| /* Definitions to make GDB run on Convex Unix (4bsd) |
| Copyright 1989, 1991, 1993 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| |
| #define TARGET_BYTE_ORDER BIG_ENDIAN |
| |
| /* There is come problem with the debugging symbols generated by the |
| compiler such that the debugging symbol for the first line of a |
| function overlap with the function prologue. */ |
| #define PROLOGUE_FIRSTLINE_OVERLAP |
| |
| /* When convex pcc says CHAR or SHORT, it provides the correct address. */ |
| |
| #define BELIEVE_PCC_PROMOTION 1 |
| |
| /* Symbol types to ignore. */ |
| /* 0xc4 is N_MONPT. Use the numeric value for the benefit of people |
| with (rather) old OS's. */ |
| #define IGNORE_SYMBOL(TYPE) \ |
| (((TYPE) & ~N_EXT) == N_TBSS \ |
| || ((TYPE) & ~N_EXT) == N_TDATA \ |
| || ((TYPE) & ~N_EXT) == 0xc4) |
| |
| /* Offset from address of function to start of its code. |
| Zero on most machines. */ |
| |
| #define FUNCTION_START_OFFSET 0 |
| |
| /* Advance PC across any function entry prologue instructions |
| to reach some "real" code. |
| Convex prolog is: |
| [sub.w #-,sp] in one of 3 possible sizes |
| [mov psw,- fc/vc main program prolog |
| and #-,- (skip it because the "mov psw" saves the |
| mov -,psw] T bit, so continue gets a surprise trap) |
| [and #-,sp] fc/vc O2 main program prolog |
| [ld.- -(ap),-] pcc/gcc register arg loads |
| */ |
| |
| #define SKIP_PROLOGUE(pc) \ |
| { int op, ix; \ |
| op = read_memory_integer (pc, 2); \ |
| if ((op & 0xffc7) == 0x5ac0) pc += 2; \ |
| else if (op == 0x1580) pc += 4; \ |
| else if (op == 0x15c0) pc += 6; \ |
| if ((read_memory_integer (pc, 2) & 0xfff8) == 0x7c40 \ |
| && (read_memory_integer (pc + 2, 2) & 0xfff8) == 0x1240 \ |
| && (read_memory_integer (pc + 8, 2) & 0xfff8) == 0x7c48) \ |
| pc += 10; \ |
| if (read_memory_integer (pc, 2) == 0x1240) pc += 6; \ |
| for (;;) { \ |
| op = read_memory_integer (pc, 2); \ |
| ix = (op >> 3) & 7; \ |
| if (ix != 6) break; \ |
| if ((op & 0xfcc0) == 0x3000) pc += 4; \ |
| else if ((op & 0xfcc0) == 0x3040) pc += 6; \ |
| else if ((op & 0xfcc0) == 0x2800) pc += 4; \ |
| else if ((op & 0xfcc0) == 0x2840) pc += 6; \ |
| else break;}} |
| |
| /* Immediately after a function call, return the saved pc. |
| (ignore frame and return *$sp so we can handle both calls and callq) */ |
| |
| #define SAVED_PC_AFTER_CALL(frame) \ |
| read_memory_integer (read_register (SP_REGNUM), 4) |
| |
| /* Address of end of stack space. |
| This is ((USRSTACK + 0xfff) & -0x1000)) from <convex/vmparam.h> but |
| that expression depends on the kernel version; instead, fetch a |
| page-zero pointer and get it from that. This will be invalid if |
| they ever change the way bkpt signals are delivered. */ |
| |
| #define STACK_END_ADDR (0xfffff000 & *(unsigned *) 0x80000050) |
| |
| /* User-mode traps push an extended rtn block, |
| then fault with one of the following PCs */ |
| |
| #define is_trace_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000040)) <= 4) |
| #define is_arith_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000044)) <= 4) |
| #define is_break_pc(pc) ((unsigned) ((pc) - (*(int *) 0x80000050)) <= 4) |
| |
| /* We need to manipulate trap bits in the psw */ |
| |
| #define PSW_TRAP_FLAGS 0x69670000 |
| #define PSW_T_BIT 0x08000000 |
| #define PSW_S_BIT 0x01000000 |
| |
| /* Stack grows downward. */ |
| |
| #define INNER_THAN(lhs,rhs) ((lhs) < (rhs)) |
| |
| /* Sequence of bytes for breakpoint instruction. (bkpt) */ |
| |
| #define BREAKPOINT {0x7d,0x50} |
| |
| /* Amount PC must be decremented by after a breakpoint. |
| This is often the number of bytes in BREAKPOINT but not always. |
| (The break PC needs to be decremented by 2, but we do it when the |
| break frame is recognized and popped. That way gdb can tell breaks |
| from trace traps with certainty.) */ |
| |
| #define DECR_PC_AFTER_BREAK 0 |
| |
| /* Say how long (ordinary) registers are. This is a piece of bogosity |
| used in push_word and a few other places; REGISTER_RAW_SIZE is the |
| real way to know how big a register is. */ |
| |
| #define REGISTER_SIZE 8 |
| |
| /* Number of machine registers */ |
| |
| #define NUM_REGS 26 |
| |
| /* Initializer for an array of names of registers. |
| There should be NUM_REGS strings in this initializer. */ |
| |
| #define REGISTER_NAMES {"pc","psw","fp","ap","a5","a4","a3","a2","a1","sp",\ |
| "s7","s6","s5","s4","s3","s2","s1","s0",\ |
| "S7","S6","S5","S4","S3","S2","S1","S0"} |
| |
| /* Register numbers of various important registers. |
| Note that some of these values are "real" register numbers, |
| and correspond to the general registers of the machine, |
| and some are "phony" register numbers which are too large |
| to be actual register numbers as far as the user is concerned |
| but do serve to get the desired values when passed to read_register. */ |
| |
| #define S0_REGNUM 25 /* the real S regs */ |
| #define S7_REGNUM 18 |
| #define s0_REGNUM 17 /* low-order halves of S regs */ |
| #define s7_REGNUM 10 |
| #define SP_REGNUM 9 /* A regs */ |
| #define A1_REGNUM 8 |
| #define A5_REGNUM 4 |
| #define AP_REGNUM 3 |
| #define FP_REGNUM 2 /* Contains address of executing stack frame */ |
| #define PS_REGNUM 1 /* Contains processor status */ |
| #define PC_REGNUM 0 /* Contains program counter */ |
| |
| /* convert dbx stab register number (from `r' declaration) to a gdb REGNUM */ |
| |
| #define STAB_REG_TO_REGNUM(value) \ |
| ((value) < 8 ? S0_REGNUM - (value) : SP_REGNUM - ((value) - 8)) |
| |
| /* Vector register numbers, not handled as ordinary regs. |
| They are treated as convenience variables whose values are read |
| from the inferior when needed. */ |
| |
| #define V0_REGNUM 0 |
| #define V7_REGNUM 7 |
| #define VM_REGNUM 8 |
| #define VS_REGNUM 9 |
| #define VL_REGNUM 10 |
| |
| /* Total amount of space needed to store our copies of the machine's |
| register state, the array `registers'. */ |
| #define REGISTER_BYTES (4*10 + 8*8) |
| |
| /* Index within `registers' of the first byte of the space for |
| register N. |
| NB: must match structure of struct syscall_context for correct operation */ |
| |
| #define REGISTER_BYTE(N) ((N) < s7_REGNUM ? 4*(N) : \ |
| (N) < S7_REGNUM ? 44 + 8 * ((N)-s7_REGNUM) : \ |
| 40 + 8 * ((N)-S7_REGNUM)) |
| |
| /* Number of bytes of storage in the actual machine representation |
| for register N. */ |
| |
| #define REGISTER_RAW_SIZE(N) ((N) < S7_REGNUM ? 4 : 8) |
| |
| /* Number of bytes of storage in the program's representation |
| for register N. */ |
| |
| #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N) |
| |
| /* Largest value REGISTER_RAW_SIZE can have. */ |
| |
| #define MAX_REGISTER_RAW_SIZE 8 |
| |
| /* Largest value REGISTER_VIRTUAL_SIZE can have. */ |
| |
| #define MAX_REGISTER_VIRTUAL_SIZE 8 |
| |
| /* Return the GDB type object for the "standard" data type |
| of data in register N. */ |
| |
| #define REGISTER_VIRTUAL_TYPE(N) \ |
| ((N) < S7_REGNUM ? builtin_type_int : builtin_type_long_long) |
| |
| /* Store the address of the place in which to copy the structure the |
| subroutine will return. This is called from call_function. */ |
| |
| #define STORE_STRUCT_RETURN(ADDR, SP) \ |
| { write_register (A1_REGNUM, (ADDR)); } |
| |
| /* Extract from an array REGBUF containing the (raw) register state |
| a function return value of type TYPE, and copy that, in virtual format, |
| into VALBUF. */ |
| |
| #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ |
| memcpy (VALBUF, &((char *) REGBUF) [REGISTER_BYTE (S0_REGNUM) + \ |
| 8 - TYPE_LENGTH (TYPE)],\ |
| TYPE_LENGTH (TYPE)) |
| |
| /* Write into appropriate registers a function return value |
| of type TYPE, given in virtual format. */ |
| |
| #define STORE_RETURN_VALUE(TYPE,VALBUF) \ |
| write_register_bytes (REGISTER_BYTE (S0_REGNUM), VALBUF, 8) |
| |
| /* Extract from an array REGBUF containing the (raw) register state |
| the address in which a function should return its structure value, |
| as a CORE_ADDR (or an expression that can be used as one). */ |
| |
| #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \ |
| (*(int *) & ((char *) REGBUF) [REGISTER_BYTE (s0_REGNUM)]) |
| |
| /* Define trapped internal variable hooks to read and write |
| vector and communication registers. */ |
| |
| #define IS_TRAPPED_INTERNALVAR is_trapped_internalvar |
| #define VALUE_OF_TRAPPED_INTERNALVAR value_of_trapped_internalvar |
| #define SET_TRAPPED_INTERNALVAR set_trapped_internalvar |
| |
| extern struct value *value_of_trapped_internalvar (); |
| |
| /* Hooks to read data from soff exec and core files, |
| and to describe the files. */ |
| |
| #define FILES_INFO_HOOK print_maps |
| |
| /* Hook to call to print a typeless integer value, normally printed in decimal. |
| For convex, use hex instead if the number looks like an address. */ |
| |
| #define PRINT_TYPELESS_INTEGER decout |
| |
| /* For the native compiler, variables for a particular lexical context |
| are listed after the beginning LBRAC instead of before in the |
| executables list of symbols. Using "gcc_compiled." to distinguish |
| between GCC and native compiler doesn't work on Convex because the |
| linker sorts the symbols to put "gcc_compiled." in the wrong place. |
| desc is nonzero for native, zero for gcc. */ |
| #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (desc != 0) |
| |
| /* Pcc occaisionally puts an SO where there should be an SOL. */ |
| #define PCC_SOL_BROKEN |
| |
| /* Describe the pointer in each stack frame to the previous stack frame |
| (its caller). */ |
| |
| /* FRAME_CHAIN takes a frame_info with a frame's nominal address in fi->frame, |
| and produces the frame's chain-pointer. */ |
| |
| /* (caller fp is saved at 8(fp)) */ |
| |
| #define FRAME_CHAIN(fi) (read_memory_integer ((fi)->frame + 8, 4)) |
| |
| /* Define other aspects of the stack frame. */ |
| |
| /* We need the boundaries of the text in the exec file, as a kludge, |
| for FRAMELESS_FUNCTION_INVOCATION and CALL_DUMMY_LOCATION. */ |
| |
| #define NEED_TEXT_START_END 1 |
| |
| /* A macro that tells us whether the function invocation represented |
| by FI does not have a frame on the stack associated with it. If it |
| does not, FRAMELESS is set to 1, else 0. |
| On convex, check at the return address for `callq' -- if so, frameless, |
| otherwise, not. */ |
| |
| #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \ |
| { \ |
| extern CORE_ADDR text_start, text_end; \ |
| CORE_ADDR call_addr = SAVED_PC_AFTER_CALL (FI); \ |
| (FRAMELESS) = (call_addr >= text_start && call_addr < text_end \ |
| && read_memory_integer (call_addr - 6, 1) == 0x22); \ |
| } |
| |
| #define FRAME_SAVED_PC(fi) (read_memory_integer ((fi)->frame, 4)) |
| |
| #define FRAME_ARGS_ADDRESS(fi) (read_memory_integer ((fi)->frame + 12, 4)) |
| |
| #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame |
| |
| /* Return number of args passed to a frame. |
| Can return -1, meaning no way to tell. */ |
| |
| #define FRAME_NUM_ARGS(numargs, fi) \ |
| { numargs = read_memory_integer (FRAME_ARGS_ADDRESS (fi) - 4, 4); \ |
| if (numargs < 0 || numargs >= 256) numargs = -1;} |
| |
| /* Return number of bytes at start of arglist that are not really args. */ |
| |
| #define FRAME_ARGS_SKIP 0 |
| |
| /* Put here the code to store, into a struct frame_saved_regs, |
| the addresses of the saved registers of frame described by FRAME_INFO. |
| This includes special registers such as pc and fp saved in special |
| ways in the stack frame. sp is even more special: |
| the address we return for it IS the sp for the next frame. */ |
| |
| /* Normal (short) frames save only PC, FP, (callee's) AP. To reasonably |
| handle gcc and pcc register variables, scan the code following the |
| call for the instructions the compiler inserts to reload register |
| variables from stack slots and record the stack slots as the saved |
| locations of those registers. This will occasionally identify some |
| random load as a saved register; this is harmless. vc does not |
| declare its register allocation actions in the stabs. */ |
| |
| #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ |
| { register int regnum; \ |
| register int frame_length = /* 3 short, 2 long, 1 extended, 0 context */\ |
| (read_memory_integer ((frame_info)->frame + 4, 4) >> 25) & 3; \ |
| register CORE_ADDR frame_fp = \ |
| read_memory_integer ((frame_info)->frame + 8, 4); \ |
| register CORE_ADDR next_addr; \ |
| memset (&frame_saved_regs, '\0', sizeof frame_saved_regs); \ |
| (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 0; \ |
| (frame_saved_regs).regs[PS_REGNUM] = (frame_info)->frame + 4; \ |
| (frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame + 8; \ |
| (frame_saved_regs).regs[AP_REGNUM] = frame_fp + 12; \ |
| next_addr = (frame_info)->frame + 12; \ |
| if (frame_length < 3) \ |
| for (regnum = A5_REGNUM; regnum < SP_REGNUM; ++regnum) \ |
| (frame_saved_regs).regs[regnum] = (next_addr += 4); \ |
| if (frame_length < 2) \ |
| (frame_saved_regs).regs[SP_REGNUM] = (next_addr += 4); \ |
| next_addr -= 4; \ |
| if (frame_length < 3) \ |
| for (regnum = S7_REGNUM; regnum < S0_REGNUM; ++regnum) \ |
| (frame_saved_regs).regs[regnum] = (next_addr += 8); \ |
| if (frame_length < 2) \ |
| (frame_saved_regs).regs[S0_REGNUM] = (next_addr += 8); \ |
| else \ |
| (frame_saved_regs).regs[SP_REGNUM] = next_addr + 8; \ |
| if (frame_length == 3) { \ |
| CORE_ADDR pc = read_memory_integer ((frame_info)->frame, 4); \ |
| int op, ix, disp; \ |
| op = read_memory_integer (pc, 2); \ |
| if ((op & 0xffc7) == 0x1480) pc += 4; /* add.w #-,sp */ \ |
| else if ((op & 0xffc7) == 0x58c0) pc += 2; /* add.w #-,sp */ \ |
| op = read_memory_integer (pc, 2); \ |
| if ((op & 0xffc7) == 0x2a06) pc += 4; /* ld.w -,ap */ \ |
| for (;;) { \ |
| op = read_memory_integer (pc, 2); \ |
| ix = (op >> 3) & 7; \ |
| if ((op & 0xfcc0) == 0x2800) { /* ld.- -,ak */ \ |
| regnum = SP_REGNUM - (op & 7); \ |
| disp = read_memory_integer (pc + 2, 2); \ |
| pc += 4;} \ |
| else if ((op & 0xfcc0) == 0x2840) { /* ld.- -,ak */ \ |
| regnum = SP_REGNUM - (op & 7); \ |
| disp = read_memory_integer (pc + 2, 4); \ |
| pc += 6;} \ |
| if ((op & 0xfcc0) == 0x3000) { /* ld.- -,sk */ \ |
| regnum = S0_REGNUM - (op & 7); \ |
| disp = read_memory_integer (pc + 2, 2); \ |
| pc += 4;} \ |
| else if ((op & 0xfcc0) == 0x3040) { /* ld.- -,sk */ \ |
| regnum = S0_REGNUM - (op & 7); \ |
| disp = read_memory_integer (pc + 2, 4); \ |
| pc += 6;} \ |
| else if ((op & 0xff00) == 0x7100) { /* br crossjump */ \ |
| pc += 2 * (char) op; \ |
| continue;} \ |
| else if (op == 0x0140) { /* jmp crossjump */ \ |
| pc = read_memory_integer (pc + 2, 4); \ |
| continue;} \ |
| else break; \ |
| if ((frame_saved_regs).regs[regnum]) \ |
| break; \ |
| if (ix == 7) disp += frame_fp; \ |
| else if (ix == 6) disp += read_memory_integer (frame_fp + 12, 4); \ |
| else if (ix != 0) break; \ |
| (frame_saved_regs).regs[regnum] = \ |
| disp - 8 + (1 << ((op >> 8) & 3)); \ |
| if (regnum >= S7_REGNUM) \ |
| (frame_saved_regs).regs[regnum - S0_REGNUM + s0_REGNUM] = \ |
| disp - 4 + (1 << ((op >> 8) & 3)); \ |
| } \ |
| } \ |
| } |
| |
| /* Things needed for making the inferior call functions. */ |
| |
| #define CALL_DUMMY_LOCATION BEFORE_TEXT_END |
| |
| /* Push an empty stack frame, to record the current PC, etc. */ |
| |
| #define PUSH_DUMMY_FRAME \ |
| { register CORE_ADDR sp = read_register (SP_REGNUM); \ |
| register int regnum; \ |
| char buf[8]; \ |
| long word; \ |
| for (regnum = S0_REGNUM; regnum >= S7_REGNUM; --regnum) { \ |
| read_register_bytes (REGISTER_BYTE (regnum), buf, 8); \ |
| sp = push_bytes (sp, buf, 8);} \ |
| for (regnum = SP_REGNUM; regnum >= FP_REGNUM; --regnum) { \ |
| word = read_register (regnum); \ |
| sp = push_bytes (sp, &word, 4);} \ |
| word = (read_register (PS_REGNUM) &~ (3<<25)) | (1<<25); \ |
| sp = push_bytes (sp, &word, 4); \ |
| word = read_register (PC_REGNUM); \ |
| sp = push_bytes (sp, &word, 4); \ |
| write_register (SP_REGNUM, sp); \ |
| write_register (FP_REGNUM, sp); \ |
| write_register (AP_REGNUM, sp);} |
| |
| /* Discard from the stack the innermost frame, restoring all registers. */ |
| |
| #define POP_FRAME do {\ |
| register CORE_ADDR fp = read_register (FP_REGNUM); \ |
| register int regnum; \ |
| register int frame_length = /* 3 short, 2 long, 1 extended, 0 context */ \ |
| (read_memory_integer (fp + 4, 4) >> 25) & 3; \ |
| char buf[8]; \ |
| write_register (PC_REGNUM, read_memory_integer (fp, 4)); \ |
| write_register (PS_REGNUM, read_memory_integer (fp += 4, 4)); \ |
| write_register (FP_REGNUM, read_memory_integer (fp += 4, 4)); \ |
| write_register (AP_REGNUM, read_memory_integer (fp += 4, 4)); \ |
| if (frame_length < 3) \ |
| for (regnum = A5_REGNUM; regnum < SP_REGNUM; ++regnum) \ |
| write_register (regnum, read_memory_integer (fp += 4, 4)); \ |
| if (frame_length < 2) \ |
| write_register (SP_REGNUM, read_memory_integer (fp += 4, 4)); \ |
| fp -= 4; \ |
| if (frame_length < 3) \ |
| for (regnum = S7_REGNUM; regnum < S0_REGNUM; ++regnum) { \ |
| read_memory (fp += 8, buf, 8); \ |
| write_register_bytes (REGISTER_BYTE (regnum), buf, 8);} \ |
| if (frame_length < 2) { \ |
| read_memory (fp += 8, buf, 8); \ |
| write_register_bytes (REGISTER_BYTE (regnum), buf, 8);} \ |
| else write_register (SP_REGNUM, fp + 8); \ |
| flush_cached_frames (); \ |
| } while (0) |
| |
| /* This sequence of words is the instructions |
| mov sp,ap |
| pshea 69696969 |
| calls 32323232 |
| bkpt |
| Note this is 16 bytes. */ |
| |
| #define CALL_DUMMY {0x50860d4069696969LL,0x2140323232327d50LL} |
| |
| #define CALL_DUMMY_LENGTH 16 |
| |
| #define CALL_DUMMY_START_OFFSET 0 |
| |
| /* Insert the specified number of args and function address |
| into a call sequence of the above form stored at DUMMYNAME. */ |
| |
| #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \ |
| { *(int *)((char *) dummyname + 4) = nargs; \ |
| *(int *)((char *) dummyname + 10) = fun; } |
| |
| /* Defs to read soff symbol tables, see dbxread.c */ |
| |
| #define NUMBER_OF_SYMBOLS ((long) opthdr.o_nsyms) |
| #define STRING_TABLE_OFFSET ((long) filehdr.h_strptr) |
| #define SYMBOL_TABLE_OFFSET ((long) opthdr.o_symptr) |
| #define STRING_TABLE_SIZE ((long) filehdr.h_strsiz) |
| #define SIZE_OF_TEXT_SEGMENT ((long) txthdr.s_size) |
| #define ENTRY_POINT ((long) opthdr.o_entry) |
| |
| #define READ_STRING_TABLE_SIZE(BUFFER) \ |
| (BUFFER = STRING_TABLE_SIZE) |
| |
| #define DECLARE_FILE_HEADERS \ |
| FILEHDR filehdr; \ |
| OPTHDR opthdr; \ |
| SCNHDR txthdr |
| |
| #define READ_FILE_HEADERS(DESC,NAME) \ |
| { \ |
| int n; \ |
| val = myread (DESC, &filehdr, sizeof filehdr); \ |
| if (val < 0) \ |
| perror_with_name (NAME); \ |
| if (! IS_SOFF_MAGIC (filehdr.h_magic)) \ |
| error ("%s: not an executable file.", NAME); \ |
| lseek (DESC, 0L, 0); \ |
| if (myread (DESC, &filehdr, sizeof filehdr) < 0) \ |
| perror_with_name (NAME); \ |
| if (myread (DESC, &opthdr, filehdr.h_opthdr) <= 0) \ |
| perror_with_name (NAME); \ |
| for (n = 0; n < filehdr.h_nscns; n++) \ |
| { \ |
| if (myread (DESC, &txthdr, sizeof txthdr) < 0) \ |
| perror_with_name (NAME); \ |
| if ((txthdr.s_flags & S_TYPMASK) == S_TEXT) \ |
| break; \ |
| } \ |
| } |