|  | /* SPU target-dependent code for GDB, the GNU debugger. | 
|  | Copyright (C) 2006-2014 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Ulrich Weigand <uweigand@de.ibm.com>. | 
|  | Based on a port by Sid Manning <sid@us.ibm.com>. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "arch-utils.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "gdbcore.h" | 
|  | #include <string.h> | 
|  | #include "gdb_assert.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "symtab.h" | 
|  | #include "symfile.h" | 
|  | #include "value.h" | 
|  | #include "inferior.h" | 
|  | #include "dis-asm.h" | 
|  | #include "objfiles.h" | 
|  | #include "language.h" | 
|  | #include "regcache.h" | 
|  | #include "reggroups.h" | 
|  | #include "floatformat.h" | 
|  | #include "block.h" | 
|  | #include "observer.h" | 
|  | #include "infcall.h" | 
|  | #include "dwarf2.h" | 
|  | #include "dwarf2-frame.h" | 
|  | #include "ax.h" | 
|  | #include "exceptions.h" | 
|  | #include "spu-tdep.h" | 
|  |  | 
|  |  | 
|  | /* The list of available "set spu " and "show spu " commands.  */ | 
|  | static struct cmd_list_element *setspucmdlist = NULL; | 
|  | static struct cmd_list_element *showspucmdlist = NULL; | 
|  |  | 
|  | /* Whether to stop for new SPE contexts.  */ | 
|  | static int spu_stop_on_load_p = 0; | 
|  | /* Whether to automatically flush the SW-managed cache.  */ | 
|  | static int spu_auto_flush_cache_p = 1; | 
|  |  | 
|  |  | 
|  | /* The tdep structure.  */ | 
|  | struct gdbarch_tdep | 
|  | { | 
|  | /* The spufs ID identifying our address space.  */ | 
|  | int id; | 
|  |  | 
|  | /* SPU-specific vector type.  */ | 
|  | struct type *spu_builtin_type_vec128; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* SPU-specific vector type.  */ | 
|  | static struct type * | 
|  | spu_builtin_type_vec128 (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  |  | 
|  | if (!tdep->spu_builtin_type_vec128) | 
|  | { | 
|  | const struct builtin_type *bt = builtin_type (gdbarch); | 
|  | struct type *t; | 
|  |  | 
|  | t = arch_composite_type (gdbarch, | 
|  | "__spu_builtin_type_vec128", TYPE_CODE_UNION); | 
|  | append_composite_type_field (t, "uint128", bt->builtin_int128); | 
|  | append_composite_type_field (t, "v2_int64", | 
|  | init_vector_type (bt->builtin_int64, 2)); | 
|  | append_composite_type_field (t, "v4_int32", | 
|  | init_vector_type (bt->builtin_int32, 4)); | 
|  | append_composite_type_field (t, "v8_int16", | 
|  | init_vector_type (bt->builtin_int16, 8)); | 
|  | append_composite_type_field (t, "v16_int8", | 
|  | init_vector_type (bt->builtin_int8, 16)); | 
|  | append_composite_type_field (t, "v2_double", | 
|  | init_vector_type (bt->builtin_double, 2)); | 
|  | append_composite_type_field (t, "v4_float", | 
|  | init_vector_type (bt->builtin_float, 4)); | 
|  |  | 
|  | TYPE_VECTOR (t) = 1; | 
|  | TYPE_NAME (t) = "spu_builtin_type_vec128"; | 
|  |  | 
|  | tdep->spu_builtin_type_vec128 = t; | 
|  | } | 
|  |  | 
|  | return tdep->spu_builtin_type_vec128; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The list of available "info spu " commands.  */ | 
|  | static struct cmd_list_element *infospucmdlist = NULL; | 
|  |  | 
|  | /* Registers.  */ | 
|  |  | 
|  | static const char * | 
|  | spu_register_name (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | static char *register_names[] = | 
|  | { | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | 
|  | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | 
|  | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | 
|  | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | 
|  | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | 
|  | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | 
|  | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | 
|  | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | 
|  | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | 
|  | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | 
|  | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | 
|  | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | 
|  | "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status" | 
|  | }; | 
|  |  | 
|  | if (reg_nr < 0) | 
|  | return NULL; | 
|  | if (reg_nr >= sizeof register_names / sizeof *register_names) | 
|  | return NULL; | 
|  |  | 
|  | return register_names[reg_nr]; | 
|  | } | 
|  |  | 
|  | static struct type * | 
|  | spu_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr < SPU_NUM_GPRS) | 
|  | return spu_builtin_type_vec128 (gdbarch); | 
|  |  | 
|  | switch (reg_nr) | 
|  | { | 
|  | case SPU_ID_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | case SPU_PC_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  |  | 
|  | case SPU_SP_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  |  | 
|  | case SPU_FPSCR_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint128; | 
|  |  | 
|  | case SPU_SRR0_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | case SPU_LSLR_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | case SPU_DECR_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | case SPU_DECR_STATUS_REGNUM: | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Pseudo registers for preferred slots - stack pointer.  */ | 
|  |  | 
|  | static enum register_status | 
|  | spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname, | 
|  | gdb_byte *buf) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_regcache_arch (regcache); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | enum register_status status; | 
|  | gdb_byte reg[32]; | 
|  | char annex[32]; | 
|  | ULONGEST id; | 
|  | ULONGEST ul; | 
|  |  | 
|  | status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); | 
|  | memset (reg, 0, sizeof reg); | 
|  | target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | reg, 0, sizeof reg); | 
|  |  | 
|  | ul = strtoulst ((char *) reg, NULL, 16); | 
|  | store_unsigned_integer (buf, 4, byte_order, ul); | 
|  | return REG_VALID; | 
|  | } | 
|  |  | 
|  | static enum register_status | 
|  | spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | int regnum, gdb_byte *buf) | 
|  | { | 
|  | gdb_byte reg[16]; | 
|  | char annex[32]; | 
|  | ULONGEST id; | 
|  | enum register_status status; | 
|  |  | 
|  | switch (regnum) | 
|  | { | 
|  | case SPU_SP_REGNUM: | 
|  | status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | memcpy (buf, reg, 4); | 
|  | return status; | 
|  |  | 
|  | case SPU_FPSCR_REGNUM: | 
|  | status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); | 
|  | target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | 
|  | return status; | 
|  |  | 
|  | case SPU_SRR0_REGNUM: | 
|  | return spu_pseudo_register_read_spu (regcache, "srr0", buf); | 
|  |  | 
|  | case SPU_LSLR_REGNUM: | 
|  | return spu_pseudo_register_read_spu (regcache, "lslr", buf); | 
|  |  | 
|  | case SPU_DECR_REGNUM: | 
|  | return spu_pseudo_register_read_spu (regcache, "decr", buf); | 
|  |  | 
|  | case SPU_DECR_STATUS_REGNUM: | 
|  | return spu_pseudo_register_read_spu (regcache, "decr_status", buf); | 
|  |  | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname, | 
|  | const gdb_byte *buf) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_regcache_arch (regcache); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | char reg[32]; | 
|  | char annex[32]; | 
|  | ULONGEST id; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | 
|  | xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname); | 
|  | xsnprintf (reg, sizeof reg, "0x%s", | 
|  | phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4)); | 
|  | target_write (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | (gdb_byte *) reg, 0, strlen (reg)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | int regnum, const gdb_byte *buf) | 
|  | { | 
|  | gdb_byte reg[16]; | 
|  | char annex[32]; | 
|  | ULONGEST id; | 
|  |  | 
|  | switch (regnum) | 
|  | { | 
|  | case SPU_SP_REGNUM: | 
|  | regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg); | 
|  | memcpy (reg, buf, 4); | 
|  | regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg); | 
|  | break; | 
|  |  | 
|  | case SPU_FPSCR_REGNUM: | 
|  | regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id); | 
|  | xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id); | 
|  | target_write (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 16); | 
|  | break; | 
|  |  | 
|  | case SPU_SRR0_REGNUM: | 
|  | spu_pseudo_register_write_spu (regcache, "srr0", buf); | 
|  | break; | 
|  |  | 
|  | case SPU_LSLR_REGNUM: | 
|  | spu_pseudo_register_write_spu (regcache, "lslr", buf); | 
|  | break; | 
|  |  | 
|  | case SPU_DECR_REGNUM: | 
|  | spu_pseudo_register_write_spu (regcache, "decr", buf); | 
|  | break; | 
|  |  | 
|  | case SPU_DECR_STATUS_REGNUM: | 
|  | spu_pseudo_register_write_spu (regcache, "decr_status", buf); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_ax_pseudo_register_collect (struct gdbarch *gdbarch, | 
|  | struct agent_expr *ax, int regnum) | 
|  | { | 
|  | switch (regnum) | 
|  | { | 
|  | case SPU_SP_REGNUM: | 
|  | ax_reg_mask (ax, SPU_RAW_SP_REGNUM); | 
|  | return 0; | 
|  |  | 
|  | case SPU_FPSCR_REGNUM: | 
|  | case SPU_SRR0_REGNUM: | 
|  | case SPU_LSLR_REGNUM: | 
|  | case SPU_DECR_REGNUM: | 
|  | case SPU_DECR_STATUS_REGNUM: | 
|  | return -1; | 
|  |  | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, | 
|  | struct agent_expr *ax, int regnum) | 
|  | { | 
|  | switch (regnum) | 
|  | { | 
|  | case SPU_SP_REGNUM: | 
|  | ax_reg (ax, SPU_RAW_SP_REGNUM); | 
|  | return 0; | 
|  |  | 
|  | case SPU_FPSCR_REGNUM: | 
|  | case SPU_SRR0_REGNUM: | 
|  | case SPU_LSLR_REGNUM: | 
|  | case SPU_DECR_REGNUM: | 
|  | case SPU_DECR_STATUS_REGNUM: | 
|  | return -1; | 
|  |  | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, _("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Value conversion -- access scalar values at the preferred slot.  */ | 
|  |  | 
|  | static struct value * | 
|  | spu_value_from_register (struct gdbarch *gdbarch, struct type *type, | 
|  | int regnum, struct frame_id frame_id) | 
|  | { | 
|  | struct value *value = default_value_from_register (gdbarch, type, | 
|  | regnum, frame_id); | 
|  | int len = TYPE_LENGTH (type); | 
|  |  | 
|  | if (regnum < SPU_NUM_GPRS && len < 16) | 
|  | { | 
|  | int preferred_slot = len < 4 ? 4 - len : 0; | 
|  | set_value_offset (value, preferred_slot); | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* Register groups.  */ | 
|  |  | 
|  | static int | 
|  | spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | struct reggroup *group) | 
|  | { | 
|  | /* Registers displayed via 'info regs'.  */ | 
|  | if (group == general_reggroup) | 
|  | return 1; | 
|  |  | 
|  | /* Registers displayed via 'info float'.  */ | 
|  | if (group == float_reggroup) | 
|  | return 0; | 
|  |  | 
|  | /* Registers that need to be saved/restored in order to | 
|  | push or pop frames.  */ | 
|  | if (group == save_reggroup || group == restore_reggroup) | 
|  | return 1; | 
|  |  | 
|  | return default_register_reggroup_p (gdbarch, regnum, group); | 
|  | } | 
|  |  | 
|  | /* DWARF-2 register numbers.  */ | 
|  |  | 
|  | static int | 
|  | spu_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | /* Use cooked instead of raw SP.  */ | 
|  | return (reg == SPU_RAW_SP_REGNUM)? SPU_SP_REGNUM : reg; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Address handling.  */ | 
|  |  | 
|  | static int | 
|  | spu_gdbarch_id (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | int id = tdep->id; | 
|  |  | 
|  | /* The objfile architecture of a standalone SPU executable does not | 
|  | provide an SPU ID.  Retrieve it from the objfile's relocated | 
|  | address range in this special case.  */ | 
|  | if (id == -1 | 
|  | && symfile_objfile && symfile_objfile->obfd | 
|  | && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu | 
|  | && symfile_objfile->sections != symfile_objfile->sections_end) | 
|  | id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections)); | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_address_class_type_flags (int byte_size, int dwarf2_addr_class) | 
|  | { | 
|  | if (dwarf2_addr_class == 1) | 
|  | return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) | 
|  | { | 
|  | if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) | 
|  | return "__ea"; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_address_class_name_to_type_flags (struct gdbarch *gdbarch, | 
|  | const char *name, int *type_flags_ptr) | 
|  | { | 
|  | if (strcmp (name, "__ea") == 0) | 
|  | { | 
|  | *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_address_to_pointer (struct gdbarch *gdbarch, | 
|  | struct type *type, gdb_byte *buf, CORE_ADDR addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, | 
|  | SPUADDR_ADDR (addr)); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | int id = spu_gdbarch_id (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST addr | 
|  | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | 
|  |  | 
|  | /* Do not convert __ea pointers.  */ | 
|  | if (TYPE_ADDRESS_CLASS_1 (type)) | 
|  | return addr; | 
|  |  | 
|  | return addr? SPUADDR (id, addr) : 0; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_integer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | int id = spu_gdbarch_id (gdbarch); | 
|  | ULONGEST addr = unpack_long (type, buf); | 
|  |  | 
|  | return SPUADDR (id, addr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Decoding SPU instructions.  */ | 
|  |  | 
|  | enum | 
|  | { | 
|  | op_lqd   = 0x34, | 
|  | op_lqx   = 0x3c4, | 
|  | op_lqa   = 0x61, | 
|  | op_lqr   = 0x67, | 
|  | op_stqd  = 0x24, | 
|  | op_stqx  = 0x144, | 
|  | op_stqa  = 0x41, | 
|  | op_stqr  = 0x47, | 
|  |  | 
|  | op_il    = 0x081, | 
|  | op_ila   = 0x21, | 
|  | op_a     = 0x0c0, | 
|  | op_ai    = 0x1c, | 
|  |  | 
|  | op_selb  = 0x8, | 
|  |  | 
|  | op_br    = 0x64, | 
|  | op_bra   = 0x60, | 
|  | op_brsl  = 0x66, | 
|  | op_brasl = 0x62, | 
|  | op_brnz  = 0x42, | 
|  | op_brz   = 0x40, | 
|  | op_brhnz = 0x46, | 
|  | op_brhz  = 0x44, | 
|  | op_bi    = 0x1a8, | 
|  | op_bisl  = 0x1a9, | 
|  | op_biz   = 0x128, | 
|  | op_binz  = 0x129, | 
|  | op_bihz  = 0x12a, | 
|  | op_bihnz = 0x12b, | 
|  | }; | 
|  |  | 
|  | static int | 
|  | is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb) | 
|  | { | 
|  | if ((insn >> 21) == op) | 
|  | { | 
|  | *rt = insn & 127; | 
|  | *ra = (insn >> 7) & 127; | 
|  | *rb = (insn >> 14) & 127; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc) | 
|  | { | 
|  | if ((insn >> 28) == op) | 
|  | { | 
|  | *rt = (insn >> 21) & 127; | 
|  | *ra = (insn >> 7) & 127; | 
|  | *rb = (insn >> 14) & 127; | 
|  | *rc = insn & 127; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7) | 
|  | { | 
|  | if ((insn >> 21) == op) | 
|  | { | 
|  | *rt = insn & 127; | 
|  | *ra = (insn >> 7) & 127; | 
|  | *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10) | 
|  | { | 
|  | if ((insn >> 24) == op) | 
|  | { | 
|  | *rt = insn & 127; | 
|  | *ra = (insn >> 7) & 127; | 
|  | *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_ri16 (unsigned int insn, int op, int *rt, int *i16) | 
|  | { | 
|  | if ((insn >> 23) == op) | 
|  | { | 
|  | *rt = insn & 127; | 
|  | *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_ri18 (unsigned int insn, int op, int *rt, int *i18) | 
|  | { | 
|  | if ((insn >> 25) == op) | 
|  | { | 
|  | *rt = insn & 127; | 
|  | *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_branch (unsigned int insn, int *offset, int *reg) | 
|  | { | 
|  | int rt, i7, i16; | 
|  |  | 
|  | if (is_ri16 (insn, op_br, &rt, &i16) | 
|  | || is_ri16 (insn, op_brsl, &rt, &i16) | 
|  | || is_ri16 (insn, op_brnz, &rt, &i16) | 
|  | || is_ri16 (insn, op_brz, &rt, &i16) | 
|  | || is_ri16 (insn, op_brhnz, &rt, &i16) | 
|  | || is_ri16 (insn, op_brhz, &rt, &i16)) | 
|  | { | 
|  | *reg = SPU_PC_REGNUM; | 
|  | *offset = i16 << 2; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_ri16 (insn, op_bra, &rt, &i16) | 
|  | || is_ri16 (insn, op_brasl, &rt, &i16)) | 
|  | { | 
|  | *reg = -1; | 
|  | *offset = i16 << 2; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_ri7 (insn, op_bi, &rt, reg, &i7) | 
|  | || is_ri7 (insn, op_bisl, &rt, reg, &i7) | 
|  | || is_ri7 (insn, op_biz, &rt, reg, &i7) | 
|  | || is_ri7 (insn, op_binz, &rt, reg, &i7) | 
|  | || is_ri7 (insn, op_bihz, &rt, reg, &i7) | 
|  | || is_ri7 (insn, op_bihnz, &rt, reg, &i7)) | 
|  | { | 
|  | *offset = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Prolog parsing.  */ | 
|  |  | 
|  | struct spu_prologue_data | 
|  | { | 
|  | /* Stack frame size.  -1 if analysis was unsuccessful.  */ | 
|  | int size; | 
|  |  | 
|  | /* How to find the CFA.  The CFA is equal to SP at function entry.  */ | 
|  | int cfa_reg; | 
|  | int cfa_offset; | 
|  |  | 
|  | /* Offset relative to CFA where a register is saved.  -1 if invalid.  */ | 
|  | int reg_offset[SPU_NUM_GPRS]; | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR start_pc, CORE_ADDR end_pc, | 
|  | struct spu_prologue_data *data) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int found_sp = 0; | 
|  | int found_fp = 0; | 
|  | int found_lr = 0; | 
|  | int found_bc = 0; | 
|  | int reg_immed[SPU_NUM_GPRS]; | 
|  | gdb_byte buf[16]; | 
|  | CORE_ADDR prolog_pc = start_pc; | 
|  | CORE_ADDR pc; | 
|  | int i; | 
|  |  | 
|  |  | 
|  | /* Initialize DATA to default values.  */ | 
|  | data->size = -1; | 
|  |  | 
|  | data->cfa_reg = SPU_RAW_SP_REGNUM; | 
|  | data->cfa_offset = 0; | 
|  |  | 
|  | for (i = 0; i < SPU_NUM_GPRS; i++) | 
|  | data->reg_offset[i] = -1; | 
|  |  | 
|  | /* Set up REG_IMMED array.  This is non-zero for a register if we know its | 
|  | preferred slot currently holds this immediate value.  */ | 
|  | for (i = 0; i < SPU_NUM_GPRS; i++) | 
|  | reg_immed[i] = 0; | 
|  |  | 
|  | /* Scan instructions until the first branch. | 
|  |  | 
|  | The following instructions are important prolog components: | 
|  |  | 
|  | - The first instruction to set up the stack pointer. | 
|  | - The first instruction to set up the frame pointer. | 
|  | - The first instruction to save the link register. | 
|  | - The first instruction to save the backchain. | 
|  |  | 
|  | We return the instruction after the latest of these four, | 
|  | or the incoming PC if none is found.  The first instruction | 
|  | to set up the stack pointer also defines the frame size. | 
|  |  | 
|  | Note that instructions saving incoming arguments to their stack | 
|  | slots are not counted as important, because they are hard to | 
|  | identify with certainty.  This should not matter much, because | 
|  | arguments are relevant only in code compiled with debug data, | 
|  | and in such code the GDB core will advance until the first source | 
|  | line anyway, using SAL data. | 
|  |  | 
|  | For purposes of stack unwinding, we analyze the following types | 
|  | of instructions in addition: | 
|  |  | 
|  | - Any instruction adding to the current frame pointer. | 
|  | - Any instruction loading an immediate constant into a register. | 
|  | - Any instruction storing a register onto the stack. | 
|  |  | 
|  | These are used to compute the CFA and REG_OFFSET output.  */ | 
|  |  | 
|  | for (pc = start_pc; pc < end_pc; pc += 4) | 
|  | { | 
|  | unsigned int insn; | 
|  | int rt, ra, rb, rc, immed; | 
|  |  | 
|  | if (target_read_memory (pc, buf, 4)) | 
|  | break; | 
|  | insn = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | /* AI is the typical instruction to set up a stack frame. | 
|  | It is also used to initialize the frame pointer.  */ | 
|  | if (is_ri10 (insn, op_ai, &rt, &ra, &immed)) | 
|  | { | 
|  | if (rt == data->cfa_reg && ra == data->cfa_reg) | 
|  | data->cfa_offset -= immed; | 
|  |  | 
|  | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | 
|  | && !found_sp) | 
|  | { | 
|  | found_sp = 1; | 
|  | prolog_pc = pc + 4; | 
|  |  | 
|  | data->size = -immed; | 
|  | } | 
|  | else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM | 
|  | && !found_fp) | 
|  | { | 
|  | found_fp = 1; | 
|  | prolog_pc = pc + 4; | 
|  |  | 
|  | data->cfa_reg = SPU_FP_REGNUM; | 
|  | data->cfa_offset -= immed; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A is used to set up stack frames of size >= 512 bytes. | 
|  | If we have tracked the contents of the addend register, | 
|  | we can handle this as well.  */ | 
|  | else if (is_rr (insn, op_a, &rt, &ra, &rb)) | 
|  | { | 
|  | if (rt == data->cfa_reg && ra == data->cfa_reg) | 
|  | { | 
|  | if (reg_immed[rb] != 0) | 
|  | data->cfa_offset -= reg_immed[rb]; | 
|  | else | 
|  | data->cfa_reg = -1;  /* We don't know the CFA any more.  */ | 
|  | } | 
|  |  | 
|  | if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM | 
|  | && !found_sp) | 
|  | { | 
|  | found_sp = 1; | 
|  | prolog_pc = pc + 4; | 
|  |  | 
|  | if (reg_immed[rb] != 0) | 
|  | data->size = -reg_immed[rb]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We need to track IL and ILA used to load immediate constants | 
|  | in case they are later used as input to an A instruction.  */ | 
|  | else if (is_ri16 (insn, op_il, &rt, &immed)) | 
|  | { | 
|  | reg_immed[rt] = immed; | 
|  |  | 
|  | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | 
|  | found_sp = 1; | 
|  | } | 
|  |  | 
|  | else if (is_ri18 (insn, op_ila, &rt, &immed)) | 
|  | { | 
|  | reg_immed[rt] = immed & 0x3ffff; | 
|  |  | 
|  | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | 
|  | found_sp = 1; | 
|  | } | 
|  |  | 
|  | /* STQD is used to save registers to the stack.  */ | 
|  | else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed)) | 
|  | { | 
|  | if (ra == data->cfa_reg) | 
|  | data->reg_offset[rt] = data->cfa_offset - (immed << 4); | 
|  |  | 
|  | if (ra == data->cfa_reg && rt == SPU_LR_REGNUM | 
|  | && !found_lr) | 
|  | { | 
|  | found_lr = 1; | 
|  | prolog_pc = pc + 4; | 
|  | } | 
|  |  | 
|  | if (ra == SPU_RAW_SP_REGNUM | 
|  | && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM) | 
|  | && !found_bc) | 
|  | { | 
|  | found_bc = 1; | 
|  | prolog_pc = pc + 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* _start uses SELB to set up the stack pointer.  */ | 
|  | else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc)) | 
|  | { | 
|  | if (rt == SPU_RAW_SP_REGNUM && !found_sp) | 
|  | found_sp = 1; | 
|  | } | 
|  |  | 
|  | /* We terminate if we find a branch.  */ | 
|  | else if (is_branch (insn, &immed, &ra)) | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If we successfully parsed until here, and didn't find any instruction | 
|  | modifying SP, we assume we have a frameless function.  */ | 
|  | if (!found_sp) | 
|  | data->size = 0; | 
|  |  | 
|  | /* Return cooked instead of raw SP.  */ | 
|  | if (data->cfa_reg == SPU_RAW_SP_REGNUM) | 
|  | data->cfa_reg = SPU_SP_REGNUM; | 
|  |  | 
|  | return prolog_pc; | 
|  | } | 
|  |  | 
|  | /* Return the first instruction after the prologue starting at PC.  */ | 
|  | static CORE_ADDR | 
|  | spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | struct spu_prologue_data data; | 
|  | return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); | 
|  | } | 
|  |  | 
|  | /* Return the frame pointer in use at address PC.  */ | 
|  | static void | 
|  | spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc, | 
|  | int *reg, LONGEST *offset) | 
|  | { | 
|  | struct spu_prologue_data data; | 
|  | spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); | 
|  |  | 
|  | if (data.size != -1 && data.cfa_reg != -1) | 
|  | { | 
|  | /* The 'frame pointer' address is CFA minus frame size.  */ | 
|  | *reg = data.cfa_reg; | 
|  | *offset = data.cfa_offset - data.size; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* ??? We don't really know ...  */ | 
|  | *reg = SPU_SP_REGNUM; | 
|  | *offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return true if we are in the function's epilogue, i.e. after the | 
|  | instruction that destroyed the function's stack frame. | 
|  |  | 
|  | 1) scan forward from the point of execution: | 
|  | a) If you find an instruction that modifies the stack pointer | 
|  | or transfers control (except a return), execution is not in | 
|  | an epilogue, return. | 
|  | b) Stop scanning if you find a return instruction or reach the | 
|  | end of the function or reach the hard limit for the size of | 
|  | an epilogue. | 
|  | 2) scan backward from the point of execution: | 
|  | a) If you find an instruction that modifies the stack pointer, | 
|  | execution *is* in an epilogue, return. | 
|  | b) Stop scanning if you reach an instruction that transfers | 
|  | control or the beginning of the function or reach the hard | 
|  | limit for the size of an epilogue.  */ | 
|  |  | 
|  | static int | 
|  | spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | 
|  | bfd_byte buf[4]; | 
|  | unsigned int insn; | 
|  | int rt, ra, rb, immed; | 
|  |  | 
|  | /* Find the search limits based on function boundaries and hard limit. | 
|  | We assume the epilogue can be up to 64 instructions long.  */ | 
|  |  | 
|  | const int spu_max_epilogue_size = 64 * 4; | 
|  |  | 
|  | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | 
|  | return 0; | 
|  |  | 
|  | if (pc - func_start < spu_max_epilogue_size) | 
|  | epilogue_start = func_start; | 
|  | else | 
|  | epilogue_start = pc - spu_max_epilogue_size; | 
|  |  | 
|  | if (func_end - pc < spu_max_epilogue_size) | 
|  | epilogue_end = func_end; | 
|  | else | 
|  | epilogue_end = pc + spu_max_epilogue_size; | 
|  |  | 
|  | /* Scan forward until next 'bi $0'.  */ | 
|  |  | 
|  | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4) | 
|  | { | 
|  | if (target_read_memory (scan_pc, buf, 4)) | 
|  | return 0; | 
|  | insn = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | if (is_branch (insn, &immed, &ra)) | 
|  | { | 
|  | if (immed == 0 && ra == SPU_LR_REGNUM) | 
|  | break; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | 
|  | || is_rr (insn, op_a, &rt, &ra, &rb) | 
|  | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | 
|  | { | 
|  | if (rt == SPU_RAW_SP_REGNUM) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (scan_pc >= epilogue_end) | 
|  | return 0; | 
|  |  | 
|  | /* Scan backward until adjustment to stack pointer (R1).  */ | 
|  |  | 
|  | for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4) | 
|  | { | 
|  | if (target_read_memory (scan_pc, buf, 4)) | 
|  | return 0; | 
|  | insn = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | if (is_branch (insn, &immed, &ra)) | 
|  | return 0; | 
|  |  | 
|  | if (is_ri10 (insn, op_ai, &rt, &ra, &immed) | 
|  | || is_rr (insn, op_a, &rt, &ra, &rb) | 
|  | || is_ri10 (insn, op_lqd, &rt, &ra, &immed)) | 
|  | { | 
|  | if (rt == SPU_RAW_SP_REGNUM) | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Normal stack frames.  */ | 
|  |  | 
|  | struct spu_unwind_cache | 
|  | { | 
|  | CORE_ADDR func; | 
|  | CORE_ADDR frame_base; | 
|  | CORE_ADDR local_base; | 
|  |  | 
|  | struct trad_frame_saved_reg *saved_regs; | 
|  | }; | 
|  |  | 
|  | static struct spu_unwind_cache * | 
|  | spu_frame_unwind_cache (struct frame_info *this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | struct spu_unwind_cache *info; | 
|  | struct spu_prologue_data data; | 
|  | CORE_ADDR id = tdep->id; | 
|  | gdb_byte buf[16]; | 
|  |  | 
|  | if (*this_prologue_cache) | 
|  | return *this_prologue_cache; | 
|  |  | 
|  | info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache); | 
|  | *this_prologue_cache = info; | 
|  | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
|  | info->frame_base = 0; | 
|  | info->local_base = 0; | 
|  |  | 
|  | /* Find the start of the current function, and analyze its prologue.  */ | 
|  | info->func = get_frame_func (this_frame); | 
|  | if (info->func == 0) | 
|  | { | 
|  | /* Fall back to using the current PC as frame ID.  */ | 
|  | info->func = get_frame_pc (this_frame); | 
|  | data.size = -1; | 
|  | } | 
|  | else | 
|  | spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame), | 
|  | &data); | 
|  |  | 
|  | /* If successful, use prologue analysis data.  */ | 
|  | if (data.size != -1 && data.cfa_reg != -1) | 
|  | { | 
|  | CORE_ADDR cfa; | 
|  | int i; | 
|  |  | 
|  | /* Determine CFA via unwound CFA_REG plus CFA_OFFSET.  */ | 
|  | get_frame_register (this_frame, data.cfa_reg, buf); | 
|  | cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset; | 
|  | cfa = SPUADDR (id, cfa); | 
|  |  | 
|  | /* Call-saved register slots.  */ | 
|  | for (i = 0; i < SPU_NUM_GPRS; i++) | 
|  | if (i == SPU_LR_REGNUM | 
|  | || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM)) | 
|  | if (data.reg_offset[i] != -1) | 
|  | info->saved_regs[i].addr = cfa - data.reg_offset[i]; | 
|  |  | 
|  | /* Frame bases.  */ | 
|  | info->frame_base = cfa; | 
|  | info->local_base = cfa - data.size; | 
|  | } | 
|  |  | 
|  | /* Otherwise, fall back to reading the backchain link.  */ | 
|  | else | 
|  | { | 
|  | CORE_ADDR reg; | 
|  | LONGEST backchain; | 
|  | ULONGEST lslr; | 
|  | int status; | 
|  |  | 
|  | /* Get local store limit.  */ | 
|  | lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM); | 
|  | if (!lslr) | 
|  | lslr = (ULONGEST) -1; | 
|  |  | 
|  | /* Get the backchain.  */ | 
|  | reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM); | 
|  | status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order, | 
|  | &backchain); | 
|  |  | 
|  | /* A zero backchain terminates the frame chain.  Also, sanity | 
|  | check against the local store size limit.  */ | 
|  | if (status && backchain > 0 && backchain <= lslr) | 
|  | { | 
|  | /* Assume the link register is saved into its slot.  */ | 
|  | if (backchain + 16 <= lslr) | 
|  | info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, | 
|  | backchain + 16); | 
|  |  | 
|  | /* Frame bases.  */ | 
|  | info->frame_base = SPUADDR (id, backchain); | 
|  | info->local_base = SPUADDR (id, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we didn't find a frame, we cannot determine SP / return address.  */ | 
|  | if (info->frame_base == 0) | 
|  | return info; | 
|  |  | 
|  | /* The previous SP is equal to the CFA.  */ | 
|  | trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM, | 
|  | SPUADDR_ADDR (info->frame_base)); | 
|  |  | 
|  | /* Read full contents of the unwound link register in order to | 
|  | be able to determine the return address.  */ | 
|  | if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM)) | 
|  | target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16); | 
|  | else | 
|  | get_frame_register (this_frame, SPU_LR_REGNUM, buf); | 
|  |  | 
|  | /* Normally, the return address is contained in the slot 0 of the | 
|  | link register, and slots 1-3 are zero.  For an overlay return, | 
|  | slot 0 contains the address of the overlay manager return stub, | 
|  | slot 1 contains the partition number of the overlay section to | 
|  | be returned to, and slot 2 contains the return address within | 
|  | that section.  Return the latter address in that case.  */ | 
|  | if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0) | 
|  | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, | 
|  | extract_unsigned_integer (buf + 8, 4, byte_order)); | 
|  | else | 
|  | trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM, | 
|  | extract_unsigned_integer (buf, 4, byte_order)); | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_frame_this_id (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, struct frame_id *this_id) | 
|  | { | 
|  | struct spu_unwind_cache *info = | 
|  | spu_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  |  | 
|  | if (info->frame_base == 0) | 
|  | return; | 
|  |  | 
|  | *this_id = frame_id_build (info->frame_base, info->func); | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | spu_frame_prev_register (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct spu_unwind_cache *info | 
|  | = spu_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  |  | 
|  | /* Special-case the stack pointer.  */ | 
|  | if (regnum == SPU_RAW_SP_REGNUM) | 
|  | regnum = SPU_SP_REGNUM; | 
|  |  | 
|  | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind spu_frame_unwind = { | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | spu_frame_this_id, | 
|  | spu_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_frame_base_address (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | struct spu_unwind_cache *info | 
|  | = spu_frame_unwind_cache (this_frame, this_cache); | 
|  | return info->local_base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base spu_frame_base = { | 
|  | &spu_frame_unwind, | 
|  | spu_frame_base_address, | 
|  | spu_frame_base_address, | 
|  | spu_frame_base_address | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM); | 
|  | /* Mask off interrupt enable bit.  */ | 
|  | return SPUADDR (tdep->id, pc & -4); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM); | 
|  | return SPUADDR (tdep->id, sp); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_read_pc (struct regcache *regcache) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); | 
|  | ULONGEST pc; | 
|  | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc); | 
|  | /* Mask off interrupt enable bit.  */ | 
|  | return SPUADDR (tdep->id, pc & -4); | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_write_pc (struct regcache *regcache, CORE_ADDR pc) | 
|  | { | 
|  | /* Keep interrupt enabled state unchanged.  */ | 
|  | ULONGEST old_pc; | 
|  |  | 
|  | regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc); | 
|  | regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM, | 
|  | (SPUADDR_ADDR (pc) & -4) | (old_pc & 3)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Cell/B.E. cross-architecture unwinder support.  */ | 
|  |  | 
|  | struct spu2ppu_cache | 
|  | { | 
|  | struct frame_id frame_id; | 
|  | struct regcache *regcache; | 
|  | }; | 
|  |  | 
|  | static struct gdbarch * | 
|  | spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | struct spu2ppu_cache *cache = *this_cache; | 
|  | return get_regcache_arch (cache->regcache); | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu2ppu_this_id (struct frame_info *this_frame, | 
|  | void **this_cache, struct frame_id *this_id) | 
|  | { | 
|  | struct spu2ppu_cache *cache = *this_cache; | 
|  | *this_id = cache->frame_id; | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | spu2ppu_prev_register (struct frame_info *this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | struct spu2ppu_cache *cache = *this_cache; | 
|  | struct gdbarch *gdbarch = get_regcache_arch (cache->regcache); | 
|  | gdb_byte *buf; | 
|  |  | 
|  | buf = alloca (register_size (gdbarch, regnum)); | 
|  | regcache_cooked_read (cache->regcache, regnum, buf); | 
|  | return frame_unwind_got_bytes (this_frame, regnum, buf); | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu2ppu_sniffer (const struct frame_unwind *self, | 
|  | struct frame_info *this_frame, void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR base, func, backchain; | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu) | 
|  | return 0; | 
|  |  | 
|  | base = get_frame_sp (this_frame); | 
|  | func = get_frame_pc (this_frame); | 
|  | if (target_read_memory (base, buf, 4)) | 
|  | return 0; | 
|  | backchain = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | if (!backchain) | 
|  | { | 
|  | struct frame_info *fi; | 
|  |  | 
|  | struct spu2ppu_cache *cache | 
|  | = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache); | 
|  |  | 
|  | cache->frame_id = frame_id_build (base + 16, func); | 
|  |  | 
|  | for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi)) | 
|  | if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu) | 
|  | break; | 
|  |  | 
|  | if (fi) | 
|  | { | 
|  | cache->regcache = frame_save_as_regcache (fi); | 
|  | *this_prologue_cache = cache; | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | struct regcache *regcache; | 
|  | regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ()); | 
|  | cache->regcache = regcache_dup (regcache); | 
|  | *this_prologue_cache = cache; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache) | 
|  | { | 
|  | struct spu2ppu_cache *cache = this_cache; | 
|  | regcache_xfree (cache->regcache); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind spu2ppu_unwind = { | 
|  | ARCH_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | spu2ppu_this_id, | 
|  | spu2ppu_prev_register, | 
|  | NULL, | 
|  | spu2ppu_sniffer, | 
|  | spu2ppu_dealloc_cache, | 
|  | spu2ppu_prev_arch, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Function calling convention.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | return sp & ~15; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, | 
|  | struct value **args, int nargs, struct type *value_type, | 
|  | CORE_ADDR *real_pc, CORE_ADDR *bp_addr, | 
|  | struct regcache *regcache) | 
|  | { | 
|  | /* Allocate space sufficient for a breakpoint, keeping the stack aligned.  */ | 
|  | sp = (sp - 4) & ~15; | 
|  | /* Store the address of that breakpoint */ | 
|  | *bp_addr = sp; | 
|  | /* The call starts at the callee's entry point.  */ | 
|  | *real_pc = funaddr; | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_scalar_value_p (struct type *type) | 
|  | { | 
|  | switch (TYPE_CODE (type)) | 
|  | { | 
|  | case TYPE_CODE_INT: | 
|  | case TYPE_CODE_ENUM: | 
|  | case TYPE_CODE_RANGE: | 
|  | case TYPE_CODE_CHAR: | 
|  | case TYPE_CODE_BOOL: | 
|  | case TYPE_CODE_PTR: | 
|  | case TYPE_CODE_REF: | 
|  | return TYPE_LENGTH (type) <= 16; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_value_to_regcache (struct regcache *regcache, int regnum, | 
|  | struct type *type, const gdb_byte *in) | 
|  | { | 
|  | int len = TYPE_LENGTH (type); | 
|  |  | 
|  | if (spu_scalar_value_p (type)) | 
|  | { | 
|  | int preferred_slot = len < 4 ? 4 - len : 0; | 
|  | regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in); | 
|  | } | 
|  | else | 
|  | { | 
|  | while (len >= 16) | 
|  | { | 
|  | regcache_cooked_write (regcache, regnum++, in); | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  |  | 
|  | if (len > 0) | 
|  | regcache_cooked_write_part (regcache, regnum, 0, len, in); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | spu_regcache_to_value (struct regcache *regcache, int regnum, | 
|  | struct type *type, gdb_byte *out) | 
|  | { | 
|  | int len = TYPE_LENGTH (type); | 
|  |  | 
|  | if (spu_scalar_value_p (type)) | 
|  | { | 
|  | int preferred_slot = len < 4 ? 4 - len : 0; | 
|  | regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out); | 
|  | } | 
|  | else | 
|  | { | 
|  | while (len >= 16) | 
|  | { | 
|  | regcache_cooked_read (regcache, regnum++, out); | 
|  | out += 16; | 
|  | len -= 16; | 
|  | } | 
|  |  | 
|  | if (len > 0) | 
|  | regcache_cooked_read_part (regcache, regnum, 0, len, out); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | int struct_return, CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR sp_delta; | 
|  | int i; | 
|  | int regnum = SPU_ARG1_REGNUM; | 
|  | int stack_arg = -1; | 
|  | gdb_byte buf[16]; | 
|  |  | 
|  | /* Set the return address.  */ | 
|  | memset (buf, 0, sizeof buf); | 
|  | store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr)); | 
|  | regcache_cooked_write (regcache, SPU_LR_REGNUM, buf); | 
|  |  | 
|  | /* If STRUCT_RETURN is true, then the struct return address (in | 
|  | STRUCT_ADDR) will consume the first argument-passing register. | 
|  | Both adjust the register count and store that value.  */ | 
|  | if (struct_return) | 
|  | { | 
|  | memset (buf, 0, sizeof buf); | 
|  | store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr)); | 
|  | regcache_cooked_write (regcache, regnum++, buf); | 
|  | } | 
|  |  | 
|  | /* Fill in argument registers.  */ | 
|  | for (i = 0; i < nargs; i++) | 
|  | { | 
|  | struct value *arg = args[i]; | 
|  | struct type *type = check_typedef (value_type (arg)); | 
|  | const gdb_byte *contents = value_contents (arg); | 
|  | int n_regs = align_up (TYPE_LENGTH (type), 16) / 16; | 
|  |  | 
|  | /* If the argument doesn't wholly fit into registers, it and | 
|  | all subsequent arguments go to the stack.  */ | 
|  | if (regnum + n_regs - 1 > SPU_ARGN_REGNUM) | 
|  | { | 
|  | stack_arg = i; | 
|  | break; | 
|  | } | 
|  |  | 
|  | spu_value_to_regcache (regcache, regnum, type, contents); | 
|  | regnum += n_regs; | 
|  | } | 
|  |  | 
|  | /* Overflow arguments go to the stack.  */ | 
|  | if (stack_arg != -1) | 
|  | { | 
|  | CORE_ADDR ap; | 
|  |  | 
|  | /* Allocate all required stack size.  */ | 
|  | for (i = stack_arg; i < nargs; i++) | 
|  | { | 
|  | struct type *type = check_typedef (value_type (args[i])); | 
|  | sp -= align_up (TYPE_LENGTH (type), 16); | 
|  | } | 
|  |  | 
|  | /* Fill in stack arguments.  */ | 
|  | ap = sp; | 
|  | for (i = stack_arg; i < nargs; i++) | 
|  | { | 
|  | struct value *arg = args[i]; | 
|  | struct type *type = check_typedef (value_type (arg)); | 
|  | int len = TYPE_LENGTH (type); | 
|  | int preferred_slot; | 
|  |  | 
|  | if (spu_scalar_value_p (type)) | 
|  | preferred_slot = len < 4 ? 4 - len : 0; | 
|  | else | 
|  | preferred_slot = 0; | 
|  |  | 
|  | target_write_memory (ap + preferred_slot, value_contents (arg), len); | 
|  | ap += align_up (TYPE_LENGTH (type), 16); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate stack frame header.  */ | 
|  | sp -= 32; | 
|  |  | 
|  | /* Store stack back chain.  */ | 
|  | regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf); | 
|  | target_write_memory (sp, buf, 16); | 
|  |  | 
|  | /* Finally, update all slots of the SP register.  */ | 
|  | sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order); | 
|  | for (i = 0; i < 4; i++) | 
|  | { | 
|  | CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order); | 
|  | store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta); | 
|  | } | 
|  | regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static struct frame_id | 
|  | spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | 
|  | { | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM); | 
|  | CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM); | 
|  | return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4)); | 
|  | } | 
|  |  | 
|  | /* Function return value access.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | spu_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | gdb_byte *out, const gdb_byte *in) | 
|  | { | 
|  | struct type *func_type = function ? value_type (function) : NULL; | 
|  | enum return_value_convention rvc; | 
|  | int opencl_vector = 0; | 
|  |  | 
|  | if (func_type) | 
|  | { | 
|  | func_type = check_typedef (func_type); | 
|  |  | 
|  | if (TYPE_CODE (func_type) == TYPE_CODE_PTR) | 
|  | func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); | 
|  |  | 
|  | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC | 
|  | && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL | 
|  | && TYPE_CODE (type) == TYPE_CODE_ARRAY | 
|  | && TYPE_VECTOR (type)) | 
|  | opencl_vector = 1; | 
|  | } | 
|  |  | 
|  | if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16) | 
|  | rvc = RETURN_VALUE_REGISTER_CONVENTION; | 
|  | else | 
|  | rvc = RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (in) | 
|  | { | 
|  | switch (rvc) | 
|  | { | 
|  | case RETURN_VALUE_REGISTER_CONVENTION: | 
|  | if (opencl_vector && TYPE_LENGTH (type) == 2) | 
|  | regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in); | 
|  | else | 
|  | spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in); | 
|  | break; | 
|  |  | 
|  | case RETURN_VALUE_STRUCT_CONVENTION: | 
|  | error (_("Cannot set function return value.")); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (out) | 
|  | { | 
|  | switch (rvc) | 
|  | { | 
|  | case RETURN_VALUE_REGISTER_CONVENTION: | 
|  | if (opencl_vector && TYPE_LENGTH (type) == 2) | 
|  | regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out); | 
|  | else | 
|  | spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out); | 
|  | break; | 
|  |  | 
|  | case RETURN_VALUE_STRUCT_CONVENTION: | 
|  | error (_("Function return value unknown.")); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rvc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Breakpoints.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | spu_breakpoint_from_pc (struct gdbarch *gdbarch, | 
|  | CORE_ADDR * pcptr, int *lenptr) | 
|  | { | 
|  | static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff }; | 
|  |  | 
|  | *lenptr = sizeof breakpoint; | 
|  | return breakpoint; | 
|  | } | 
|  |  | 
|  | static int | 
|  | spu_memory_remove_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | /* We work around a problem in combined Cell/B.E. debugging here.  Consider | 
|  | that in a combined application, we have some breakpoints inserted in SPU | 
|  | code, and now the application forks (on the PPU side).  GDB common code | 
|  | will assume that the fork system call copied all breakpoints into the new | 
|  | process' address space, and that all those copies now need to be removed | 
|  | (see breakpoint.c:detach_breakpoints). | 
|  |  | 
|  | While this is certainly true for PPU side breakpoints, it is not true | 
|  | for SPU side breakpoints.  fork will clone the SPU context file | 
|  | descriptors, so that all the existing SPU contexts are in accessible | 
|  | in the new process.  However, the contents of the SPU contexts themselves | 
|  | are *not* cloned.  Therefore the effect of detach_breakpoints is to | 
|  | remove SPU breakpoints from the *original* SPU context's local store | 
|  | -- this is not the correct behaviour. | 
|  |  | 
|  | The workaround is to check whether the PID we are asked to remove this | 
|  | breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the | 
|  | PID of the current inferior (i.e. current_inferior ()->pid).  This is only | 
|  | true in the context of detach_breakpoints.  If so, we simply do nothing. | 
|  | [ Note that for the fork child process, it does not matter if breakpoints | 
|  | remain inserted, because those SPU contexts are not runnable anyway -- | 
|  | the Linux kernel allows only the original process to invoke spu_run.  */ | 
|  |  | 
|  | if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid) | 
|  | return 0; | 
|  |  | 
|  | return default_memory_remove_breakpoint (gdbarch, bp_tgt); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Software single-stepping support.  */ | 
|  |  | 
|  | static int | 
|  | spu_software_single_step (struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct address_space *aspace = get_frame_address_space (frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR pc, next_pc; | 
|  | unsigned int insn; | 
|  | int offset, reg; | 
|  | gdb_byte buf[4]; | 
|  | ULONGEST lslr; | 
|  |  | 
|  | pc = get_frame_pc (frame); | 
|  |  | 
|  | if (target_read_memory (pc, buf, 4)) | 
|  | return 1; | 
|  | insn = extract_unsigned_integer (buf, 4, byte_order); | 
|  |  | 
|  | /* Get local store limit.  */ | 
|  | lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM); | 
|  | if (!lslr) | 
|  | lslr = (ULONGEST) -1; | 
|  |  | 
|  | /* Next sequential instruction is at PC + 4, except if the current | 
|  | instruction is a PPE-assisted call, in which case it is at PC + 8. | 
|  | Wrap around LS limit to be on the safe side.  */ | 
|  | if ((insn & 0xffffff00) == 0x00002100) | 
|  | next_pc = (SPUADDR_ADDR (pc) + 8) & lslr; | 
|  | else | 
|  | next_pc = (SPUADDR_ADDR (pc) + 4) & lslr; | 
|  |  | 
|  | insert_single_step_breakpoint (gdbarch, | 
|  | aspace, SPUADDR (SPUADDR_SPU (pc), next_pc)); | 
|  |  | 
|  | if (is_branch (insn, &offset, ®)) | 
|  | { | 
|  | CORE_ADDR target = offset; | 
|  |  | 
|  | if (reg == SPU_PC_REGNUM) | 
|  | target += SPUADDR_ADDR (pc); | 
|  | else if (reg != -1) | 
|  | { | 
|  | int optim, unavail; | 
|  |  | 
|  | if (get_frame_register_bytes (frame, reg, 0, 4, buf, | 
|  | &optim, &unavail)) | 
|  | target += extract_unsigned_integer (buf, 4, byte_order) & -4; | 
|  | else | 
|  | { | 
|  | if (optim) | 
|  | throw_error (OPTIMIZED_OUT_ERROR, | 
|  | _("Could not determine address of " | 
|  | "single-step breakpoint.")); | 
|  | if (unavail) | 
|  | throw_error (NOT_AVAILABLE_ERROR, | 
|  | _("Could not determine address of " | 
|  | "single-step breakpoint.")); | 
|  | } | 
|  | } | 
|  |  | 
|  | target = target & lslr; | 
|  | if (target != next_pc) | 
|  | insert_single_step_breakpoint (gdbarch, aspace, | 
|  | SPUADDR (SPUADDR_SPU (pc), target)); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Longjmp support.  */ | 
|  |  | 
|  | static int | 
|  | spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | gdb_byte buf[4]; | 
|  | CORE_ADDR jb_addr; | 
|  | int optim, unavail; | 
|  |  | 
|  | /* Jump buffer is pointed to by the argument register $r3.  */ | 
|  | if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf, | 
|  | &optim, &unavail)) | 
|  | return 0; | 
|  |  | 
|  | jb_addr = extract_unsigned_integer (buf, 4, byte_order); | 
|  | if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4)) | 
|  | return 0; | 
|  |  | 
|  | *pc = extract_unsigned_integer (buf, 4, byte_order); | 
|  | *pc = SPUADDR (tdep->id, *pc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Disassembler.  */ | 
|  |  | 
|  | struct spu_dis_asm_data | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | int id; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info) | 
|  | { | 
|  | struct spu_dis_asm_data *data = info->application_data; | 
|  | print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream); | 
|  | } | 
|  |  | 
|  | static int | 
|  | gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info) | 
|  | { | 
|  | /* The opcodes disassembler does 18-bit address arithmetic.  Make | 
|  | sure the SPU ID encoded in the high bits is added back when we | 
|  | call print_address.  */ | 
|  | struct disassemble_info spu_info = *info; | 
|  | struct spu_dis_asm_data data; | 
|  | data.gdbarch = info->application_data; | 
|  | data.id = SPUADDR_SPU (memaddr); | 
|  |  | 
|  | spu_info.application_data = &data; | 
|  | spu_info.print_address_func = spu_dis_asm_print_address; | 
|  | return print_insn_spu (memaddr, &spu_info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Target overlays for the SPU overlay manager. | 
|  |  | 
|  | See the documentation of simple_overlay_update for how the | 
|  | interface is supposed to work. | 
|  |  | 
|  | Data structures used by the overlay manager: | 
|  |  | 
|  | struct ovly_table | 
|  | { | 
|  | u32 vma; | 
|  | u32 size; | 
|  | u32 pos; | 
|  | u32 buf; | 
|  | } _ovly_table[];   -- one entry per overlay section | 
|  |  | 
|  | struct ovly_buf_table | 
|  | { | 
|  | u32 mapped; | 
|  | } _ovly_buf_table[];  -- one entry per overlay buffer | 
|  |  | 
|  | _ovly_table should never change. | 
|  |  | 
|  | Both tables are aligned to a 16-byte boundary, the symbols | 
|  | _ovly_table and _ovly_buf_table are of type STT_OBJECT and their | 
|  | size set to the size of the respective array. buf in _ovly_table is | 
|  | an index into _ovly_buf_table. | 
|  |  | 
|  | mapped is an index into _ovly_table.  Both the mapped and buf indices start | 
|  | from one to reference the first entry in their respective tables.  */ | 
|  |  | 
|  | /* Using the per-objfile private data mechanism, we store for each | 
|  | objfile an array of "struct spu_overlay_table" structures, one | 
|  | for each obj_section of the objfile.  This structure holds two | 
|  | fields, MAPPED_PTR and MAPPED_VAL.  If MAPPED_PTR is zero, this | 
|  | is *not* an overlay section.  If it is non-zero, it represents | 
|  | a target address.  The overlay section is mapped iff the target | 
|  | integer at this location equals MAPPED_VAL.  */ | 
|  |  | 
|  | static const struct objfile_data *spu_overlay_data; | 
|  |  | 
|  | struct spu_overlay_table | 
|  | { | 
|  | CORE_ADDR mapped_ptr; | 
|  | CORE_ADDR mapped_val; | 
|  | }; | 
|  |  | 
|  | /* Retrieve the overlay table for OBJFILE.  If not already cached, read | 
|  | the _ovly_table data structure from the target and initialize the | 
|  | spu_overlay_table data structure from it.  */ | 
|  | static struct spu_overlay_table * | 
|  | spu_get_overlay_table (struct objfile *objfile) | 
|  | { | 
|  | enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)? | 
|  | BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; | 
|  | struct bound_minimal_symbol ovly_table_msym, ovly_buf_table_msym; | 
|  | CORE_ADDR ovly_table_base, ovly_buf_table_base; | 
|  | unsigned ovly_table_size, ovly_buf_table_size; | 
|  | struct spu_overlay_table *tbl; | 
|  | struct obj_section *osect; | 
|  | gdb_byte *ovly_table; | 
|  | int i; | 
|  |  | 
|  | tbl = objfile_data (objfile, spu_overlay_data); | 
|  | if (tbl) | 
|  | return tbl; | 
|  |  | 
|  | ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile); | 
|  | if (!ovly_table_msym.minsym) | 
|  | return NULL; | 
|  |  | 
|  | ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", | 
|  | NULL, objfile); | 
|  | if (!ovly_buf_table_msym.minsym) | 
|  | return NULL; | 
|  |  | 
|  | ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym); | 
|  | ovly_table_size = MSYMBOL_SIZE (ovly_table_msym.minsym); | 
|  |  | 
|  | ovly_buf_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_buf_table_msym); | 
|  | ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym.minsym); | 
|  |  | 
|  | ovly_table = xmalloc (ovly_table_size); | 
|  | read_memory (ovly_table_base, ovly_table, ovly_table_size); | 
|  |  | 
|  | tbl = OBSTACK_CALLOC (&objfile->objfile_obstack, | 
|  | objfile->sections_end - objfile->sections, | 
|  | struct spu_overlay_table); | 
|  |  | 
|  | for (i = 0; i < ovly_table_size / 16; i++) | 
|  | { | 
|  | CORE_ADDR vma  = extract_unsigned_integer (ovly_table + 16*i + 0, | 
|  | 4, byte_order); | 
|  | CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4, | 
|  | 4, byte_order); | 
|  | CORE_ADDR pos  = extract_unsigned_integer (ovly_table + 16*i + 8, | 
|  | 4, byte_order); | 
|  | CORE_ADDR buf  = extract_unsigned_integer (ovly_table + 16*i + 12, | 
|  | 4, byte_order); | 
|  |  | 
|  | if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size) | 
|  | continue; | 
|  |  | 
|  | ALL_OBJFILE_OSECTIONS (objfile, osect) | 
|  | if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section) | 
|  | && pos == osect->the_bfd_section->filepos) | 
|  | { | 
|  | int ndx = osect - objfile->sections; | 
|  | tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4; | 
|  | tbl[ndx].mapped_val = i + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | xfree (ovly_table); | 
|  | set_objfile_data (objfile, spu_overlay_data, tbl); | 
|  | return tbl; | 
|  | } | 
|  |  | 
|  | /* Read _ovly_buf_table entry from the target to dermine whether | 
|  | OSECT is currently mapped, and update the mapped state.  */ | 
|  | static void | 
|  | spu_overlay_update_osect (struct obj_section *osect) | 
|  | { | 
|  | enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)? | 
|  | BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; | 
|  | struct spu_overlay_table *ovly_table; | 
|  | CORE_ADDR id, val; | 
|  |  | 
|  | ovly_table = spu_get_overlay_table (osect->objfile); | 
|  | if (!ovly_table) | 
|  | return; | 
|  |  | 
|  | ovly_table += osect - osect->objfile->sections; | 
|  | if (ovly_table->mapped_ptr == 0) | 
|  | return; | 
|  |  | 
|  | id = SPUADDR_SPU (obj_section_addr (osect)); | 
|  | val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr), | 
|  | 4, byte_order); | 
|  | osect->ovly_mapped = (val == ovly_table->mapped_val); | 
|  | } | 
|  |  | 
|  | /* If OSECT is NULL, then update all sections' mapped state. | 
|  | If OSECT is non-NULL, then update only OSECT's mapped state.  */ | 
|  | static void | 
|  | spu_overlay_update (struct obj_section *osect) | 
|  | { | 
|  | /* Just one section.  */ | 
|  | if (osect) | 
|  | spu_overlay_update_osect (osect); | 
|  |  | 
|  | /* All sections.  */ | 
|  | else | 
|  | { | 
|  | struct objfile *objfile; | 
|  |  | 
|  | ALL_OBJSECTIONS (objfile, osect) | 
|  | if (section_is_overlay (osect)) | 
|  | spu_overlay_update_osect (osect); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Whenever a new objfile is loaded, read the target's _ovly_table. | 
|  | If there is one, go through all sections and make sure for non- | 
|  | overlay sections LMA equals VMA, while for overlay sections LMA | 
|  | is larger than SPU_OVERLAY_LMA.  */ | 
|  | static void | 
|  | spu_overlay_new_objfile (struct objfile *objfile) | 
|  | { | 
|  | struct spu_overlay_table *ovly_table; | 
|  | struct obj_section *osect; | 
|  |  | 
|  | /* If we've already touched this file, do nothing.  */ | 
|  | if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL) | 
|  | return; | 
|  |  | 
|  | /* Consider only SPU objfiles.  */ | 
|  | if (bfd_get_arch (objfile->obfd) != bfd_arch_spu) | 
|  | return; | 
|  |  | 
|  | /* Check if this objfile has overlays.  */ | 
|  | ovly_table = spu_get_overlay_table (objfile); | 
|  | if (!ovly_table) | 
|  | return; | 
|  |  | 
|  | /* Now go and fiddle with all the LMAs.  */ | 
|  | ALL_OBJFILE_OSECTIONS (objfile, osect) | 
|  | { | 
|  | bfd *obfd = objfile->obfd; | 
|  | asection *bsect = osect->the_bfd_section; | 
|  | int ndx = osect - objfile->sections; | 
|  |  | 
|  | if (ovly_table[ndx].mapped_ptr == 0) | 
|  | bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect); | 
|  | else | 
|  | bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Insert temporary breakpoint on "main" function of newly loaded | 
|  | SPE context OBJFILE.  */ | 
|  | static void | 
|  | spu_catch_start (struct objfile *objfile) | 
|  | { | 
|  | struct bound_minimal_symbol minsym; | 
|  | struct symtab *symtab; | 
|  | CORE_ADDR pc; | 
|  | char buf[32]; | 
|  |  | 
|  | /* Do this only if requested by "set spu stop-on-load on".  */ | 
|  | if (!spu_stop_on_load_p) | 
|  | return; | 
|  |  | 
|  | /* Consider only SPU objfiles.  */ | 
|  | if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu) | 
|  | return; | 
|  |  | 
|  | /* The main objfile is handled differently.  */ | 
|  | if (objfile == symfile_objfile) | 
|  | return; | 
|  |  | 
|  | /* There can be multiple symbols named "main".  Search for the | 
|  | "main" in *this* objfile.  */ | 
|  | minsym = lookup_minimal_symbol ("main", NULL, objfile); | 
|  | if (!minsym.minsym) | 
|  | return; | 
|  |  | 
|  | /* If we have debugging information, try to use it -- this | 
|  | will allow us to properly skip the prologue.  */ | 
|  | pc = BMSYMBOL_VALUE_ADDRESS (minsym); | 
|  | symtab = find_pc_sect_symtab (pc, MSYMBOL_OBJ_SECTION (minsym.objfile, | 
|  | minsym.minsym)); | 
|  | if (symtab != NULL) | 
|  | { | 
|  | struct blockvector *bv = BLOCKVECTOR (symtab); | 
|  | struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | 
|  | struct symbol *sym; | 
|  | struct symtab_and_line sal; | 
|  |  | 
|  | sym = lookup_block_symbol (block, "main", VAR_DOMAIN); | 
|  | if (sym) | 
|  | { | 
|  | fixup_symbol_section (sym, objfile); | 
|  | sal = find_function_start_sal (sym, 1); | 
|  | pc = sal.pc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Use a numerical address for the set_breakpoint command to avoid having | 
|  | the breakpoint re-set incorrectly.  */ | 
|  | xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc)); | 
|  | create_breakpoint (get_objfile_arch (objfile), buf /* arg */, | 
|  | NULL /* cond_string */, -1 /* thread */, | 
|  | NULL /* extra_string */, | 
|  | 0 /* parse_condition_and_thread */, 1 /* tempflag */, | 
|  | bp_breakpoint /* type_wanted */, | 
|  | 0 /* ignore_count */, | 
|  | AUTO_BOOLEAN_FALSE /* pending_break_support */, | 
|  | &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */, | 
|  | 1 /* enabled */, 0 /* internal  */, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Look up OBJFILE loaded into FRAME's SPU context.  */ | 
|  | static struct objfile * | 
|  | spu_objfile_from_frame (struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | 
|  | struct objfile *obj; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) | 
|  | return NULL; | 
|  |  | 
|  | ALL_OBJFILES (obj) | 
|  | { | 
|  | if (obj->sections != obj->sections_end | 
|  | && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id) | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Flush cache for ea pointer access if available.  */ | 
|  | static void | 
|  | flush_ea_cache (void) | 
|  | { | 
|  | struct bound_minimal_symbol msymbol; | 
|  | struct objfile *obj; | 
|  |  | 
|  | if (!has_stack_frames ()) | 
|  | return; | 
|  |  | 
|  | obj = spu_objfile_from_frame (get_current_frame ()); | 
|  | if (obj == NULL) | 
|  | return; | 
|  |  | 
|  | /* Lookup inferior function __cache_flush.  */ | 
|  | msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj); | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | struct type *type; | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | type = objfile_type (obj)->builtin_void; | 
|  | type = lookup_function_type (type); | 
|  | type = lookup_pointer_type (type); | 
|  | addr = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
|  |  | 
|  | call_function_by_hand (value_from_pointer (type, addr), 0, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This handler is called when the inferior has stopped.  If it is stopped in | 
|  | SPU architecture then flush the ea cache if used.  */ | 
|  | static void | 
|  | spu_attach_normal_stop (struct bpstats *bs, int print_frame) | 
|  | { | 
|  | if (!spu_auto_flush_cache_p) | 
|  | return; | 
|  |  | 
|  | /* Temporarily reset spu_auto_flush_cache_p to avoid recursively | 
|  | re-entering this function when __cache_flush stops.  */ | 
|  | spu_auto_flush_cache_p = 0; | 
|  | flush_ea_cache (); | 
|  | spu_auto_flush_cache_p = 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* "info spu" commands.  */ | 
|  |  | 
|  | static void | 
|  | info_spu_event_command (char *args, int from_tty) | 
|  | { | 
|  | struct frame_info *frame = get_selected_frame (NULL); | 
|  | ULONGEST event_status = 0; | 
|  | ULONGEST event_mask = 0; | 
|  | struct cleanup *chain; | 
|  | gdb_byte buf[100]; | 
|  | char annex[32]; | 
|  | LONGEST len; | 
|  | int id; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu) | 
|  | error (_("\"info spu\" is only supported on the SPU architecture.")); | 
|  |  | 
|  | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/event_status", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, (sizeof (buf) - 1)); | 
|  | if (len <= 0) | 
|  | error (_("Could not read event_status.")); | 
|  | buf[len] = '\0'; | 
|  | event_status = strtoulst ((char *) buf, NULL, 16); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/event_mask", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, (sizeof (buf) - 1)); | 
|  | if (len <= 0) | 
|  | error (_("Could not read event_mask.")); | 
|  | buf[len] = '\0'; | 
|  | event_mask = strtoulst ((char *) buf, NULL, 16); | 
|  |  | 
|  | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent"); | 
|  |  | 
|  | if (ui_out_is_mi_like_p (current_uiout)) | 
|  | { | 
|  | ui_out_field_fmt (current_uiout, "event_status", | 
|  | "0x%s", phex_nz (event_status, 4)); | 
|  | ui_out_field_fmt (current_uiout, "event_mask", | 
|  | "0x%s", phex_nz (event_mask, 4)); | 
|  | } | 
|  | else | 
|  | { | 
|  | printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4)); | 
|  | printf_filtered (_("Event Mask   0x%s\n"), phex (event_mask, 4)); | 
|  | } | 
|  |  | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_signal_command (char *args, int from_tty) | 
|  | { | 
|  | struct frame_info *frame = get_selected_frame (NULL); | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST signal1 = 0; | 
|  | ULONGEST signal1_type = 0; | 
|  | int signal1_pending = 0; | 
|  | ULONGEST signal2 = 0; | 
|  | ULONGEST signal2_type = 0; | 
|  | int signal2_pending = 0; | 
|  | struct cleanup *chain; | 
|  | char annex[32]; | 
|  | gdb_byte buf[100]; | 
|  | LONGEST len; | 
|  | int id; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) | 
|  | error (_("\"info spu\" is only supported on the SPU architecture.")); | 
|  |  | 
|  | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/signal1", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | 
|  | if (len < 0) | 
|  | error (_("Could not read signal1.")); | 
|  | else if (len == 4) | 
|  | { | 
|  | signal1 = extract_unsigned_integer (buf, 4, byte_order); | 
|  | signal1_pending = 1; | 
|  | } | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/signal1_type", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, (sizeof (buf) - 1)); | 
|  | if (len <= 0) | 
|  | error (_("Could not read signal1_type.")); | 
|  | buf[len] = '\0'; | 
|  | signal1_type = strtoulst ((char *) buf, NULL, 16); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/signal2", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, buf, 0, 4); | 
|  | if (len < 0) | 
|  | error (_("Could not read signal2.")); | 
|  | else if (len == 4) | 
|  | { | 
|  | signal2 = extract_unsigned_integer (buf, 4, byte_order); | 
|  | signal2_pending = 1; | 
|  | } | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/signal2_type", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, (sizeof (buf) - 1)); | 
|  | if (len <= 0) | 
|  | error (_("Could not read signal2_type.")); | 
|  | buf[len] = '\0'; | 
|  | signal2_type = strtoulst ((char *) buf, NULL, 16); | 
|  |  | 
|  | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal"); | 
|  |  | 
|  | if (ui_out_is_mi_like_p (current_uiout)) | 
|  | { | 
|  | ui_out_field_int (current_uiout, "signal1_pending", signal1_pending); | 
|  | ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4)); | 
|  | ui_out_field_int (current_uiout, "signal1_type", signal1_type); | 
|  | ui_out_field_int (current_uiout, "signal2_pending", signal2_pending); | 
|  | ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4)); | 
|  | ui_out_field_int (current_uiout, "signal2_type", signal2_type); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (signal1_pending) | 
|  | printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4)); | 
|  | else | 
|  | printf_filtered (_("Signal 1 not pending ")); | 
|  |  | 
|  | if (signal1_type) | 
|  | printf_filtered (_("(Type Or)\n")); | 
|  | else | 
|  | printf_filtered (_("(Type Overwrite)\n")); | 
|  |  | 
|  | if (signal2_pending) | 
|  | printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4)); | 
|  | else | 
|  | printf_filtered (_("Signal 2 not pending ")); | 
|  |  | 
|  | if (signal2_type) | 
|  | printf_filtered (_("(Type Or)\n")); | 
|  | else | 
|  | printf_filtered (_("(Type Overwrite)\n")); | 
|  | } | 
|  |  | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order, | 
|  | const char *field, const char *msg) | 
|  | { | 
|  | struct cleanup *chain; | 
|  | int i; | 
|  |  | 
|  | if (nr <= 0) | 
|  | return; | 
|  |  | 
|  | chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox"); | 
|  |  | 
|  | ui_out_table_header (current_uiout, 32, ui_left, field, msg); | 
|  | ui_out_table_body (current_uiout); | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | { | 
|  | struct cleanup *val_chain; | 
|  | ULONGEST val; | 
|  | val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox"); | 
|  | val = extract_unsigned_integer (buf + 4*i, 4, byte_order); | 
|  | ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4)); | 
|  | do_cleanups (val_chain); | 
|  |  | 
|  | if (!ui_out_is_mi_like_p (current_uiout)) | 
|  | printf_filtered ("\n"); | 
|  | } | 
|  |  | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_mailbox_command (char *args, int from_tty) | 
|  | { | 
|  | struct frame_info *frame = get_selected_frame (NULL); | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | struct cleanup *chain; | 
|  | char annex[32]; | 
|  | gdb_byte buf[1024]; | 
|  | LONGEST len; | 
|  | int id; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) | 
|  | error (_("\"info spu\" is only supported on the SPU architecture.")); | 
|  |  | 
|  | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | 
|  |  | 
|  | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox"); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/mbox_info", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, sizeof buf); | 
|  | if (len < 0) | 
|  | error (_("Could not read mbox_info.")); | 
|  |  | 
|  | info_spu_mailbox_list (buf, len / 4, byte_order, | 
|  | "mbox", "SPU Outbound Mailbox"); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/ibox_info", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, sizeof buf); | 
|  | if (len < 0) | 
|  | error (_("Could not read ibox_info.")); | 
|  |  | 
|  | info_spu_mailbox_list (buf, len / 4, byte_order, | 
|  | "ibox", "SPU Outbound Interrupt Mailbox"); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/wbox_info", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, sizeof buf); | 
|  | if (len < 0) | 
|  | error (_("Could not read wbox_info.")); | 
|  |  | 
|  | info_spu_mailbox_list (buf, len / 4, byte_order, | 
|  | "wbox", "SPU Inbound Mailbox"); | 
|  |  | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static ULONGEST | 
|  | spu_mfc_get_bitfield (ULONGEST word, int first, int last) | 
|  | { | 
|  | ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1)); | 
|  | return (word >> (63 - last)) & mask; | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order) | 
|  | { | 
|  | static char *spu_mfc_opcode[256] = | 
|  | { | 
|  | /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL, | 
|  | "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL, | 
|  | /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL, | 
|  | "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL, | 
|  | /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf", | 
|  | /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL, | 
|  | "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL, | 
|  | /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
|  | }; | 
|  |  | 
|  | int *seq = alloca (nr * sizeof (int)); | 
|  | int done = 0; | 
|  | struct cleanup *chain; | 
|  | int i, j; | 
|  |  | 
|  |  | 
|  | /* Determine sequence in which to display (valid) entries.  */ | 
|  | for (i = 0; i < nr; i++) | 
|  | { | 
|  | /* Search for the first valid entry all of whose | 
|  | dependencies are met.  */ | 
|  | for (j = 0; j < nr; j++) | 
|  | { | 
|  | ULONGEST mfc_cq_dw3; | 
|  | ULONGEST dependencies; | 
|  |  | 
|  | if (done & (1 << (nr - 1 - j))) | 
|  | continue; | 
|  |  | 
|  | mfc_cq_dw3 | 
|  | = extract_unsigned_integer (buf + 32*j + 24,8, byte_order); | 
|  | if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16)) | 
|  | continue; | 
|  |  | 
|  | dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1); | 
|  | if ((dependencies & done) != dependencies) | 
|  | continue; | 
|  |  | 
|  | seq[i] = j; | 
|  | done |= 1 << (nr - 1 - j); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (j == nr) | 
|  | break; | 
|  | } | 
|  |  | 
|  | nr = i; | 
|  |  | 
|  |  | 
|  | chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr, | 
|  | "dma_cmd"); | 
|  |  | 
|  | ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode"); | 
|  | ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag"); | 
|  | ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId"); | 
|  | ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId"); | 
|  | ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA"); | 
|  | ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA"); | 
|  | ui_out_table_header (current_uiout, 7, ui_left, "size", "Size"); | 
|  | ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr"); | 
|  | ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize"); | 
|  | ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E"); | 
|  |  | 
|  | ui_out_table_body (current_uiout); | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | { | 
|  | struct cleanup *cmd_chain; | 
|  | ULONGEST mfc_cq_dw0; | 
|  | ULONGEST mfc_cq_dw1; | 
|  | ULONGEST mfc_cq_dw2; | 
|  | int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id; | 
|  | int list_lsa, list_size, mfc_lsa, mfc_size; | 
|  | ULONGEST mfc_ea; | 
|  | int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p; | 
|  |  | 
|  | /* Decode contents of MFC Command Queue Context Save/Restore Registers. | 
|  | See "Cell Broadband Engine Registers V1.3", section 3.3.2.1.  */ | 
|  |  | 
|  | mfc_cq_dw0 | 
|  | = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order); | 
|  | mfc_cq_dw1 | 
|  | = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order); | 
|  | mfc_cq_dw2 | 
|  | = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order); | 
|  |  | 
|  | list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14); | 
|  | list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26); | 
|  | mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34); | 
|  | mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39); | 
|  | list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40); | 
|  | rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43); | 
|  | tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46); | 
|  |  | 
|  | mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12 | 
|  | | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36); | 
|  |  | 
|  | mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13); | 
|  | mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24); | 
|  | noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37); | 
|  | qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38); | 
|  | ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39); | 
|  | cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40); | 
|  |  | 
|  | cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd"); | 
|  |  | 
|  | if (spu_mfc_opcode[mfc_cmd_opcode]) | 
|  | ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]); | 
|  | else | 
|  | ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode); | 
|  |  | 
|  | ui_out_field_int (current_uiout, "tag", mfc_cmd_tag); | 
|  | ui_out_field_int (current_uiout, "tid", tclass_id); | 
|  | ui_out_field_int (current_uiout, "rid", rclass_id); | 
|  |  | 
|  | if (ea_valid_p) | 
|  | ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8)); | 
|  | else | 
|  | ui_out_field_skip (current_uiout, "ea"); | 
|  |  | 
|  | ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4); | 
|  | if (qw_valid_p) | 
|  | ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4); | 
|  | else | 
|  | ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size); | 
|  |  | 
|  | if (list_valid_p) | 
|  | { | 
|  | ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3); | 
|  | ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3); | 
|  | } | 
|  | else | 
|  | { | 
|  | ui_out_field_skip (current_uiout, "lstaddr"); | 
|  | ui_out_field_skip (current_uiout, "lstsize"); | 
|  | } | 
|  |  | 
|  | if (cmd_error_p) | 
|  | ui_out_field_string (current_uiout, "error_p", "*"); | 
|  | else | 
|  | ui_out_field_skip (current_uiout, "error_p"); | 
|  |  | 
|  | do_cleanups (cmd_chain); | 
|  |  | 
|  | if (!ui_out_is_mi_like_p (current_uiout)) | 
|  | printf_filtered ("\n"); | 
|  | } | 
|  |  | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_dma_command (char *args, int from_tty) | 
|  | { | 
|  | struct frame_info *frame = get_selected_frame (NULL); | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST dma_info_type; | 
|  | ULONGEST dma_info_mask; | 
|  | ULONGEST dma_info_status; | 
|  | ULONGEST dma_info_stall_and_notify; | 
|  | ULONGEST dma_info_atomic_command_status; | 
|  | struct cleanup *chain; | 
|  | char annex[32]; | 
|  | gdb_byte buf[1024]; | 
|  | LONGEST len; | 
|  | int id; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu) | 
|  | error (_("\"info spu\" is only supported on the SPU architecture.")); | 
|  |  | 
|  | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/dma_info", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, 40 + 16 * 32); | 
|  | if (len <= 0) | 
|  | error (_("Could not read dma_info.")); | 
|  |  | 
|  | dma_info_type | 
|  | = extract_unsigned_integer (buf, 8, byte_order); | 
|  | dma_info_mask | 
|  | = extract_unsigned_integer (buf + 8, 8, byte_order); | 
|  | dma_info_status | 
|  | = extract_unsigned_integer (buf + 16, 8, byte_order); | 
|  | dma_info_stall_and_notify | 
|  | = extract_unsigned_integer (buf + 24, 8, byte_order); | 
|  | dma_info_atomic_command_status | 
|  | = extract_unsigned_integer (buf + 32, 8, byte_order); | 
|  |  | 
|  | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA"); | 
|  |  | 
|  | if (ui_out_is_mi_like_p (current_uiout)) | 
|  | { | 
|  | ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s", | 
|  | phex_nz (dma_info_type, 4)); | 
|  | ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s", | 
|  | phex_nz (dma_info_mask, 4)); | 
|  | ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s", | 
|  | phex_nz (dma_info_status, 4)); | 
|  | ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s", | 
|  | phex_nz (dma_info_stall_and_notify, 4)); | 
|  | ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s", | 
|  | phex_nz (dma_info_atomic_command_status, 4)); | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *query_msg = _("no query pending"); | 
|  |  | 
|  | if (dma_info_type & 4) | 
|  | switch (dma_info_type & 3) | 
|  | { | 
|  | case 1: query_msg = _("'any' query pending"); break; | 
|  | case 2: query_msg = _("'all' query pending"); break; | 
|  | default: query_msg = _("undefined query type"); break; | 
|  | } | 
|  |  | 
|  | printf_filtered (_("Tag-Group Status  0x%s\n"), | 
|  | phex (dma_info_status, 4)); | 
|  | printf_filtered (_("Tag-Group Mask    0x%s (%s)\n"), | 
|  | phex (dma_info_mask, 4), query_msg); | 
|  | printf_filtered (_("Stall-and-Notify  0x%s\n"), | 
|  | phex (dma_info_stall_and_notify, 4)); | 
|  | printf_filtered (_("Atomic Cmd Status 0x%s\n"), | 
|  | phex (dma_info_atomic_command_status, 4)); | 
|  | printf_filtered ("\n"); | 
|  | } | 
|  |  | 
|  | info_spu_dma_cmdlist (buf + 40, 16, byte_order); | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_proxydma_command (char *args, int from_tty) | 
|  | { | 
|  | struct frame_info *frame = get_selected_frame (NULL); | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST dma_info_type; | 
|  | ULONGEST dma_info_mask; | 
|  | ULONGEST dma_info_status; | 
|  | struct cleanup *chain; | 
|  | char annex[32]; | 
|  | gdb_byte buf[1024]; | 
|  | LONGEST len; | 
|  | int id; | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu) | 
|  | error (_("\"info spu\" is only supported on the SPU architecture.")); | 
|  |  | 
|  | id = get_frame_register_unsigned (frame, SPU_ID_REGNUM); | 
|  |  | 
|  | xsnprintf (annex, sizeof annex, "%d/proxydma_info", id); | 
|  | len = target_read (¤t_target, TARGET_OBJECT_SPU, annex, | 
|  | buf, 0, 24 + 8 * 32); | 
|  | if (len <= 0) | 
|  | error (_("Could not read proxydma_info.")); | 
|  |  | 
|  | dma_info_type = extract_unsigned_integer (buf, 8, byte_order); | 
|  | dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order); | 
|  | dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order); | 
|  |  | 
|  | chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, | 
|  | "SPUInfoProxyDMA"); | 
|  |  | 
|  | if (ui_out_is_mi_like_p (current_uiout)) | 
|  | { | 
|  | ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s", | 
|  | phex_nz (dma_info_type, 4)); | 
|  | ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s", | 
|  | phex_nz (dma_info_mask, 4)); | 
|  | ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s", | 
|  | phex_nz (dma_info_status, 4)); | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *query_msg; | 
|  |  | 
|  | switch (dma_info_type & 3) | 
|  | { | 
|  | case 0: query_msg = _("no query pending"); break; | 
|  | case 1: query_msg = _("'any' query pending"); break; | 
|  | case 2: query_msg = _("'all' query pending"); break; | 
|  | default: query_msg = _("undefined query type"); break; | 
|  | } | 
|  |  | 
|  | printf_filtered (_("Tag-Group Status  0x%s\n"), | 
|  | phex (dma_info_status, 4)); | 
|  | printf_filtered (_("Tag-Group Mask    0x%s (%s)\n"), | 
|  | phex (dma_info_mask, 4), query_msg); | 
|  | printf_filtered ("\n"); | 
|  | } | 
|  |  | 
|  | info_spu_dma_cmdlist (buf + 24, 8, byte_order); | 
|  | do_cleanups (chain); | 
|  | } | 
|  |  | 
|  | static void | 
|  | info_spu_command (char *args, int from_tty) | 
|  | { | 
|  | printf_unfiltered (_("\"info spu\" must be followed by " | 
|  | "the name of an SPU facility.\n")); | 
|  | help_list (infospucmdlist, "info spu ", -1, gdb_stdout); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Root of all "set spu "/"show spu " commands.  */ | 
|  |  | 
|  | static void | 
|  | show_spu_command (char *args, int from_tty) | 
|  | { | 
|  | help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_spu_command (char *args, int from_tty) | 
|  | { | 
|  | help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_spu_stop_on_load (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_spu_auto_flush_cache (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set up gdbarch struct.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct gdbarch_tdep *tdep; | 
|  | int id = -1; | 
|  |  | 
|  | /* Which spufs ID was requested as address space?  */ | 
|  | if (info.tdep_info) | 
|  | id = *(int *)info.tdep_info; | 
|  | /* For objfile architectures of SPU solibs, decode the ID from the name. | 
|  | This assumes the filename convention employed by solib-spu.c.  */ | 
|  | else if (info.abfd) | 
|  | { | 
|  | char *name = strrchr (info.abfd->filename, '@'); | 
|  | if (name) | 
|  | sscanf (name, "@0x%*x <%d>", &id); | 
|  | } | 
|  |  | 
|  | /* Find a candidate among extant architectures.  */ | 
|  | for (arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | arches != NULL; | 
|  | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | 
|  | { | 
|  | tdep = gdbarch_tdep (arches->gdbarch); | 
|  | if (tdep && tdep->id == id) | 
|  | return arches->gdbarch; | 
|  | } | 
|  |  | 
|  | /* None found, so create a new architecture.  */ | 
|  | tdep = XCNEW (struct gdbarch_tdep); | 
|  | tdep->id = id; | 
|  | gdbarch = gdbarch_alloc (&info, tdep); | 
|  |  | 
|  | /* Disassembler.  */ | 
|  | set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu); | 
|  |  | 
|  | /* Registers.  */ | 
|  | set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS); | 
|  | set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM); | 
|  | set_gdbarch_read_pc (gdbarch, spu_read_pc); | 
|  | set_gdbarch_write_pc (gdbarch, spu_write_pc); | 
|  | set_gdbarch_register_name (gdbarch, spu_register_name); | 
|  | set_gdbarch_register_type (gdbarch, spu_register_type); | 
|  | set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read); | 
|  | set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write); | 
|  | set_gdbarch_value_from_register (gdbarch, spu_value_from_register); | 
|  | set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, spu_dwarf_reg_to_regnum); | 
|  | set_gdbarch_ax_pseudo_register_collect | 
|  | (gdbarch, spu_ax_pseudo_register_collect); | 
|  | set_gdbarch_ax_pseudo_register_push_stack | 
|  | (gdbarch, spu_ax_pseudo_register_push_stack); | 
|  |  | 
|  | /* Data types.  */ | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 32); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_double_bit (gdbarch, 64); | 
|  | set_gdbarch_long_double_bit (gdbarch, 64); | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | 
|  |  | 
|  | /* Address handling.  */ | 
|  | set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer); | 
|  | set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address); | 
|  | set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address); | 
|  | set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags); | 
|  | set_gdbarch_address_class_type_flags_to_name | 
|  | (gdbarch, spu_address_class_type_flags_to_name); | 
|  | set_gdbarch_address_class_name_to_type_flags | 
|  | (gdbarch, spu_address_class_name_to_type_flags); | 
|  |  | 
|  |  | 
|  | /* Inferior function calls.  */ | 
|  | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | 
|  | set_gdbarch_frame_align (gdbarch, spu_frame_align); | 
|  | set_gdbarch_frame_red_zone_size (gdbarch, 2000); | 
|  | set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code); | 
|  | set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call); | 
|  | set_gdbarch_dummy_id (gdbarch, spu_dummy_id); | 
|  | set_gdbarch_return_value (gdbarch, spu_return_value); | 
|  |  | 
|  | /* Frame handling.  */ | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind); | 
|  | frame_base_set_default (gdbarch, &spu_frame_base); | 
|  | set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc); | 
|  | set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp); | 
|  | set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer); | 
|  | set_gdbarch_frame_args_skip (gdbarch, 0); | 
|  | set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue); | 
|  | set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p); | 
|  |  | 
|  | /* Cell/B.E. cross-architecture unwinder support.  */ | 
|  | frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind); | 
|  |  | 
|  | /* Breakpoints.  */ | 
|  | set_gdbarch_decr_pc_after_break (gdbarch, 4); | 
|  | set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc); | 
|  | set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint); | 
|  | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); | 
|  | set_gdbarch_software_single_step (gdbarch, spu_software_single_step); | 
|  | set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target); | 
|  |  | 
|  | /* Overlays.  */ | 
|  | set_gdbarch_overlay_update (gdbarch, spu_overlay_update); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Provide a prototype to silence -Wmissing-prototypes.  */ | 
|  | extern initialize_file_ftype _initialize_spu_tdep; | 
|  |  | 
|  | void | 
|  | _initialize_spu_tdep (void) | 
|  | { | 
|  | register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init); | 
|  |  | 
|  | /* Add ourselves to objfile event chain.  */ | 
|  | observer_attach_new_objfile (spu_overlay_new_objfile); | 
|  | spu_overlay_data = register_objfile_data (); | 
|  |  | 
|  | /* Install spu stop-on-load handler.  */ | 
|  | observer_attach_new_objfile (spu_catch_start); | 
|  |  | 
|  | /* Add ourselves to normal_stop event chain.  */ | 
|  | observer_attach_normal_stop (spu_attach_normal_stop); | 
|  |  | 
|  | /* Add root prefix command for all "set spu"/"show spu" commands.  */ | 
|  | add_prefix_cmd ("spu", no_class, set_spu_command, | 
|  | _("Various SPU specific commands."), | 
|  | &setspucmdlist, "set spu ", 0, &setlist); | 
|  | add_prefix_cmd ("spu", no_class, show_spu_command, | 
|  | _("Various SPU specific commands."), | 
|  | &showspucmdlist, "show spu ", 0, &showlist); | 
|  |  | 
|  | /* Toggle whether or not to add a temporary breakpoint at the "main" | 
|  | function of new SPE contexts.  */ | 
|  | add_setshow_boolean_cmd ("stop-on-load", class_support, | 
|  | &spu_stop_on_load_p, _("\ | 
|  | Set whether to stop for new SPE threads."), | 
|  | _("\ | 
|  | Show whether to stop for new SPE threads."), | 
|  | _("\ | 
|  | Use \"on\" to give control to the user when a new SPE thread\n\ | 
|  | enters its \"main\" function.\n\ | 
|  | Use \"off\" to disable stopping for new SPE threads."), | 
|  | NULL, | 
|  | show_spu_stop_on_load, | 
|  | &setspucmdlist, &showspucmdlist); | 
|  |  | 
|  | /* Toggle whether or not to automatically flush the software-managed | 
|  | cache whenever SPE execution stops.  */ | 
|  | add_setshow_boolean_cmd ("auto-flush-cache", class_support, | 
|  | &spu_auto_flush_cache_p, _("\ | 
|  | Set whether to automatically flush the software-managed cache."), | 
|  | _("\ | 
|  | Show whether to automatically flush the software-managed cache."), | 
|  | _("\ | 
|  | Use \"on\" to automatically flush the software-managed cache\n\ | 
|  | whenever SPE execution stops.\n\ | 
|  | Use \"off\" to never automatically flush the software-managed cache."), | 
|  | NULL, | 
|  | show_spu_auto_flush_cache, | 
|  | &setspucmdlist, &showspucmdlist); | 
|  |  | 
|  | /* Add root prefix command for all "info spu" commands.  */ | 
|  | add_prefix_cmd ("spu", class_info, info_spu_command, | 
|  | _("Various SPU specific commands."), | 
|  | &infospucmdlist, "info spu ", 0, &infolist); | 
|  |  | 
|  | /* Add various "info spu" commands.  */ | 
|  | add_cmd ("event", class_info, info_spu_event_command, | 
|  | _("Display SPU event facility status.\n"), | 
|  | &infospucmdlist); | 
|  | add_cmd ("signal", class_info, info_spu_signal_command, | 
|  | _("Display SPU signal notification facility status.\n"), | 
|  | &infospucmdlist); | 
|  | add_cmd ("mailbox", class_info, info_spu_mailbox_command, | 
|  | _("Display SPU mailbox facility status.\n"), | 
|  | &infospucmdlist); | 
|  | add_cmd ("dma", class_info, info_spu_dma_command, | 
|  | _("Display MFC DMA status.\n"), | 
|  | &infospucmdlist); | 
|  | add_cmd ("proxydma", class_info, info_spu_proxydma_command, | 
|  | _("Display MFC Proxy-DMA status.\n"), | 
|  | &infospucmdlist); | 
|  | } |