  It | 
|  | is similar to the original Green Hills ABI with some minor | 
|  | differences.  */ | 
|  |  | 
|  | enum v850_abi | 
|  | { | 
|  | V850_ABI_GCC, | 
|  | V850_ABI_RH850 | 
|  | }; | 
|  |  | 
|  | /* Architecture specific data.  */ | 
|  |  | 
|  | struct v850_gdbarch_tdep : gdbarch_tdep_base | 
|  | { | 
|  | /* Fields from the ELF header.  */ | 
|  | int e_flags = 0; | 
|  | int e_machine = 0; | 
|  |  | 
|  | /* Which ABI are we using?  */ | 
|  | enum v850_abi abi {}; | 
|  | int eight_byte_align = 0; | 
|  | }; | 
|  |  | 
|  | struct v850_frame_cache | 
|  | { | 
|  | /* Base address.  */ | 
|  | CORE_ADDR base; | 
|  | LONGEST sp_offset; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* Flag showing that a frame has been created in the prologue code.  */ | 
|  | int uses_fp; | 
|  |  | 
|  | /* Saved registers.  */ | 
|  | trad_frame_saved_reg *saved_regs; | 
|  | }; | 
|  |  | 
|  | /* Info gleaned from scanning a function's prologue.  */ | 
|  | struct pifsr		/* Info about one saved register.  */ | 
|  | { | 
|  | int offset;		/* Offset from sp or fp.  */ | 
|  | int cur_frameoffset;	/* Current frameoffset.  */ | 
|  | int reg;		/* Saved register number.  */ | 
|  | }; | 
|  |  | 
|  | static const char * | 
|  | v850_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | static const char *v850_reg_names[] = | 
|  | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", | 
|  | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", | 
|  | "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23", | 
|  | "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", | 
|  | "pc", "fp" | 
|  | }; | 
|  | static_assert (E_NUM_OF_V850_REGS == ARRAY_SIZE (v850_reg_names)); | 
|  | return v850_reg_names[regnum]; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | v850e_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | static const char *v850e_reg_names[] = | 
|  | { | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", | 
|  | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", | 
|  | "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23", | 
|  | "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", | 
|  | "pc", "fp" | 
|  | }; | 
|  | static_assert (E_NUM_OF_V850E_REGS == ARRAY_SIZE (v850e_reg_names)); | 
|  | return v850e_reg_names[regnum]; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | v850e2_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | static const char *v850e2_reg_names[] = | 
|  | { | 
|  | /* General purpose registers.  */ | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  |  | 
|  | /* System registers - main banks.  */ | 
|  | "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg", | 
|  | "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic", | 
|  | "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "", | 
|  | "", "", "", "", "eiwr", "fewr", "dbwr", "bsel", | 
|  |  | 
|  |  | 
|  | /* PC.  */ | 
|  | "pc", "", | 
|  |  | 
|  | /* System registers - MPV (PROT00) bank.  */ | 
|  | "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "", | 
|  | "vpecr", "vptid", "vpadr", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "mca", "mcs", "mcc", "mcr", | 
|  |  | 
|  | /* System registers - MPU (PROT01) bank.  */ | 
|  | "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u", | 
|  | "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u", | 
|  | "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u", | 
|  | "dpa4l", "dpa4u", "dpa5l", "dpa5u", | 
|  |  | 
|  | /* FPU system registers.  */ | 
|  | "", "", "", "", "", "", "fpsr", "fpepc", | 
|  | "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "fpspc" | 
|  | }; | 
|  | if (regnum >= E_NUM_OF_V850E2_REGS) | 
|  | return ""; | 
|  | return v850e2_reg_names[regnum]; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_name" gdbarch method for v850e3v5.  */ | 
|  |  | 
|  | static const char * | 
|  | v850e3v5_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | static const char *v850e3v5_reg_names[] = | 
|  | { | 
|  | /* General purpose registers.  */ | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  |  | 
|  | /* selID 0, not including FPU registers.  The FPU registers are | 
|  | listed later on.  */ | 
|  | "eipc", "eipsw", "fepc", "fepsw", | 
|  | "", "psw", "" /* fpsr */, "" /* fpepc */, | 
|  | "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */, | 
|  | "sesr", "eiic", "feic", "", | 
|  | "ctpc", "ctpsw", "", "", "ctbp", "", "", "", | 
|  | "", "", "", "", "eiwr", "fewr", "", "bsel", | 
|  |  | 
|  |  | 
|  | /* PC.  */ | 
|  | "pc", "", | 
|  |  | 
|  | /* v850e2 MPV bank.  */ | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", | 
|  |  | 
|  | /* Skip v850e2 MPU bank.  It's tempting to reuse these, but we need | 
|  | 32 entries for this bank.  */ | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", | 
|  |  | 
|  | /* FPU system registers.  These are actually in selID 0, but | 
|  | are placed here to preserve register numbering compatibility | 
|  | with previous architectures.  */ | 
|  | "", "", "", "", "", "", "fpsr", "fpepc", | 
|  | "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", | 
|  |  | 
|  | /* selID 1.  */ | 
|  | "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr", | 
|  | "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel", | 
|  | "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl", | 
|  | "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "", | 
|  |  | 
|  | /* selID 2.  */ | 
|  | "htcfg0", "", "", "", "", "htctl", "mea", "asid", | 
|  | "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "", | 
|  | "tlbsch", "", "", "", "", "", "", "htscctl", | 
|  | "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3", | 
|  | "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7", | 
|  |  | 
|  | /* selID 3.  */ | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  |  | 
|  | /* selID 4.  */ | 
|  | "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1", | 
|  | "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh", | 
|  | "ictagl", "ictagh", "icdatl", "icdath", | 
|  | "dctagl", "dctagh", "dcdatl", "dcdath", | 
|  | "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "", | 
|  |  | 
|  | /* selID 5.  */ | 
|  | "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "", | 
|  | "mca", "mcs", "mcc", "mcr", "", "", "", "", | 
|  | "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  |  | 
|  | /* selID 6.  */ | 
|  | "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "", | 
|  | "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "", | 
|  | "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "", | 
|  | "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "", | 
|  |  | 
|  | /* selID 7.  */ | 
|  | "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "", | 
|  | "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "", | 
|  | "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "", | 
|  | "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "", | 
|  |  | 
|  | /* Vector Registers */ | 
|  | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | 
|  | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | 
|  | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | 
|  | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31", | 
|  | }; | 
|  |  | 
|  | static_assert (E_NUM_OF_V850E3V5_REGS | 
|  | == ARRAY_SIZE (v850e3v5_reg_names)); | 
|  | return v850e3v5_reg_names[regnum]; | 
|  | } | 
|  |  | 
|  | /* Returns the default type for register N.  */ | 
|  |  | 
|  | static struct type * | 
|  | v850_register_type (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | if (regnum == E_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_uint64; | 
|  | return builtin_type (gdbarch)->builtin_int32; | 
|  | } | 
|  |  | 
|  | static int | 
|  | v850_type_is_scalar (struct type *t) | 
|  | { | 
|  | return (t->code () != TYPE_CODE_STRUCT | 
|  | && t->code () != TYPE_CODE_UNION | 
|  | && t->code () != TYPE_CODE_ARRAY); | 
|  | } | 
|  |  | 
|  | /* Should call_function allocate stack space for a struct return?  */ | 
|  |  | 
|  | static int | 
|  | v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type) | 
|  | { | 
|  | int i; | 
|  | struct type *fld_type, *tgt_type; | 
|  | v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->abi == V850_ABI_RH850) | 
|  | { | 
|  | if (v850_type_is_scalar (type) && type->length () <= 8) | 
|  | return 0; | 
|  |  | 
|  | /* Structs are never returned in registers for this ABI.  */ | 
|  | return 1; | 
|  | } | 
|  | /* 1. The value is greater than 8 bytes -> returned by copying.  */ | 
|  | if (type->length () > 8) | 
|  | return 1; | 
|  |  | 
|  | /* 2. The value is a single basic type -> returned in register.  */ | 
|  | if (v850_type_is_scalar (type)) | 
|  | return 0; | 
|  |  | 
|  | /* The value is a structure or union with a single element and that | 
|  | element is either a single basic type or an array of a single basic | 
|  | type whose size is greater than or equal to 4 -> returned in register.  */ | 
|  | if ((type->code () == TYPE_CODE_STRUCT | 
|  | || type->code () == TYPE_CODE_UNION) | 
|  | && type->num_fields () == 1) | 
|  | { | 
|  | fld_type = type->field (0).type (); | 
|  | if (v850_type_is_scalar (fld_type) && fld_type->length () >= 4) | 
|  | return 0; | 
|  |  | 
|  | if (fld_type->code () == TYPE_CODE_ARRAY) | 
|  | { | 
|  | tgt_type = fld_type->target_type (); | 
|  | if (v850_type_is_scalar (tgt_type) && tgt_type->length () >= 4) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The value is a structure whose first element is an integer or a float, | 
|  | and which contains no arrays of more than two elements -> returned in | 
|  | register.  */ | 
|  | if (type->code () == TYPE_CODE_STRUCT | 
|  | && v850_type_is_scalar (type->field (0).type ()) | 
|  | && type->field (0).type ()->length () == 4) | 
|  | { | 
|  | for (i = 1; i < type->num_fields (); ++i) | 
|  | { | 
|  | fld_type = type->field (0).type (); | 
|  | if (fld_type->code () == TYPE_CODE_ARRAY) | 
|  | { | 
|  | tgt_type = fld_type->target_type (); | 
|  | if (tgt_type->length () > 0 | 
|  | && fld_type->length () / tgt_type->length () > 2) | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The value is a union which contains at least one field which | 
|  | would be returned in registers according to these rules -> | 
|  | returned in register.  */ | 
|  | if (type->code () == TYPE_CODE_UNION) | 
|  | { | 
|  | for (i = 0; i < type->num_fields (); ++i) | 
|  | { | 
|  | fld_type = type->field (0).type (); | 
|  | if (!v850_use_struct_convention (gdbarch, fld_type)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Structure for mapping bits in register lists to register numbers.  */ | 
|  |  | 
|  | struct reg_list | 
|  | { | 
|  | long mask; | 
|  | int regno; | 
|  | }; | 
|  |  | 
|  | /* Helper function for v850_scan_prologue to handle prepare instruction.  */ | 
|  |  | 
|  | static void | 
|  | v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr, | 
|  | struct v850_frame_cache *pi, struct pifsr **pifsr_ptr) | 
|  | { | 
|  | CORE_ADDR current_pc = *current_pc_ptr; | 
|  | struct pifsr *pifsr = *pifsr_ptr; | 
|  | long next = insn2 & 0xffff; | 
|  | long list12 = ((insn & 1) << 16) + (next & 0xffe0); | 
|  | long offset = (insn & 0x3e) << 1; | 
|  | static struct reg_list reg_table[] = | 
|  | { | 
|  | {0x00800, 20},		/* r20 */ | 
|  | {0x00400, 21},		/* r21 */ | 
|  | {0x00200, 22},		/* r22 */ | 
|  | {0x00100, 23},		/* r23 */ | 
|  | {0x08000, 24},		/* r24 */ | 
|  | {0x04000, 25},		/* r25 */ | 
|  | {0x02000, 26},		/* r26 */ | 
|  | {0x01000, 27},		/* r27 */ | 
|  | {0x00080, 28},		/* r28 */ | 
|  | {0x00040, 29},		/* r29 */ | 
|  | {0x10000, 30},		/* ep */ | 
|  | {0x00020, 31},		/* lp */ | 
|  | {0, 0}			/* end of table */ | 
|  | }; | 
|  | int i; | 
|  |  | 
|  | if ((next & 0x1f) == 0x0b)		/* skip imm16 argument */ | 
|  | current_pc += 2; | 
|  | else if ((next & 0x1f) == 0x13)	/* skip imm16 argument */ | 
|  | current_pc += 2; | 
|  | else if ((next & 0x1f) == 0x1b)	/* skip imm32 argument */ | 
|  | current_pc += 4; | 
|  |  | 
|  | /* Calculate the total size of the saved registers, and add it to the | 
|  | immediate value used to adjust SP.  */ | 
|  | for (i = 0; reg_table[i].mask != 0; i++) | 
|  | if (list12 & reg_table[i].mask) | 
|  | offset += v850_reg_size; | 
|  | pi->sp_offset -= offset; | 
|  |  | 
|  | /* Calculate the offsets of the registers relative to the value the SP | 
|  | will have after the registers have been pushed and the imm5 value has | 
|  | been subtracted from it.  */ | 
|  | if (pifsr) | 
|  | { | 
|  | for (i = 0; reg_table[i].mask != 0; i++) | 
|  | { | 
|  | if (list12 & reg_table[i].mask) | 
|  | { | 
|  | int reg = reg_table[i].regno; | 
|  | offset -= v850_reg_size; | 
|  | pifsr->reg = reg; | 
|  | pifsr->offset = offset; | 
|  | pifsr->cur_frameoffset = pi->sp_offset; | 
|  | pifsr++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set result parameters.  */ | 
|  | *current_pc_ptr = current_pc; | 
|  | *pifsr_ptr = pifsr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Helper function for v850_scan_prologue to handle pushm/pushl instructions. | 
|  | The SR bit of the register list is not supported.  gcc does not generate | 
|  | this bit.  */ | 
|  |  | 
|  | static void | 
|  | v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi, | 
|  | struct pifsr **pifsr_ptr) | 
|  | { | 
|  | struct pifsr *pifsr = *pifsr_ptr; | 
|  | long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0); | 
|  | long offset = 0; | 
|  | static struct reg_list pushml_reg_table[] = | 
|  | { | 
|  | {0x80000, E_PS_REGNUM},	/* PSW */ | 
|  | {0x40000, 1},		/* r1 */ | 
|  | {0x20000, 2},		/* r2 */ | 
|  | {0x10000, 3},		/* r3 */ | 
|  | {0x00800, 4},		/* r4 */ | 
|  | {0x00400, 5},		/* r5 */ | 
|  | {0x00200, 6},		/* r6 */ | 
|  | {0x00100, 7},		/* r7 */ | 
|  | {0x08000, 8},		/* r8 */ | 
|  | {0x04000, 9},		/* r9 */ | 
|  | {0x02000, 10},		/* r10 */ | 
|  | {0x01000, 11},		/* r11 */ | 
|  | {0x00080, 12},		/* r12 */ | 
|  | {0x00040, 13},		/* r13 */ | 
|  | {0x00020, 14},		/* r14 */ | 
|  | {0x00010, 15},		/* r15 */ | 
|  | {0, 0}			/* end of table */ | 
|  | }; | 
|  | static struct reg_list pushmh_reg_table[] = | 
|  | { | 
|  | {0x80000, 16},		/* r16 */ | 
|  | {0x40000, 17},		/* r17 */ | 
|  | {0x20000, 18},		/* r18 */ | 
|  | {0x10000, 19},		/* r19 */ | 
|  | {0x00800, 20},		/* r20 */ | 
|  | {0x00400, 21},		/* r21 */ | 
|  | {0x00200, 22},		/* r22 */ | 
|  | {0x00100, 23},		/* r23 */ | 
|  | {0x08000, 24},		/* r24 */ | 
|  | {0x04000, 25},		/* r25 */ | 
|  | {0x02000, 26},		/* r26 */ | 
|  | {0x01000, 27},		/* r27 */ | 
|  | {0x00080, 28},		/* r28 */ | 
|  | {0x00040, 29},		/* r29 */ | 
|  | {0x00010, 30},		/* r30 */ | 
|  | {0x00020, 31},		/* r31 */ | 
|  | {0, 0}			/* end of table */ | 
|  | }; | 
|  | struct reg_list *reg_table; | 
|  | int i; | 
|  |  | 
|  | /* Is this a pushml or a pushmh?  */ | 
|  | if ((insn2 & 7) == 1) | 
|  | reg_table = pushml_reg_table; | 
|  | else | 
|  | reg_table = pushmh_reg_table; | 
|  |  | 
|  | /* Calculate the total size of the saved registers, and add it to the | 
|  | immediate value used to adjust SP.  */ | 
|  | for (i = 0; reg_table[i].mask != 0; i++) | 
|  | if (list12 & reg_table[i].mask) | 
|  | offset += v850_reg_size; | 
|  | pi->sp_offset -= offset; | 
|  |  | 
|  | /* Calculate the offsets of the registers relative to the value the SP | 
|  | will have after the registers have been pushed and the imm5 value is | 
|  | subtracted from it.  */ | 
|  | if (pifsr) | 
|  | { | 
|  | for (i = 0; reg_table[i].mask != 0; i++) | 
|  | { | 
|  | if (list12 & reg_table[i].mask) | 
|  | { | 
|  | int reg = reg_table[i].regno; | 
|  | offset -= v850_reg_size; | 
|  | pifsr->reg = reg; | 
|  | pifsr->offset = offset; | 
|  | pifsr->cur_frameoffset = pi->sp_offset; | 
|  | pifsr++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set result parameters.  */ | 
|  | *pifsr_ptr = pifsr; | 
|  | } | 
|  |  | 
|  | /* Helper function to evaluate if register is one of the "save" registers. | 
|  | This allows to simplify conditionals in v850_analyze_prologue a lot.  */ | 
|  |  | 
|  | static int | 
|  | v850_is_save_register (int reg) | 
|  | { | 
|  | /* The caller-save registers are R2, R20 - R29 and R31.  All other | 
|  | registers are either special purpose (PC, SP), argument registers, | 
|  | or just considered free for use in the caller.  */ | 
|  | return reg == E_R2_REGNUM | 
|  | || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM) | 
|  | || reg == E_R31_REGNUM; | 
|  | } | 
|  |  | 
|  | /* Scan the prologue of the function that contains PC, and record what | 
|  | we find in PI.  Returns the pc after the prologue.  Note that the | 
|  | addresses saved in frame->saved_regs are just frame relative (negative | 
|  | offsets from the frame pointer).  This is because we don't know the | 
|  | actual value of the frame pointer yet.  In some circumstances, the | 
|  | frame pointer can't be determined till after we have scanned the | 
|  | prologue.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | v850_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR func_addr, CORE_ADDR pc, | 
|  | struct v850_frame_cache *pi, ULONGEST ctbp) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR prologue_end, current_pc; | 
|  | struct pifsr pifsrs[E_NUM_REGS + 1]; | 
|  | struct pifsr *pifsr, *pifsr_tmp; | 
|  | int ep_used; | 
|  | int reg; | 
|  | CORE_ADDR save_pc, save_end; | 
|  | int regsave_func_p; | 
|  | int r12_tmp; | 
|  |  | 
|  | memset (&pifsrs, 0, sizeof pifsrs); | 
|  | pifsr = &pifsrs[0]; | 
|  |  | 
|  | prologue_end = pc; | 
|  |  | 
|  | /* Now, search the prologue looking for instructions that setup fp, save | 
|  | rp, adjust sp and such.  We also record the frame offset of any saved | 
|  | registers.  */ | 
|  |  | 
|  | pi->sp_offset = 0; | 
|  | pi->uses_fp = 0; | 
|  | ep_used = 0; | 
|  | regsave_func_p = 0; | 
|  | save_pc = 0; | 
|  | save_end = 0; | 
|  | r12_tmp = 0; | 
|  |  | 
|  | for (current_pc = func_addr; current_pc < prologue_end;) | 
|  | { | 
|  | int insn; | 
|  | int insn2 = -1; /* dummy value */ | 
|  |  | 
|  | insn = read_memory_integer (current_pc, 2, byte_order); | 
|  | current_pc += 2; | 
|  | if ((insn & 0x0780) >= 0x0600)	/* Four byte instruction?  */ | 
|  | { | 
|  | insn2 = read_memory_integer (current_pc, 2, byte_order); | 
|  | current_pc += 2; | 
|  | } | 
|  |  | 
|  | if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p) | 
|  | {			/* jarl <func>,10 */ | 
|  | long low_disp = insn2 & ~(long) 1; | 
|  | long disp = (((((insn & 0x3f) << 16) + low_disp) | 
|  | & ~(long) 1) ^ 0x00200000) - 0x00200000; | 
|  |  | 
|  | save_pc = current_pc; | 
|  | save_end = prologue_end; | 
|  | regsave_func_p = 1; | 
|  | current_pc += disp - 4; | 
|  | prologue_end = (current_pc | 
|  | + (2 * 3)	/* moves to/from ep */ | 
|  | + 4		/* addi <const>,sp,sp */ | 
|  | + 2		/* jmp [r10] */ | 
|  | + (2 * 12)	/* sst.w to save r2, r20-r29, r31 */ | 
|  | + 20);	/* slop area */ | 
|  | } | 
|  | else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p) | 
|  | {			/* callt <imm6> */ | 
|  | long adr = ctbp + ((insn & 0x3f) << 1); | 
|  |  | 
|  | save_pc = current_pc; | 
|  | save_end = prologue_end; | 
|  | regsave_func_p = 1; | 
|  | current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order) | 
|  | & 0xffff); | 
|  | prologue_end = (current_pc | 
|  | + (2 * 3)	/* prepare list2,imm5,sp/imm */ | 
|  | + 4		/* ctret */ | 
|  | + 20);	/* slop area */ | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xffc0) == 0x0780)	/* prepare list2,imm5 */ | 
|  | { | 
|  | v850_handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr); | 
|  | continue; | 
|  | } | 
|  | else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144) | 
|  | {			/* ctret after processing register save.  */ | 
|  | current_pc = save_pc; | 
|  | prologue_end = save_end; | 
|  | regsave_func_p = 0; | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1) | 
|  | {			/* pushml, pushmh */ | 
|  | v850_handle_pushm (insn, insn2, pi, &pifsr); | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xffe0) == 0x0060 && regsave_func_p) | 
|  | {			/* jmp after processing register save.  */ | 
|  | current_pc = save_pc; | 
|  | prologue_end = save_end; | 
|  | regsave_func_p = 0; | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0x07c0) == 0x0780	/* jarl or jr */ | 
|  | || (insn & 0xffe0) == 0x0060	/* jmp */ | 
|  | || (insn & 0x0780) == 0x0580)	/* branch */ | 
|  | { | 
|  | break;		/* Ran into end of prologue.  */ | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) | 
|  | /* add <imm>,sp */ | 
|  | pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10; | 
|  | else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) | 
|  | /* addi <imm>,sp,sp */ | 
|  | pi->sp_offset += insn2; | 
|  | else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) | 
|  | /* mov sp,fp */ | 
|  | pi->uses_fp = 1; | 
|  | else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) | 
|  | /* movhi hi(const),r0,r12 */ | 
|  | r12_tmp = insn2 << 16; | 
|  | else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) | 
|  | /* movea lo(const),r12,r12 */ | 
|  | r12_tmp += insn2; | 
|  | else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) | 
|  | /* add r12,sp */ | 
|  | pi->sp_offset += r12_tmp; | 
|  | else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) | 
|  | /* mov sp,ep */ | 
|  | ep_used = 1; | 
|  | else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) | 
|  | /* mov r1,ep */ | 
|  | ep_used = 0; | 
|  | else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) | 
|  | || (pi->uses_fp | 
|  | && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM))) | 
|  | && pifsr | 
|  | && v850_is_save_register (reg = (insn >> 11) & 0x1f)) | 
|  | { | 
|  | /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */ | 
|  | pifsr->reg = reg; | 
|  | pifsr->offset = insn2 & ~1; | 
|  | pifsr->cur_frameoffset = pi->sp_offset; | 
|  | pifsr++; | 
|  | } | 
|  | else if (ep_used | 
|  | && ((insn & 0x0781) == 0x0501) | 
|  | && pifsr | 
|  | && v850_is_save_register (reg = (insn >> 11) & 0x1f)) | 
|  | { | 
|  | /* sst.w <reg>,<offset>[ep] */ | 
|  | pifsr->reg = reg; | 
|  | pifsr->offset = (insn & 0x007e) << 1; | 
|  | pifsr->cur_frameoffset = pi->sp_offset; | 
|  | pifsr++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fix up any offsets to the final offset.  If a frame pointer was created, | 
|  | use it instead of the stack pointer.  */ | 
|  | for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++) | 
|  | { | 
|  | pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset; | 
|  | pi->saved_regs[pifsr_tmp->reg].set_addr (pifsr_tmp->offset); | 
|  | } | 
|  |  | 
|  | return current_pc; | 
|  | } | 
|  |  | 
|  | /* Return the address of the first code past the prologue of the function.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr, func_end; | 
|  |  | 
|  | /* See what the symbol table says.  */ | 
|  |  | 
|  | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
|  | { | 
|  | struct symtab_and_line sal; | 
|  |  | 
|  | sal = find_pc_line (func_addr, 0); | 
|  | if (sal.line != 0 && sal.end < func_end) | 
|  | return sal.end; | 
|  |  | 
|  | /* Either there's no line info, or the line after the prologue is after | 
|  | the end of the function.  In this case, there probably isn't a | 
|  | prologue.  */ | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* We can't find the start of this function, so there's nothing we | 
|  | can do.  */ | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Return 1 if the data structure has any 8-byte fields that'll require | 
|  | the entire data structure to be aligned.  Otherwise, return 0.  */ | 
|  |  | 
|  | static int | 
|  | v850_eight_byte_align_p (struct type *type) | 
|  | { | 
|  | type = check_typedef (type); | 
|  |  | 
|  | if (v850_type_is_scalar (type)) | 
|  | return (type->length () == 8); | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < type->num_fields (); i++) | 
|  | { | 
|  | if (v850_eight_byte_align_p (type->field (i).type ())) | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp) | 
|  | { | 
|  | return sp & ~3; | 
|  | } | 
|  |  | 
|  | /* Setup arguments and LP for a call to the target.  First four args | 
|  | go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs | 
|  | are passed by reference.  64 bit quantities (doubles and long longs) | 
|  | may be split between the regs and the stack.  When calling a function | 
|  | that returns a struct, a pointer to the struct is passed in as a secret | 
|  | first argument (always in R6). | 
|  |  | 
|  | Stack space for the args has NOT been allocated: that job is up to us.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | v850_push_dummy_call (struct gdbarch *gdbarch, | 
|  | struct value *function, | 
|  | struct regcache *regcache, | 
|  | CORE_ADDR bp_addr, | 
|  | int nargs, | 
|  | struct value **args, | 
|  | CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int argreg; | 
|  | int argnum; | 
|  | int arg_space = 0; | 
|  | int stack_offset; | 
|  | v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->abi == V850_ABI_RH850) | 
|  | stack_offset = 0; | 
|  | else | 
|  | { | 
|  | /* The offset onto the stack at which we will start copying parameters | 
|  | (after the registers are used up) begins at 16 rather than at zero. | 
|  | That's how the ABI is defined, though there's no indication that these | 
|  | 16 bytes are used for anything, not even for saving incoming | 
|  | argument registers.  */ | 
|  | stack_offset = 16; | 
|  | } | 
|  |  | 
|  | /* Now make space on the stack for the args.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | arg_space += ((args[argnum]->type ()->length () + 3) & ~3); | 
|  | sp -= arg_space + stack_offset; | 
|  |  | 
|  | argreg = E_ARG0_REGNUM; | 
|  | /* The struct_return pointer occupies the first parameter register.  */ | 
|  | if (return_method == return_method_struct) | 
|  | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | 
|  |  | 
|  | /* Now load as many as possible of the first arguments into | 
|  | registers, and push the rest onto the stack.  There are 16 bytes | 
|  | in four registers available.  Loop thru args from first to last.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | { | 
|  | int len; | 
|  | gdb_byte *val; | 
|  | gdb_byte valbuf[v850_reg_size]; | 
|  |  | 
|  | if (!v850_type_is_scalar ((*args)->type ()) | 
|  | && tdep->abi == V850_ABI_GCC | 
|  | && (*args)->type ()->length () > E_MAX_RETTYPE_SIZE_IN_REGS) | 
|  | { | 
|  | store_unsigned_integer (valbuf, 4, byte_order, | 
|  | (*args)->address ()); | 
|  | len = 4; | 
|  | val = valbuf; | 
|  | } | 
|  | else | 
|  | { | 
|  | len = (*args)->type ()->length (); | 
|  | val = (gdb_byte *) (*args)->contents ().data (); | 
|  | } | 
|  |  | 
|  | if (tdep->eight_byte_align | 
|  | && v850_eight_byte_align_p ((*args)->type ())) | 
|  | { | 
|  | if (argreg <= E_ARGLAST_REGNUM && (argreg & 1)) | 
|  | argreg++; | 
|  | else if (stack_offset & 0x4) | 
|  | stack_offset += 4; | 
|  | } | 
|  |  | 
|  | while (len > 0) | 
|  | if (argreg <= E_ARGLAST_REGNUM) | 
|  | { | 
|  | CORE_ADDR regval; | 
|  |  | 
|  | regval = extract_unsigned_integer (val, v850_reg_size, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, argreg, regval); | 
|  |  | 
|  | len -= v850_reg_size; | 
|  | val += v850_reg_size; | 
|  | argreg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | write_memory (sp + stack_offset, val, 4); | 
|  |  | 
|  | len -= 4; | 
|  | val += 4; | 
|  | stack_offset += 4; | 
|  | } | 
|  | args++; | 
|  | } | 
|  |  | 
|  | /* Store return address.  */ | 
|  | regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr); | 
|  |  | 
|  | /* Update stack pointer.  */ | 
|  | regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static void | 
|  | v850_extract_return_value (struct type *type, struct regcache *regcache, | 
|  | gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int len = type->length (); | 
|  |  | 
|  | if (len <= v850_reg_size) | 
|  | { | 
|  | ULONGEST val; | 
|  |  | 
|  | regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val); | 
|  | store_unsigned_integer (valbuf, len, byte_order, val); | 
|  | } | 
|  | else if (len <= 2 * v850_reg_size) | 
|  | { | 
|  | int i, regnum = E_V0_REGNUM; | 
|  | gdb_byte buf[v850_reg_size]; | 
|  | for (i = 0; len > 0; i += 4, len -= 4) | 
|  | { | 
|  | regcache->raw_read (regnum++, buf); | 
|  | memcpy (valbuf + i, buf, len > 4 ? 4 : len); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | v850_store_return_value (struct type *type, struct regcache *regcache, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int len = type->length (); | 
|  |  | 
|  | if (len <= v850_reg_size) | 
|  | regcache_cooked_write_unsigned | 
|  | (regcache, E_V0_REGNUM, | 
|  | extract_unsigned_integer (valbuf, len, byte_order)); | 
|  | else if (len <= 2 * v850_reg_size) | 
|  | { | 
|  | int i, regnum = E_V0_REGNUM; | 
|  | for (i = 0; i < len; i += 4) | 
|  | regcache->raw_write (regnum++, valbuf + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum return_value_convention | 
|  | v850_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (v850_use_struct_convention (gdbarch, type)) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | if (writebuf) | 
|  | v850_store_return_value (type, regcache, writebuf); | 
|  | else if (readbuf) | 
|  | v850_extract_return_value (type, regcache, readbuf); | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | /* Implement the breakpoint_kind_from_pc gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
|  | { | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* Implement the sw_breakpoint_from_kind gdbarch method.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
|  | { | 
|  | *size = kind; | 
|  |  | 
|  | switch (gdbarch_bfd_arch_info (gdbarch)->mach) | 
|  | { | 
|  | case bfd_mach_v850e2: | 
|  | case bfd_mach_v850e2v3: | 
|  | case bfd_mach_v850e3v5: | 
|  | { | 
|  | /* Implement software breakpoints by using the dbtrap instruction. | 
|  | Older architectures had no such instruction.  For those, an | 
|  | unconditional branch to self instruction is used.  */ | 
|  |  | 
|  | static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 }; | 
|  |  | 
|  | return dbtrap_breakpoint; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | { | 
|  | static unsigned char breakpoint[] = { 0x85, 0x05 }; | 
|  |  | 
|  | return breakpoint; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct v850_frame_cache * | 
|  | v850_alloc_frame_cache (const frame_info_ptr &this_frame) | 
|  | { | 
|  | struct v850_frame_cache *cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache); | 
|  | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
|  |  | 
|  | /* Base address.  */ | 
|  | cache->base = 0; | 
|  | cache->sp_offset = 0; | 
|  | cache->pc = 0; | 
|  |  | 
|  | /* Frameless until proven otherwise.  */ | 
|  | cache->uses_fp = 0; | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static struct v850_frame_cache * | 
|  | v850_frame_cache (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct v850_frame_cache *cache; | 
|  | CORE_ADDR current_pc; | 
|  | int i; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct v850_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = v850_alloc_frame_cache (this_frame); | 
|  | *this_cache = cache; | 
|  |  | 
|  | /* In principle, for normal frames, fp holds the frame pointer, | 
|  | which holds the base address for the current stack frame. | 
|  | However, for functions that don't need it, the frame pointer is | 
|  | optional.  For these "frameless" functions the frame pointer is | 
|  | actually the frame pointer of the calling frame.  */ | 
|  | cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM); | 
|  | if (cache->base == 0) | 
|  | return cache; | 
|  |  | 
|  | cache->pc = get_frame_func (this_frame); | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if (cache->pc != 0) | 
|  | { | 
|  | ULONGEST ctbp; | 
|  | ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM); | 
|  | v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp); | 
|  | } | 
|  |  | 
|  | if (!cache->uses_fp) | 
|  | { | 
|  | /* We didn't find a valid frame, which means that CACHE->base | 
|  | currently holds the frame pointer for our calling frame.  If | 
|  | we're at the start of a function, or somewhere half-way its | 
|  | prologue, the function's frame probably hasn't been fully | 
|  | setup yet.  Try to reconstruct the base address for the stack | 
|  | frame by looking at the stack pointer.  For truly "frameless" | 
|  | functions this might work too.  */ | 
|  | cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM); | 
|  | } | 
|  |  | 
|  | /* Now that we have the base address for the stack frame we can | 
|  | calculate the value of sp in the calling frame.  */ | 
|  | cache->saved_regs[E_SP_REGNUM].set_value (cache->base - cache->sp_offset); | 
|  |  | 
|  | /* Adjust all the saved registers such that they contain addresses | 
|  | instead of offsets.  */ | 
|  | for (i = 0; i < gdbarch_num_regs (gdbarch); i++) | 
|  | if (cache->saved_regs[i].is_addr ()) | 
|  | cache->saved_regs[i].set_addr (cache->saved_regs[i].addr () | 
|  | + cache->base); | 
|  |  | 
|  | /* The call instruction moves the caller's PC in the callee's LP. | 
|  | Since this is an unwind, do the reverse.  Copy the location of LP | 
|  | into PC (the address / regnum) so that a request for PC will be | 
|  | converted into a request for the LP.  */ | 
|  |  | 
|  | cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM]; | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct value * | 
|  | v850_frame_prev_register (const frame_info_ptr &this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0); | 
|  |  | 
|  | return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); | 
|  | } | 
|  |  | 
|  | static void | 
|  | v850_frame_this_id (const frame_info_ptr &this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr (), cache->pc); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind v850_frame_unwind = { | 
|  | "v850 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | v850_frame_this_id, | 
|  | v850_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | v850_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return cache->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base v850_frame_base = { | 
|  | &v850_frame_unwind, | 
|  | v850_frame_base_address, | 
|  | v850_frame_base_address, | 
|  | v850_frame_base_address | 
|  | }; | 
|  |  | 
|  | static struct gdbarch * | 
|  | v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | int e_flags, e_machine; | 
|  |  | 
|  | /* Extract the elf_flags if available.  */ | 
|  | if (info.abfd != NULL | 
|  | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | 
|  | { | 
|  | e_flags = elf_elfheader (info.abfd)->e_flags; | 
|  | e_machine = elf_elfheader (info.abfd)->e_machine; | 
|  | } | 
|  | else | 
|  | { | 
|  | e_flags = 0; | 
|  | e_machine = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Try to find the architecture in the list of already defined | 
|  | architectures.  */ | 
|  | for (arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | arches != NULL; | 
|  | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | 
|  | { | 
|  | v850_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<v850_gdbarch_tdep> (arches->gdbarch); | 
|  |  | 
|  | if (tdep->e_flags != e_flags || tdep->e_machine != e_machine) | 
|  | continue; | 
|  |  | 
|  | return arches->gdbarch; | 
|  | } | 
|  |  | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new v850_gdbarch_tdep)); | 
|  | v850_gdbarch_tdep *tdep = gdbarch_tdep<v850_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | tdep->e_flags = e_flags; | 
|  | tdep->e_machine = e_machine; | 
|  |  | 
|  | switch (tdep->e_machine) | 
|  | { | 
|  | case EM_V800: | 
|  | tdep->abi = V850_ABI_RH850; | 
|  | break; | 
|  | default: | 
|  | tdep->abi = V850_ABI_GCC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0; | 
|  |  | 
|  | switch (info.bfd_arch_info->mach) | 
|  | { | 
|  | case bfd_mach_v850: | 
|  | set_gdbarch_register_name (gdbarch, v850_register_name); | 
|  | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS); | 
|  | break; | 
|  | case bfd_mach_v850e: | 
|  | case bfd_mach_v850e1: | 
|  | set_gdbarch_register_name (gdbarch, v850e_register_name); | 
|  | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS); | 
|  | break; | 
|  | case bfd_mach_v850e2: | 
|  | case bfd_mach_v850e2v3: | 
|  | set_gdbarch_register_name (gdbarch, v850e2_register_name); | 
|  | set_gdbarch_num_regs (gdbarch, E_NUM_REGS); | 
|  | break; | 
|  | case bfd_mach_v850e3v5: | 
|  | set_gdbarch_register_name (gdbarch, v850e3v5_register_name); | 
|  | set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 0); | 
|  | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | 
|  | set_gdbarch_fp0_regnum (gdbarch, -1); | 
|  |  | 
|  | set_gdbarch_register_type (gdbarch, v850_register_type); | 
|  |  | 
|  | set_gdbarch_char_signed (gdbarch, 1); | 
|  | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | 
|  |  | 
|  | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | 
|  |  | 
|  | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  |  | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind); | 
|  | set_gdbarch_return_value (gdbarch, v850_return_value); | 
|  | set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call); | 
|  | set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue); | 
|  |  | 
|  | set_gdbarch_frame_align (gdbarch, v850_frame_align); | 
|  | frame_base_set_default (gdbarch, &v850_frame_base); | 
|  |  | 
|  | /* Hook in ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | void _initialize_v850_tdep (); | 
|  | void | 
|  | _initialize_v850_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_v850, v850_gdbarch_init); | 
|  | gdbarch_register (bfd_arch_v850_rh850, v850_gdbarch_init); | 
|  | } |