|  | /* Native debugging support for Intel x86 running DJGPP. | 
|  | Copyright (C) 1997-2024 Free Software Foundation, Inc. | 
|  | Written by Robert Hoehne. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* To whomever it may concern, here's a general description of how | 
|  | debugging in DJGPP works, and the special quirks GDB does to | 
|  | support that. | 
|  |  | 
|  | When the DJGPP port of GDB is debugging a DJGPP program natively, | 
|  | there aren't 2 separate processes, the debuggee and GDB itself, as | 
|  | on other systems.  (This is DOS, where there can only be one active | 
|  | process at any given time, remember?)  Instead, GDB and the | 
|  | debuggee live in the same process.  So when GDB calls | 
|  | go32_create_inferior below, and that function calls edi_init from | 
|  | the DJGPP debug support library libdbg.a, we load the debuggee's | 
|  | executable file into GDB's address space, set it up for execution | 
|  | as the stub loader (a short real-mode program prepended to each | 
|  | DJGPP executable) normally would, and do a lot of preparations for | 
|  | swapping between GDB's and debuggee's internal state, primarily wrt | 
|  | the exception handlers.  This swapping happens every time we resume | 
|  | the debuggee or switch back to GDB's code, and it includes: | 
|  |  | 
|  | . swapping all the segment registers | 
|  | . swapping the PSP (the Program Segment Prefix) | 
|  | . swapping the signal handlers | 
|  | . swapping the exception handlers | 
|  | . swapping the FPU status | 
|  | . swapping the 3 standard file handles (more about this below) | 
|  |  | 
|  | Then running the debuggee simply means longjmp into it where its PC | 
|  | is and let it run until it stops for some reason.  When it stops, | 
|  | GDB catches the exception that stopped it and longjmp's back into | 
|  | its own code.  All the possible exit points of the debuggee are | 
|  | watched; for example, the normal exit point is recognized because a | 
|  | DOS program issues a special system call to exit.  If one of those | 
|  | exit points is hit, we mourn the inferior and clean up after it. | 
|  | Cleaning up is very important, even if the process exits normally, | 
|  | because otherwise we might leave behind traces of previous | 
|  | execution, and in several cases GDB itself might be left hosed, | 
|  | because all the exception handlers were not restored. | 
|  |  | 
|  | Swapping of the standard handles (in redir_to_child and | 
|  | redir_to_debugger) is needed because, since both GDB and the | 
|  | debuggee live in the same process, as far as the OS is concerned, | 
|  | the share the same file table.  This means that the standard | 
|  | handles 0, 1, and 2 point to the same file table entries, and thus | 
|  | are connected to the same devices.  Therefore, if the debugger | 
|  | redirects its standard output, the standard output of the debuggee | 
|  | is also automagically redirected to the same file/device! | 
|  | Similarly, if the debuggee redirects its stdout to a file, you | 
|  | won't be able to see debugger's output (it will go to the same file | 
|  | where the debuggee has its output); and if the debuggee closes its | 
|  | standard input, you will lose the ability to talk to debugger! | 
|  |  | 
|  | For this reason, every time the debuggee is about to be resumed, we | 
|  | call redir_to_child, which redirects the standard handles to where | 
|  | the debuggee expects them to be.  When the debuggee stops and GDB | 
|  | regains control, we call redir_to_debugger, which redirects those 3 | 
|  | handles back to where GDB expects. | 
|  |  | 
|  | Note that only the first 3 handles are swapped, so if the debuggee | 
|  | redirects or closes any other handles, GDB will not notice.  In | 
|  | particular, the exit code of a DJGPP program forcibly closes all | 
|  | file handles beyond the first 3 ones, so when the debuggee exits, | 
|  | GDB currently loses its stdaux and stdprn streams.  Fortunately, | 
|  | GDB does not use those as of this writing, and will never need | 
|  | to.  */ | 
|  |  | 
|  |  | 
|  | #include <fcntl.h> | 
|  |  | 
|  | #include "x86-nat.h" | 
|  | #include "inferior.h" | 
|  | #include "infrun.h" | 
|  | #include "gdbthread.h" | 
|  | #include "gdbsupport/gdb_wait.h" | 
|  | #include "gdbcore.h" | 
|  | #include "command.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "floatformat.h" | 
|  | #include "buildsym-legacy.h" | 
|  | #include "i387-tdep.h" | 
|  | #include "i386-tdep.h" | 
|  | #include "nat/x86-cpuid.h" | 
|  | #include "value.h" | 
|  | #include "regcache.h" | 
|  | #include "top.h" | 
|  | #include "cli/cli-utils.h" | 
|  | #include "inf-child.h" | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <unistd.h> | 
|  | #include <sys/utsname.h> | 
|  | #include <io.h> | 
|  | #include <dos.h> | 
|  | #include <dpmi.h> | 
|  | #include <go32.h> | 
|  | #include <sys/farptr.h> | 
|  | #include <debug/v2load.h> | 
|  | #include <debug/dbgcom.h> | 
|  | #if __DJGPP_MINOR__ > 2 | 
|  | #include <debug/redir.h> | 
|  | #endif | 
|  |  | 
|  | #include <langinfo.h> | 
|  |  | 
|  | #if __DJGPP_MINOR__ < 3 | 
|  | /* This code will be provided from DJGPP 2.03 on.  Until then I code it | 
|  | here.  */ | 
|  | typedef struct | 
|  | { | 
|  | unsigned short sig0; | 
|  | unsigned short sig1; | 
|  | unsigned short sig2; | 
|  | unsigned short sig3; | 
|  | unsigned short exponent:15; | 
|  | unsigned short sign:1; | 
|  | } | 
|  | NPXREG; | 
|  |  | 
|  | typedef struct | 
|  | { | 
|  | unsigned int control; | 
|  | unsigned int status; | 
|  | unsigned int tag; | 
|  | unsigned int eip; | 
|  | unsigned int cs; | 
|  | unsigned int dataptr; | 
|  | unsigned int datasel; | 
|  | NPXREG reg[8]; | 
|  | } | 
|  | NPX; | 
|  |  | 
|  | static NPX npx; | 
|  |  | 
|  | static void save_npx (void);	/* Save the FPU of the debugged program.  */ | 
|  | static void load_npx (void);	/* Restore the FPU of the debugged program.  */ | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  | /* Store the contents of the NPX in the global variable `npx'.  */ | 
|  |  | 
|  | static void | 
|  | save_npx (void) | 
|  | { | 
|  | asm ("inb    $0xa0, %%al  \n\ | 
|  | testb $0x20, %%al    \n\ | 
|  | jz 1f 	    	    \n\ | 
|  | xorb %%al, %%al	    \n\ | 
|  | outb %%al, $0xf0     \n\ | 
|  | movb $0x20, %%al	    \n\ | 
|  | outb %%al, $0xa0     \n\ | 
|  | outb %%al, $0x20     \n\ | 
|  | 1:     	       	   	    \n\ | 
|  | fnsave %0	    \n\ | 
|  | fwait " | 
|  | :     "=m" (npx) | 
|  | :				/* No input */ | 
|  | :     "%eax"); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  | /* Reload the contents of the NPX from the global variable `npx'.  */ | 
|  |  | 
|  | static void | 
|  | load_npx (void) | 
|  | { | 
|  | asm ("frstor %0":"=m" (npx)); | 
|  | } | 
|  | /* ------------------------------------------------------------------------- */ | 
|  | /* Stubs for the missing redirection functions.  */ | 
|  | typedef struct { | 
|  | char *command; | 
|  | int redirected; | 
|  | } cmdline_t; | 
|  |  | 
|  | void | 
|  | redir_cmdline_delete (cmdline_t *ptr) | 
|  | { | 
|  | ptr->redirected = 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | redir_cmdline_parse (const char *args, cmdline_t *ptr) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int | 
|  | redir_to_child (cmdline_t *ptr) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int | 
|  | redir_to_debugger (cmdline_t *ptr) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int | 
|  | redir_debug_init (cmdline_t *ptr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif /* __DJGPP_MINOR < 3 */ | 
|  |  | 
|  | typedef enum { wp_insert, wp_remove, wp_count } wp_op; | 
|  |  | 
|  | /* This holds the current reference counts for each debug register.  */ | 
|  | static int dr_ref_count[4]; | 
|  |  | 
|  | #define SOME_PID 42 | 
|  |  | 
|  | static int prog_has_started = 0; | 
|  |  | 
|  | #define r_ofs(x) (offsetof(TSS,x)) | 
|  |  | 
|  | static struct | 
|  | { | 
|  | size_t tss_ofs; | 
|  | size_t size; | 
|  | } | 
|  | regno_mapping[] = | 
|  | { | 
|  | {r_ofs (tss_eax), 4},	/* normal registers, from a_tss */ | 
|  | {r_ofs (tss_ecx), 4}, | 
|  | {r_ofs (tss_edx), 4}, | 
|  | {r_ofs (tss_ebx), 4}, | 
|  | {r_ofs (tss_esp), 4}, | 
|  | {r_ofs (tss_ebp), 4}, | 
|  | {r_ofs (tss_esi), 4}, | 
|  | {r_ofs (tss_edi), 4}, | 
|  | {r_ofs (tss_eip), 4}, | 
|  | {r_ofs (tss_eflags), 4}, | 
|  | {r_ofs (tss_cs), 2}, | 
|  | {r_ofs (tss_ss), 2}, | 
|  | {r_ofs (tss_ds), 2}, | 
|  | {r_ofs (tss_es), 2}, | 
|  | {r_ofs (tss_fs), 2}, | 
|  | {r_ofs (tss_gs), 2}, | 
|  | {0, 10},		/* 8 FP registers, from npx.reg[] */ | 
|  | {1, 10}, | 
|  | {2, 10}, | 
|  | {3, 10}, | 
|  | {4, 10}, | 
|  | {5, 10}, | 
|  | {6, 10}, | 
|  | {7, 10}, | 
|  | /* The order of the next 7 registers must be consistent | 
|  | with their numbering in config/i386/tm-i386.h, which see.  */ | 
|  | {0, 2},		/* control word, from npx */ | 
|  | {4, 2},		/* status word, from npx */ | 
|  | {8, 2},		/* tag word, from npx */ | 
|  | {16, 2},		/* last FP exception CS from npx */ | 
|  | {12, 4},		/* last FP exception EIP from npx */ | 
|  | {24, 2},		/* last FP exception operand selector from npx */ | 
|  | {20, 4},		/* last FP exception operand offset from npx */ | 
|  | {18, 2}		/* last FP opcode from npx */ | 
|  | }; | 
|  |  | 
|  | static struct | 
|  | { | 
|  | int go32_sig; | 
|  | enum gdb_signal gdb_sig; | 
|  | } | 
|  | sig_map[] = | 
|  | { | 
|  | {0, GDB_SIGNAL_FPE}, | 
|  | {1, GDB_SIGNAL_TRAP}, | 
|  | /* Exception 2 is triggered by the NMI.  DJGPP handles it as SIGILL, | 
|  | but I think SIGBUS is better, since the NMI is usually activated | 
|  | as a result of a memory parity check failure.  */ | 
|  | {2, GDB_SIGNAL_BUS}, | 
|  | {3, GDB_SIGNAL_TRAP}, | 
|  | {4, GDB_SIGNAL_FPE}, | 
|  | {5, GDB_SIGNAL_SEGV}, | 
|  | {6, GDB_SIGNAL_ILL}, | 
|  | {7, GDB_SIGNAL_EMT},	/* no-coprocessor exception */ | 
|  | {8, GDB_SIGNAL_SEGV}, | 
|  | {9, GDB_SIGNAL_SEGV}, | 
|  | {10, GDB_SIGNAL_BUS}, | 
|  | {11, GDB_SIGNAL_SEGV}, | 
|  | {12, GDB_SIGNAL_SEGV}, | 
|  | {13, GDB_SIGNAL_SEGV}, | 
|  | {14, GDB_SIGNAL_SEGV}, | 
|  | {16, GDB_SIGNAL_FPE}, | 
|  | {17, GDB_SIGNAL_BUS}, | 
|  | {31, GDB_SIGNAL_ILL}, | 
|  | {0x1b, GDB_SIGNAL_INT}, | 
|  | {0x75, GDB_SIGNAL_FPE}, | 
|  | {0x78, GDB_SIGNAL_ALRM}, | 
|  | {0x79, GDB_SIGNAL_INT}, | 
|  | {0x7a, GDB_SIGNAL_QUIT}, | 
|  | {-1, GDB_SIGNAL_LAST} | 
|  | }; | 
|  |  | 
|  | static struct { | 
|  | enum gdb_signal gdb_sig; | 
|  | int djgpp_excepno; | 
|  | } excepn_map[] = { | 
|  | {GDB_SIGNAL_0, -1}, | 
|  | {GDB_SIGNAL_ILL, 6},	/* Invalid Opcode */ | 
|  | {GDB_SIGNAL_EMT, 7},	/* triggers SIGNOFP */ | 
|  | {GDB_SIGNAL_SEGV, 13},	/* GPF */ | 
|  | {GDB_SIGNAL_BUS, 17},	/* Alignment Check */ | 
|  | /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for | 
|  | details.  */ | 
|  | {GDB_SIGNAL_TERM, 0x1b},	/* triggers Ctrl-Break type of SIGINT */ | 
|  | {GDB_SIGNAL_FPE, 0x75}, | 
|  | {GDB_SIGNAL_INT, 0x79}, | 
|  | {GDB_SIGNAL_QUIT, 0x7a}, | 
|  | {GDB_SIGNAL_ALRM, 0x78},	/* triggers SIGTIMR */ | 
|  | {GDB_SIGNAL_PROF, 0x78}, | 
|  | {GDB_SIGNAL_LAST, -1} | 
|  | }; | 
|  |  | 
|  | /* The go32 target.  */ | 
|  |  | 
|  | struct go32_nat_target final : public x86_nat_target<inf_child_target> | 
|  | { | 
|  | void attach (const char *, int) override; | 
|  |  | 
|  | void resume (ptid_t, int, enum gdb_signal) override; | 
|  |  | 
|  | ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override; | 
|  |  | 
|  | void fetch_registers (struct regcache *, int) override; | 
|  | void store_registers (struct regcache *, int) override; | 
|  |  | 
|  | enum target_xfer_status xfer_partial (enum target_object object, | 
|  | const char *annex, | 
|  | gdb_byte *readbuf, | 
|  | const gdb_byte *writebuf, | 
|  | ULONGEST offset, ULONGEST len, | 
|  | ULONGEST *xfered_len) override; | 
|  |  | 
|  | void files_info () override; | 
|  |  | 
|  | void terminal_init () override; | 
|  |  | 
|  | void terminal_inferior () override; | 
|  |  | 
|  | void terminal_ours_for_output () override; | 
|  |  | 
|  | void terminal_ours () override; | 
|  |  | 
|  | void terminal_info (const char *, int) override; | 
|  |  | 
|  | void pass_ctrlc () override; | 
|  |  | 
|  | void kill () override; | 
|  |  | 
|  | void create_inferior (const char *, const std::string &, | 
|  | char **, int) override; | 
|  |  | 
|  | void mourn_inferior () override; | 
|  |  | 
|  | bool thread_alive (ptid_t ptid) override; | 
|  |  | 
|  | std::string pid_to_str (ptid_t) override; | 
|  | }; | 
|  |  | 
|  | static go32_nat_target the_go32_nat_target; | 
|  |  | 
|  | void | 
|  | go32_nat_target::attach (const char *args, int from_tty) | 
|  | { | 
|  | error (_("\ | 
|  | You cannot attach to a running program on this platform.\n\ | 
|  | Use the `run' command to run DJGPP programs.")); | 
|  | } | 
|  |  | 
|  | static int resume_is_step; | 
|  | static int resume_signal = -1; | 
|  |  | 
|  | void | 
|  | go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | resume_is_step = step; | 
|  |  | 
|  | if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP) | 
|  | { | 
|  | for (i = 0, resume_signal = -1; | 
|  | excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++) | 
|  | if (excepn_map[i].gdb_sig == siggnal) | 
|  | { | 
|  | resume_signal = excepn_map[i].djgpp_excepno; | 
|  | break; | 
|  | } | 
|  | if (resume_signal == -1) | 
|  | printf_unfiltered ("Cannot deliver signal %s on this platform.\n", | 
|  | gdb_signal_to_name (siggnal)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static char child_cwd[FILENAME_MAX]; | 
|  |  | 
|  | ptid_t | 
|  | go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status, | 
|  | target_wait_flags options) | 
|  | { | 
|  | int i; | 
|  | unsigned char saved_opcode; | 
|  | unsigned long INT3_addr = 0; | 
|  | int stepping_over_INT = 0; | 
|  |  | 
|  | a_tss.tss_eflags &= 0xfeff;	/* Reset the single-step flag (TF).  */ | 
|  | if (resume_is_step) | 
|  | { | 
|  | /* If the next instruction is INT xx or INTO, we need to handle | 
|  | them specially.  Intel manuals say that these instructions | 
|  | reset the single-step flag (a.k.a. TF).  However, it seems | 
|  | that, at least in the DPMI environment, and at least when | 
|  | stepping over the DPMI interrupt 31h, the problem is having | 
|  | TF set at all when INT 31h is executed: the debuggee either | 
|  | crashes (and takes the system with it) or is killed by a | 
|  | SIGTRAP. | 
|  |  | 
|  | So we need to emulate single-step mode: we put an INT3 opcode | 
|  | right after the INT xx instruction, let the debuggee run | 
|  | until it hits INT3 and stops, then restore the original | 
|  | instruction which we overwrote with the INT3 opcode, and back | 
|  | up the debuggee's EIP to that instruction.  */ | 
|  | read_child (a_tss.tss_eip, &saved_opcode, 1); | 
|  | if (saved_opcode == 0xCD || saved_opcode == 0xCE) | 
|  | { | 
|  | unsigned char INT3_opcode = 0xCC; | 
|  |  | 
|  | INT3_addr | 
|  | = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1; | 
|  | stepping_over_INT = 1; | 
|  | read_child (INT3_addr, &saved_opcode, 1); | 
|  | write_child (INT3_addr, &INT3_opcode, 1); | 
|  | } | 
|  | else | 
|  | a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */ | 
|  | } | 
|  |  | 
|  | /* The special value FFFFh in tss_trap indicates to run_child that | 
|  | tss_irqn holds a signal to be delivered to the debuggee.  */ | 
|  | if (resume_signal <= -1) | 
|  | { | 
|  | a_tss.tss_trap = 0; | 
|  | a_tss.tss_irqn = 0xff; | 
|  | } | 
|  | else | 
|  | { | 
|  | a_tss.tss_trap = 0xffff;	/* run_child looks for this.  */ | 
|  | a_tss.tss_irqn = resume_signal; | 
|  | } | 
|  |  | 
|  | /* The child might change working directory behind our back.  The | 
|  | GDB users won't like the side effects of that when they work with | 
|  | relative file names, and GDB might be confused by its current | 
|  | directory not being in sync with the truth.  So we always make a | 
|  | point of changing back to where GDB thinks is its cwd, when we | 
|  | return control to the debugger, but restore child's cwd before we | 
|  | run it.  */ | 
|  | /* Initialize child_cwd, before the first call to run_child and not | 
|  | in the initialization, so the child get also the changed directory | 
|  | set with the gdb-command "cd ..."  */ | 
|  | if (!*child_cwd) | 
|  | /* Initialize child's cwd with the current one.  */ | 
|  | getcwd (child_cwd, sizeof (child_cwd)); | 
|  |  | 
|  | chdir (child_cwd); | 
|  |  | 
|  | #if __DJGPP_MINOR__ < 3 | 
|  | load_npx (); | 
|  | #endif | 
|  | run_child (); | 
|  | #if __DJGPP_MINOR__ < 3 | 
|  | save_npx (); | 
|  | #endif | 
|  |  | 
|  | /* Did we step over an INT xx instruction?  */ | 
|  | if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1) | 
|  | { | 
|  | /* Restore the original opcode.  */ | 
|  | a_tss.tss_eip--;	/* EIP points *after* the INT3 instruction.  */ | 
|  | write_child (a_tss.tss_eip, &saved_opcode, 1); | 
|  | /* Simulate a TRAP exception.  */ | 
|  | a_tss.tss_irqn = 1; | 
|  | a_tss.tss_eflags |= 0x0100; | 
|  | } | 
|  |  | 
|  | getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */ | 
|  | if (current_directory != NULL) | 
|  | chdir (current_directory); | 
|  |  | 
|  | if (a_tss.tss_irqn == 0x21) | 
|  | status->set_exited (a_tss.tss_eax & 0xff); | 
|  | else | 
|  | { | 
|  | status->set_stopped (GDB_SIGNAL_UNKNOWN); | 
|  | for (i = 0; sig_map[i].go32_sig != -1; i++) | 
|  | { | 
|  | if (a_tss.tss_irqn == sig_map[i].go32_sig) | 
|  | { | 
|  | #if __DJGPP_MINOR__ < 3 | 
|  | status->set_stopped (sig_map[i].gdb_sig); | 
|  | if (status->sig () != GDB_SIGNAL_TRAP) | 
|  | status->set_signalled (status->sig ()); | 
|  | #else | 
|  | status->set_stopped (sig_map[i].gdb_sig); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ptid_t (SOME_PID); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fetch_register (struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | if (regno < gdbarch_fp0_regnum (gdbarch)) | 
|  | regcache->raw_supply (regno, | 
|  | (char *) &a_tss + regno_mapping[regno].tss_ofs); | 
|  | else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, | 
|  | regno)) | 
|  | i387_supply_fsave (regcache, regno, &npx); | 
|  | else | 
|  | internal_error (_("Invalid register no. %d in fetch_register."), regno); | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::fetch_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | if (regno >= 0) | 
|  | fetch_register (regcache, regno); | 
|  | else | 
|  | { | 
|  | for (regno = 0; | 
|  | regno < gdbarch_fp0_regnum (regcache->arch ()); | 
|  | regno++) | 
|  | fetch_register (regcache, regno); | 
|  | i387_supply_fsave (regcache, -1, &npx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | store_register (const struct regcache *regcache, int regno) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | if (regno < gdbarch_fp0_regnum (gdbarch)) | 
|  | regcache->raw_collect (regno, | 
|  | (char *) &a_tss + regno_mapping[regno].tss_ofs); | 
|  | else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch, | 
|  | regno)) | 
|  | i387_collect_fsave (regcache, regno, &npx); | 
|  | else | 
|  | internal_error (_("Invalid register no. %d in store_register."), regno); | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::store_registers (struct regcache *regcache, int regno) | 
|  | { | 
|  | unsigned r; | 
|  |  | 
|  | if (regno >= 0) | 
|  | store_register (regcache, regno); | 
|  | else | 
|  | { | 
|  | for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++) | 
|  | store_register (regcache, r); | 
|  | i387_collect_fsave (regcache, -1, &npx); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Const-correct version of DJGPP's write_child, which unfortunately | 
|  | takes a non-const buffer pointer.  */ | 
|  |  | 
|  | static int | 
|  | my_write_child (unsigned child_addr, const void *buf, unsigned len) | 
|  | { | 
|  | static void *buffer = NULL; | 
|  | static unsigned buffer_len = 0; | 
|  | int res; | 
|  |  | 
|  | if (buffer_len < len) | 
|  | { | 
|  | buffer = xrealloc (buffer, len); | 
|  | buffer_len = len; | 
|  | } | 
|  |  | 
|  | memcpy (buffer, buf, len); | 
|  | res = write_child (child_addr, buffer, len); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Helper for go32_xfer_partial that handles memory transfers. | 
|  | Arguments are like target_xfer_partial.  */ | 
|  |  | 
|  | static enum target_xfer_status | 
|  | go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf, | 
|  | ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | if (writebuf != NULL) | 
|  | res = my_write_child (memaddr, writebuf, len); | 
|  | else | 
|  | res = read_child (memaddr, readbuf, len); | 
|  |  | 
|  | /* read_child and write_child return zero on success, non-zero on | 
|  | failure.  */ | 
|  | if (res != 0) | 
|  | return TARGET_XFER_E_IO; | 
|  |  | 
|  | *xfered_len = len; | 
|  | return TARGET_XFER_OK; | 
|  | } | 
|  |  | 
|  | /* Target to_xfer_partial implementation.  */ | 
|  |  | 
|  | enum target_xfer_status | 
|  | go32_nat_target::xfer_partial (enum target_object object, | 
|  | const char *annex, gdb_byte *readbuf, | 
|  | const gdb_byte *writebuf, ULONGEST offset, | 
|  | ULONGEST len, | 
|  | ULONGEST *xfered_len) | 
|  | { | 
|  | switch (object) | 
|  | { | 
|  | case TARGET_OBJECT_MEMORY: | 
|  | return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len); | 
|  |  | 
|  | default: | 
|  | return this->beneath ()->xfer_partial (object, annex, | 
|  | readbuf, writebuf, offset, len, | 
|  | xfered_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static cmdline_t child_cmd;	/* Parsed child's command line kept here.  */ | 
|  |  | 
|  | void | 
|  | go32_nat_target::files_info () | 
|  | { | 
|  | gdb_printf ("You are running a DJGPP V2 program.\n"); | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::kill_inferior () | 
|  | { | 
|  | mourn_inferior (); | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::create_inferior (const char *exec_file, | 
|  | const std::string &allargs, | 
|  | char **env, int from_tty) | 
|  | { | 
|  | extern char **environ; | 
|  | jmp_buf start_state; | 
|  | char *cmdline; | 
|  | char **env_save = environ; | 
|  | size_t cmdlen; | 
|  | struct inferior *inf; | 
|  | int result; | 
|  | const char *args = allargs.c_str (); | 
|  |  | 
|  | if (exec_file == nullptr) | 
|  | no_executable_specified_error (); | 
|  |  | 
|  | resume_signal = -1; | 
|  | resume_is_step = 0; | 
|  |  | 
|  | /* Initialize child's cwd as empty to be initialized when starting | 
|  | the child.  */ | 
|  | *child_cwd = 0; | 
|  |  | 
|  | /* Init command line storage.  */ | 
|  | if (redir_debug_init (&child_cmd) == -1) | 
|  | internal_error (_("Cannot allocate redirection storage: " | 
|  | "not enough memory.\n")); | 
|  |  | 
|  | /* Parse the command line and create redirections.  */ | 
|  | if (strpbrk (args, "<>")) | 
|  | { | 
|  | if (redir_cmdline_parse (args, &child_cmd) == 0) | 
|  | args = child_cmd.command; | 
|  | else | 
|  | error (_("Syntax error in command line.")); | 
|  | } | 
|  | else | 
|  | child_cmd.command = xstrdup (args); | 
|  |  | 
|  | cmdlen = strlen (args); | 
|  | /* v2loadimage passes command lines via DOS memory, so it cannot | 
|  | possibly handle commands longer than 1MB.  */ | 
|  | if (cmdlen > 1024*1024) | 
|  | error (_("Command line too long.")); | 
|  |  | 
|  | cmdline = (char *) xmalloc (cmdlen + 4); | 
|  | strcpy (cmdline + 1, args); | 
|  | /* If the command-line length fits into DOS 126-char limits, use the | 
|  | DOS command tail format; otherwise, tell v2loadimage to pass it | 
|  | through a buffer in conventional memory.  */ | 
|  | if (cmdlen < 127) | 
|  | { | 
|  | cmdline[0] = strlen (args); | 
|  | cmdline[cmdlen + 1] = 13; | 
|  | } | 
|  | else | 
|  | cmdline[0] = 0xff;	/* Signal v2loadimage it's a long command.  */ | 
|  |  | 
|  | environ = env; | 
|  |  | 
|  | result = v2loadimage (exec_file, cmdline, start_state); | 
|  |  | 
|  | environ = env_save; | 
|  | xfree (cmdline); | 
|  |  | 
|  | if (result != 0) | 
|  | error (_("Load failed for image %s"), exec_file); | 
|  |  | 
|  | edi_init (start_state); | 
|  | #if __DJGPP_MINOR__ < 3 | 
|  | save_npx (); | 
|  | #endif | 
|  |  | 
|  | inf = current_inferior (); | 
|  | inferior_appeared (inf, SOME_PID); | 
|  |  | 
|  | if (!inf->target_is_pushed (this)) | 
|  | inf->push_target (this); | 
|  |  | 
|  | thread_info *thr = add_thread_silent (ptid_t (SOME_PID)); | 
|  | switch_to_thread (thr); | 
|  |  | 
|  | clear_proceed_status (0); | 
|  | insert_breakpoints (); | 
|  | prog_has_started = 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::mourn_inferior () | 
|  | { | 
|  | redir_cmdline_delete (&child_cmd); | 
|  | resume_signal = -1; | 
|  | resume_is_step = 0; | 
|  |  | 
|  | cleanup_client (); | 
|  |  | 
|  | /* We need to make sure all the breakpoint enable bits in the DR7 | 
|  | register are reset when the inferior exits.  Otherwise, if they | 
|  | rerun the inferior, the uncleared bits may cause random SIGTRAPs, | 
|  | failure to set more watchpoints, and other calamities.  It would | 
|  | be nice if GDB itself would take care to remove all breakpoints | 
|  | at all times, but it doesn't, probably under an assumption that | 
|  | the OS cleans up when the debuggee exits.  */ | 
|  | x86_cleanup_dregs (); | 
|  |  | 
|  | prog_has_started = 0; | 
|  |  | 
|  | generic_mourn_inferior (); | 
|  | maybe_unpush_target (); | 
|  | } | 
|  |  | 
|  | /* Hardware watchpoint support.  */ | 
|  |  | 
|  | #define D_REGS edi.dr | 
|  | #define CONTROL D_REGS[7] | 
|  | #define STATUS D_REGS[6] | 
|  |  | 
|  | /* Pass the address ADDR to the inferior in the I'th debug register. | 
|  | Here we just store the address in D_REGS, the watchpoint will be | 
|  | actually set up when go32_wait runs the debuggee.  */ | 
|  | static void | 
|  | go32_set_dr (int i, CORE_ADDR addr) | 
|  | { | 
|  | if (i < 0 || i > 3) | 
|  | internal_error (_("Invalid register %d in go32_set_dr.\n"), i); | 
|  | D_REGS[i] = addr; | 
|  | } | 
|  |  | 
|  | /* Pass the value VAL to the inferior in the DR7 debug control | 
|  | register.  Here we just store the address in D_REGS, the watchpoint | 
|  | will be actually set up when go32_wait runs the debuggee.  */ | 
|  | static void | 
|  | go32_set_dr7 (unsigned long val) | 
|  | { | 
|  | CONTROL = val; | 
|  | } | 
|  |  | 
|  | /* Get the value of the DR6 debug status register from the inferior. | 
|  | Here we just return the value stored in D_REGS, as we've got it | 
|  | from the last go32_wait call.  */ | 
|  | static unsigned long | 
|  | go32_get_dr6 (void) | 
|  | { | 
|  | return STATUS; | 
|  | } | 
|  |  | 
|  | /* Get the value of the DR7 debug status register from the inferior. | 
|  | Here we just return the value stored in D_REGS, as we've got it | 
|  | from the last go32_wait call.  */ | 
|  |  | 
|  | static unsigned long | 
|  | go32_get_dr7 (void) | 
|  | { | 
|  | return CONTROL; | 
|  | } | 
|  |  | 
|  | /* Get the value of the DR debug register I from the inferior.  Here | 
|  | we just return the value stored in D_REGS, as we've got it from the | 
|  | last go32_wait call.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | go32_get_dr (int i) | 
|  | { | 
|  | if (i < 0 || i > 3) | 
|  | internal_error (_("Invalid register %d in go32_get_dr.\n"), i); | 
|  | return D_REGS[i]; | 
|  | } | 
|  |  | 
|  | /* Put the device open on handle FD into either raw or cooked | 
|  | mode, return 1 if it was in raw mode, zero otherwise.  */ | 
|  |  | 
|  | static int | 
|  | device_mode (int fd, int raw_p) | 
|  | { | 
|  | int oldmode, newmode; | 
|  | __dpmi_regs regs; | 
|  |  | 
|  | regs.x.ax = 0x4400; | 
|  | regs.x.bx = fd; | 
|  | __dpmi_int (0x21, ®s); | 
|  | if (regs.x.flags & 1) | 
|  | return -1; | 
|  | newmode = oldmode = regs.x.dx; | 
|  |  | 
|  | if (raw_p) | 
|  | newmode |= 0x20; | 
|  | else | 
|  | newmode &= ~0x20; | 
|  |  | 
|  | if (oldmode & 0x80)	/* Only for character dev.  */ | 
|  | { | 
|  | regs.x.ax = 0x4401; | 
|  | regs.x.bx = fd; | 
|  | regs.x.dx = newmode & 0xff;   /* Force upper byte zero, else it fails.  */ | 
|  | __dpmi_int (0x21, ®s); | 
|  | if (regs.x.flags & 1) | 
|  | return -1; | 
|  | } | 
|  | return (oldmode & 0x20) == 0x20; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int inf_mode_valid = 0; | 
|  | static int inf_terminal_mode; | 
|  |  | 
|  | /* This semaphore is needed because, amazingly enough, GDB calls | 
|  | target.to_terminal_ours more than once after the inferior stops. | 
|  | But we need the information from the first call only, since the | 
|  | second call will always see GDB's own cooked terminal.  */ | 
|  | static int terminal_is_ours = 1; | 
|  |  | 
|  | void | 
|  | go32_nat_target::terminal_init () | 
|  | { | 
|  | inf_mode_valid = 0;	/* Reinitialize, in case they are restarting child.  */ | 
|  | terminal_is_ours = 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::terminal_info (const char *args, int from_tty) | 
|  | { | 
|  | gdb_printf ("Inferior's terminal is in %s mode.\n", | 
|  | !inf_mode_valid | 
|  | ? "default" : inf_terminal_mode ? "raw" : "cooked"); | 
|  |  | 
|  | #if __DJGPP_MINOR__ > 2 | 
|  | if (child_cmd.redirection) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < DBG_HANDLES; i++) | 
|  | { | 
|  | if (child_cmd.redirection[i]->file_name) | 
|  | gdb_printf ("\tFile handle %d is redirected to `%s'.\n", | 
|  | i, child_cmd.redirection[i]->file_name); | 
|  | else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1) | 
|  | gdb_printf | 
|  | ("\tFile handle %d appears to be closed by inferior.\n", i); | 
|  | /* Mask off the raw/cooked bit when comparing device info words.  */ | 
|  | else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf) | 
|  | != (_get_dev_info (i) & 0xdf)) | 
|  | gdb_printf | 
|  | ("\tFile handle %d appears to be redirected by inferior.\n", i); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::terminal_inferior () | 
|  | { | 
|  | /* Redirect standard handles as child wants them.  */ | 
|  | errno = 0; | 
|  | if (redir_to_child (&child_cmd) == -1) | 
|  | { | 
|  | redir_to_debugger (&child_cmd); | 
|  | error (_("Cannot redirect standard handles for program: %s."), | 
|  | safe_strerror (errno)); | 
|  | } | 
|  | /* Set the console device of the inferior to whatever mode | 
|  | (raw or cooked) we found it last time.  */ | 
|  | if (terminal_is_ours) | 
|  | { | 
|  | if (inf_mode_valid) | 
|  | device_mode (0, inf_terminal_mode); | 
|  | terminal_is_ours = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::terminal_ours () | 
|  | { | 
|  | /* Switch to cooked mode on the gdb terminal and save the inferior | 
|  | terminal mode to be restored when it is resumed.  */ | 
|  | if (!terminal_is_ours) | 
|  | { | 
|  | inf_terminal_mode = device_mode (0, 0); | 
|  | if (inf_terminal_mode != -1) | 
|  | inf_mode_valid = 1; | 
|  | else | 
|  | /* If device_mode returned -1, we don't know what happens with | 
|  | handle 0 anymore, so make the info invalid.  */ | 
|  | inf_mode_valid = 0; | 
|  | terminal_is_ours = 1; | 
|  |  | 
|  | /* Restore debugger's standard handles.  */ | 
|  | errno = 0; | 
|  | if (redir_to_debugger (&child_cmd) == -1) | 
|  | { | 
|  | redir_to_child (&child_cmd); | 
|  | error (_("Cannot redirect standard handles for debugger: %s."), | 
|  | safe_strerror (errno)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | go32_nat_target::pass_ctrlc () | 
|  | { | 
|  | } | 
|  |  | 
|  | bool | 
|  | go32_nat_target::thread_alive (ptid_t ptid) | 
|  | { | 
|  | return ptid != null_ptid; | 
|  | } | 
|  |  | 
|  | std::string | 
|  | go32_nat_target::pid_to_str (ptid_t ptid) | 
|  | { | 
|  | return normal_pid_to_str (ptid); | 
|  | } | 
|  |  | 
|  | /* Return the current DOS codepage number.  */ | 
|  | static int | 
|  | dos_codepage (void) | 
|  | { | 
|  | __dpmi_regs regs; | 
|  |  | 
|  | regs.x.ax = 0x6601; | 
|  | __dpmi_int (0x21, ®s); | 
|  | if (!(regs.x.flags & 1)) | 
|  | return regs.x.bx & 0xffff; | 
|  | else | 
|  | return 437;	/* default */ | 
|  | } | 
|  |  | 
|  | /* Limited emulation of `nl_langinfo', for charset.c.  */ | 
|  | char * | 
|  | nl_langinfo (nl_item item) | 
|  | { | 
|  | char *retval; | 
|  |  | 
|  | switch (item) | 
|  | { | 
|  | case CODESET: | 
|  | { | 
|  | /* 8 is enough for SHORT_MAX + "CP" + null.  */ | 
|  | char buf[8]; | 
|  | int blen = sizeof (buf); | 
|  | int needed = snprintf (buf, blen, "CP%d", dos_codepage ()); | 
|  |  | 
|  | if (needed > blen)	/* Should never happen.  */ | 
|  | buf[0] = 0; | 
|  | retval = xstrdup (buf); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | retval = xstrdup (""); | 
|  | break; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | unsigned short windows_major, windows_minor; | 
|  |  | 
|  | /* Compute the version Windows reports via Int 2Fh/AX=1600h.  */ | 
|  | static void | 
|  | go32_get_windows_version(void) | 
|  | { | 
|  | __dpmi_regs r; | 
|  |  | 
|  | r.x.ax = 0x1600; | 
|  | __dpmi_int(0x2f, &r); | 
|  | if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff | 
|  | && (r.h.al > 3 || r.h.ah > 0)) | 
|  | { | 
|  | windows_major = r.h.al; | 
|  | windows_minor = r.h.ah; | 
|  | } | 
|  | else | 
|  | windows_major = 0xff;	/* meaning no Windows */ | 
|  | } | 
|  |  | 
|  | /* A subroutine of go32_sysinfo to display memory info.  */ | 
|  | static void | 
|  | print_mem (unsigned long datum, const char *header, int in_pages_p) | 
|  | { | 
|  | if (datum != 0xffffffffUL) | 
|  | { | 
|  | if (in_pages_p) | 
|  | datum <<= 12; | 
|  | gdb_puts (header); | 
|  | if (datum > 1024) | 
|  | { | 
|  | gdb_printf ("%lu KB", datum >> 10); | 
|  | if (datum > 1024 * 1024) | 
|  | gdb_printf (" (%lu MB)", datum >> 20); | 
|  | } | 
|  | else | 
|  | gdb_printf ("%lu Bytes", datum); | 
|  | gdb_puts ("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Display assorted information about the underlying OS.  */ | 
|  | static void | 
|  | go32_sysinfo (const char *arg, int from_tty) | 
|  | { | 
|  | static const char test_pattern[] = | 
|  | "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf" | 
|  | "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf" | 
|  | "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"; | 
|  | struct utsname u; | 
|  | char cpuid_vendor[13]; | 
|  | unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx; | 
|  | unsigned true_dos_version = _get_dos_version (1); | 
|  | unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor; | 
|  | int dpmi_flags; | 
|  | char dpmi_vendor_info[129]; | 
|  | int dpmi_vendor_available; | 
|  | __dpmi_version_ret dpmi_version_data; | 
|  | long eflags; | 
|  | __dpmi_free_mem_info mem_info; | 
|  | __dpmi_regs regs; | 
|  |  | 
|  | cpuid_vendor[0] = '\0'; | 
|  | if (uname (&u)) | 
|  | strcpy (u.machine, "Unknown x86"); | 
|  | else if (u.machine[0] == 'i' && u.machine[1] > 4) | 
|  | { | 
|  | /* CPUID with EAX = 0 returns the Vendor ID.  */ | 
|  | #if 0 | 
|  | /* Ideally we would use x86_cpuid(), but it needs someone to run | 
|  | native tests first to make sure things actually work.  They should. | 
|  | http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html  */ | 
|  | unsigned int eax, ebx, ecx, edx; | 
|  |  | 
|  | if (x86_cpuid (0, &eax, &ebx, &ecx, &edx)) | 
|  | { | 
|  | cpuid_max = eax; | 
|  | memcpy (&vendor[0], &ebx, 4); | 
|  | memcpy (&vendor[4], &ecx, 4); | 
|  | memcpy (&vendor[8], &edx, 4); | 
|  | cpuid_vendor[12] = '\0'; | 
|  | } | 
|  | #else | 
|  | __asm__ __volatile__ ("xorl   %%ebx, %%ebx;" | 
|  | "xorl   %%ecx, %%ecx;" | 
|  | "xorl   %%edx, %%edx;" | 
|  | "movl   $0,    %%eax;" | 
|  | "cpuid;" | 
|  | "movl   %%ebx,  %0;" | 
|  | "movl   %%edx,  %1;" | 
|  | "movl   %%ecx,  %2;" | 
|  | "movl   %%eax,  %3;" | 
|  | : "=m" (cpuid_vendor[0]), | 
|  | "=m" (cpuid_vendor[4]), | 
|  | "=m" (cpuid_vendor[8]), | 
|  | "=m" (cpuid_max) | 
|  | : | 
|  | : "%eax", "%ebx", "%ecx", "%edx"); | 
|  | cpuid_vendor[12] = '\0'; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | gdb_printf ("CPU Type.......................%s", u.machine); | 
|  | if (cpuid_vendor[0]) | 
|  | gdb_printf (" (%s)", cpuid_vendor); | 
|  | gdb_puts ("\n"); | 
|  |  | 
|  | /* CPUID with EAX = 1 returns processor signature and features.  */ | 
|  | if (cpuid_max >= 1) | 
|  | { | 
|  | static const char *brand_name[] = { | 
|  | "", | 
|  | " Celeron", | 
|  | " III", | 
|  | " III Xeon", | 
|  | "", "", "", "", | 
|  | " 4" | 
|  | }; | 
|  | char cpu_string[80]; | 
|  | char cpu_brand[20]; | 
|  | unsigned brand_idx; | 
|  | int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0; | 
|  | int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0; | 
|  | int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0; | 
|  | unsigned cpu_family, cpu_model; | 
|  |  | 
|  | #if 0 | 
|  | /* See comment above about cpuid usage.  */ | 
|  | x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx); | 
|  | #else | 
|  | __asm__ __volatile__ ("movl   $1, %%eax;" | 
|  | "cpuid;" | 
|  | : "=a" (cpuid_eax), | 
|  | "=b" (cpuid_ebx), | 
|  | "=d" (cpuid_edx) | 
|  | : | 
|  | : "%ecx"); | 
|  | #endif | 
|  | brand_idx = cpuid_ebx & 0xff; | 
|  | cpu_family = (cpuid_eax >> 8) & 0xf; | 
|  | cpu_model  = (cpuid_eax >> 4) & 0xf; | 
|  | cpu_brand[0] = '\0'; | 
|  | if (intel_p) | 
|  | { | 
|  | if (brand_idx > 0 | 
|  | && brand_idx < sizeof(brand_name)/sizeof(brand_name[0]) | 
|  | && *brand_name[brand_idx]) | 
|  | strcpy (cpu_brand, brand_name[brand_idx]); | 
|  | else if (cpu_family == 5) | 
|  | { | 
|  | if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4) | 
|  | strcpy (cpu_brand, " MMX"); | 
|  | else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1) | 
|  | strcpy (cpu_brand, " OverDrive"); | 
|  | else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2) | 
|  | strcpy (cpu_brand, " Dual"); | 
|  | } | 
|  | else if (cpu_family == 6 && cpu_model < 8) | 
|  | { | 
|  | switch (cpu_model) | 
|  | { | 
|  | case 1: | 
|  | strcpy (cpu_brand, " Pro"); | 
|  | break; | 
|  | case 3: | 
|  | strcpy (cpu_brand, " II"); | 
|  | break; | 
|  | case 5: | 
|  | strcpy (cpu_brand, " II Xeon"); | 
|  | break; | 
|  | case 6: | 
|  | strcpy (cpu_brand, " Celeron"); | 
|  | break; | 
|  | case 7: | 
|  | strcpy (cpu_brand, " III"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (amd_p) | 
|  | { | 
|  | switch (cpu_family) | 
|  | { | 
|  | case 4: | 
|  | strcpy (cpu_brand, "486/5x86"); | 
|  | break; | 
|  | case 5: | 
|  | switch (cpu_model) | 
|  | { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | strcpy (cpu_brand, "-K5"); | 
|  | break; | 
|  | case 6: | 
|  | case 7: | 
|  | strcpy (cpu_brand, "-K6"); | 
|  | break; | 
|  | case 8: | 
|  | strcpy (cpu_brand, "-K6-2"); | 
|  | break; | 
|  | case 9: | 
|  | strcpy (cpu_brand, "-K6-III"); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 6: | 
|  | switch (cpu_model) | 
|  | { | 
|  | case 1: | 
|  | case 2: | 
|  | case 4: | 
|  | strcpy (cpu_brand, " Athlon"); | 
|  | break; | 
|  | case 3: | 
|  | strcpy (cpu_brand, " Duron"); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d", | 
|  | intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")), | 
|  | cpu_brand, cpu_model, cpuid_eax & 0xf); | 
|  | gdb_printf ("%*s%s\n", 31, "", cpu_string); | 
|  | if (((cpuid_edx & (6 | (0x0d << 23))) != 0) | 
|  | || ((cpuid_edx & 1) == 0) | 
|  | || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0)) | 
|  | { | 
|  | gdb_puts ("CPU Features..................."); | 
|  | /* We only list features which might be useful in the DPMI | 
|  | environment.  */ | 
|  | if ((cpuid_edx & 1) == 0) | 
|  | gdb_puts ("No FPU "); /* It's unusual to not have an FPU.  */ | 
|  | if ((cpuid_edx & (1 << 1)) != 0) | 
|  | gdb_puts ("VME "); | 
|  | if ((cpuid_edx & (1 << 2)) != 0) | 
|  | gdb_puts ("DE "); | 
|  | if ((cpuid_edx & (1 << 4)) != 0) | 
|  | gdb_puts ("TSC "); | 
|  | if ((cpuid_edx & (1 << 23)) != 0) | 
|  | gdb_puts ("MMX "); | 
|  | if ((cpuid_edx & (1 << 25)) != 0) | 
|  | gdb_puts ("SSE "); | 
|  | if ((cpuid_edx & (1 << 26)) != 0) | 
|  | gdb_puts ("SSE2 "); | 
|  | if (amd_p || hygon_p) | 
|  | { | 
|  | if ((cpuid_edx & (1 << 31)) != 0) | 
|  | gdb_puts ("3DNow! "); | 
|  | if ((cpuid_edx & (1 << 30)) != 0) | 
|  | gdb_puts ("3DNow!Ext"); | 
|  | } | 
|  | gdb_puts ("\n"); | 
|  | } | 
|  | } | 
|  | gdb_puts ("\n"); | 
|  | gdb_printf ("DOS Version....................%s %s.%s", | 
|  | _os_flavor, u.release, u.version); | 
|  | if (true_dos_version != advertized_dos_version) | 
|  | gdb_printf (" (disguised as v%d.%d)", _osmajor, _osminor); | 
|  | gdb_puts ("\n"); | 
|  | if (!windows_major) | 
|  | go32_get_windows_version (); | 
|  | if (windows_major != 0xff) | 
|  | { | 
|  | const char *windows_flavor; | 
|  |  | 
|  | gdb_printf ("Windows Version................%d.%02d (Windows ", | 
|  | windows_major, windows_minor); | 
|  | switch (windows_major) | 
|  | { | 
|  | case 3: | 
|  | windows_flavor = "3.X"; | 
|  | break; | 
|  | case 4: | 
|  | switch (windows_minor) | 
|  | { | 
|  | case 0: | 
|  | windows_flavor = "95, 95A, or 95B"; | 
|  | break; | 
|  | case 3: | 
|  | windows_flavor = "95B OSR2.1 or 95C OSR2.5"; | 
|  | break; | 
|  | case 10: | 
|  | windows_flavor = "98 or 98 SE"; | 
|  | break; | 
|  | case 90: | 
|  | windows_flavor = "ME"; | 
|  | break; | 
|  | default: | 
|  | windows_flavor = "9X"; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | windows_flavor = "??"; | 
|  | break; | 
|  | } | 
|  | gdb_printf ("%s)\n", windows_flavor); | 
|  | } | 
|  | else if (true_dos_version == 0x532 && advertized_dos_version == 0x500) | 
|  | gdb_printf ("Windows Version................" | 
|  | "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n"); | 
|  | gdb_puts ("\n"); | 
|  | /* On some versions of Windows, __dpmi_get_capabilities returns | 
|  | zero, but the buffer is not filled with info, so we fill the | 
|  | buffer with a known pattern and test for it afterwards.  */ | 
|  | memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info)); | 
|  | dpmi_vendor_available = | 
|  | __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info); | 
|  | if (dpmi_vendor_available == 0 | 
|  | && memcmp (dpmi_vendor_info, test_pattern, | 
|  | sizeof(dpmi_vendor_info)) != 0) | 
|  | { | 
|  | /* The DPMI spec says the vendor string should be ASCIIZ, but | 
|  | I don't trust the vendors to follow that...  */ | 
|  | if (!memchr (&dpmi_vendor_info[2], 0, 126)) | 
|  | dpmi_vendor_info[128] = '\0'; | 
|  | gdb_printf ("DPMI Host......................" | 
|  | "%s v%d.%d (capabilities: %#x)\n", | 
|  | &dpmi_vendor_info[2], | 
|  | (unsigned)dpmi_vendor_info[0], | 
|  | (unsigned)dpmi_vendor_info[1], | 
|  | ((unsigned)dpmi_flags & 0x7f)); | 
|  | } | 
|  | else | 
|  | gdb_printf ("DPMI Host......................(Info not available)\n"); | 
|  | __dpmi_get_version (&dpmi_version_data); | 
|  | gdb_printf ("DPMI Version...................%d.%02d\n", | 
|  | dpmi_version_data.major, dpmi_version_data.minor); | 
|  | gdb_printf ("DPMI Info......................" | 
|  | "%s-bit DPMI, with%s Virtual Memory support\n", | 
|  | (dpmi_version_data.flags & 1) ? "32" : "16", | 
|  | (dpmi_version_data.flags & 4) ? "" : "out"); | 
|  | gdb_printf ("%*sInterrupts reflected to %s mode\n", 31, "", | 
|  | (dpmi_version_data.flags & 2) ? "V86" : "Real"); | 
|  | gdb_printf ("%*sProcessor type: i%d86\n", 31, "", | 
|  | dpmi_version_data.cpu); | 
|  | gdb_printf ("%*sPIC base interrupt: Master: %#x  Slave: %#x\n", 31, "", | 
|  | dpmi_version_data.master_pic, dpmi_version_data.slave_pic); | 
|  |  | 
|  | /* a_tss is only initialized when the debuggee is first run.  */ | 
|  | if (prog_has_started) | 
|  | { | 
|  | __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags)); | 
|  | gdb_printf ("Protection....................." | 
|  | "Ring %d (in %s), with%s I/O protection\n", | 
|  | a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT", | 
|  | (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out"); | 
|  | } | 
|  | gdb_puts ("\n"); | 
|  | __dpmi_get_free_memory_information (&mem_info); | 
|  | print_mem (mem_info.total_number_of_physical_pages, | 
|  | "DPMI Total Physical Memory.....", 1); | 
|  | print_mem (mem_info.total_number_of_free_pages, | 
|  | "DPMI Free Physical Memory......", 1); | 
|  | print_mem (mem_info.size_of_paging_file_partition_in_pages, | 
|  | "DPMI Swap Space................", 1); | 
|  | print_mem (mem_info.linear_address_space_size_in_pages, | 
|  | "DPMI Total Linear Address Size.", 1); | 
|  | print_mem (mem_info.free_linear_address_space_in_pages, | 
|  | "DPMI Free Linear Address Size..", 1); | 
|  | print_mem (mem_info.largest_available_free_block_in_bytes, | 
|  | "DPMI Largest Free Memory Block.", 0); | 
|  |  | 
|  | regs.h.ah = 0x48; | 
|  | regs.x.bx = 0xffff; | 
|  | __dpmi_int (0x21, ®s); | 
|  | print_mem (regs.x.bx << 4, "Free DOS Memory................", 0); | 
|  | regs.x.ax = 0x5800; | 
|  | __dpmi_int (0x21, ®s); | 
|  | if ((regs.x.flags & 1) == 0) | 
|  | { | 
|  | static const char *dos_hilo[] = { | 
|  | "Low", "", "", "", "High", "", "", "", "High, then Low" | 
|  | }; | 
|  | static const char *dos_fit[] = { | 
|  | "First", "Best", "Last" | 
|  | }; | 
|  | int hilo_idx = (regs.x.ax >> 4) & 0x0f; | 
|  | int fit_idx  = regs.x.ax & 0x0f; | 
|  |  | 
|  | if (hilo_idx > 8) | 
|  | hilo_idx = 0; | 
|  | if (fit_idx > 2) | 
|  | fit_idx = 0; | 
|  | gdb_printf ("DOS Memory Allocation..........%s memory, %s fit\n", | 
|  | dos_hilo[hilo_idx], dos_fit[fit_idx]); | 
|  | regs.x.ax = 0x5802; | 
|  | __dpmi_int (0x21, ®s); | 
|  | if ((regs.x.flags & 1) != 0) | 
|  | regs.h.al = 0; | 
|  | gdb_printf ("%*sUMBs %sin DOS memory chain\n", 31, "", | 
|  | regs.h.al == 0 ? "not " : ""); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct seg_descr { | 
|  | unsigned short limit0; | 
|  | unsigned short base0; | 
|  | unsigned char  base1; | 
|  | unsigned       stype:5; | 
|  | unsigned       dpl:2; | 
|  | unsigned       present:1; | 
|  | unsigned       limit1:4; | 
|  | unsigned       available:1; | 
|  | unsigned       dummy:1; | 
|  | unsigned       bit32:1; | 
|  | unsigned       page_granular:1; | 
|  | unsigned char  base2; | 
|  | } __attribute__ ((packed)); | 
|  |  | 
|  | struct gate_descr { | 
|  | unsigned short offset0; | 
|  | unsigned short selector; | 
|  | unsigned       param_count:5; | 
|  | unsigned       dummy:3; | 
|  | unsigned       stype:5; | 
|  | unsigned       dpl:2; | 
|  | unsigned       present:1; | 
|  | unsigned short offset1; | 
|  | } __attribute__ ((packed)); | 
|  |  | 
|  | /* Read LEN bytes starting at logical address ADDR, and put the result | 
|  | into DEST.  Return 1 if success, zero if not.  */ | 
|  | static int | 
|  | read_memory_region (unsigned long addr, void *dest, size_t len) | 
|  | { | 
|  | unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds); | 
|  | int retval = 1; | 
|  |  | 
|  | /* For the low memory, we can simply use _dos_ds.  */ | 
|  | if (addr <= dos_ds_limit - len) | 
|  | dosmemget (addr, len, dest); | 
|  | else | 
|  | { | 
|  | /* For memory above 1MB we need to set up a special segment to | 
|  | be able to access that memory.  */ | 
|  | int sel = __dpmi_allocate_ldt_descriptors (1); | 
|  |  | 
|  | if (sel <= 0) | 
|  | retval = 0; | 
|  | else | 
|  | { | 
|  | int access_rights = __dpmi_get_descriptor_access_rights (sel); | 
|  | size_t segment_limit = len - 1; | 
|  |  | 
|  | /* Make sure the crucial bits in the descriptor access | 
|  | rights are set correctly.  Some DPMI providers might barf | 
|  | if we set the segment limit to something that is not an | 
|  | integral multiple of 4KB pages if the granularity bit is | 
|  | not set to byte-granular, even though the DPMI spec says | 
|  | it's the host's responsibility to set that bit correctly.  */ | 
|  | if (len > 1024 * 1024) | 
|  | { | 
|  | access_rights |= 0x8000; | 
|  | /* Page-granular segments should have the low 12 bits of | 
|  | the limit set.  */ | 
|  | segment_limit |= 0xfff; | 
|  | } | 
|  | else | 
|  | access_rights &= ~0x8000; | 
|  |  | 
|  | if (__dpmi_set_segment_base_address (sel, addr) != -1 | 
|  | && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1 | 
|  | && __dpmi_set_segment_limit (sel, segment_limit) != -1 | 
|  | /* W2K silently fails to set the segment limit, leaving | 
|  | it at zero; this test avoids the resulting crash.  */ | 
|  | && __dpmi_get_segment_limit (sel) >= segment_limit) | 
|  | movedata (sel, 0, _my_ds (), (unsigned)dest, len); | 
|  | else | 
|  | retval = 0; | 
|  |  | 
|  | __dpmi_free_ldt_descriptor (sel); | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Get a segment descriptor stored at index IDX in the descriptor | 
|  | table whose base address is TABLE_BASE.  Return the descriptor | 
|  | type, or -1 if failure.  */ | 
|  | static int | 
|  | get_descriptor (unsigned long table_base, int idx, void *descr) | 
|  | { | 
|  | unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */ | 
|  |  | 
|  | if (read_memory_region (addr, descr, 8)) | 
|  | return (int)((struct seg_descr *)descr)->stype; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | struct dtr_reg { | 
|  | unsigned short limit __attribute__((packed)); | 
|  | unsigned long  base  __attribute__((packed)); | 
|  | }; | 
|  |  | 
|  | /* Display a segment descriptor stored at index IDX in a descriptor | 
|  | table whose type is TYPE and whose base address is BASE_ADDR.  If | 
|  | FORCE is non-zero, display even invalid descriptors.  */ | 
|  | static void | 
|  | display_descriptor (unsigned type, unsigned long base_addr, int idx, int force) | 
|  | { | 
|  | struct seg_descr descr; | 
|  | struct gate_descr gate; | 
|  |  | 
|  | /* Get the descriptor from the table.  */ | 
|  | if (idx == 0 && type == 0) | 
|  | gdb_puts ("0x000: null descriptor\n"); | 
|  | else if (get_descriptor (base_addr, idx, &descr) != -1) | 
|  | { | 
|  | /* For each type of descriptor table, this has a bit set if the | 
|  | corresponding type of selectors is valid in that table.  */ | 
|  | static unsigned allowed_descriptors[] = { | 
|  | 0xffffdafeL,   /* GDT */ | 
|  | 0x0000c0e0L,   /* IDT */ | 
|  | 0xffffdafaL    /* LDT */ | 
|  | }; | 
|  |  | 
|  | /* If the program hasn't started yet, assume the debuggee will | 
|  | have the same CPL as the debugger.  */ | 
|  | int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3; | 
|  | unsigned long limit = (descr.limit1 << 16) | descr.limit0; | 
|  |  | 
|  | if (descr.present | 
|  | && (allowed_descriptors[type] & (1 << descr.stype)) != 0) | 
|  | { | 
|  | gdb_printf ("0x%03x: ", | 
|  | type == 1 | 
|  | ? idx : (idx * 8) | (type ? (cpl | 4) : 0)); | 
|  | if (descr.page_granular) | 
|  | limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */ | 
|  | if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3 | 
|  | || descr.stype == 9 || descr.stype == 11 | 
|  | || (descr.stype >= 16 && descr.stype < 32)) | 
|  | gdb_printf ("base=0x%02x%02x%04x limit=0x%08lx", | 
|  | descr.base2, descr.base1, descr.base0, limit); | 
|  |  | 
|  | switch (descr.stype) | 
|  | { | 
|  | case 1: | 
|  | case 3: | 
|  | gdb_printf (" 16-bit TSS  (task %sactive)", | 
|  | descr.stype == 3 ? "" : "in"); | 
|  | break; | 
|  | case 2: | 
|  | gdb_puts (" LDT"); | 
|  | break; | 
|  | case 4: | 
|  | memcpy (&gate, &descr, sizeof gate); | 
|  | gdb_printf ("selector=0x%04x  offs=0x%04x%04x", | 
|  | gate.selector, gate.offset1, gate.offset0); | 
|  | gdb_printf (" 16-bit Call Gate (params=%d)", | 
|  | gate.param_count); | 
|  | break; | 
|  | case 5: | 
|  | gdb_printf ("TSS selector=0x%04x", descr.base0); | 
|  | gdb_printf ("%*sTask Gate", 16, ""); | 
|  | break; | 
|  | case 6: | 
|  | case 7: | 
|  | memcpy (&gate, &descr, sizeof gate); | 
|  | gdb_printf ("selector=0x%04x  offs=0x%04x%04x", | 
|  | gate.selector, gate.offset1, gate.offset0); | 
|  | gdb_printf (" 16-bit %s Gate", | 
|  | descr.stype == 6 ? "Interrupt" : "Trap"); | 
|  | break; | 
|  | case 9: | 
|  | case 11: | 
|  | gdb_printf (" 32-bit TSS (task %sactive)", | 
|  | descr.stype == 3 ? "" : "in"); | 
|  | break; | 
|  | case 12: | 
|  | memcpy (&gate, &descr, sizeof gate); | 
|  | gdb_printf ("selector=0x%04x  offs=0x%04x%04x", | 
|  | gate.selector, gate.offset1, gate.offset0); | 
|  | gdb_printf (" 32-bit Call Gate (params=%d)", | 
|  | gate.param_count); | 
|  | break; | 
|  | case 14: | 
|  | case 15: | 
|  | memcpy (&gate, &descr, sizeof gate); | 
|  | gdb_printf ("selector=0x%04x  offs=0x%04x%04x", | 
|  | gate.selector, gate.offset1, gate.offset0); | 
|  | gdb_printf (" 32-bit %s Gate", | 
|  | descr.stype == 14 ? "Interrupt" : "Trap"); | 
|  | break; | 
|  | case 16:		/* data segments */ | 
|  | case 17: | 
|  | case 18: | 
|  | case 19: | 
|  | case 20: | 
|  | case 21: | 
|  | case 22: | 
|  | case 23: | 
|  | gdb_printf (" %s-bit Data (%s Exp-%s%s)", | 
|  | descr.bit32 ? "32" : "16", | 
|  | descr.stype & 2 | 
|  | ? "Read/Write," : "Read-Only, ", | 
|  | descr.stype & 4 ? "down" : "up", | 
|  | descr.stype & 1 ? "" : ", N.Acc"); | 
|  | break; | 
|  | case 24:		/* code segments */ | 
|  | case 25: | 
|  | case 26: | 
|  | case 27: | 
|  | case 28: | 
|  | case 29: | 
|  | case 30: | 
|  | case 31: | 
|  | gdb_printf (" %s-bit Code (%s,  %sConf%s)", | 
|  | descr.bit32 ? "32" : "16", | 
|  | descr.stype & 2 ? "Exec/Read" : "Exec-Only", | 
|  | descr.stype & 4 ? "" : "N.", | 
|  | descr.stype & 1 ? "" : ", N.Acc"); | 
|  | break; | 
|  | default: | 
|  | gdb_printf ("Unknown type 0x%02x", descr.stype); | 
|  | break; | 
|  | } | 
|  | gdb_puts ("\n"); | 
|  | } | 
|  | else if (force) | 
|  | { | 
|  | gdb_printf ("0x%03x: ", | 
|  | type == 1 | 
|  | ? idx : (idx * 8) | (type ? (cpl | 4) : 0)); | 
|  | if (!descr.present) | 
|  | gdb_puts ("Segment not present\n"); | 
|  | else | 
|  | gdb_printf ("Segment type 0x%02x is invalid in this table\n", | 
|  | descr.stype); | 
|  | } | 
|  | } | 
|  | else if (force) | 
|  | gdb_printf ("0x%03x: Cannot read this descriptor\n", idx); | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_sldt (const char *arg, int from_tty) | 
|  | { | 
|  | struct dtr_reg gdtr; | 
|  | unsigned short ldtr = 0; | 
|  | int ldt_idx; | 
|  | struct seg_descr ldt_descr; | 
|  | long ldt_entry = -1L; | 
|  | int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | { | 
|  | ldt_entry = parse_and_eval_long (arg); | 
|  | if (ldt_entry < 0 | 
|  | || (ldt_entry & 4) == 0 | 
|  | || (ldt_entry & 3) != (cpl & 3)) | 
|  | error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ ); | 
|  | __asm__ __volatile__ ("sldt   %0" : "=m" (ldtr) : /* no inputs */ ); | 
|  | ldt_idx = ldtr / 8; | 
|  | if (ldt_idx == 0) | 
|  | gdb_puts ("There is no LDT.\n"); | 
|  | /* LDT's entry in the GDT must have the type LDT, which is 2.  */ | 
|  | else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2) | 
|  | gdb_printf ("LDT is present (at %#x), but unreadable by GDB.\n", | 
|  | ldt_descr.base0 | 
|  | | (ldt_descr.base1 << 16) | 
|  | | (ldt_descr.base2 << 24)); | 
|  | else | 
|  | { | 
|  | unsigned base = | 
|  | ldt_descr.base0 | 
|  | | (ldt_descr.base1 << 16) | 
|  | | (ldt_descr.base2 << 24); | 
|  | unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16); | 
|  | int max_entry; | 
|  |  | 
|  | if (ldt_descr.page_granular) | 
|  | /* Page-granular segments must have the low 12 bits of their | 
|  | limit set.  */ | 
|  | limit = (limit << 12) | 0xfff; | 
|  | /* LDT cannot have more than 8K 8-byte entries, i.e. more than | 
|  | 64KB.  */ | 
|  | if (limit > 0xffff) | 
|  | limit = 0xffff; | 
|  |  | 
|  | max_entry = (limit + 1) / 8; | 
|  |  | 
|  | if (ldt_entry >= 0) | 
|  | { | 
|  | if (ldt_entry > limit) | 
|  | error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"), | 
|  | (unsigned long)ldt_entry, limit); | 
|  |  | 
|  | display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < max_entry; i++) | 
|  | display_descriptor (ldt_descr.stype, base, i, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_sgdt (const char *arg, int from_tty) | 
|  | { | 
|  | struct dtr_reg gdtr; | 
|  | long gdt_entry = -1L; | 
|  | int max_entry; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | { | 
|  | gdt_entry = parse_and_eval_long (arg); | 
|  | if (gdt_entry < 0 || (gdt_entry & 7) != 0) | 
|  | error (_("Invalid GDT entry 0x%03lx: " | 
|  | "not an integral multiple of 8."), | 
|  | (unsigned long)gdt_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ ); | 
|  | max_entry = (gdtr.limit + 1) / 8; | 
|  |  | 
|  | if (gdt_entry >= 0) | 
|  | { | 
|  | if (gdt_entry > gdtr.limit) | 
|  | error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"), | 
|  | (unsigned long)gdt_entry, gdtr.limit); | 
|  |  | 
|  | display_descriptor (0, gdtr.base, gdt_entry / 8, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < max_entry; i++) | 
|  | display_descriptor (0, gdtr.base, i, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_sidt (const char *arg, int from_tty) | 
|  | { | 
|  | struct dtr_reg idtr; | 
|  | long idt_entry = -1L; | 
|  | int max_entry; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | { | 
|  | idt_entry = parse_and_eval_long (arg); | 
|  | if (idt_entry < 0) | 
|  | error (_("Invalid (negative) IDT entry %ld."), idt_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | __asm__ __volatile__ ("sidt   %0" : "=m" (idtr) : /* no inputs */ ); | 
|  | max_entry = (idtr.limit + 1) / 8; | 
|  | if (max_entry > 0x100)	/* No more than 256 entries.  */ | 
|  | max_entry = 0x100; | 
|  |  | 
|  | if (idt_entry >= 0) | 
|  | { | 
|  | if (idt_entry > idtr.limit) | 
|  | error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"), | 
|  | (unsigned long)idt_entry, idtr.limit); | 
|  |  | 
|  | display_descriptor (1, idtr.base, idt_entry, 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < max_entry; i++) | 
|  | display_descriptor (1, idtr.base, i, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cached linear address of the base of the page directory.  For | 
|  | now, available only under CWSDPMI.  Code based on ideas and | 
|  | suggestions from Charles Sandmann <sandmann@clio.rice.edu>.  */ | 
|  | static unsigned long pdbr; | 
|  |  | 
|  | static unsigned long | 
|  | get_cr3 (void) | 
|  | { | 
|  | unsigned offset; | 
|  | unsigned taskreg; | 
|  | unsigned long taskbase, cr3; | 
|  | struct dtr_reg gdtr; | 
|  |  | 
|  | if (pdbr > 0 && pdbr <= 0xfffff) | 
|  | return pdbr; | 
|  |  | 
|  | /* Get the linear address of GDT and the Task Register.  */ | 
|  | __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ ); | 
|  | __asm__ __volatile__ ("str    %0" : "=m" (taskreg) : /* no inputs */ ); | 
|  |  | 
|  | /* Task Register is a segment selector for the TSS of the current | 
|  | task.  Therefore, it can be used as an index into the GDT to get | 
|  | at the segment descriptor for the TSS.  To get the index, reset | 
|  | the low 3 bits of the selector (which give the CPL).  Add 2 to the | 
|  | offset to point to the 3 low bytes of the base address.  */ | 
|  | offset = gdtr.base + (taskreg & 0xfff8) + 2; | 
|  |  | 
|  |  | 
|  | /* CWSDPMI's task base is always under the 1MB mark.  */ | 
|  | if (offset > 0xfffff) | 
|  | return 0; | 
|  |  | 
|  | _farsetsel (_dos_ds); | 
|  | taskbase  = _farnspeekl (offset) & 0xffffffU; | 
|  | taskbase += _farnspeekl (offset + 2) & 0xff000000U; | 
|  | if (taskbase > 0xfffff) | 
|  | return 0; | 
|  |  | 
|  | /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at | 
|  | offset 1Ch in the TSS.  */ | 
|  | cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff; | 
|  | if (cr3 > 0xfffff) | 
|  | { | 
|  | #if 0  /* Not fully supported yet.  */ | 
|  | /* The Page Directory is in UMBs.  In that case, CWSDPMI puts | 
|  | the first Page Table right below the Page Directory.  Thus, | 
|  | the first Page Table's entry for its own address and the Page | 
|  | Directory entry for that Page Table will hold the same | 
|  | physical address.  The loop below searches the entire UMB | 
|  | range of addresses for such an occurrence.  */ | 
|  | unsigned long addr, pte_idx; | 
|  |  | 
|  | for (addr = 0xb0000, pte_idx = 0xb0; | 
|  | pte_idx < 0xff; | 
|  | addr += 0x1000, pte_idx++) | 
|  | { | 
|  | if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) == | 
|  | (_farnspeekl (addr + 0x1000) & 0xfffff027)) | 
|  | && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3)) | 
|  | { | 
|  | cr3 = addr + 0x1000; | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (cr3 > 0xfffff) | 
|  | cr3 = 0; | 
|  | } | 
|  |  | 
|  | return cr3; | 
|  | } | 
|  |  | 
|  | /* Return the N'th Page Directory entry.  */ | 
|  | static unsigned long | 
|  | get_pde (int n) | 
|  | { | 
|  | unsigned long pde = 0; | 
|  |  | 
|  | if (pdbr && n >= 0 && n < 1024) | 
|  | { | 
|  | pde = _farpeekl (_dos_ds, pdbr + 4*n); | 
|  | } | 
|  | return pde; | 
|  | } | 
|  |  | 
|  | /* Return the N'th entry of the Page Table whose Page Directory entry | 
|  | is PDE.  */ | 
|  | static unsigned long | 
|  | get_pte (unsigned long pde, int n) | 
|  | { | 
|  | unsigned long pte = 0; | 
|  |  | 
|  | /* pde & 0x80 tests the 4MB page bit.  We don't support 4MB | 
|  | page tables, for now.  */ | 
|  | if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024) | 
|  | { | 
|  | pde &= ~0xfff;	/* Clear non-address bits.  */ | 
|  | pte = _farpeekl (_dos_ds, pde + 4*n); | 
|  | } | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* Display a Page Directory or Page Table entry.  IS_DIR, if non-zero, | 
|  | says this is a Page Directory entry.  If FORCE is non-zero, display | 
|  | the entry even if its Present flag is off.  OFF is the offset of the | 
|  | address from the page's base address.  */ | 
|  | static void | 
|  | display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off) | 
|  | { | 
|  | if ((entry & 1) != 0) | 
|  | { | 
|  | gdb_printf ("Base=0x%05lx000", entry >> 12); | 
|  | if ((entry & 0x100) && !is_dir) | 
|  | gdb_puts (" Global"); | 
|  | if ((entry & 0x40) && !is_dir) | 
|  | gdb_puts (" Dirty"); | 
|  | gdb_printf (" %sAcc.", (entry & 0x20) ? "" : "Not-"); | 
|  | gdb_printf (" %sCached", (entry & 0x10) ? "" : "Not-"); | 
|  | gdb_printf (" Write-%s", (entry & 8) ? "Thru" : "Back"); | 
|  | gdb_printf (" %s", (entry & 4) ? "Usr" : "Sup"); | 
|  | gdb_printf (" Read-%s", (entry & 2) ? "Write" : "Only"); | 
|  | if (off) | 
|  | gdb_printf (" +0x%x", off); | 
|  | gdb_puts ("\n"); | 
|  | } | 
|  | else if (force) | 
|  | gdb_printf ("Page%s not present or not supported; value=0x%lx.\n", | 
|  | is_dir ? " Table" : "", entry >> 1); | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_pde (const char *arg, int from_tty) | 
|  | { | 
|  | long pde_idx = -1, i; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | { | 
|  | pde_idx = parse_and_eval_long (arg); | 
|  | if (pde_idx < 0 || pde_idx >= 1024) | 
|  | error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | pdbr = get_cr3 (); | 
|  | if (!pdbr) | 
|  | gdb_puts ("Access to Page Directories is " | 
|  | "not supported on this system.\n"); | 
|  | else if (pde_idx >= 0) | 
|  | display_ptable_entry (get_pde (pde_idx), 1, 1, 0); | 
|  | else | 
|  | for (i = 0; i < 1024; i++) | 
|  | display_ptable_entry (get_pde (i), 1, 0, 0); | 
|  | } | 
|  |  | 
|  | /* A helper function to display entries in a Page Table pointed to by | 
|  | the N'th entry in the Page Directory.  If FORCE is non-zero, say | 
|  | something even if the Page Table is not accessible.  */ | 
|  | static void | 
|  | display_page_table (long n, int force) | 
|  | { | 
|  | unsigned long pde = get_pde (n); | 
|  |  | 
|  | if ((pde & 1) != 0) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | gdb_printf ("Page Table pointed to by " | 
|  | "Page Directory entry 0x%lx:\n", n); | 
|  | for (i = 0; i < 1024; i++) | 
|  | display_ptable_entry (get_pte (pde, i), 0, 0, 0); | 
|  | gdb_puts ("\n"); | 
|  | } | 
|  | else if (force) | 
|  | gdb_printf ("Page Table not present; value=0x%lx.\n", pde >> 1); | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_pte (const char *arg, int from_tty) | 
|  | { | 
|  | long pde_idx = -1L, i; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | { | 
|  | pde_idx = parse_and_eval_long (arg); | 
|  | if (pde_idx < 0 || pde_idx >= 1024) | 
|  | error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | pdbr = get_cr3 (); | 
|  | if (!pdbr) | 
|  | gdb_puts ("Access to Page Tables is not supported on this system.\n"); | 
|  | else if (pde_idx >= 0) | 
|  | display_page_table (pde_idx, 1); | 
|  | else | 
|  | for (i = 0; i < 1024; i++) | 
|  | display_page_table (i, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | go32_pte_for_address (const char *arg, int from_tty) | 
|  | { | 
|  | CORE_ADDR addr = 0, i; | 
|  |  | 
|  | if (arg && *arg) | 
|  | { | 
|  | arg = skip_spaces (arg); | 
|  |  | 
|  | if (*arg) | 
|  | addr = parse_and_eval_address (arg); | 
|  | } | 
|  | if (!addr) | 
|  | error_no_arg (_("linear address")); | 
|  |  | 
|  | pdbr = get_cr3 (); | 
|  | if (!pdbr) | 
|  | gdb_puts ("Access to Page Tables is not supported on this system.\n"); | 
|  | else | 
|  | { | 
|  | int pde_idx = (addr >> 22) & 0x3ff; | 
|  | int pte_idx = (addr >> 12) & 0x3ff; | 
|  | unsigned offs = addr & 0xfff; | 
|  |  | 
|  | gdb_printf ("Page Table entry for address %s:\n", | 
|  | hex_string(addr)); | 
|  | display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct cmd_list_element *info_dos_cmdlist = NULL; | 
|  |  | 
|  | void _initialize_go32_nat (); | 
|  | void | 
|  | _initialize_go32_nat () | 
|  | { | 
|  | x86_dr_low.set_control = go32_set_dr7; | 
|  | x86_dr_low.set_addr = go32_set_dr; | 
|  | x86_dr_low.get_status = go32_get_dr6; | 
|  | x86_dr_low.get_control = go32_get_dr7; | 
|  | x86_dr_low.get_addr = go32_get_dr; | 
|  | x86_set_debug_register_length (4); | 
|  |  | 
|  | add_inf_child_target (&the_go32_nat_target); | 
|  |  | 
|  | /* Initialize child's cwd as empty to be initialized when starting | 
|  | the child.  */ | 
|  | *child_cwd = 0; | 
|  |  | 
|  | /* Initialize child's command line storage.  */ | 
|  | if (redir_debug_init (&child_cmd) == -1) | 
|  | internal_error (_("Cannot allocate redirection storage: " | 
|  | "not enough memory.\n")); | 
|  |  | 
|  | /* We are always processing GCC-compiled programs.  */ | 
|  | processing_gcc_compilation = 2; | 
|  |  | 
|  | add_basic_prefix_cmd ("dos", class_info, _("\ | 
|  | Print information specific to DJGPP (aka MS-DOS) debugging."), | 
|  | &info_dos_cmdlist, 0, &infolist); | 
|  |  | 
|  | add_cmd ("sysinfo", class_info, go32_sysinfo, _("\ | 
|  | Display information about the target system, including CPU, OS, DPMI, etc."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("ldt", class_info, go32_sldt, _("\ | 
|  | Display entries in the LDT (Local Descriptor Table).\n\ | 
|  | Entry number (an expression) as an argument means display only that entry."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("gdt", class_info, go32_sgdt, _("\ | 
|  | Display entries in the GDT (Global Descriptor Table).\n\ | 
|  | Entry number (an expression) as an argument means display only that entry."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("idt", class_info, go32_sidt, _("\ | 
|  | Display entries in the IDT (Interrupt Descriptor Table).\n\ | 
|  | Entry number (an expression) as an argument means display only that entry."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("pde", class_info, go32_pde, _("\ | 
|  | Display entries in the Page Directory.\n\ | 
|  | Entry number (an expression) as an argument means display only that entry."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("pte", class_info, go32_pte, _("\ | 
|  | Display entries in Page Tables.\n\ | 
|  | Entry number (an expression) as an argument means display only entries\n\ | 
|  | from the Page Table pointed to by the specified Page Directory entry."), | 
|  | &info_dos_cmdlist); | 
|  | add_cmd ("address-pte", class_info, go32_pte_for_address, _("\ | 
|  | Display a Page Table entry for a linear address.\n\ | 
|  | The address argument must be a linear address, after adding to\n\ | 
|  | it the base address of the appropriate segment.\n\ | 
|  | The base address of variables and functions in the debuggee's data\n\ | 
|  | or code segment is stored in the variable __djgpp_base_address,\n\ | 
|  | so use `__djgpp_base_address + (char *)&var' as the argument.\n\ | 
|  | For other segments, look up their base address in the output of\n\ | 
|  | the `info dos ldt' command."), | 
|  | &info_dos_cmdlist); | 
|  | } | 
|  |  | 
|  | pid_t | 
|  | tcgetpgrp (int fd) | 
|  | { | 
|  | if (isatty (fd)) | 
|  | return SOME_PID; | 
|  | errno = ENOTTY; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int | 
|  | tcsetpgrp (int fd, pid_t pgid) | 
|  | { | 
|  | if (isatty (fd) && pgid == SOME_PID) | 
|  | return 0; | 
|  | errno = pgid == SOME_PID ? ENOTTY : ENOSYS; | 
|  | return -1; | 
|  | } |