|  | /* Target-machine dependent code for Nios II, for GDB. | 
|  | Copyright (C) 2012-2014 Free Software Foundation, Inc. | 
|  | Contributed by Peter Brookes (pbrookes@altera.com) | 
|  | and Andrew Draper (adraper@altera.com). | 
|  | Contributed by Mentor Graphics, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "dwarf2-frame.h" | 
|  | #include "symtab.h" | 
|  | #include "inferior.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "gdbcore.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "osabi.h" | 
|  | #include "target.h" | 
|  | #include "dis-asm.h" | 
|  | #include "regcache.h" | 
|  | #include "value.h" | 
|  | #include "symfile.h" | 
|  | #include "arch-utils.h" | 
|  | #include "floatformat.h" | 
|  | #include "gdb_assert.h" | 
|  | #include "infcall.h" | 
|  | #include "regset.h" | 
|  | #include "target-descriptions.h" | 
|  |  | 
|  | /* To get entry_point_address.  */ | 
|  | #include "objfiles.h" | 
|  |  | 
|  | /* Nios II ISA specific encodings and macros.  */ | 
|  | #include "opcode/nios2.h" | 
|  |  | 
|  | /* Nios II specific header.  */ | 
|  | #include "nios2-tdep.h" | 
|  |  | 
|  | #include "features/nios2.c" | 
|  |  | 
|  | /* Control debugging information emitted in this file.  */ | 
|  |  | 
|  | static int nios2_debug = 0; | 
|  |  | 
|  | /* The following structures are used in the cache for prologue | 
|  | analysis; see the reg_value and reg_saved tables in | 
|  | struct nios2_unwind_cache, respectively.  */ | 
|  |  | 
|  | /* struct reg_value is used to record that a register has the same value | 
|  | as reg at the given offset from the start of a function.  */ | 
|  |  | 
|  | struct reg_value | 
|  | { | 
|  | int reg; | 
|  | unsigned int offset; | 
|  | }; | 
|  |  | 
|  | /* struct reg_saved is used to record that a register value has been saved at | 
|  | basereg + addr, for basereg >= 0.  If basereg < 0, that indicates | 
|  | that the register is not known to have been saved.  Note that when | 
|  | basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0), | 
|  | addr is an absolute address.  */ | 
|  |  | 
|  | struct reg_saved | 
|  | { | 
|  | int basereg; | 
|  | CORE_ADDR addr; | 
|  | }; | 
|  |  | 
|  | struct nios2_unwind_cache | 
|  | { | 
|  | /* The frame's base, optionally used by the high-level debug info.  */ | 
|  | CORE_ADDR base; | 
|  |  | 
|  | /* The previous frame's inner most stack address.  Used as this | 
|  | frame ID's stack_addr.  */ | 
|  | CORE_ADDR cfa; | 
|  |  | 
|  | /* The address of the first instruction in this function.  */ | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* Which register holds the return address for the frame.  */ | 
|  | int return_regnum; | 
|  |  | 
|  | /* Table indicating what changes have been made to each register.  */ | 
|  | struct reg_value reg_value[NIOS2_NUM_REGS]; | 
|  |  | 
|  | /* Table indicating where each register has been saved.  */ | 
|  | struct reg_saved reg_saved[NIOS2_NUM_REGS]; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* This array is a mapping from Dwarf-2 register numbering to GDB's.  */ | 
|  |  | 
|  | static int nios2_dwarf2gdb_regno_map[] = | 
|  | { | 
|  | 0, 1, 2, 3, | 
|  | 4, 5, 6, 7, | 
|  | 8, 9, 10, 11, | 
|  | 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, | 
|  | 20, 21, 22, 23, | 
|  | 24, 25, | 
|  | NIOS2_GP_REGNUM,        /* 26 */ | 
|  | NIOS2_SP_REGNUM,        /* 27 */ | 
|  | NIOS2_FP_REGNUM,        /* 28 */ | 
|  | NIOS2_EA_REGNUM,        /* 29 */ | 
|  | NIOS2_BA_REGNUM,        /* 30 */ | 
|  | NIOS2_RA_REGNUM,        /* 31 */ | 
|  | NIOS2_PC_REGNUM,        /* 32 */ | 
|  | NIOS2_STATUS_REGNUM,    /* 33 */ | 
|  | NIOS2_ESTATUS_REGNUM,   /* 34 */ | 
|  | NIOS2_BSTATUS_REGNUM,   /* 35 */ | 
|  | NIOS2_IENABLE_REGNUM,   /* 36 */ | 
|  | NIOS2_IPENDING_REGNUM,  /* 37 */ | 
|  | NIOS2_CPUID_REGNUM,     /* 38 */ | 
|  | 39, /* CTL6 */          /* 39 */ | 
|  | NIOS2_EXCEPTION_REGNUM, /* 40 */ | 
|  | NIOS2_PTEADDR_REGNUM,   /* 41 */ | 
|  | NIOS2_TLBACC_REGNUM,    /* 42 */ | 
|  | NIOS2_TLBMISC_REGNUM,   /* 43 */ | 
|  | NIOS2_ECCINJ_REGNUM,    /* 44 */ | 
|  | NIOS2_BADADDR_REGNUM,   /* 45 */ | 
|  | NIOS2_CONFIG_REGNUM,    /* 46 */ | 
|  | NIOS2_MPUBASE_REGNUM,   /* 47 */ | 
|  | NIOS2_MPUACC_REGNUM     /* 48 */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Implement the dwarf2_reg_to_regnum gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg) | 
|  | { | 
|  | if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS) | 
|  | { | 
|  | warning (_("Dwarf-2 uses unmapped register #%d"), dw_reg); | 
|  | return dw_reg; | 
|  | } | 
|  |  | 
|  | return nios2_dwarf2gdb_regno_map[dw_reg]; | 
|  | } | 
|  |  | 
|  | /* Canonical names for the 49 registers.  */ | 
|  |  | 
|  | static const char *const nios2_reg_names[NIOS2_NUM_REGS] = | 
|  | { | 
|  | "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra", | 
|  | "pc", | 
|  | "status", "estatus", "bstatus", "ienable", | 
|  | "ipending", "cpuid", "ctl6", "exception", | 
|  | "pteaddr", "tlbacc", "tlbmisc", "eccinj", | 
|  | "badaddr", "config", "mpubase", "mpuacc" | 
|  | }; | 
|  |  | 
|  | /* Implement the register_name gdbarch method.  */ | 
|  |  | 
|  | static const char * | 
|  | nios2_register_name (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | /* Use mnemonic aliases for GPRs.  */ | 
|  | if (regno >= 0 && regno < NIOS2_NUM_REGS) | 
|  | return nios2_reg_names[regno]; | 
|  | else | 
|  | return tdesc_register_name (gdbarch, regno); | 
|  | } | 
|  |  | 
|  | /* Implement the register_type gdbarch method.  */ | 
|  |  | 
|  | static struct type * | 
|  | nios2_register_type (struct gdbarch *gdbarch, int regno) | 
|  | { | 
|  | /* If the XML description has register information, use that to | 
|  | determine the register type.  */ | 
|  | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | 
|  | return tdesc_register_type (gdbarch, regno); | 
|  |  | 
|  | if (regno == NIOS2_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else if (regno == NIOS2_SP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | } | 
|  |  | 
|  | /* Given a return value in REGCACHE with a type VALTYPE, | 
|  | extract and copy its value into VALBUF.  */ | 
|  |  | 
|  | static void | 
|  | nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype, | 
|  | struct regcache *regcache, gdb_byte *valbuf) | 
|  | { | 
|  | int len = TYPE_LENGTH (valtype); | 
|  |  | 
|  | /* Return values of up to 8 bytes are returned in $r2 $r3.  */ | 
|  | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | 
|  | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | 
|  | else | 
|  | { | 
|  | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | 
|  | + register_size (gdbarch, NIOS2_R3_REGNUM))); | 
|  | regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf); | 
|  | regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write into appropriate registers a function return value | 
|  | of type TYPE, given in virtual format.  */ | 
|  |  | 
|  | static void | 
|  | nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype, | 
|  | struct regcache *regcache, const gdb_byte *valbuf) | 
|  | { | 
|  | int len = TYPE_LENGTH (valtype); | 
|  |  | 
|  | /* Return values of up to 8 bytes are returned in $r2 $r3.  */ | 
|  | if (len <= register_size (gdbarch, NIOS2_R2_REGNUM)) | 
|  | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | 
|  | else | 
|  | { | 
|  | gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM) | 
|  | + register_size (gdbarch, NIOS2_R3_REGNUM))); | 
|  | regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf); | 
|  | regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set up the default values of the registers.  */ | 
|  |  | 
|  | static void | 
|  | nios2_setup_default (struct nios2_unwind_cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | { | 
|  | /* All registers start off holding their previous values.  */ | 
|  | cache->reg_value[i].reg    = i; | 
|  | cache->reg_value[i].offset = 0; | 
|  |  | 
|  | /* All registers start off not saved.  */ | 
|  | cache->reg_saved[i].basereg = -1; | 
|  | cache->reg_saved[i].addr    = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize the unwind cache.  */ | 
|  |  | 
|  | static void | 
|  | nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc) | 
|  | { | 
|  | cache->base = 0; | 
|  | cache->cfa = 0; | 
|  | cache->pc = pc; | 
|  | cache->return_regnum = NIOS2_RA_REGNUM; | 
|  | nios2_setup_default (cache); | 
|  | } | 
|  |  | 
|  | /* Helper function to identify when we're in a function epilogue; | 
|  | that is, the part of the function from the point at which the | 
|  | stack adjustment is made, to the return or sibcall.  On Nios II, | 
|  | we want to check that the CURRENT_PC is a return-type instruction | 
|  | and that the previous instruction is a stack adjustment. | 
|  | START_PC is the beginning of the function in question.  */ | 
|  |  | 
|  | static int | 
|  | nios2_in_epilogue_p (struct gdbarch *gdbarch, | 
|  | CORE_ADDR current_pc, | 
|  | CORE_ADDR start_pc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* There has to be a previous instruction in the function.  */ | 
|  | if (current_pc > start_pc) | 
|  | { | 
|  |  | 
|  | /* Check whether the previous instruction was a stack | 
|  | adjustment.  */ | 
|  | unsigned int insn | 
|  | = read_memory_unsigned_integer (current_pc - NIOS2_OPCODE_SIZE, | 
|  | NIOS2_OPCODE_SIZE, byte_order); | 
|  |  | 
|  | if ((insn & 0xffc0003c) == 0xdec00004	/* ADDI sp, sp, */ | 
|  | || (insn & 0xffc1ffff) == 0xdec1883a	/* ADD  sp, sp, */ | 
|  | || (insn & 0xffc0003f) == 0xdec00017)	/* LDW  sp, constant(sp) */ | 
|  | { | 
|  | /* Then check if it's followed by a return or a tail | 
|  | call.  */ | 
|  | insn = read_memory_unsigned_integer (current_pc, NIOS2_OPCODE_SIZE, | 
|  | byte_order); | 
|  |  | 
|  | if (insn == 0xf800283a			/* RET */ | 
|  | || insn == 0xe800083a			/* ERET */ | 
|  | || (insn & 0x07ffffff) == 0x0000683a	/* JMP */ | 
|  | || (insn & 0xffc0003f) == 6)		/* BR */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement the in_function_epilogue_p gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr; | 
|  |  | 
|  | if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) | 
|  | return nios2_in_epilogue_p (gdbarch, pc, func_addr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Define some instruction patterns supporting wildcard bits via a | 
|  | mask.  */ | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | unsigned int insn; | 
|  | unsigned int mask; | 
|  | } wild_insn; | 
|  |  | 
|  | static const wild_insn profiler_insn[] = | 
|  | { | 
|  | { 0x0010e03a, 0x00000000 }, /* nextpc r8 */ | 
|  | { 0xf813883a, 0x00000000 }, /* mov    r9,ra */ | 
|  | { 0x02800034, 0x003fffc0 }, /* movhi  r10,257 */ | 
|  | { 0x52800004, 0x003fffc0 }, /* addi   r10,r10,-31992 */ | 
|  | { 0x00000000, 0xffffffc0 }, /* call   <mcount> */ | 
|  | { 0x483f883a, 0x00000000 }  /* mov    ra,r9 */ | 
|  | }; | 
|  |  | 
|  | static const wild_insn irqentry_insn[] = | 
|  | { | 
|  | { 0x0031307a, 0x00000000 }, /* rdctl  et,estatus */ | 
|  | { 0xc600004c, 0x00000000 }, /* andi   et,et,1 */ | 
|  | { 0xc0000026, 0x003fffc0 }, /* beq    et,zero, <software_exception> */ | 
|  | { 0x0031313a, 0x00000000 }, /* rdctl  et,ipending */ | 
|  | { 0xc0000026, 0x003fffc0 }  /* beq    et,zero, <software_exception> */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Attempt to match SEQUENCE, which is COUNT insns long, at START_PC.  */ | 
|  |  | 
|  | static int | 
|  | nios2_match_sequence (struct gdbarch *gdbarch, CORE_ADDR start_pc, | 
|  | const wild_insn *sequence, int count) | 
|  | { | 
|  | CORE_ADDR pc = start_pc; | 
|  | int i; | 
|  | unsigned int insn; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | for (i = 0 ; i < count ; i++) | 
|  | { | 
|  | insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order); | 
|  | if ((insn & ~sequence[i].mask) != sequence[i].insn) | 
|  | return 0; | 
|  |  | 
|  | pc += NIOS2_OPCODE_SIZE; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Do prologue analysis, returning the PC of the first instruction | 
|  | after the function prologue.  Assumes CACHE has already been | 
|  | initialized.  THIS_FRAME can be null, in which case we are only | 
|  | interested in skipping the prologue.  Otherwise CACHE is filled in | 
|  | from the frame information. | 
|  |  | 
|  | The prologue will consist of the following parts: | 
|  | 1) Optional profiling instrumentation.  The old version uses six | 
|  | instructions.  We step over this if there is an exact match. | 
|  | nextpc r8 | 
|  | mov	 r9, ra | 
|  | movhi	 r10, %hiadj(.LP2) | 
|  | addi	 r10, r10, %lo(.LP2) | 
|  | call	 mcount | 
|  | mov	 ra, r9 | 
|  | The new version uses two or three instructions (the last of | 
|  | these might get merged in with the STW which saves RA to the | 
|  | stack).  We interpret these. | 
|  | mov	 r8, ra | 
|  | call	 mcount | 
|  | mov	 ra, r8 | 
|  |  | 
|  | 2) Optional interrupt entry decision.  Again, we step over | 
|  | this if there is an exact match. | 
|  | rdctl  et,estatus | 
|  | andi   et,et,1 | 
|  | beq    et,zero, <software_exception> | 
|  | rdctl  et,ipending | 
|  | beq    et,zero, <software_exception> | 
|  |  | 
|  | 3) A stack adjustment or stack which, which will be one of: | 
|  | addi   sp, sp, -constant | 
|  | or: | 
|  | movi   r8, constant | 
|  | sub    sp, sp, r8 | 
|  | or | 
|  | movhi  r8, constant | 
|  | addi   r8, r8, constant | 
|  | sub    sp, sp, r8 | 
|  | or | 
|  | movhi  rx, %hiadj(newstack) | 
|  | addhi  rx, rx, %lo(newstack) | 
|  | stw    sp, constant(rx) | 
|  | mov    sp, rx | 
|  |  | 
|  | 4) An optional stack check, which can take either of these forms: | 
|  | bgeu   sp, rx, +8 | 
|  | break  3 | 
|  | or | 
|  | bltu   sp, rx, .Lstack_overflow | 
|  | ... | 
|  | .Lstack_overflow: | 
|  | break  3 | 
|  |  | 
|  | 5) Saving any registers which need to be saved.  These will | 
|  | normally just be stored onto the stack: | 
|  | stw    rx, constant(sp) | 
|  | but in the large frame case will use r8 as an offset back | 
|  | to the cfa: | 
|  | add    r8, r8, sp | 
|  | stw    rx, -constant(r8) | 
|  |  | 
|  | Saving control registers looks slightly different: | 
|  | rdctl  rx, ctlN | 
|  | stw    rx, constant(sp) | 
|  |  | 
|  | 6) An optional FP setup, either if the user has requested a | 
|  | frame pointer or if the function calls alloca. | 
|  | This is always: | 
|  | mov    fp, sp | 
|  |  | 
|  | The prologue instructions may be interleaved, and the register | 
|  | saves and FP setup can occur in either order. | 
|  |  | 
|  | To cope with all this variability we decode all the instructions | 
|  | from the start of the prologue until we hit a branch, call or | 
|  | return.  For each of the instructions mentioned in 3, 4 and 5 we | 
|  | handle the limited cases of stores to the stack and operations | 
|  | on constant values.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, | 
|  | const CORE_ADDR current_pc, | 
|  | struct nios2_unwind_cache *cache, | 
|  | struct frame_info *this_frame) | 
|  | { | 
|  | /* Maximum lines of prologue to check. | 
|  | Note that this number should not be too large, else we can | 
|  | potentially end up iterating through unmapped memory.  */ | 
|  | CORE_ADDR limit_pc = start_pc + 200; | 
|  | int regno; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Does the frame set up the FP register?  */ | 
|  | int base_reg = 0; | 
|  |  | 
|  | struct reg_value *value = cache->reg_value; | 
|  | struct reg_value temp_value[NIOS2_NUM_REGS]; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | /* Save the starting PC so we can correct the pc after running | 
|  | through the prolog, using symbol info.  */ | 
|  | CORE_ADDR pc = start_pc; | 
|  |  | 
|  | /* Is this an exception handler?  */ | 
|  | int exception_handler = 0; | 
|  |  | 
|  | /* What was the original value of SP (or fake original value for | 
|  | functions which switch stacks?  */ | 
|  | CORE_ADDR frame_high; | 
|  |  | 
|  | /* Is this the end of the prologue?  */ | 
|  | int within_prologue = 1; | 
|  |  | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | /* Is this the innermost function?  */ | 
|  | int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1); | 
|  |  | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, | 
|  | "{ nios2_analyze_prologue start=%s, current=%s ", | 
|  | paddress (gdbarch, start_pc), | 
|  | paddress (gdbarch, current_pc)); | 
|  |  | 
|  | /* Set up the default values of the registers.  */ | 
|  | nios2_setup_default (cache); | 
|  |  | 
|  | /* If the first few instructions are the profile entry, then skip | 
|  | over them.  Newer versions of the compiler use more efficient | 
|  | profiling code.  */ | 
|  | if (nios2_match_sequence (gdbarch, pc, profiler_insn, | 
|  | ARRAY_SIZE (profiler_insn))) | 
|  | pc += ARRAY_SIZE (profiler_insn) * NIOS2_OPCODE_SIZE; | 
|  |  | 
|  | /* If the first few instructions are an interrupt entry, then skip | 
|  | over them too.  */ | 
|  | if (nios2_match_sequence (gdbarch, pc, irqentry_insn, | 
|  | ARRAY_SIZE (irqentry_insn))) | 
|  | { | 
|  | pc += ARRAY_SIZE (irqentry_insn) * NIOS2_OPCODE_SIZE; | 
|  | exception_handler = 1; | 
|  | } | 
|  |  | 
|  | prologue_end = start_pc; | 
|  |  | 
|  | /* Find the prologue instructions.  */ | 
|  | while (pc < limit_pc && within_prologue) | 
|  | { | 
|  | /* Present instruction.  */ | 
|  | uint32_t insn; | 
|  |  | 
|  | int prologue_insn = 0; | 
|  |  | 
|  | if (pc == current_pc) | 
|  | { | 
|  | /* When we reach the current PC we must save the current | 
|  | register state (for the backtrace) but keep analysing | 
|  | because there might be more to find out (eg. is this an | 
|  | exception handler).  */ | 
|  | memcpy (temp_value, value, sizeof (temp_value)); | 
|  | value = temp_value; | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, "*"); | 
|  | } | 
|  |  | 
|  | insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order); | 
|  | pc += NIOS2_OPCODE_SIZE; | 
|  |  | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, "[%08X]", insn); | 
|  |  | 
|  | /* The following instructions can appear in the prologue.  */ | 
|  |  | 
|  | if ((insn & 0x0001ffff) == 0x0001883a) | 
|  | { | 
|  | /* ADD   rc, ra, rb  (also used for MOV) */ | 
|  |  | 
|  | int ra = GET_IW_A (insn); | 
|  | int rb = GET_IW_B (insn); | 
|  | int rc = GET_IW_C (insn); | 
|  |  | 
|  | if (rc == NIOS2_SP_REGNUM | 
|  | && rb == 0 | 
|  | && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg) | 
|  | { | 
|  | /* If the previous value of SP is available somewhere | 
|  | near the new stack pointer value then this is a | 
|  | stack switch.  */ | 
|  |  | 
|  | /* If any registers were saved on the stack before then | 
|  | we can't backtrace into them now.  */ | 
|  | for (i = 0 ; i < NIOS2_NUM_REGS ; i++) | 
|  | { | 
|  | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | 
|  | cache->reg_saved[i].basereg = -1; | 
|  | if (value[i].reg == NIOS2_SP_REGNUM) | 
|  | value[i].reg = -1; | 
|  | } | 
|  |  | 
|  | /* Create a fake "high water mark" 4 bytes above where SP | 
|  | was stored and fake up the registers to be consistent | 
|  | with that.  */ | 
|  | value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM; | 
|  | value[NIOS2_SP_REGNUM].offset | 
|  | = (value[ra].offset | 
|  | - cache->reg_saved[NIOS2_SP_REGNUM].addr | 
|  | - 4); | 
|  | cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM; | 
|  | cache->reg_saved[NIOS2_SP_REGNUM].addr = -4; | 
|  | } | 
|  |  | 
|  | else if (rc != 0) | 
|  | { | 
|  | if (value[rb].reg == 0) | 
|  | value[rc].reg = value[ra].reg; | 
|  | else if (value[ra].reg == 0) | 
|  | value[rc].reg = value[rb].reg; | 
|  | else | 
|  | value[rc].reg = -1; | 
|  | value[rc].offset = value[ra].offset + value[rb].offset; | 
|  | } | 
|  | prologue_insn = 1; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0x0001ffff) == 0x0001983a) | 
|  | { | 
|  | /* SUB   rc, ra, rb */ | 
|  |  | 
|  | int ra = GET_IW_A (insn); | 
|  | int rb = GET_IW_B (insn); | 
|  | int rc = GET_IW_C (insn); | 
|  |  | 
|  | if (rc != 0) | 
|  | { | 
|  | if (value[rb].reg == 0) | 
|  | value[rc].reg = value[ra].reg; | 
|  | else | 
|  | value[rc].reg = -1; | 
|  | value[rc].offset = value[ra].offset - value[rb].offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | else if ((insn & 0x0000003f) == 0x00000004) | 
|  | { | 
|  | /* ADDI  rb, ra, immed   (also used for MOVI) */ | 
|  | short immed = GET_IW_IMM16 (insn); | 
|  | int ra = GET_IW_A (insn); | 
|  | int rb = GET_IW_B (insn); | 
|  |  | 
|  | /* The first stack adjustment is part of the prologue. | 
|  | Any subsequent stack adjustments are either down to | 
|  | alloca or the epilogue so stop analysing when we hit | 
|  | them.  */ | 
|  | if (rb == NIOS2_SP_REGNUM | 
|  | && (value[rb].offset != 0 || value[ra].reg != NIOS2_SP_REGNUM)) | 
|  | break; | 
|  |  | 
|  | if (rb != 0) | 
|  | { | 
|  | value[rb].reg    = value[ra].reg; | 
|  | value[rb].offset = value[ra].offset + immed; | 
|  | } | 
|  |  | 
|  | prologue_insn = 1; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0x0000003f) == 0x00000034) | 
|  | { | 
|  | /* ORHI  rb, ra, immed   (also used for MOVHI) */ | 
|  | unsigned int immed = GET_IW_IMM16 (insn); | 
|  | int ra = GET_IW_A (insn); | 
|  | int rb = GET_IW_B (insn); | 
|  |  | 
|  | if (rb != 0) | 
|  | { | 
|  | value[rb].reg    = (value[ra].reg == 0) ? 0 : -1; | 
|  | value[rb].offset = value[ra].offset | (immed << 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | else if ((insn & IW_OP_MASK) == OP_STW | 
|  | || (insn & IW_OP_MASK) == OP_STWIO) | 
|  | { | 
|  | /* STW rb, immediate(ra) */ | 
|  |  | 
|  | short immed16 = GET_IW_IMM16 (insn); | 
|  | int ra = GET_IW_A (insn); | 
|  | int rb = GET_IW_B (insn); | 
|  |  | 
|  | /* Are we storing the original value of a register? | 
|  | For exception handlers the value of EA-4 (return | 
|  | address from interrupts etc) is sometimes stored.  */ | 
|  | int orig = value[rb].reg; | 
|  | if (orig > 0 | 
|  | && (value[rb].offset == 0 | 
|  | || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))) | 
|  | { | 
|  | /* We are most interested in stores to the stack, but | 
|  | also take note of stores to other places as they | 
|  | might be useful later.  */ | 
|  | if ((value[ra].reg == NIOS2_SP_REGNUM | 
|  | && cache->reg_saved[orig].basereg != NIOS2_SP_REGNUM) | 
|  | || cache->reg_saved[orig].basereg == -1) | 
|  | { | 
|  | if (pc < current_pc) | 
|  | { | 
|  | /* Save off callee saved registers.  */ | 
|  | cache->reg_saved[orig].basereg = value[ra].reg; | 
|  | cache->reg_saved[orig].addr | 
|  | = value[ra].offset + GET_IW_IMM16 (insn); | 
|  | } | 
|  |  | 
|  | prologue_insn = 1; | 
|  |  | 
|  | if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM) | 
|  | exception_handler = 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | /* Non-stack memory writes are not part of the | 
|  | prologue.  */ | 
|  | within_prologue = 0; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xffc1f83f) == 0x0001303a) | 
|  | { | 
|  | /* RDCTL rC, ctlN */ | 
|  | int rc = GET_IW_C (insn); | 
|  | int n = GET_IW_CONTROL_REGNUM (insn); | 
|  |  | 
|  | if (rc != 0) | 
|  | { | 
|  | value[rc].reg    = NIOS2_STATUS_REGNUM + n; | 
|  | value[rc].offset = 0; | 
|  | } | 
|  |  | 
|  | prologue_insn = 1; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0x0000003f) == 0 | 
|  | && value[8].reg == NIOS2_RA_REGNUM | 
|  | && value[8].offset == 0 | 
|  | && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM | 
|  | && value[NIOS2_SP_REGNUM].offset == 0) | 
|  | { | 
|  | /* A CALL instruction.  This is treated as a call to mcount | 
|  | if ra has been stored into r8 beforehand and if it's | 
|  | before the stack adjust. | 
|  | Note mcount corrupts r2-r3, r9-r15 & ra.  */ | 
|  | for (i = 2 ; i <= 3 ; i++) | 
|  | value[i].reg = -1; | 
|  | for (i = 9 ; i <= 15 ; i++) | 
|  | value[i].reg = -1; | 
|  | value[NIOS2_RA_REGNUM].reg = -1; | 
|  |  | 
|  | prologue_insn = 1; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xf83fffff) == 0xd800012e) | 
|  | { | 
|  | /* BGEU sp, rx, +8 | 
|  | BREAK 3 | 
|  | This instruction sequence is used in stack checking; | 
|  | we can ignore it.  */ | 
|  | unsigned int next_insn | 
|  | = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order); | 
|  |  | 
|  | if (next_insn != 0x003da0fa) | 
|  | within_prologue = 0; | 
|  | else | 
|  | pc += NIOS2_OPCODE_SIZE; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xf800003f) == 0xd8000036) | 
|  | { | 
|  | /* BLTU sp, rx, .Lstackoverflow | 
|  | If the location branched to holds a BREAK 3 instruction | 
|  | then this is also stack overflow detection.  We can | 
|  | ignore it.  */ | 
|  | CORE_ADDR target_pc = pc + ((insn & 0x3fffc0) >> 6); | 
|  | unsigned int target_insn | 
|  | = read_memory_unsigned_integer (target_pc, NIOS2_OPCODE_SIZE, | 
|  | byte_order); | 
|  |  | 
|  | if (target_insn != 0x003da0fa) | 
|  | within_prologue = 0; | 
|  | } | 
|  |  | 
|  | /* Any other instructions are allowed to be moved up into the | 
|  | prologue.  If we reach a branch, call or return then the | 
|  | prologue is considered over.  We also consider a second stack | 
|  | adjustment as terminating the prologue (see above).  */ | 
|  | else | 
|  | { | 
|  | switch (GET_IW_OP (insn)) | 
|  | { | 
|  | case OP_BEQ: | 
|  | case OP_BGE: | 
|  | case OP_BGEU: | 
|  | case OP_BLT: | 
|  | case OP_BLTU: | 
|  | case OP_BNE: | 
|  | case OP_BR: | 
|  | case OP_CALL: | 
|  | within_prologue = 0; | 
|  | break; | 
|  | case OP_OPX: | 
|  | if (GET_IW_OPX (insn) == OPX_RET | 
|  | || GET_IW_OPX (insn) == OPX_ERET | 
|  | || GET_IW_OPX (insn) == OPX_BRET | 
|  | || GET_IW_OPX (insn) == OPX_CALLR | 
|  | || GET_IW_OPX (insn) == OPX_JMP) | 
|  | within_prologue = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prologue_insn) | 
|  | prologue_end = pc; | 
|  | } | 
|  |  | 
|  | /* If THIS_FRAME is NULL, we are being called from skip_prologue | 
|  | and are only interested in the PROLOGUE_END value, so just | 
|  | return that now and skip over the cache updates, which depend | 
|  | on having frame information.  */ | 
|  | if (this_frame == NULL) | 
|  | return prologue_end; | 
|  |  | 
|  | /* If we are in the function epilogue and have already popped | 
|  | registers off the stack in preparation for returning, then we | 
|  | want to go back to the original register values.  */ | 
|  | if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc)) | 
|  | nios2_setup_default (cache); | 
|  |  | 
|  | /* Exception handlers use a different return address register.  */ | 
|  | if (exception_handler) | 
|  | cache->return_regnum = NIOS2_EA_REGNUM; | 
|  |  | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum); | 
|  |  | 
|  | if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM) | 
|  | /* If the FP now holds an offset from the CFA then this is a | 
|  | normal frame which uses the frame pointer.  */ | 
|  | base_reg = NIOS2_FP_REGNUM; | 
|  | else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM) | 
|  | /* FP doesn't hold an offset from the CFA.  If SP still holds an | 
|  | offset from the CFA then we might be in a function which omits | 
|  | the frame pointer, or we might be partway through the prologue. | 
|  | In both cases we can find the CFA using SP.  */ | 
|  | base_reg = NIOS2_SP_REGNUM; | 
|  | else | 
|  | { | 
|  | /* Somehow the stack pointer has been corrupted. | 
|  | We can't return.  */ | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cache->reg_value[base_reg].offset == 0 | 
|  | || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM | 
|  | || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM) | 
|  | { | 
|  | /* If the frame didn't adjust the stack, didn't save RA or | 
|  | didn't save EA in an exception handler then it must either | 
|  | be a leaf function (doesn't call any other functions) or it | 
|  | can't return.  If it has called another function then it | 
|  | can't be a leaf, so set base == 0 to indicate that we can't | 
|  | backtrace past it.  */ | 
|  |  | 
|  | if (!innermost) | 
|  | { | 
|  | /* If it isn't the innermost function then it can't be a | 
|  | leaf, unless it was interrupted.  Check whether RA for | 
|  | this frame is the same as PC.  If so then it probably | 
|  | wasn't interrupted.  */ | 
|  | CORE_ADDR ra | 
|  | = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM); | 
|  |  | 
|  | if (ra == current_pc) | 
|  | { | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered | 
|  | (gdb_stdlog, | 
|  | "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n", | 
|  | paddress (gdbarch, cache->reg_value[base_reg].offset), | 
|  | cache->reg_saved[NIOS2_RA_REGNUM].basereg, | 
|  | cache->return_regnum, | 
|  | cache->reg_saved[cache->return_regnum].basereg); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the value of whichever register we are using for the | 
|  | base.  */ | 
|  | cache->base = get_frame_register_unsigned (this_frame, base_reg); | 
|  |  | 
|  | /* What was the value of SP at the start of this function (or just | 
|  | after the stack switch).  */ | 
|  | frame_high = cache->base - cache->reg_value[base_reg].offset; | 
|  |  | 
|  | /* Adjust all the saved registers such that they contain addresses | 
|  | instead of offsets.  */ | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM) | 
|  | { | 
|  | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | 
|  | cache->reg_saved[i].addr += frame_high; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | 
|  | { | 
|  | CORE_ADDR gp = get_frame_register_unsigned (this_frame, | 
|  | NIOS2_GP_REGNUM); | 
|  |  | 
|  | for ( ; i < NIOS2_NUM_REGS; i++) | 
|  | if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM) | 
|  | { | 
|  | cache->reg_saved[i].basereg = NIOS2_Z_REGNUM; | 
|  | cache->reg_saved[i].addr += gp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Work out what the value of SP was on the first instruction of | 
|  | this function.  If we didn't switch stacks then this can be | 
|  | trivially computed from the base address.  */ | 
|  | if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM) | 
|  | cache->cfa | 
|  | = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr, | 
|  | 4, byte_order); | 
|  | else | 
|  | cache->cfa = frame_high; | 
|  |  | 
|  | /* Exception handlers restore ESTATUS into STATUS.  */ | 
|  | if (exception_handler) | 
|  | { | 
|  | cache->reg_saved[NIOS2_STATUS_REGNUM] | 
|  | = cache->reg_saved[NIOS2_ESTATUS_REGNUM]; | 
|  | cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1; | 
|  | } | 
|  |  | 
|  | if (nios2_debug) | 
|  | fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n", | 
|  | paddress (gdbarch, cache->cfa)); | 
|  |  | 
|  | return prologue_end; | 
|  | } | 
|  |  | 
|  | /* Implement the skip_prologue gdbarch hook.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | 
|  | { | 
|  | CORE_ADDR limit_pc; | 
|  | CORE_ADDR func_addr; | 
|  |  | 
|  | struct nios2_unwind_cache cache; | 
|  |  | 
|  | /* See if we can determine the end of the prologue via the symbol | 
|  | table.  If so, then return either PC, or the PC after the | 
|  | prologue, whichever is greater.  */ | 
|  | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | 
|  | { | 
|  | CORE_ADDR post_prologue_pc | 
|  | = skip_prologue_using_sal (gdbarch, func_addr); | 
|  |  | 
|  | if (post_prologue_pc != 0) | 
|  | return max (start_pc, post_prologue_pc); | 
|  | } | 
|  |  | 
|  | /* Prologue analysis does the rest....  */ | 
|  | nios2_init_cache (&cache, start_pc); | 
|  | return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL); | 
|  | } | 
|  |  | 
|  | /* Implement the breakpoint_from_pc gdbarch hook.  */ | 
|  |  | 
|  | static const gdb_byte* | 
|  | nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, | 
|  | int *bp_size) | 
|  | { | 
|  | /* break encoding: 31->27  26->22  21->17  16->11 10->6 5->0 */ | 
|  | /*                 00000   00000   0x1d    0x2d   11111 0x3a */ | 
|  | /*                 00000   00000   11101   101101 11111 111010 */ | 
|  | /* In bytes:       00000000 00111011 01101111 11111010 */ | 
|  | /*                 0x0       0x3b    0x6f     0xfa */ | 
|  | static const gdb_byte breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0}; | 
|  | static const gdb_byte breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa}; | 
|  |  | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  |  | 
|  | *bp_size = 4; | 
|  | if (gdbarch_byte_order_for_code (gdbarch) == BFD_ENDIAN_BIG) | 
|  | return breakpoint_be; | 
|  | else | 
|  | return breakpoint_le; | 
|  | } | 
|  |  | 
|  | /* Implement the print_insn gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_print_insn (bfd_vma memaddr, disassemble_info *info) | 
|  | { | 
|  | if (info->endian == BFD_ENDIAN_BIG) | 
|  | return print_insn_big_nios2 (memaddr, info); | 
|  | else | 
|  | return print_insn_little_nios2 (memaddr, info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the frame_align gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return align_down (addr, 4); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the return_value gdbarch method.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | nios2_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (TYPE_LENGTH (type) > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (readbuf) | 
|  | nios2_extract_return_value (gdbarch, type, regcache, readbuf); | 
|  | if (writebuf) | 
|  | nios2_store_return_value (gdbarch, type, regcache, writebuf); | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | /* Implement the dummy_id gdbarch method.  */ | 
|  |  | 
|  | static struct frame_id | 
|  | nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | 
|  | { | 
|  | return frame_id_build | 
|  | (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM), | 
|  | get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | /* Implement the push_dummy_call gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | int struct_return, CORE_ADDR struct_addr) | 
|  | { | 
|  | int argreg; | 
|  | int float_argreg; | 
|  | int argnum; | 
|  | int len = 0; | 
|  | int stack_offset = 0; | 
|  | CORE_ADDR func_addr = find_function_addr (function, NULL); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Set the return address register to point to the entry point of | 
|  | the program, where a breakpoint lies in wait.  */ | 
|  | regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr); | 
|  |  | 
|  | /* Now make space on the stack for the args.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); | 
|  | sp -= len; | 
|  |  | 
|  | /* Initialize the register pointer.  */ | 
|  | argreg = NIOS2_FIRST_ARGREG; | 
|  |  | 
|  | /* The struct_return pointer occupies the first parameter-passing | 
|  | register.  */ | 
|  | if (struct_return) | 
|  | regcache_cooked_write_unsigned (regcache, argreg++, struct_addr); | 
|  |  | 
|  | /* Now load as many as possible of the first arguments into | 
|  | registers, and push the rest onto the stack.  Loop through args | 
|  | from first to last.  */ | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | { | 
|  | const gdb_byte *val; | 
|  | gdb_byte valbuf[MAX_REGISTER_SIZE]; | 
|  | struct value *arg = args[argnum]; | 
|  | struct type *arg_type = check_typedef (value_type (arg)); | 
|  | int len = TYPE_LENGTH (arg_type); | 
|  | enum type_code typecode = TYPE_CODE (arg_type); | 
|  |  | 
|  | val = value_contents (arg); | 
|  |  | 
|  | /* Copy the argument to general registers or the stack in | 
|  | register-sized pieces.  Large arguments are split between | 
|  | registers and stack.  */ | 
|  | while (len > 0) | 
|  | { | 
|  | int partial_len = (len < 4 ? len : 4); | 
|  |  | 
|  | if (argreg <= NIOS2_LAST_ARGREG) | 
|  | { | 
|  | /* The argument is being passed in a register.  */ | 
|  | CORE_ADDR regval = extract_unsigned_integer (val, partial_len, | 
|  | byte_order); | 
|  |  | 
|  | regcache_cooked_write_unsigned (regcache, argreg, regval); | 
|  | argreg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The argument is being passed on the stack.  */ | 
|  | CORE_ADDR addr = sp + stack_offset; | 
|  |  | 
|  | write_memory (addr, val, partial_len); | 
|  | stack_offset += align_up (partial_len, 4); | 
|  | } | 
|  |  | 
|  | len -= partial_len; | 
|  | val += partial_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp); | 
|  |  | 
|  | /* Return adjusted stack pointer.  */ | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | /* Implement the unwind_pc gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | 
|  | { | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf); | 
|  | return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | 
|  | } | 
|  |  | 
|  | /* Implement the unwind_sp gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | 
|  | { | 
|  | return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM); | 
|  | } | 
|  |  | 
|  | /* Use prologue analysis to fill in the register cache | 
|  | *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes | 
|  | *THIS_PROLOGUE_CACHE first.  */ | 
|  |  | 
|  | static struct nios2_unwind_cache * | 
|  | nios2_frame_unwind_cache (struct frame_info *this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | CORE_ADDR current_pc; | 
|  | struct nios2_unwind_cache *cache; | 
|  | int i; | 
|  |  | 
|  | if (*this_prologue_cache) | 
|  | return *this_prologue_cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache); | 
|  | *this_prologue_cache = cache; | 
|  |  | 
|  | /* Zero all fields.  */ | 
|  | nios2_init_cache (cache, get_frame_func (this_frame)); | 
|  |  | 
|  | /* Prologue analysis does the rest...  */ | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if (cache->pc != 0) | 
|  | nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Implement the this_id function for the normal unwinder.  */ | 
|  |  | 
|  | static void | 
|  | nios2_frame_this_id (struct frame_info *this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct nios2_unwind_cache *cache = | 
|  | nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (cache->cfa, cache->pc); | 
|  | } | 
|  |  | 
|  | /* Implement the prev_register function for the normal unwinder.  */ | 
|  |  | 
|  | static struct value * | 
|  | nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct nios2_unwind_cache *cache = | 
|  | nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS); | 
|  |  | 
|  | /* The PC of the previous frame is stored in the RA register of | 
|  | the current frame.  Frob regnum so that we pull the value from | 
|  | the correct place.  */ | 
|  | if (regnum == NIOS2_PC_REGNUM) | 
|  | regnum = cache->return_regnum; | 
|  |  | 
|  | if (regnum == NIOS2_SP_REGNUM && cache->cfa) | 
|  | return frame_unwind_got_constant (this_frame, regnum, cache->cfa); | 
|  |  | 
|  | /* If we've worked out where a register is stored then load it from | 
|  | there.  */ | 
|  | if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | cache->reg_saved[regnum].addr); | 
|  |  | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | /* Implement the this_base, this_locals, and this_args hooks | 
|  | for the normal unwinder.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_frame_base_address (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | struct nios2_unwind_cache *info | 
|  | = nios2_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | return info->base; | 
|  | } | 
|  |  | 
|  | /* Data structures for the normal prologue-analysis-based | 
|  | unwinder.  */ | 
|  |  | 
|  | static const struct frame_unwind nios2_frame_unwind = | 
|  | { | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | nios2_frame_this_id, | 
|  | nios2_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static const struct frame_base nios2_frame_base = | 
|  | { | 
|  | &nios2_frame_unwind, | 
|  | nios2_frame_base_address, | 
|  | nios2_frame_base_address, | 
|  | nios2_frame_base_address | 
|  | }; | 
|  |  | 
|  | /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use | 
|  | in the stub unwinder.  */ | 
|  |  | 
|  | static struct trad_frame_cache * | 
|  | nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | CORE_ADDR start_addr; | 
|  | CORE_ADDR stack_addr; | 
|  | struct trad_frame_cache *this_trad_cache; | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | int num_regs = gdbarch_num_regs (gdbarch); | 
|  |  | 
|  | if (*this_cache != NULL) | 
|  | return *this_cache; | 
|  | this_trad_cache = trad_frame_cache_zalloc (this_frame); | 
|  | *this_cache = this_trad_cache; | 
|  |  | 
|  | /* The return address is in the link register.  */ | 
|  | trad_frame_set_reg_realreg (this_trad_cache, | 
|  | gdbarch_pc_regnum (gdbarch), | 
|  | NIOS2_RA_REGNUM); | 
|  |  | 
|  | /* Frame ID, since it's a frameless / stackless function, no stack | 
|  | space is allocated and SP on entry is the current SP.  */ | 
|  | pc = get_frame_pc (this_frame); | 
|  | find_pc_partial_function (pc, NULL, &start_addr, NULL); | 
|  | stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM); | 
|  | trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr)); | 
|  | /* Assume that the frame's base is the same as the stack pointer.  */ | 
|  | trad_frame_set_this_base (this_trad_cache, stack_addr); | 
|  |  | 
|  | return this_trad_cache; | 
|  | } | 
|  |  | 
|  | /* Implement the this_id function for the stub unwinder.  */ | 
|  |  | 
|  | static void | 
|  | nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct trad_frame_cache *this_trad_cache | 
|  | = nios2_stub_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | trad_frame_get_id (this_trad_cache, this_id); | 
|  | } | 
|  |  | 
|  | /* Implement the prev_register function for the stub unwinder.  */ | 
|  |  | 
|  | static struct value * | 
|  | nios2_stub_frame_prev_register (struct frame_info *this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | struct trad_frame_cache *this_trad_cache | 
|  | = nios2_stub_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return trad_frame_get_register (this_trad_cache, this_frame, regnum); | 
|  | } | 
|  |  | 
|  | /* Implement the sniffer function for the stub unwinder. | 
|  | This unwinder is used for cases where the normal | 
|  | prologue-analysis-based unwinder can't work, | 
|  | such as PLT stubs.  */ | 
|  |  | 
|  | static int | 
|  | nios2_stub_frame_sniffer (const struct frame_unwind *self, | 
|  | struct frame_info *this_frame, void **cache) | 
|  | { | 
|  | gdb_byte dummy[4]; | 
|  | struct obj_section *s; | 
|  | CORE_ADDR pc = get_frame_address_in_block (this_frame); | 
|  |  | 
|  | /* Use the stub unwinder for unreadable code.  */ | 
|  | if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0) | 
|  | return 1; | 
|  |  | 
|  | if (in_plt_section (pc)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Define the data structures for the stub unwinder.  */ | 
|  |  | 
|  | static const struct frame_unwind nios2_stub_frame_unwind = | 
|  | { | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | nios2_stub_frame_this_id, | 
|  | nios2_stub_frame_prev_register, | 
|  | NULL, | 
|  | nios2_stub_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Helper function to read an instruction at PC.  */ | 
|  |  | 
|  | static unsigned long | 
|  | nios2_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | return read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order); | 
|  | } | 
|  |  | 
|  | /* Determine where to set a single step breakpoint while considering | 
|  | branch prediction.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | unsigned long inst; | 
|  | int op; | 
|  | int imm16; | 
|  | int ra; | 
|  | int rb; | 
|  | int ras; | 
|  | int rbs; | 
|  | unsigned int rau; | 
|  | unsigned int rbu; | 
|  |  | 
|  | inst = nios2_fetch_instruction (gdbarch, pc); | 
|  | pc += NIOS2_OPCODE_SIZE; | 
|  |  | 
|  | imm16 = (short) GET_IW_IMM16 (inst); | 
|  | ra = GET_IW_A (inst); | 
|  | rb = GET_IW_B (inst); | 
|  | ras = get_frame_register_signed (frame, ra); | 
|  | rbs = get_frame_register_signed (frame, rb); | 
|  | rau = get_frame_register_unsigned (frame, ra); | 
|  | rbu = get_frame_register_unsigned (frame, rb); | 
|  |  | 
|  | switch (GET_IW_OP (inst)) | 
|  | { | 
|  | case OP_BEQ: | 
|  | if (ras == rbs) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BGE: | 
|  | if (ras >= rbs) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BGEU: | 
|  | if (rau >= rbu) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BLT: | 
|  | if (ras < rbs) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BLTU: | 
|  | if (rau < rbu) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BNE: | 
|  | if (ras != rbs) | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_BR: | 
|  | pc += imm16; | 
|  | break; | 
|  |  | 
|  | case OP_JMPI: | 
|  | case OP_CALL: | 
|  | pc = (pc & 0xf0000000) | (GET_IW_IMM26 (inst) << 2); | 
|  | break; | 
|  |  | 
|  | case OP_OPX: | 
|  | switch (GET_IW_OPX (inst)) | 
|  | { | 
|  | case OPX_JMP: | 
|  | case OPX_CALLR: | 
|  | case OPX_RET: | 
|  | pc = ras; | 
|  | break; | 
|  |  | 
|  | case OPX_TRAP: | 
|  | if (tdep->syscall_next_pc != NULL) | 
|  | return tdep->syscall_next_pc (frame); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Implement the software_single_step gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_software_single_step (struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct address_space *aspace = get_frame_address_space (frame); | 
|  | CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame)); | 
|  |  | 
|  | insert_single_step_breakpoint (gdbarch, aspace, next_pc); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Implement the get_longjump_target gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM); | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4)) | 
|  | return 0; | 
|  |  | 
|  | *pc = extract_unsigned_integer (buf, 4, byte_order); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Initialize the Nios II gdbarch.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct gdbarch_tdep *tdep; | 
|  | int register_bytes, i; | 
|  | struct tdesc_arch_data *tdesc_data = NULL; | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  |  | 
|  | if (!tdesc_has_registers (tdesc)) | 
|  | /* Pick a default target description.  */ | 
|  | tdesc = tdesc_nios2; | 
|  |  | 
|  | /* Check any target description for validity.  */ | 
|  | if (tdesc_has_registers (tdesc)) | 
|  | { | 
|  | const struct tdesc_feature *feature; | 
|  | int valid_p; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu"); | 
|  | if (feature == NULL) | 
|  | return NULL; | 
|  |  | 
|  | tdesc_data = tdesc_data_alloc (); | 
|  |  | 
|  | valid_p = 1; | 
|  |  | 
|  | for (i = 0; i < NIOS2_NUM_REGS; i++) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, | 
|  | nios2_reg_names[i]); | 
|  |  | 
|  | if (!valid_p) | 
|  | { | 
|  | tdesc_data_cleanup (tdesc_data); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find a candidate among the list of pre-declared architectures.  */ | 
|  | arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | if (arches != NULL) | 
|  | return arches->gdbarch; | 
|  |  | 
|  | /* None found, create a new architecture from the information | 
|  | provided.  */ | 
|  | tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); | 
|  | gdbarch = gdbarch_alloc (&info, tdep); | 
|  |  | 
|  | /* longjmp support not enabled by default.  */ | 
|  | tdep->jb_pc = -1; | 
|  |  | 
|  | /* Data type sizes.  */ | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 32); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_double_bit (gdbarch, 64); | 
|  |  | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  |  | 
|  | /* The register set.  */ | 
|  | set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS); | 
|  | set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */ | 
|  |  | 
|  | set_gdbarch_register_name (gdbarch, nios2_register_name); | 
|  | set_gdbarch_register_type (gdbarch, nios2_register_type); | 
|  |  | 
|  | /* Provide register mappings for stabs and dwarf2.  */ | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum); | 
|  |  | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | /* Call dummy code.  */ | 
|  | set_gdbarch_frame_align (gdbarch, nios2_frame_align); | 
|  |  | 
|  | set_gdbarch_return_value (gdbarch, nios2_return_value); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue); | 
|  | set_gdbarch_in_function_epilogue_p (gdbarch, nios2_in_function_epilogue_p); | 
|  | set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc); | 
|  |  | 
|  | set_gdbarch_dummy_id (gdbarch, nios2_dummy_id); | 
|  | set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc); | 
|  | set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp); | 
|  |  | 
|  | /* The dwarf2 unwinder will normally produce the best results if | 
|  | the debug information is available, so register it first.  */ | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind); | 
|  |  | 
|  | /* Single stepping.  */ | 
|  | set_gdbarch_software_single_step (gdbarch, nios2_software_single_step); | 
|  |  | 
|  | /* Hook in ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | if (tdep->jb_pc >= 0) | 
|  | set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target); | 
|  |  | 
|  | frame_base_set_default (gdbarch, &nios2_frame_base); | 
|  |  | 
|  | set_gdbarch_print_insn (gdbarch, nios2_print_insn); | 
|  |  | 
|  | /* Enable inferior call support.  */ | 
|  | set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call); | 
|  |  | 
|  | if (tdesc_data) | 
|  | tdesc_use_registers (gdbarch, tdesc, tdesc_data); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */ | 
|  |  | 
|  | void | 
|  | _initialize_nios2_tdep (void) | 
|  | { | 
|  | gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL); | 
|  | initialize_tdesc_nios2 (); | 
|  |  | 
|  | /* Allow debugging this file's internals.  */ | 
|  | add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug, | 
|  | _("Set Nios II debugging."), | 
|  | _("Show Nios II debugging."), | 
|  | _("When on, Nios II specific debugging is enabled."), | 
|  | NULL, | 
|  | NULL, | 
|  | &setdebuglist, &showdebuglist); | 
|  | } |