|  | /* Perform non-arithmetic operations on values, for GDB. | 
|  |  | 
|  | Copyright (C) 1986-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "event-top.h" | 
|  | #include "extract-store-integer.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "value.h" | 
|  | #include "frame.h" | 
|  | #include "inferior.h" | 
|  | #include "gdbcore.h" | 
|  | #include "target.h" | 
|  | #include "demangle.h" | 
|  | #include "language.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "regcache.h" | 
|  | #include "cp-abi.h" | 
|  | #include "block.h" | 
|  | #include "infcall.h" | 
|  | #include "dictionary.h" | 
|  | #include "cp-support.h" | 
|  | #include "target-float.h" | 
|  | #include "tracepoint.h" | 
|  | #include "observable.h" | 
|  | #include "objfiles.h" | 
|  | #include "extension.h" | 
|  | #include "gdbsupport/byte-vector.h" | 
|  | #include "typeprint.h" | 
|  |  | 
|  | /* Local functions.  */ | 
|  |  | 
|  | static int typecmp (bool staticp, bool varargs, int nargs, | 
|  | struct field t1[], const gdb::array_view<value *> t2); | 
|  |  | 
|  | static struct value *search_struct_field (const char *, struct value *, | 
|  | struct type *, int); | 
|  |  | 
|  | static struct value *search_struct_method (const char *, struct value **, | 
|  | std::optional<gdb::array_view<value *>>, | 
|  | LONGEST, int *, struct type *); | 
|  |  | 
|  | static int find_oload_champ_namespace (gdb::array_view<value *> args, | 
|  | const char *, const char *, | 
|  | std::vector<symbol *> *oload_syms, | 
|  | badness_vector *, | 
|  | const int no_adl); | 
|  |  | 
|  | static int find_oload_champ_namespace_loop (gdb::array_view<value *> args, | 
|  | const char *, const char *, | 
|  | int, std::vector<symbol *> *oload_syms, | 
|  | badness_vector *, int *, | 
|  | const int no_adl); | 
|  |  | 
|  | static int find_oload_champ (gdb::array_view<value *> args, | 
|  | size_t num_fns, | 
|  | fn_field *methods, | 
|  | xmethod_worker_up *xmethods, | 
|  | symbol **functions, | 
|  | badness_vector *oload_champ_bv); | 
|  |  | 
|  | static int oload_method_static_p (struct fn_field *, int); | 
|  |  | 
|  | enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE }; | 
|  |  | 
|  | static enum oload_classification classify_oload_match | 
|  | (const badness_vector &, int, int); | 
|  |  | 
|  | static struct value *value_struct_elt_for_reference (struct type *, | 
|  | int, struct type *, | 
|  | const char *, | 
|  | struct type *, | 
|  | int, enum noside); | 
|  |  | 
|  | static struct value *value_namespace_elt (const struct type *, | 
|  | const char *, int , enum noside); | 
|  |  | 
|  | static struct value *value_maybe_namespace_elt (const struct type *, | 
|  | const char *, int, | 
|  | enum noside); | 
|  |  | 
|  | static CORE_ADDR allocate_space_in_inferior (int); | 
|  |  | 
|  | static struct value *cast_into_complex (struct type *, struct value *); | 
|  |  | 
|  | bool overload_resolution = false; | 
|  | static void | 
|  | show_overload_resolution (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, | 
|  | const char *value) | 
|  | { | 
|  | gdb_printf (file, _("Overload resolution in evaluating " | 
|  | "C++ functions is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | /* Find the address of function name NAME in the inferior.  If OBJF_P | 
|  | is non-NULL, *OBJF_P will be set to the OBJFILE where the function | 
|  | is defined.  */ | 
|  |  | 
|  | struct value * | 
|  | find_function_in_inferior (const char *name, struct objfile **objf_p) | 
|  | { | 
|  | struct block_symbol sym; | 
|  |  | 
|  | sym = lookup_symbol (name, nullptr, SEARCH_TYPE_DOMAIN, nullptr); | 
|  | if (sym.symbol != NULL) | 
|  | { | 
|  | if (objf_p) | 
|  | *objf_p = sym.symbol->objfile (); | 
|  |  | 
|  | return value_of_variable (sym.symbol, sym.block); | 
|  | } | 
|  | else | 
|  | { | 
|  | bound_minimal_symbol msymbol | 
|  | = lookup_minimal_symbol (current_program_space, name); | 
|  |  | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | struct objfile *objfile = msymbol.objfile; | 
|  | struct gdbarch *gdbarch = objfile->arch (); | 
|  |  | 
|  | struct type *type; | 
|  | CORE_ADDR maddr; | 
|  | type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char); | 
|  | type = lookup_function_type (type); | 
|  | type = lookup_pointer_type (type); | 
|  | maddr = msymbol.value_address (); | 
|  |  | 
|  | if (objf_p) | 
|  | *objf_p = objfile; | 
|  |  | 
|  | return value_from_pointer (type, maddr); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!target_has_execution ()) | 
|  | error (_("evaluation of this expression " | 
|  | "requires the target program to be active")); | 
|  | else | 
|  | error (_("evaluation of this expression requires the " | 
|  | "program to have a function \"%s\"."), | 
|  | name); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate NBYTES of space in the inferior using the inferior's | 
|  | malloc and return a value that is a pointer to the allocated | 
|  | space.  */ | 
|  |  | 
|  | struct value * | 
|  | value_allocate_space_in_inferior (int len) | 
|  | { | 
|  | struct objfile *objf; | 
|  | struct value *val = find_function_in_inferior ("malloc", &objf); | 
|  | struct gdbarch *gdbarch = objf->arch (); | 
|  | struct value *blocklen; | 
|  |  | 
|  | blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len); | 
|  | val = call_function_by_hand (val, NULL, blocklen); | 
|  | if (value_logical_not (val)) | 
|  | { | 
|  | if (!target_has_execution ()) | 
|  | error (_("No memory available to program now: " | 
|  | "you need to start the target first")); | 
|  | else | 
|  | error (_("No memory available to program: call to malloc failed")); | 
|  | } | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | allocate_space_in_inferior (int len) | 
|  | { | 
|  | return value_as_long (value_allocate_space_in_inferior (len)); | 
|  | } | 
|  |  | 
|  | /* Cast struct value VAL to type TYPE and return as a value. | 
|  | Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION | 
|  | for this to work.  Typedef to one of the codes is permitted. | 
|  | Returns NULL if the cast is neither an upcast nor a downcast.  */ | 
|  |  | 
|  | static struct value * | 
|  | value_cast_structs (struct type *type, struct value *v2) | 
|  | { | 
|  | struct type *t1; | 
|  | struct type *t2; | 
|  | struct value *v; | 
|  |  | 
|  | gdb_assert (type != NULL && v2 != NULL); | 
|  |  | 
|  | t1 = check_typedef (type); | 
|  | t2 = check_typedef (v2->type ()); | 
|  |  | 
|  | /* Check preconditions.  */ | 
|  | gdb_assert ((t1->code () == TYPE_CODE_STRUCT | 
|  | || t1->code () == TYPE_CODE_UNION) | 
|  | && !!"Precondition is that type is of STRUCT or UNION kind."); | 
|  | gdb_assert ((t2->code () == TYPE_CODE_STRUCT | 
|  | || t2->code () == TYPE_CODE_UNION) | 
|  | && !!"Precondition is that value is of STRUCT or UNION kind"); | 
|  |  | 
|  | if (t1->name () != NULL | 
|  | && t2->name () != NULL | 
|  | && !strcmp (t1->name (), t2->name ())) | 
|  | return NULL; | 
|  |  | 
|  | /* Upcasting: look in the type of the source to see if it contains the | 
|  | type of the target as a superclass.  If so, we'll need to | 
|  | offset the pointer rather than just change its type.  */ | 
|  | if (t1->name () != NULL) | 
|  | { | 
|  | v = search_struct_field (t1->name (), | 
|  | v2, t2, 1); | 
|  | if (v) | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Downcasting: look in the type of the target to see if it contains the | 
|  | type of the source as a superclass.  If so, we'll need to | 
|  | offset the pointer rather than just change its type.  */ | 
|  | if (t2->name () != NULL) | 
|  | { | 
|  | /* Try downcasting using the run-time type of the value.  */ | 
|  | int full, using_enc; | 
|  | LONGEST top; | 
|  | struct type *real_type; | 
|  |  | 
|  | real_type = value_rtti_type (v2, &full, &top, &using_enc); | 
|  | if (real_type) | 
|  | { | 
|  | v = value_full_object (v2, real_type, full, top, using_enc); | 
|  | v = value_at_lazy (real_type, v->address ()); | 
|  | real_type = v->type (); | 
|  |  | 
|  | /* We might be trying to cast to the outermost enclosing | 
|  | type, in which case search_struct_field won't work.  */ | 
|  | if (real_type->name () != NULL | 
|  | && !strcmp (real_type->name (), t1->name ())) | 
|  | return v; | 
|  |  | 
|  | v = search_struct_field (t2->name (), v, real_type, 1); | 
|  | if (v) | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Try downcasting using information from the destination type | 
|  | T2.  This wouldn't work properly for classes with virtual | 
|  | bases, but those were handled above.  */ | 
|  | v = search_struct_field (t2->name (), | 
|  | value::zero (t1, not_lval), t1, 1); | 
|  | if (v) | 
|  | { | 
|  | /* Downcasting is possible (t1 is superclass of v2).  */ | 
|  | CORE_ADDR addr2 = v2->address () + v2->embedded_offset (); | 
|  |  | 
|  | addr2 -= v->address () + v->embedded_offset (); | 
|  | return value_at (type, addr2); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Cast one pointer or reference type to another.  Both TYPE and | 
|  | the type of ARG2 should be pointer types, or else both should be | 
|  | reference types.  If SUBCLASS_CHECK is non-zero, this will force a | 
|  | check to see whether TYPE is a superclass of ARG2's type.  If | 
|  | SUBCLASS_CHECK is zero, then the subclass check is done only when | 
|  | ARG2 is itself non-zero.  Returns the new pointer or reference.  */ | 
|  |  | 
|  | struct value * | 
|  | value_cast_pointers (struct type *type, struct value *arg2, | 
|  | int subclass_check) | 
|  | { | 
|  | struct type *type1 = check_typedef (type); | 
|  | struct type *type2 = check_typedef (arg2->type ()); | 
|  | struct type *t1 = check_typedef (type1->target_type ()); | 
|  | struct type *t2 = check_typedef (type2->target_type ()); | 
|  |  | 
|  | if (t1->code () == TYPE_CODE_STRUCT | 
|  | && t2->code () == TYPE_CODE_STRUCT | 
|  | && (subclass_check || !value_logical_not (arg2))) | 
|  | { | 
|  | struct value *v2; | 
|  |  | 
|  | if (TYPE_IS_REFERENCE (type2)) | 
|  | v2 = coerce_ref (arg2); | 
|  | else | 
|  | v2 = value_ind (arg2); | 
|  | gdb_assert (check_typedef (v2->type ())->code () | 
|  | == TYPE_CODE_STRUCT && !!"Why did coercion fail?"); | 
|  | v2 = value_cast_structs (t1, v2); | 
|  | /* At this point we have what we can have, un-dereference if needed.  */ | 
|  | if (v2) | 
|  | { | 
|  | struct value *v = value_addr (v2); | 
|  |  | 
|  | v->deprecated_set_type (type); | 
|  | return v; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No superclass found, just change the pointer type.  */ | 
|  | arg2 = arg2->copy (); | 
|  | arg2->deprecated_set_type (type); | 
|  | arg2->set_enclosing_type (type); | 
|  | arg2->set_pointed_to_offset (0);	/* pai: chk_val */ | 
|  | return arg2; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | gdb_mpq | 
|  | value_to_gdb_mpq (struct value *value) | 
|  | { | 
|  | struct type *type = check_typedef (value->type ()); | 
|  |  | 
|  | gdb_mpq result; | 
|  | if (is_floating_type (type)) | 
|  | result = target_float_to_host_double (value->contents ().data (), type); | 
|  | else | 
|  | { | 
|  | gdb_assert (is_integral_type (type) | 
|  | || is_fixed_point_type (type)); | 
|  |  | 
|  | gdb_mpz vz; | 
|  | vz.read (value->contents (), type_byte_order (type), | 
|  | type->is_unsigned ()); | 
|  | result = vz; | 
|  |  | 
|  | if (is_fixed_point_type (type)) | 
|  | result *= type->fixed_point_scaling_factor (); | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Assuming that TO_TYPE is a fixed point type, return a value | 
|  | corresponding to the cast of FROM_VAL to that type.  */ | 
|  |  | 
|  | static struct value * | 
|  | value_cast_to_fixed_point (struct type *to_type, struct value *from_val) | 
|  | { | 
|  | struct type *from_type = from_val->type (); | 
|  |  | 
|  | if (from_type == to_type) | 
|  | return from_val; | 
|  |  | 
|  | if (!is_floating_type (from_type) | 
|  | && !is_integral_type (from_type) | 
|  | && !is_fixed_point_type (from_type)) | 
|  | error (_("Invalid conversion from type %s to fixed point type %s"), | 
|  | from_type->name (), to_type->name ()); | 
|  |  | 
|  | gdb_mpq vq = value_to_gdb_mpq (from_val); | 
|  |  | 
|  | /* Divide that value by the scaling factor to obtain the unscaled | 
|  | value, first in rational form, and then in integer form.  */ | 
|  |  | 
|  | vq /= to_type->fixed_point_scaling_factor (); | 
|  | gdb_mpz unscaled = vq.get_rounded (); | 
|  |  | 
|  | /* Finally, create the result value, and pack the unscaled value | 
|  | in it.  */ | 
|  | struct value *result = value::allocate (to_type); | 
|  | unscaled.write (result->contents_raw (), | 
|  | type_byte_order (to_type), | 
|  | to_type->is_unsigned ()); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Cast value ARG2 to type TYPE and return as a value. | 
|  | More general than a C cast: accepts any two types of the same length, | 
|  | and if ARG2 is an lvalue it can be cast into anything at all.  */ | 
|  | /* In C++, casts may change pointer or object representations.  */ | 
|  |  | 
|  | struct value * | 
|  | value_cast (struct type *type, struct value *arg2) | 
|  | { | 
|  | enum type_code code1; | 
|  | enum type_code code2; | 
|  | int scalar; | 
|  | struct type *type2; | 
|  |  | 
|  | int convert_to_boolean = 0; | 
|  |  | 
|  | /* TYPE might be equal in meaning to the existing type of ARG2, but for | 
|  | many reasons, might be a different type object (e.g. TYPE might be a | 
|  | gdbarch owned type, while ARG2->type () could be an objfile owned | 
|  | type). | 
|  |  | 
|  | In this case we want to preserve the LVAL of ARG2 as this allows the | 
|  | resulting value to be used in more places.  We do this by calling | 
|  | VALUE_COPY if appropriate.  */ | 
|  | if (types_deeply_equal (make_unqualified_type (arg2->type ()), | 
|  | make_unqualified_type (type))) | 
|  | { | 
|  | /* If the types are exactly equal then we can avoid creating a new | 
|  | value completely.  */ | 
|  | if (arg2->type () != type) | 
|  | { | 
|  | arg2 = arg2->copy (); | 
|  | arg2->deprecated_set_type (type); | 
|  | } | 
|  | return arg2; | 
|  | } | 
|  |  | 
|  | if (is_fixed_point_type (type)) | 
|  | return value_cast_to_fixed_point (type, arg2); | 
|  |  | 
|  | /* Check if we are casting struct reference to struct reference.  */ | 
|  | if (TYPE_IS_REFERENCE (check_typedef (type))) | 
|  | { | 
|  | /* We dereference type; then we recurse and finally | 
|  | we generate value of the given reference.  Nothing wrong with | 
|  | that.  */ | 
|  | struct type *t1 = check_typedef (type); | 
|  | struct type *dereftype = check_typedef (t1->target_type ()); | 
|  | struct value *val = value_cast (dereftype, arg2); | 
|  |  | 
|  | return value_ref (val, t1->code ()); | 
|  | } | 
|  |  | 
|  | if (TYPE_IS_REFERENCE (check_typedef (arg2->type ()))) | 
|  | /* We deref the value and then do the cast.  */ | 
|  | return value_cast (type, coerce_ref (arg2)); | 
|  |  | 
|  | /* Strip typedefs / resolve stubs in order to get at the type's | 
|  | code/length, but remember the original type, to use as the | 
|  | resulting type of the cast, in case it was a typedef.  */ | 
|  | struct type *to_type = type; | 
|  |  | 
|  | type = check_typedef (type); | 
|  | code1 = type->code (); | 
|  | arg2 = coerce_ref (arg2); | 
|  | type2 = check_typedef (arg2->type ()); | 
|  |  | 
|  | /* You can't cast to a reference type.  See value_cast_pointers | 
|  | instead.  */ | 
|  | gdb_assert (!TYPE_IS_REFERENCE (type)); | 
|  |  | 
|  | /* A cast to an undetermined-length array_type, such as | 
|  | (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT, | 
|  | where N is sizeof(OBJECT)/sizeof(TYPE).  */ | 
|  | if (code1 == TYPE_CODE_ARRAY) | 
|  | { | 
|  | struct type *element_type = type->target_type (); | 
|  | unsigned element_length = check_typedef (element_type)->length (); | 
|  |  | 
|  | if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED) | 
|  | { | 
|  | struct type *range_type = type->index_type (); | 
|  | int val_length = type2->length (); | 
|  | LONGEST low_bound, high_bound, new_length; | 
|  |  | 
|  | if (!get_discrete_bounds (range_type, &low_bound, &high_bound)) | 
|  | low_bound = 0, high_bound = 0; | 
|  | new_length = val_length / element_length; | 
|  | if (val_length % element_length != 0) | 
|  | warning (_("array element type size does not " | 
|  | "divide object size in cast")); | 
|  | /* FIXME-type-allocation: need a way to free this type when | 
|  | we are done with it.  */ | 
|  | type_allocator alloc (range_type->target_type ()); | 
|  | range_type = create_static_range_type (alloc, | 
|  | range_type->target_type (), | 
|  | low_bound, | 
|  | new_length + low_bound - 1); | 
|  | arg2->deprecated_set_type (create_array_type (alloc, | 
|  | element_type, | 
|  | range_type)); | 
|  | return arg2; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (current_language->c_style_arrays_p () | 
|  | && type2->code () == TYPE_CODE_ARRAY | 
|  | && !type2->is_vector ()) | 
|  | arg2 = value_coerce_array (arg2); | 
|  |  | 
|  | if (type2->code () == TYPE_CODE_FUNC) | 
|  | arg2 = value_coerce_function (arg2); | 
|  |  | 
|  | type2 = check_typedef (arg2->type ()); | 
|  | code2 = type2->code (); | 
|  |  | 
|  | if (code1 == TYPE_CODE_COMPLEX) | 
|  | return cast_into_complex (to_type, arg2); | 
|  | if (code1 == TYPE_CODE_BOOL) | 
|  | { | 
|  | code1 = TYPE_CODE_INT; | 
|  | convert_to_boolean = 1; | 
|  | } | 
|  | if (code1 == TYPE_CODE_CHAR) | 
|  | code1 = TYPE_CODE_INT; | 
|  | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | 
|  | code2 = TYPE_CODE_INT; | 
|  |  | 
|  | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | 
|  | || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM | 
|  | || code2 == TYPE_CODE_RANGE | 
|  | || is_fixed_point_type (type2)); | 
|  |  | 
|  | if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION) | 
|  | && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION) | 
|  | && type->name () != 0) | 
|  | { | 
|  | struct value *v = value_cast_structs (to_type, arg2); | 
|  |  | 
|  | if (v) | 
|  | return v; | 
|  | } | 
|  |  | 
|  | if (is_floating_type (type) && scalar) | 
|  | { | 
|  | if (is_floating_value (arg2)) | 
|  | { | 
|  | struct value *v = value::allocate (to_type); | 
|  | target_float_convert (arg2->contents ().data (), type2, | 
|  | v->contents_raw ().data (), type); | 
|  | return v; | 
|  | } | 
|  | else if (is_fixed_point_type (type2)) | 
|  | { | 
|  | gdb_mpq fp_val; | 
|  |  | 
|  | fp_val.read_fixed_point (arg2->contents (), | 
|  | type_byte_order (type2), | 
|  | type2->is_unsigned (), | 
|  | type2->fixed_point_scaling_factor ()); | 
|  |  | 
|  | struct value *v = value::allocate (to_type); | 
|  | target_float_from_host_double (v->contents_raw ().data (), | 
|  | to_type, fp_val.as_double ()); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* The only option left is an integral type.  */ | 
|  | if (type2->is_unsigned ()) | 
|  | return value_from_ulongest (to_type, value_as_long (arg2)); | 
|  | else | 
|  | return value_from_longest (to_type, value_as_long (arg2)); | 
|  | } | 
|  | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | 
|  | || code1 == TYPE_CODE_RANGE) | 
|  | && (scalar || code2 == TYPE_CODE_PTR | 
|  | || code2 == TYPE_CODE_MEMBERPTR)) | 
|  | { | 
|  | gdb_mpz longest; | 
|  |  | 
|  | /* When we cast pointers to integers, we mustn't use | 
|  | gdbarch_pointer_to_address to find the address the pointer | 
|  | represents, as value_as_long would.  GDB should evaluate | 
|  | expressions just as the compiler would --- and the compiler | 
|  | sees a cast as a simple reinterpretation of the pointer's | 
|  | bits.  */ | 
|  | if (code2 == TYPE_CODE_PTR) | 
|  | longest = extract_unsigned_integer (arg2->contents (), | 
|  | type_byte_order (type2)); | 
|  | else | 
|  | longest = value_as_mpz (arg2); | 
|  | if (convert_to_boolean) | 
|  | longest = bool (longest); | 
|  |  | 
|  | return value_from_mpz (to_type, longest); | 
|  | } | 
|  | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT | 
|  | || code2 == TYPE_CODE_ENUM | 
|  | || code2 == TYPE_CODE_RANGE)) | 
|  | { | 
|  | /* type->length () is the length of a pointer, but we really | 
|  | want the length of an address! -- we are really dealing with | 
|  | addresses (i.e., gdb representations) not pointers (i.e., | 
|  | target representations) here. | 
|  |  | 
|  | This allows things like "print *(int *)0x01000234" to work | 
|  | without printing a misleading message -- which would | 
|  | otherwise occur when dealing with a target having two byte | 
|  | pointers and four byte addresses.  */ | 
|  |  | 
|  | int addr_bit = gdbarch_addr_bit (type2->arch ()); | 
|  | gdb_mpz longest = value_as_mpz (arg2); | 
|  |  | 
|  | gdb_mpz addr_val = gdb_mpz (1) << addr_bit; | 
|  | if (longest >= addr_val || longest <= -addr_val) | 
|  | warning (_("value truncated")); | 
|  |  | 
|  | return value_from_mpz (to_type, longest); | 
|  | } | 
|  | else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT | 
|  | && value_as_long (arg2) == 0) | 
|  | { | 
|  | struct value *result = value::allocate (to_type); | 
|  |  | 
|  | cplus_make_method_ptr (to_type, | 
|  | result->contents_writeable ().data (), 0, 0); | 
|  | return result; | 
|  | } | 
|  | else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT | 
|  | && value_as_long (arg2) == 0) | 
|  | { | 
|  | /* The Itanium C++ ABI represents NULL pointers to members as | 
|  | minus one, instead of biasing the normal case.  */ | 
|  | return value_from_longest (to_type, -1); | 
|  | } | 
|  | else if (code1 == TYPE_CODE_ARRAY && type->is_vector () | 
|  | && code2 == TYPE_CODE_ARRAY && type2->is_vector () | 
|  | && type->length () != type2->length ()) | 
|  | error (_("Cannot convert between vector values of different sizes")); | 
|  | else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar | 
|  | && type->length () != type2->length ()) | 
|  | error (_("can only cast scalar to vector of same size")); | 
|  | else if (code1 == TYPE_CODE_VOID) | 
|  | { | 
|  | return value::zero (to_type, not_lval); | 
|  | } | 
|  | else if (type->length () == type2->length ()) | 
|  | { | 
|  | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | 
|  | return value_cast_pointers (to_type, arg2, 0); | 
|  |  | 
|  | arg2 = arg2->copy (); | 
|  | arg2->deprecated_set_type (to_type); | 
|  | arg2->set_enclosing_type (to_type); | 
|  | arg2->set_pointed_to_offset (0);	/* pai: chk_val */ | 
|  | return arg2; | 
|  | } | 
|  | else if (arg2->lval () == lval_memory) | 
|  | return value_at_lazy (to_type, arg2->address ()); | 
|  | else | 
|  | { | 
|  | if (current_language->la_language == language_ada) | 
|  | error (_("Invalid type conversion.")); | 
|  | error (_("Invalid cast.")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The C++ reinterpret_cast operator.  */ | 
|  |  | 
|  | struct value * | 
|  | value_reinterpret_cast (struct type *type, struct value *arg) | 
|  | { | 
|  | struct value *result; | 
|  | struct type *real_type = check_typedef (type); | 
|  | struct type *arg_type, *dest_type; | 
|  | int is_ref = 0; | 
|  | enum type_code dest_code, arg_code; | 
|  |  | 
|  | /* Do reference, function, and array conversion.  */ | 
|  | arg = coerce_array (arg); | 
|  |  | 
|  | /* Attempt to preserve the type the user asked for.  */ | 
|  | dest_type = type; | 
|  |  | 
|  | /* If we are casting to a reference type, transform | 
|  | reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V).  */ | 
|  | if (TYPE_IS_REFERENCE (real_type)) | 
|  | { | 
|  | is_ref = 1; | 
|  | arg = value_addr (arg); | 
|  | dest_type = lookup_pointer_type (dest_type->target_type ()); | 
|  | real_type = lookup_pointer_type (real_type); | 
|  | } | 
|  |  | 
|  | arg_type = arg->type (); | 
|  |  | 
|  | dest_code = real_type->code (); | 
|  | arg_code = arg_type->code (); | 
|  |  | 
|  | /* We can convert pointer types, or any pointer type to int, or int | 
|  | type to pointer.  */ | 
|  | if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT) | 
|  | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR) | 
|  | || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT) | 
|  | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR) | 
|  | || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT) | 
|  | || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR) | 
|  | || (dest_code == arg_code | 
|  | && (dest_code == TYPE_CODE_METHODPTR | 
|  | || dest_code == TYPE_CODE_MEMBERPTR))) | 
|  | result = value_cast (dest_type, arg); | 
|  | else if (dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_PTR) | 
|  | { | 
|  | /* Don't do any up- or downcasting.  */ | 
|  | result = arg->copy (); | 
|  | result->deprecated_set_type (dest_type); | 
|  | result->set_enclosing_type (dest_type); | 
|  | result->set_pointed_to_offset (0); | 
|  | } | 
|  | else | 
|  | error (_("Invalid reinterpret_cast")); | 
|  |  | 
|  | if (is_ref) | 
|  | result = value_cast (type, value_ref (value_ind (result), | 
|  | type->code ())); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* A helper for value_dynamic_cast.  This implements the first of two | 
|  | runtime checks: we iterate over all the base classes of the value's | 
|  | class which are equal to the desired class; if only one of these | 
|  | holds the value, then it is the answer.  */ | 
|  |  | 
|  | static int | 
|  | dynamic_cast_check_1 (struct type *desired_type, | 
|  | const gdb_byte *valaddr, | 
|  | LONGEST embedded_offset, | 
|  | CORE_ADDR address, | 
|  | struct value *val, | 
|  | struct type *search_type, | 
|  | CORE_ADDR arg_addr, | 
|  | struct type *arg_type, | 
|  | struct value **result) | 
|  | { | 
|  | int i, result_count = 0; | 
|  |  | 
|  | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | 
|  | { | 
|  | LONGEST offset = baseclass_offset (search_type, i, valaddr, | 
|  | embedded_offset, | 
|  | address, val); | 
|  |  | 
|  | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | 
|  | { | 
|  | if (address + embedded_offset + offset >= arg_addr | 
|  | && address + embedded_offset + offset < arg_addr + arg_type->length ()) | 
|  | { | 
|  | ++result_count; | 
|  | if (!*result) | 
|  | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | 
|  | address + embedded_offset + offset); | 
|  | } | 
|  | } | 
|  | else | 
|  | result_count += dynamic_cast_check_1 (desired_type, | 
|  | valaddr, | 
|  | embedded_offset + offset, | 
|  | address, val, | 
|  | TYPE_BASECLASS (search_type, i), | 
|  | arg_addr, | 
|  | arg_type, | 
|  | result); | 
|  | } | 
|  |  | 
|  | return result_count; | 
|  | } | 
|  |  | 
|  | /* A helper for value_dynamic_cast.  This implements the second of two | 
|  | runtime checks: we look for a unique public sibling class of the | 
|  | argument's declared class.  */ | 
|  |  | 
|  | static int | 
|  | dynamic_cast_check_2 (struct type *desired_type, | 
|  | const gdb_byte *valaddr, | 
|  | LONGEST embedded_offset, | 
|  | CORE_ADDR address, | 
|  | struct value *val, | 
|  | struct type *search_type, | 
|  | struct value **result) | 
|  | { | 
|  | int i, result_count = 0; | 
|  |  | 
|  | for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i) | 
|  | { | 
|  | LONGEST offset; | 
|  |  | 
|  | if (! BASETYPE_VIA_PUBLIC (search_type, i)) | 
|  | continue; | 
|  |  | 
|  | offset = baseclass_offset (search_type, i, valaddr, embedded_offset, | 
|  | address, val); | 
|  | if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i))) | 
|  | { | 
|  | ++result_count; | 
|  | if (*result == NULL) | 
|  | *result = value_at_lazy (TYPE_BASECLASS (search_type, i), | 
|  | address + embedded_offset + offset); | 
|  | } | 
|  | else | 
|  | result_count += dynamic_cast_check_2 (desired_type, | 
|  | valaddr, | 
|  | embedded_offset + offset, | 
|  | address, val, | 
|  | TYPE_BASECLASS (search_type, i), | 
|  | result); | 
|  | } | 
|  |  | 
|  | return result_count; | 
|  | } | 
|  |  | 
|  | /* The C++ dynamic_cast operator.  */ | 
|  |  | 
|  | struct value * | 
|  | value_dynamic_cast (struct type *type, struct value *arg) | 
|  | { | 
|  | int full, using_enc; | 
|  | LONGEST top; | 
|  | struct type *resolved_type = check_typedef (type); | 
|  | struct type *arg_type = check_typedef (arg->type ()); | 
|  | struct type *class_type, *rtti_type; | 
|  | struct value *result, *tem, *original_arg = arg; | 
|  | CORE_ADDR addr; | 
|  | int is_ref = TYPE_IS_REFERENCE (resolved_type); | 
|  |  | 
|  | if (resolved_type->code () != TYPE_CODE_PTR | 
|  | && !TYPE_IS_REFERENCE (resolved_type)) | 
|  | error (_("Argument to dynamic_cast must be a pointer or reference type")); | 
|  | if (resolved_type->target_type ()->code () != TYPE_CODE_VOID | 
|  | && resolved_type->target_type ()->code () != TYPE_CODE_STRUCT) | 
|  | error (_("Argument to dynamic_cast must be pointer to class or `void *'")); | 
|  |  | 
|  | class_type = check_typedef (resolved_type->target_type ()); | 
|  | if (resolved_type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | if (arg_type->code () != TYPE_CODE_PTR | 
|  | && ! (arg_type->code () == TYPE_CODE_INT | 
|  | && value_as_long (arg) == 0)) | 
|  | error (_("Argument to dynamic_cast does not have pointer type")); | 
|  | if (arg_type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | arg_type = check_typedef (arg_type->target_type ()); | 
|  | if (arg_type->code () != TYPE_CODE_STRUCT) | 
|  | error (_("Argument to dynamic_cast does " | 
|  | "not have pointer to class type")); | 
|  | } | 
|  |  | 
|  | /* Handle NULL pointers.  */ | 
|  | if (value_as_long (arg) == 0) | 
|  | return value::zero (type, not_lval); | 
|  |  | 
|  | arg = value_ind (arg); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (arg_type->code () != TYPE_CODE_STRUCT) | 
|  | error (_("Argument to dynamic_cast does not have class type")); | 
|  | } | 
|  |  | 
|  | /* If the classes are the same, just return the argument.  */ | 
|  | if (class_types_same_p (class_type, arg_type)) | 
|  | return value_cast (type, original_arg); | 
|  |  | 
|  | /* If the target type is a unique base class of the argument's | 
|  | declared type, just cast it.  */ | 
|  | if (is_ancestor (class_type, arg_type)) | 
|  | { | 
|  | if (is_unique_ancestor (class_type, arg)) | 
|  | return value_cast (type, original_arg); | 
|  | error (_("Ambiguous dynamic_cast")); | 
|  | } | 
|  |  | 
|  | rtti_type = value_rtti_type (arg, &full, &top, &using_enc); | 
|  | if (! rtti_type) | 
|  | error (_("Couldn't determine value's most derived type for dynamic_cast")); | 
|  |  | 
|  | /* Compute the most derived object's address.  */ | 
|  | addr = arg->address (); | 
|  | if (full) | 
|  | { | 
|  | /* Done.  */ | 
|  | } | 
|  | else if (using_enc) | 
|  | addr += top; | 
|  | else | 
|  | addr += top + arg->embedded_offset (); | 
|  |  | 
|  | /* dynamic_cast<void *> means to return a pointer to the | 
|  | most-derived object.  */ | 
|  | if (resolved_type->code () == TYPE_CODE_PTR | 
|  | && resolved_type->target_type ()->code () == TYPE_CODE_VOID) | 
|  | return value_at_lazy (type, addr); | 
|  |  | 
|  | tem = value_at (resolved_type->target_type (), addr); | 
|  | type = (is_ref | 
|  | ? lookup_reference_type (tem->type (), resolved_type->code ()) | 
|  | : lookup_pointer_type (tem->type ())); | 
|  |  | 
|  | /* The first dynamic check specified in 5.2.7.  */ | 
|  | if (is_public_ancestor (arg_type, resolved_type->target_type ())) | 
|  | { | 
|  | if (class_types_same_p (rtti_type, resolved_type->target_type ())) | 
|  | return (is_ref | 
|  | ? value_ref (tem, resolved_type->code ()) | 
|  | : value_addr (tem)); | 
|  | result = NULL; | 
|  | if (dynamic_cast_check_1 (resolved_type->target_type (), | 
|  | tem->contents_for_printing ().data (), | 
|  | tem->embedded_offset (), | 
|  | tem->address (), tem, | 
|  | rtti_type, addr, | 
|  | arg_type, | 
|  | &result) == 1) | 
|  | return value_cast (type, | 
|  | is_ref | 
|  | ? value_ref (result, resolved_type->code ()) | 
|  | : value_addr (result)); | 
|  | } | 
|  |  | 
|  | /* The second dynamic check specified in 5.2.7.  */ | 
|  | result = NULL; | 
|  | if (is_public_ancestor (arg_type, rtti_type) | 
|  | && dynamic_cast_check_2 (resolved_type->target_type (), | 
|  | tem->contents_for_printing ().data (), | 
|  | tem->embedded_offset (), | 
|  | tem->address (), tem, | 
|  | rtti_type, &result) == 1) | 
|  | return value_cast (type, | 
|  | is_ref | 
|  | ? value_ref (result, resolved_type->code ()) | 
|  | : value_addr (result)); | 
|  |  | 
|  | if (resolved_type->code () == TYPE_CODE_PTR) | 
|  | return value::zero (type, not_lval); | 
|  |  | 
|  | error (_("dynamic_cast failed")); | 
|  | } | 
|  |  | 
|  | /* Create a not_lval value of numeric type TYPE that is one, and return it.  */ | 
|  |  | 
|  | struct value * | 
|  | value_one (struct type *type) | 
|  | { | 
|  | struct type *type1 = check_typedef (type); | 
|  | struct value *val; | 
|  |  | 
|  | if (is_integral_type (type1) || is_floating_type (type1)) | 
|  | { | 
|  | val = value_from_longest (type, (LONGEST) 1); | 
|  | } | 
|  | else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ()) | 
|  | { | 
|  | struct type *eltype = check_typedef (type1->target_type ()); | 
|  | int i; | 
|  | LONGEST low_bound, high_bound; | 
|  |  | 
|  | if (!get_array_bounds (type1, &low_bound, &high_bound)) | 
|  | error (_("Could not determine the vector bounds")); | 
|  |  | 
|  | val = value::allocate (type); | 
|  | gdb::array_view<gdb_byte> val_contents = val->contents_writeable (); | 
|  | int elt_len = eltype->length (); | 
|  |  | 
|  | for (i = 0; i < high_bound - low_bound + 1; i++) | 
|  | { | 
|  | value *tmp = value_one (eltype); | 
|  | copy (tmp->contents_all (), | 
|  | val_contents.slice (i * elt_len, elt_len)); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | error (_("Not a numeric type.")); | 
|  | } | 
|  |  | 
|  | /* value_one result is never used for assignments to.  */ | 
|  | gdb_assert (val->lval () == not_lval); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. | 
|  | The type of the created value may differ from the passed type TYPE. | 
|  | Make sure to retrieve the returned values's new type after this call | 
|  | e.g. in case the type is a variable length array.  */ | 
|  |  | 
|  | static struct value * | 
|  | get_value_at (struct type *type, CORE_ADDR addr, const frame_info_ptr &frame, | 
|  | int lazy) | 
|  | { | 
|  | struct value *val; | 
|  |  | 
|  | if (check_typedef (type)->code () == TYPE_CODE_VOID) | 
|  | error (_("Attempt to dereference a generic pointer.")); | 
|  |  | 
|  | val = value_from_contents_and_address (type, NULL, addr, frame); | 
|  |  | 
|  | if (!lazy) | 
|  | val->fetch_lazy (); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Return a value with type TYPE located at ADDR. | 
|  |  | 
|  | Call value_at only if the data needs to be fetched immediately; | 
|  | if we can be 'lazy' and defer the fetch, perhaps indefinitely, call | 
|  | value_at_lazy instead.  value_at_lazy simply records the address of | 
|  | the data and sets the lazy-evaluation-required flag.  The lazy flag | 
|  | is tested in the value_contents macro, which is used if and when | 
|  | the contents are actually required.  The type of the created value | 
|  | may differ from the passed type TYPE.  Make sure to retrieve the | 
|  | returned values's new type after this call e.g. in case the type | 
|  | is a variable length array. | 
|  |  | 
|  | Note: value_at does *NOT* handle embedded offsets; perform such | 
|  | adjustments before or after calling it.  */ | 
|  |  | 
|  | struct value * | 
|  | value_at (struct type *type, CORE_ADDR addr) | 
|  | { | 
|  | return get_value_at (type, addr, nullptr, 0); | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_at_non_lval (struct type *type, CORE_ADDR addr) | 
|  | { | 
|  | struct value *result = value_at (type, addr); | 
|  | result->set_lval (not_lval); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). | 
|  | The type of the created value may differ from the passed type TYPE. | 
|  | Make sure to retrieve the returned values's new type after this call | 
|  | e.g. in case the type is a variable length array.  */ | 
|  |  | 
|  | struct value * | 
|  | value_at_lazy (struct type *type, CORE_ADDR addr, const frame_info_ptr &frame) | 
|  | { | 
|  | return get_value_at (type, addr, frame, 1); | 
|  | } | 
|  |  | 
|  | void | 
|  | read_value_memory (struct value *val, LONGEST bit_offset, | 
|  | bool stack, CORE_ADDR memaddr, | 
|  | gdb_byte *buffer, size_t length) | 
|  | { | 
|  | ULONGEST xfered_total = 0; | 
|  | struct gdbarch *arch = val->arch (); | 
|  | int unit_size = gdbarch_addressable_memory_unit_size (arch); | 
|  | enum target_object object; | 
|  |  | 
|  | object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY; | 
|  |  | 
|  | while (xfered_total < length) | 
|  | { | 
|  | enum target_xfer_status status; | 
|  | ULONGEST xfered_partial; | 
|  |  | 
|  | status = target_xfer_partial (current_inferior ()->top_target (), | 
|  | object, NULL, | 
|  | buffer + xfered_total * unit_size, NULL, | 
|  | memaddr + xfered_total, | 
|  | length - xfered_total, | 
|  | &xfered_partial); | 
|  |  | 
|  | if (status == TARGET_XFER_OK) | 
|  | /* nothing */; | 
|  | else if (status == TARGET_XFER_UNAVAILABLE) | 
|  | val->mark_bits_unavailable ((xfered_total * HOST_CHAR_BIT | 
|  | + bit_offset), | 
|  | xfered_partial * HOST_CHAR_BIT); | 
|  | else if (status == TARGET_XFER_EOF) | 
|  | memory_error (TARGET_XFER_E_IO, memaddr + xfered_total); | 
|  | else | 
|  | memory_error (status, memaddr + xfered_total); | 
|  |  | 
|  | xfered_total += xfered_partial; | 
|  | QUIT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Store the contents of FROMVAL into the location of TOVAL. | 
|  | Return a new value with the location of TOVAL and contents of FROMVAL.  */ | 
|  |  | 
|  | struct value * | 
|  | value_assign (struct value *toval, struct value *fromval) | 
|  | { | 
|  | struct type *type; | 
|  | struct value *val; | 
|  | struct frame_id old_frame; | 
|  |  | 
|  | if (!toval->deprecated_modifiable ()) | 
|  | error (_("Left operand of assignment is not a modifiable lvalue.")); | 
|  |  | 
|  | toval = coerce_ref (toval); | 
|  |  | 
|  | type = toval->type (); | 
|  | if (toval->lval () != lval_internalvar) | 
|  | fromval = value_cast (type, fromval); | 
|  | else | 
|  | { | 
|  | /* Coerce arrays and functions to pointers, except for arrays | 
|  | which only live in GDB's storage.  */ | 
|  | if (!value_must_coerce_to_target (fromval)) | 
|  | fromval = coerce_array (fromval); | 
|  | } | 
|  |  | 
|  | type = check_typedef (type); | 
|  |  | 
|  | /* Since modifying a register can trash the frame chain, and | 
|  | modifying memory can trash the frame cache, we save the old frame | 
|  | and then restore the new frame afterwards.  */ | 
|  | old_frame = get_frame_id (deprecated_safe_get_selected_frame ()); | 
|  |  | 
|  | switch (toval->lval ()) | 
|  | { | 
|  | case lval_internalvar: | 
|  | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | 
|  | return value_of_internalvar (type->arch (), | 
|  | VALUE_INTERNALVAR (toval)); | 
|  |  | 
|  | case lval_internalvar_component: | 
|  | { | 
|  | LONGEST offset = toval->offset (); | 
|  |  | 
|  | /* Are we dealing with a bitfield? | 
|  |  | 
|  | It is important to mention that `toval->parent ()' is | 
|  | non-NULL iff `toval->bitsize ()' is non-zero.  */ | 
|  | if (toval->bitsize ()) | 
|  | { | 
|  | /* VALUE_INTERNALVAR below refers to the parent value, while | 
|  | the offset is relative to this parent value.  */ | 
|  | gdb_assert (toval->parent ()->parent () == NULL); | 
|  | offset += toval->parent ()->offset (); | 
|  | } | 
|  |  | 
|  | set_internalvar_component (VALUE_INTERNALVAR (toval), | 
|  | offset, | 
|  | toval->bitpos (), | 
|  | toval->bitsize (), | 
|  | fromval); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case lval_memory: | 
|  | { | 
|  | const gdb_byte *dest_buffer; | 
|  | CORE_ADDR changed_addr; | 
|  | int changed_len; | 
|  | gdb_byte buffer[sizeof (LONGEST)]; | 
|  |  | 
|  | if (toval->bitsize ()) | 
|  | { | 
|  | struct value *parent = toval->parent (); | 
|  |  | 
|  | changed_addr = parent->address () + toval->offset (); | 
|  | changed_len = (toval->bitpos () | 
|  | + toval->bitsize () | 
|  | + HOST_CHAR_BIT - 1) | 
|  | / HOST_CHAR_BIT; | 
|  |  | 
|  | /* If we can read-modify-write exactly the size of the | 
|  | containing type (e.g. short or int) then do so.  This | 
|  | is safer for volatile bitfields mapped to hardware | 
|  | registers.  */ | 
|  | if (changed_len < type->length () | 
|  | && type->length () <= (int) sizeof (LONGEST) | 
|  | && ((LONGEST) changed_addr % type->length ()) == 0) | 
|  | changed_len = type->length (); | 
|  |  | 
|  | if (changed_len > (int) sizeof (LONGEST)) | 
|  | error (_("Can't handle bitfields which " | 
|  | "don't fit in a %d bit word."), | 
|  | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | 
|  |  | 
|  | read_memory (changed_addr, buffer, changed_len); | 
|  | modify_field (type, buffer, value_as_long (fromval), | 
|  | toval->bitpos (), toval->bitsize ()); | 
|  | dest_buffer = buffer; | 
|  | } | 
|  | else | 
|  | { | 
|  | changed_addr = toval->address (); | 
|  | changed_len = type_length_units (type); | 
|  | dest_buffer = fromval->contents ().data (); | 
|  | } | 
|  |  | 
|  | write_memory_with_notification (changed_addr, dest_buffer, changed_len); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case lval_register: | 
|  | { | 
|  | frame_info_ptr next_frame = frame_find_by_id (toval->next_frame_id ()); | 
|  | int value_reg = toval->regnum (); | 
|  |  | 
|  | if (next_frame == nullptr) | 
|  | error (_("Value being assigned to is no longer active.")); | 
|  |  | 
|  | gdbarch *gdbarch = frame_unwind_arch (next_frame); | 
|  |  | 
|  | if (toval->bitsize ()) | 
|  | { | 
|  | struct value *parent = toval->parent (); | 
|  | LONGEST offset = parent->offset () + toval->offset (); | 
|  | size_t changed_len; | 
|  | gdb_byte buffer[sizeof (LONGEST)]; | 
|  | int optim, unavail; | 
|  |  | 
|  | changed_len = (toval->bitpos () | 
|  | + toval->bitsize () | 
|  | + HOST_CHAR_BIT - 1) | 
|  | / HOST_CHAR_BIT; | 
|  |  | 
|  | if (changed_len > sizeof (LONGEST)) | 
|  | error (_("Can't handle bitfields which " | 
|  | "don't fit in a %d bit word."), | 
|  | (int) sizeof (LONGEST) * HOST_CHAR_BIT); | 
|  |  | 
|  | if (!get_frame_register_bytes (next_frame, value_reg, offset, | 
|  | { buffer, changed_len }, &optim, | 
|  | &unavail)) | 
|  | { | 
|  | if (optim) | 
|  | throw_error (OPTIMIZED_OUT_ERROR, | 
|  | _("value has been optimized out")); | 
|  | if (unavail) | 
|  | throw_error (NOT_AVAILABLE_ERROR, | 
|  | _("value is not available")); | 
|  | } | 
|  |  | 
|  | modify_field (type, buffer, value_as_long (fromval), | 
|  | toval->bitpos (), toval->bitsize ()); | 
|  |  | 
|  | put_frame_register_bytes (next_frame, value_reg, offset, | 
|  | { buffer, changed_len }); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (gdbarch_convert_register_p (gdbarch, toval->regnum (), type)) | 
|  | { | 
|  | /* If TOVAL is a special machine register requiring | 
|  | conversion of program values to a special raw | 
|  | format.  */ | 
|  | gdbarch_value_to_register (gdbarch, | 
|  | get_prev_frame_always (next_frame), | 
|  | toval->regnum (), type, | 
|  | fromval->contents ().data ()); | 
|  | } | 
|  | else | 
|  | put_frame_register_bytes (next_frame, value_reg, | 
|  | toval->offset (), | 
|  | fromval->contents ()); | 
|  | } | 
|  |  | 
|  | gdb::observers::register_changed.notify | 
|  | (get_prev_frame_always (next_frame), value_reg); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case lval_computed: | 
|  | { | 
|  | const struct lval_funcs *funcs = toval->computed_funcs (); | 
|  |  | 
|  | if (funcs->write != NULL) | 
|  | { | 
|  | funcs->write (toval, fromval); | 
|  | break; | 
|  | } | 
|  | } | 
|  | [[fallthrough]]; | 
|  |  | 
|  | default: | 
|  | error (_("Left operand of assignment is not an lvalue.")); | 
|  | } | 
|  |  | 
|  | /* Assigning to the stack pointer, frame pointer, and other | 
|  | (architecture and calling convention specific) registers may | 
|  | cause the frame cache and regcache to be out of date.  Assigning to memory | 
|  | also can.  We just do this on all assignments to registers or | 
|  | memory, for simplicity's sake; I doubt the slowdown matters.  */ | 
|  | switch (toval->lval ()) | 
|  | { | 
|  | case lval_memory: | 
|  | case lval_register: | 
|  | case lval_computed: | 
|  |  | 
|  | gdb::observers::target_changed.notify | 
|  | (current_inferior ()->top_target ()); | 
|  |  | 
|  | /* Having destroyed the frame cache, restore the selected | 
|  | frame.  */ | 
|  |  | 
|  | /* FIXME: cagney/2002-11-02: There has to be a better way of | 
|  | doing this.  Instead of constantly saving/restoring the | 
|  | frame.  Why not create a get_selected_frame() function that, | 
|  | having saved the selected frame's ID can automatically | 
|  | re-find the previously selected frame automatically.  */ | 
|  |  | 
|  | { | 
|  | frame_info_ptr fi = frame_find_by_id (old_frame); | 
|  |  | 
|  | if (fi != NULL) | 
|  | select_frame (fi); | 
|  | } | 
|  |  | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If the field does not entirely fill a LONGEST, then zero the sign | 
|  | bits.  If the field is signed, and is negative, then sign | 
|  | extend.  */ | 
|  | if ((toval->bitsize () > 0) | 
|  | && (toval->bitsize () < 8 * (int) sizeof (LONGEST))) | 
|  | { | 
|  | LONGEST fieldval = value_as_long (fromval); | 
|  | LONGEST valmask = (((ULONGEST) 1) << toval->bitsize ()) - 1; | 
|  |  | 
|  | fieldval &= valmask; | 
|  | if (!type->is_unsigned () | 
|  | && (fieldval & (valmask ^ (valmask >> 1)))) | 
|  | fieldval |= ~valmask; | 
|  |  | 
|  | fromval = value_from_longest (type, fieldval); | 
|  | } | 
|  |  | 
|  | /* The return value is a copy of TOVAL so it shares its location | 
|  | information, but its contents are updated from FROMVAL.  This | 
|  | implies the returned value is not lazy, even if TOVAL was.  */ | 
|  | val = toval->copy (); | 
|  | val->set_lazy (false); | 
|  | copy (fromval->contents (), val->contents_raw ()); | 
|  |  | 
|  | /* We copy over the enclosing type and pointed-to offset from FROMVAL | 
|  | in the case of pointer types.  For object types, the enclosing type | 
|  | and embedded offset must *not* be copied: the target object referred | 
|  | to by TOVAL retains its original dynamic type after assignment.  */ | 
|  | if (type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | val->set_enclosing_type (fromval->enclosing_type ()); | 
|  | val->set_pointed_to_offset (fromval->pointed_to_offset ()); | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Extend a value ARG1 to COUNT repetitions of its type.  */ | 
|  |  | 
|  | struct value * | 
|  | value_repeat (struct value *arg1, int count) | 
|  | { | 
|  | struct value *val; | 
|  |  | 
|  | arg1 = coerce_ref (arg1); | 
|  |  | 
|  | if (arg1->lval () != lval_memory) | 
|  | error (_("Only values in memory can be extended with '@'.")); | 
|  | if (count < 1) | 
|  | error (_("Invalid number %d of repetitions."), count); | 
|  |  | 
|  | val = allocate_repeat_value (arg1->enclosing_type (), count); | 
|  |  | 
|  | val->set_lval (lval_memory); | 
|  | val->set_address (arg1->address ()); | 
|  |  | 
|  | read_value_memory (val, 0, val->stack (), val->address (), | 
|  | val->contents_all_raw ().data (), | 
|  | type_length_units (val->enclosing_type ())); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | struct value * | 
|  | value_of_variable (struct symbol *var, const struct block *b) | 
|  | { | 
|  | frame_info_ptr frame = NULL; | 
|  |  | 
|  | if (symbol_read_needs_frame (var)) | 
|  | frame = get_selected_frame (_("No frame selected.")); | 
|  |  | 
|  | return read_var_value (var, b, frame); | 
|  | } | 
|  |  | 
|  | struct value * | 
|  | address_of_variable (struct symbol *var, const struct block *b) | 
|  | { | 
|  | struct type *type = var->type (); | 
|  | struct value *val; | 
|  |  | 
|  | /* Evaluate it first; if the result is a memory address, we're fine. | 
|  | Lazy evaluation pays off here.  */ | 
|  |  | 
|  | val = value_of_variable (var, b); | 
|  | type = val->type (); | 
|  |  | 
|  | if ((val->lval () == lval_memory && val->lazy ()) | 
|  | || type->code () == TYPE_CODE_FUNC) | 
|  | { | 
|  | CORE_ADDR addr = val->address (); | 
|  |  | 
|  | return value_from_pointer (lookup_pointer_type (type), addr); | 
|  | } | 
|  |  | 
|  | /* Not a memory address; check what the problem was.  */ | 
|  | switch (val->lval ()) | 
|  | { | 
|  | case lval_register: | 
|  | { | 
|  | const char *regname; | 
|  |  | 
|  | frame_info_ptr frame = frame_find_by_id (val->next_frame_id ()); | 
|  | gdb_assert (frame != nullptr); | 
|  |  | 
|  | regname | 
|  | = gdbarch_register_name (get_frame_arch (frame), val->regnum ()); | 
|  | gdb_assert (regname != nullptr && *regname != '\0'); | 
|  |  | 
|  | error (_("Address requested for identifier " | 
|  | "\"%s\" which is in register $%s"), | 
|  | var->print_name (), regname); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | error (_("Can't take address of \"%s\" which isn't an lvalue."), | 
|  | var->print_name ()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | bool | 
|  | value_must_coerce_to_target (struct value *val) | 
|  | { | 
|  | struct type *valtype; | 
|  |  | 
|  | /* The only lval kinds which do not live in target memory.  */ | 
|  | if (val->lval () != not_lval | 
|  | && val->lval () != lval_internalvar | 
|  | && val->lval () != lval_xcallable) | 
|  | return false; | 
|  |  | 
|  | valtype = check_typedef (val->type ()); | 
|  |  | 
|  | switch (valtype->code ()) | 
|  | { | 
|  | case TYPE_CODE_ARRAY: | 
|  | return valtype->is_vector () ? 0 : 1; | 
|  | case TYPE_CODE_STRING: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make sure that VAL lives in target memory if it's supposed to.  For | 
|  | instance, strings are constructed as character arrays in GDB's | 
|  | storage, and this function copies them to the target.  */ | 
|  |  | 
|  | struct value * | 
|  | value_coerce_to_target (struct value *val) | 
|  | { | 
|  | LONGEST length; | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | if (!value_must_coerce_to_target (val)) | 
|  | return val; | 
|  |  | 
|  | length = check_typedef (val->type ())->length (); | 
|  | addr = allocate_space_in_inferior (length); | 
|  | write_memory (addr, val->contents ().data (), length); | 
|  | return value_at_lazy (val->type (), addr); | 
|  | } | 
|  |  | 
|  | /* Given a value which is an array, return a value which is a pointer | 
|  | to its first element, regardless of whether or not the array has a | 
|  | nonzero lower bound. | 
|  |  | 
|  | FIXME: A previous comment here indicated that this routine should | 
|  | be subtracting the array's lower bound.  It's not clear to me that | 
|  | this is correct.  Given an array subscripting operation, it would | 
|  | certainly work to do the adjustment here, essentially computing: | 
|  |  | 
|  | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | 
|  |  | 
|  | However I believe a more appropriate and logical place to account | 
|  | for the lower bound is to do so in value_subscript, essentially | 
|  | computing: | 
|  |  | 
|  | (&array[0] + ((index - lowerbound) * sizeof array[0])) | 
|  |  | 
|  | As further evidence consider what would happen with operations | 
|  | other than array subscripting, where the caller would get back a | 
|  | value that had an address somewhere before the actual first element | 
|  | of the array, and the information about the lower bound would be | 
|  | lost because of the coercion to pointer type.  */ | 
|  |  | 
|  | struct value * | 
|  | value_coerce_array (struct value *arg1) | 
|  | { | 
|  | struct type *type = check_typedef (arg1->type ()); | 
|  |  | 
|  | /* If the user tries to do something requiring a pointer with an | 
|  | array that has not yet been pushed to the target, then this would | 
|  | be a good time to do so.  */ | 
|  | arg1 = value_coerce_to_target (arg1); | 
|  |  | 
|  | if (arg1->lval () != lval_memory) | 
|  | error (_("Attempt to take address of value not located in memory.")); | 
|  |  | 
|  | return value_from_pointer (lookup_pointer_type (type->target_type ()), | 
|  | arg1->address ()); | 
|  | } | 
|  |  | 
|  | /* Given a value which is a function, return a value which is a pointer | 
|  | to it.  */ | 
|  |  | 
|  | struct value * | 
|  | value_coerce_function (struct value *arg1) | 
|  | { | 
|  | struct value *retval; | 
|  |  | 
|  | if (arg1->lval () != lval_memory) | 
|  | error (_("Attempt to take address of value not located in memory.")); | 
|  |  | 
|  | retval = value_from_pointer (lookup_pointer_type (arg1->type ()), | 
|  | arg1->address ()); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Return a pointer value for the object for which ARG1 is the | 
|  | contents.  */ | 
|  |  | 
|  | struct value * | 
|  | value_addr (struct value *arg1) | 
|  | { | 
|  | struct value *arg2; | 
|  | struct type *type = check_typedef (arg1->type ()); | 
|  |  | 
|  | if (TYPE_IS_REFERENCE (type)) | 
|  | { | 
|  | if (arg1->bits_synthetic_pointer (arg1->embedded_offset (), | 
|  | TARGET_CHAR_BIT * type->length ())) | 
|  | arg1 = coerce_ref (arg1); | 
|  | else | 
|  | { | 
|  | /* Copy the value, but change the type from (T&) to (T*).  We | 
|  | keep the same location information, which is efficient, and | 
|  | allows &(&X) to get the location containing the reference. | 
|  | Do the same to its enclosing type for consistency.  */ | 
|  | struct type *type_ptr | 
|  | = lookup_pointer_type (type->target_type ()); | 
|  | struct type *enclosing_type | 
|  | = check_typedef (arg1->enclosing_type ()); | 
|  | struct type *enclosing_type_ptr | 
|  | = lookup_pointer_type (enclosing_type->target_type ()); | 
|  |  | 
|  | arg2 = arg1->copy (); | 
|  | arg2->deprecated_set_type (type_ptr); | 
|  | arg2->set_enclosing_type (enclosing_type_ptr); | 
|  |  | 
|  | return arg2; | 
|  | } | 
|  | } | 
|  | if (type->code () == TYPE_CODE_FUNC) | 
|  | return value_coerce_function (arg1); | 
|  |  | 
|  | /* If this is an array that has not yet been pushed to the target, | 
|  | then this would be a good time to force it to memory.  */ | 
|  | arg1 = value_coerce_to_target (arg1); | 
|  |  | 
|  | if (arg1->lval () != lval_memory) | 
|  | error (_("Attempt to take address of value not located in memory.")); | 
|  |  | 
|  | /* Get target memory address.  */ | 
|  | arg2 = value_from_pointer (lookup_pointer_type (arg1->type ()), | 
|  | (arg1->address () | 
|  | + arg1->embedded_offset ())); | 
|  |  | 
|  | /* This may be a pointer to a base subobject; so remember the | 
|  | full derived object's type ...  */ | 
|  | arg2->set_enclosing_type (lookup_pointer_type (arg1->enclosing_type ())); | 
|  | /* ... and also the relative position of the subobject in the full | 
|  | object.  */ | 
|  | arg2->set_pointed_to_offset (arg1->embedded_offset ()); | 
|  | return arg2; | 
|  | } | 
|  |  | 
|  | /* Return a reference value for the object for which ARG1 is the | 
|  | contents.  */ | 
|  |  | 
|  | struct value * | 
|  | value_ref (struct value *arg1, enum type_code refcode) | 
|  | { | 
|  | struct value *arg2; | 
|  | struct type *type = check_typedef (arg1->type ()); | 
|  |  | 
|  | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); | 
|  |  | 
|  | if ((type->code () == TYPE_CODE_REF | 
|  | || type->code () == TYPE_CODE_RVALUE_REF) | 
|  | && type->code () == refcode) | 
|  | return arg1; | 
|  |  | 
|  | arg2 = value_addr (arg1); | 
|  | arg2->deprecated_set_type (lookup_reference_type (type, refcode)); | 
|  | return arg2; | 
|  | } | 
|  |  | 
|  | /* Given a value of a pointer type, apply the C unary * operator to | 
|  | it.  */ | 
|  |  | 
|  | struct value * | 
|  | value_ind (struct value *arg1) | 
|  | { | 
|  | struct type *base_type; | 
|  | struct value *arg2; | 
|  |  | 
|  | arg1 = coerce_array (arg1); | 
|  |  | 
|  | base_type = check_typedef (arg1->type ()); | 
|  |  | 
|  | if (arg1->lval () == lval_computed) | 
|  | { | 
|  | const struct lval_funcs *funcs = arg1->computed_funcs (); | 
|  |  | 
|  | if (funcs->indirect) | 
|  | { | 
|  | struct value *result = funcs->indirect (arg1); | 
|  |  | 
|  | if (result) | 
|  | return result; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (base_type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | struct type *enc_type; | 
|  |  | 
|  | /* We may be pointing to something embedded in a larger object. | 
|  | Get the real type of the enclosing object.  */ | 
|  | enc_type = check_typedef (arg1->enclosing_type ()); | 
|  | enc_type = enc_type->target_type (); | 
|  |  | 
|  | CORE_ADDR base_addr; | 
|  | if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC | 
|  | || check_typedef (enc_type)->code () == TYPE_CODE_METHOD) | 
|  | { | 
|  | /* For functions, go through find_function_addr, which knows | 
|  | how to handle function descriptors.  */ | 
|  | base_addr = find_function_addr (arg1, NULL); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Retrieve the enclosing object pointed to.  */ | 
|  | base_addr = (value_as_address (arg1) | 
|  | - arg1->pointed_to_offset ()); | 
|  | } | 
|  | arg2 = value_at_lazy (enc_type, base_addr); | 
|  | enc_type = arg2->type (); | 
|  | return readjust_indirect_value_type (arg2, enc_type, base_type, | 
|  | arg1, base_addr); | 
|  | } | 
|  |  | 
|  | error (_("Attempt to take contents of a non-pointer value.")); | 
|  | } | 
|  |  | 
|  | /* Create a value for an array by allocating space in GDB, copying the | 
|  | data into that space, and then setting up an array value. | 
|  |  | 
|  | The array bounds are set from LOWBOUND and the size of ELEMVEC, and | 
|  | the array is populated from the values passed in ELEMVEC. | 
|  |  | 
|  | The element type of the array is inherited from the type of the | 
|  | first element, and all elements must have the same size (though we | 
|  | don't currently enforce any restriction on their types).  */ | 
|  |  | 
|  | struct value * | 
|  | value_array (int lowbound, gdb::array_view<struct value *> elemvec) | 
|  | { | 
|  | int idx; | 
|  | ULONGEST typelength; | 
|  | struct value *val; | 
|  | struct type *arraytype; | 
|  |  | 
|  | /* Validate that the bounds are reasonable and that each of the | 
|  | elements have the same size.  */ | 
|  |  | 
|  | typelength = type_length_units (elemvec[0]->enclosing_type ()); | 
|  | for (struct value *other : elemvec.slice (1)) | 
|  | { | 
|  | if (type_length_units (other->enclosing_type ()) != typelength) | 
|  | { | 
|  | error (_("array elements must all be the same size")); | 
|  | } | 
|  | } | 
|  |  | 
|  | arraytype = lookup_array_range_type (elemvec[0]->enclosing_type (), | 
|  | lowbound, | 
|  | lowbound + elemvec.size () - 1); | 
|  |  | 
|  | if (!current_language->c_style_arrays_p ()) | 
|  | { | 
|  | val = value::allocate (arraytype); | 
|  | for (idx = 0; idx < elemvec.size (); idx++) | 
|  | elemvec[idx]->contents_copy (val, idx * typelength, 0, typelength); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Allocate space to store the array, and then initialize it by | 
|  | copying in each element.  */ | 
|  |  | 
|  | val = value::allocate (arraytype); | 
|  | for (idx = 0; idx < elemvec.size (); idx++) | 
|  | elemvec[idx]->contents_copy (val, idx * typelength, 0, typelength); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_cstring (const gdb_byte *ptr, ssize_t count, struct type *char_type) | 
|  | { | 
|  | struct value *val; | 
|  | int lowbound = current_language->string_lower_bound (); | 
|  | ssize_t highbound = count + 1; | 
|  | struct type *stringtype | 
|  | = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1); | 
|  |  | 
|  | val = value::allocate (stringtype); | 
|  | ssize_t len = count * char_type->length (); | 
|  | memcpy (val->contents_raw ().data (), ptr, len); | 
|  | /* Write the terminating null-character.  */ | 
|  | memset (val->contents_raw ().data () + len, 0, char_type->length ()); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_string (const gdb_byte *ptr, ssize_t count, struct type *char_type) | 
|  | { | 
|  | struct value *val; | 
|  | int lowbound = current_language->string_lower_bound (); | 
|  | ssize_t highbound = count; | 
|  | struct type *stringtype | 
|  | = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1); | 
|  |  | 
|  | val = value::allocate (stringtype); | 
|  | ssize_t len = count * char_type->length (); | 
|  | memcpy (val->contents_raw ().data (), ptr, len); | 
|  | return val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* See if we can pass arguments in T2 to a function which takes arguments | 
|  | of types T1.  T1 is a list of NARGS arguments, and T2 is an array_view | 
|  | of the values we're trying to pass.  If some arguments need coercion of | 
|  | some sort, then the coerced values are written into T2.  Return value is | 
|  | 0 if the arguments could be matched, or the position at which they | 
|  | differ if not. | 
|  |  | 
|  | STATICP is nonzero if the T1 argument list came from a static | 
|  | member function.  T2 must still include the ``this'' pointer, but | 
|  | it will be skipped. | 
|  |  | 
|  | For non-static member functions, we ignore the first argument, | 
|  | which is the type of the instance variable.  This is because we | 
|  | want to handle calls with objects from derived classes.  This is | 
|  | not entirely correct: we should actually check to make sure that a | 
|  | requested operation is type secure, shouldn't we?  FIXME.  */ | 
|  |  | 
|  | static int | 
|  | typecmp (bool staticp, bool varargs, int nargs, | 
|  | struct field t1[], gdb::array_view<value *> t2) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Skip ``this'' argument if applicable.  T2 will always include | 
|  | THIS.  */ | 
|  | if (staticp) | 
|  | t2 = t2.slice (1); | 
|  |  | 
|  | for (i = 0; | 
|  | (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID; | 
|  | i++) | 
|  | { | 
|  | struct type *tt1, *tt2; | 
|  |  | 
|  | if (i == t2.size ()) | 
|  | return i + 1; | 
|  |  | 
|  | tt1 = check_typedef (t1[i].type ()); | 
|  | tt2 = check_typedef (t2[i]->type ()); | 
|  |  | 
|  | if (TYPE_IS_REFERENCE (tt1) | 
|  | /* We should be doing hairy argument matching, as below.  */ | 
|  | && (check_typedef (tt1->target_type ())->code () | 
|  | == tt2->code ())) | 
|  | { | 
|  | if (tt2->code () == TYPE_CODE_ARRAY) | 
|  | t2[i] = value_coerce_array (t2[i]); | 
|  | else | 
|  | t2[i] = value_ref (t2[i], tt1->code ()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* djb - 20000715 - Until the new type structure is in the | 
|  | place, and we can attempt things like implicit conversions, | 
|  | we need to do this so you can take something like a map<const | 
|  | char *>, and properly access map["hello"], because the | 
|  | argument to [] will be a reference to a pointer to a char, | 
|  | and the argument will be a pointer to a char.  */ | 
|  | while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | tt1 = check_typedef ( tt1->target_type () ); | 
|  | } | 
|  | while (tt2->code () == TYPE_CODE_ARRAY | 
|  | || tt2->code () == TYPE_CODE_PTR | 
|  | || TYPE_IS_REFERENCE (tt2)) | 
|  | { | 
|  | tt2 = check_typedef (tt2->target_type ()); | 
|  | } | 
|  | if (tt1->code () == tt2->code ()) | 
|  | continue; | 
|  | /* Array to pointer is a `trivial conversion' according to the | 
|  | ARM.  */ | 
|  |  | 
|  | /* We should be doing much hairier argument matching (see | 
|  | section 13.2 of the ARM), but as a quick kludge, just check | 
|  | for the same type code.  */ | 
|  | if (t1[i].type ()->code () != t2[i]->type ()->code ()) | 
|  | return i + 1; | 
|  | } | 
|  | if (varargs || i == t2.size ()) | 
|  | return 0; | 
|  | return i + 1; | 
|  | } | 
|  |  | 
|  | /* Helper class for search_struct_field that keeps track of found | 
|  | results and possibly throws an exception if the search yields | 
|  | ambiguous results.  See search_struct_field for description of | 
|  | LOOKING_FOR_BASECLASS.  */ | 
|  |  | 
|  | struct struct_field_searcher | 
|  | { | 
|  | /* A found field.  */ | 
|  | struct found_field | 
|  | { | 
|  | /* Path to the structure where the field was found.  */ | 
|  | std::vector<struct type *> path; | 
|  |  | 
|  | /* The field found.  */ | 
|  | struct value *field_value; | 
|  | }; | 
|  |  | 
|  | /* See corresponding fields for description of parameters.  */ | 
|  | struct_field_searcher (const char *name, | 
|  | struct type *outermost_type, | 
|  | bool looking_for_baseclass) | 
|  | : m_name (name), | 
|  | m_looking_for_baseclass (looking_for_baseclass), | 
|  | m_outermost_type (outermost_type) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* The search entry point.  If LOOKING_FOR_BASECLASS is true and the | 
|  | base class search yields ambiguous results, this throws an | 
|  | exception.  If LOOKING_FOR_BASECLASS is false, the found fields | 
|  | are accumulated and the caller (search_struct_field) takes care | 
|  | of throwing an error if the field search yields ambiguous | 
|  | results.  The latter is done that way so that the error message | 
|  | can include a list of all the found candidates.  */ | 
|  | void search (struct value *arg, LONGEST offset, struct type *type); | 
|  |  | 
|  | const std::vector<found_field> &fields () | 
|  | { | 
|  | return m_fields; | 
|  | } | 
|  |  | 
|  | struct value *baseclass () | 
|  | { | 
|  | return m_baseclass; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /* Update results to include V, a found field/baseclass.  */ | 
|  | void update_result (struct value *v, LONGEST boffset); | 
|  |  | 
|  | /* The name of the field/baseclass we're searching for.  */ | 
|  | const char *m_name; | 
|  |  | 
|  | /* Whether we're looking for a baseclass, or a field.  */ | 
|  | const bool m_looking_for_baseclass; | 
|  |  | 
|  | /* The offset of the baseclass containing the field/baseclass we | 
|  | last recorded.  */ | 
|  | LONGEST m_last_boffset = 0; | 
|  |  | 
|  | /* If looking for a baseclass, then the result is stored here.  */ | 
|  | struct value *m_baseclass = nullptr; | 
|  |  | 
|  | /* When looking for fields, the found candidates are stored | 
|  | here.  */ | 
|  | std::vector<found_field> m_fields; | 
|  |  | 
|  | /* The type of the initial type passed to search_struct_field; this | 
|  | is used for error reporting when the lookup is ambiguous.  */ | 
|  | struct type *m_outermost_type; | 
|  |  | 
|  | /* The full path to the struct being inspected.  E.g. for field 'x' | 
|  | defined in class B inherited by class A, we have A and B pushed | 
|  | on the path.  */ | 
|  | std::vector <struct type *> m_struct_path; | 
|  | }; | 
|  |  | 
|  | void | 
|  | struct_field_searcher::update_result (struct value *v, LONGEST boffset) | 
|  | { | 
|  | if (v != NULL) | 
|  | { | 
|  | if (m_looking_for_baseclass) | 
|  | { | 
|  | if (m_baseclass != nullptr | 
|  | /* The result is not ambiguous if all the classes that are | 
|  | found occupy the same space.  */ | 
|  | && m_last_boffset != boffset) | 
|  | error (_("base class '%s' is ambiguous in type '%s'"), | 
|  | m_name, TYPE_SAFE_NAME (m_outermost_type)); | 
|  |  | 
|  | m_baseclass = v; | 
|  | m_last_boffset = boffset; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The field is not ambiguous if it occupies the same | 
|  | space.  */ | 
|  | if (m_fields.empty () || m_last_boffset != boffset) | 
|  | m_fields.push_back ({m_struct_path, v}); | 
|  | else | 
|  | { | 
|  | /*Fields can occupy the same space and have the same name (be | 
|  | ambiguous).  This can happen when fields in two different base | 
|  | classes are marked [[no_unique_address]] and have the same name. | 
|  | The C++ standard says that such fields can only occupy the same | 
|  | space if they are of different type, but we don't rely on that in | 
|  | the following code. */ | 
|  | bool ambiguous = false, insert = true; | 
|  | for (const found_field &field: m_fields) | 
|  | { | 
|  | if(field.path.back () != m_struct_path.back ()) | 
|  | { | 
|  | /* Same boffset points to members of different classes. | 
|  | We have found an ambiguity and should record it.  */ | 
|  | ambiguous = true; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We don't need to insert this value again, because a | 
|  | non-ambiguous path already leads to it.  */ | 
|  | insert = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ambiguous && insert) | 
|  | m_fields.push_back ({m_struct_path, v}); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A helper for search_struct_field.  This does all the work; most | 
|  | arguments are as passed to search_struct_field.  */ | 
|  |  | 
|  | void | 
|  | struct_field_searcher::search (struct value *arg1, LONGEST offset, | 
|  | struct type *type) | 
|  | { | 
|  | int i; | 
|  | int nbases; | 
|  |  | 
|  | m_struct_path.push_back (type); | 
|  | SCOPE_EXIT { m_struct_path.pop_back (); }; | 
|  |  | 
|  | type = check_typedef (type); | 
|  | nbases = TYPE_N_BASECLASSES (type); | 
|  |  | 
|  | if (!m_looking_for_baseclass) | 
|  | for (i = type->num_fields () - 1; i >= nbases; i--) | 
|  | { | 
|  | const char *t_field_name = type->field (i).name (); | 
|  |  | 
|  | if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0)) | 
|  | { | 
|  | struct value *v; | 
|  |  | 
|  | if (type->field (i).is_static ()) | 
|  | v = value_static_field (type, i); | 
|  | else | 
|  | v = arg1->primitive_field (offset, i, type); | 
|  |  | 
|  | update_result (v, offset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (t_field_name | 
|  | && t_field_name[0] == '\0') | 
|  | { | 
|  | struct type *field_type = type->field (i).type (); | 
|  |  | 
|  | if (field_type->code () == TYPE_CODE_UNION | 
|  | || field_type->code () == TYPE_CODE_STRUCT) | 
|  | { | 
|  | /* Look for a match through the fields of an anonymous | 
|  | union, or anonymous struct.  C++ provides anonymous | 
|  | unions. | 
|  |  | 
|  | In the GNU Chill (now deleted from GDB) | 
|  | implementation of variant record types, each | 
|  | <alternative field> has an (anonymous) union type, | 
|  | each member of the union represents a <variant | 
|  | alternative>.  Each <variant alternative> is | 
|  | represented as a struct, with a member for each | 
|  | <variant field>.  */ | 
|  |  | 
|  | LONGEST new_offset = offset; | 
|  |  | 
|  | /* This is pretty gross.  In G++, the offset in an | 
|  | anonymous union is relative to the beginning of the | 
|  | enclosing struct.  In the GNU Chill (now deleted | 
|  | from GDB) implementation of variant records, the | 
|  | bitpos is zero in an anonymous union field, so we | 
|  | have to add the offset of the union here.  */ | 
|  | if (field_type->code () == TYPE_CODE_STRUCT | 
|  | || (field_type->num_fields () > 0 | 
|  | && field_type->field (0).loc_bitpos () == 0)) | 
|  | new_offset += type->field (i).loc_bitpos () / 8; | 
|  |  | 
|  | search (arg1, new_offset, field_type); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nbases; i++) | 
|  | { | 
|  | struct value *v = NULL; | 
|  | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | 
|  | /* If we are looking for baseclasses, this is what we get when | 
|  | we hit them.  But it could happen that the base part's member | 
|  | name is not yet filled in.  */ | 
|  | int found_baseclass = (m_looking_for_baseclass | 
|  | && TYPE_BASECLASS_NAME (type, i) != NULL | 
|  | && (strcmp_iw (m_name, basetype->name ()) == 0)); | 
|  | LONGEST boffset = arg1->embedded_offset () + offset; | 
|  |  | 
|  | if (BASETYPE_VIA_VIRTUAL (type, i)) | 
|  | { | 
|  | struct value *v2; | 
|  |  | 
|  | boffset = baseclass_offset (type, i, | 
|  | arg1->contents_for_printing ().data (), | 
|  | arg1->embedded_offset () + offset, | 
|  | arg1->address (), | 
|  | arg1); | 
|  |  | 
|  | /* The virtual base class pointer might have been clobbered | 
|  | by the user program.  Make sure that it still points to a | 
|  | valid memory location.  */ | 
|  |  | 
|  | boffset += arg1->embedded_offset () + offset; | 
|  | if (boffset < 0 | 
|  | || boffset >= arg1->enclosing_type ()->length ()) | 
|  | { | 
|  | CORE_ADDR base_addr; | 
|  |  | 
|  | base_addr = arg1->address () + boffset; | 
|  | v2 = value_at_lazy (basetype, base_addr); | 
|  | if (target_read_memory (base_addr, | 
|  | v2->contents_raw ().data (), | 
|  | v2->type ()->length ()) != 0) | 
|  | error (_("virtual baseclass botch")); | 
|  | } | 
|  | else | 
|  | { | 
|  | v2 = arg1->copy (); | 
|  | v2->deprecated_set_type (basetype); | 
|  | v2->set_embedded_offset (boffset); | 
|  | } | 
|  |  | 
|  | if (found_baseclass) | 
|  | v = v2; | 
|  | else | 
|  | search (v2, 0, TYPE_BASECLASS (type, i)); | 
|  | } | 
|  | else if (found_baseclass) | 
|  | v = arg1->primitive_field (offset, i, type); | 
|  | else | 
|  | { | 
|  | search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | 
|  | basetype); | 
|  | } | 
|  |  | 
|  | update_result (v, boffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Helper function used by value_struct_elt to recurse through | 
|  | baseclasses.  Look for a field NAME in ARG1.  Search in it assuming | 
|  | it has (class) type TYPE.  If found, return value, else return NULL. | 
|  |  | 
|  | If LOOKING_FOR_BASECLASS, then instead of looking for struct | 
|  | fields, look for a baseclass named NAME.  */ | 
|  |  | 
|  | static struct value * | 
|  | search_struct_field (const char *name, struct value *arg1, | 
|  | struct type *type, int looking_for_baseclass) | 
|  | { | 
|  | struct_field_searcher searcher (name, type, looking_for_baseclass); | 
|  |  | 
|  | searcher.search (arg1, 0, type); | 
|  |  | 
|  | if (!looking_for_baseclass) | 
|  | { | 
|  | const auto &fields = searcher.fields (); | 
|  |  | 
|  | if (fields.empty ()) | 
|  | return nullptr; | 
|  | else if (fields.size () == 1) | 
|  | return fields[0].field_value; | 
|  | else | 
|  | { | 
|  | std::string candidates; | 
|  |  | 
|  | for (auto &&candidate : fields) | 
|  | { | 
|  | gdb_assert (!candidate.path.empty ()); | 
|  |  | 
|  | struct type *field_type = candidate.field_value->type (); | 
|  | struct type *struct_type = candidate.path.back (); | 
|  |  | 
|  | std::string path; | 
|  | bool first = true; | 
|  | for (struct type *t : candidate.path) | 
|  | { | 
|  | if (first) | 
|  | first = false; | 
|  | else | 
|  | path += " -> "; | 
|  | path += t->name (); | 
|  | } | 
|  |  | 
|  | candidates += string_printf ("\n  '%s %s::%s' (%s)", | 
|  | TYPE_SAFE_NAME (field_type), | 
|  | TYPE_SAFE_NAME (struct_type), | 
|  | name, | 
|  | path.c_str ()); | 
|  | } | 
|  |  | 
|  | error (_("Request for member '%s' is ambiguous in type '%s'." | 
|  | " Candidates are:%s"), | 
|  | name, TYPE_SAFE_NAME (type), | 
|  | candidates.c_str ()); | 
|  | } | 
|  | } | 
|  | else | 
|  | return searcher.baseclass (); | 
|  | } | 
|  |  | 
|  | /* Helper function used by value_struct_elt to recurse through | 
|  | baseclasses.  Look for a field NAME in ARG1.  Adjust the address of | 
|  | ARG1 by OFFSET bytes, and search in it assuming it has (class) type | 
|  | TYPE. | 
|  |  | 
|  | ARGS is an optional array of argument values used to help finding NAME. | 
|  | The contents of ARGS can be adjusted if type coercion is required in | 
|  | order to find a matching NAME. | 
|  |  | 
|  | If found, return value, else if name matched and args not return | 
|  | (value) -1, else return NULL.  */ | 
|  |  | 
|  | static struct value * | 
|  | search_struct_method (const char *name, struct value **arg1p, | 
|  | std::optional<gdb::array_view<value *>> args, | 
|  | LONGEST offset, int *static_memfuncp, | 
|  | struct type *type) | 
|  | { | 
|  | int i; | 
|  | struct value *v; | 
|  | int name_matched = 0; | 
|  |  | 
|  | type = check_typedef (type); | 
|  | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | 
|  | { | 
|  | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | 
|  |  | 
|  | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | 
|  | { | 
|  | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | 
|  | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | 
|  |  | 
|  | name_matched = 1; | 
|  | check_stub_method_group (type, i); | 
|  | if (j > 0 && !args.has_value ()) | 
|  | error (_("cannot resolve overloaded method " | 
|  | "`%s': no arguments supplied"), name); | 
|  | else if (j == 0 && !args.has_value ()) | 
|  | { | 
|  | v = value_fn_field (arg1p, f, j, type, offset); | 
|  | if (v != NULL) | 
|  | return v; | 
|  | } | 
|  | else | 
|  | while (j >= 0) | 
|  | { | 
|  | gdb_assert (args.has_value ()); | 
|  | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | 
|  | TYPE_FN_FIELD_TYPE (f, j)->has_varargs (), | 
|  | TYPE_FN_FIELD_TYPE (f, j)->num_fields (), | 
|  | TYPE_FN_FIELD_ARGS (f, j), *args)) | 
|  | { | 
|  | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | 
|  | return value_virtual_fn_field (arg1p, f, j, | 
|  | type, offset); | 
|  | if (TYPE_FN_FIELD_STATIC_P (f, j) | 
|  | && static_memfuncp) | 
|  | *static_memfuncp = 1; | 
|  | v = value_fn_field (arg1p, f, j, type, offset); | 
|  | if (v != NULL) | 
|  | return v; | 
|  | } | 
|  | j--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | 
|  | { | 
|  | LONGEST base_offset; | 
|  | LONGEST this_offset; | 
|  |  | 
|  | if (BASETYPE_VIA_VIRTUAL (type, i)) | 
|  | { | 
|  | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | 
|  | struct value *base_val; | 
|  | const gdb_byte *base_valaddr; | 
|  |  | 
|  | /* The virtual base class pointer might have been | 
|  | clobbered by the user program.  Make sure that it | 
|  | still points to a valid memory location.  */ | 
|  |  | 
|  | if (offset < 0 || offset >= type->length ()) | 
|  | { | 
|  | CORE_ADDR address; | 
|  |  | 
|  | gdb::byte_vector tmp (baseclass->length ()); | 
|  | address = (*arg1p)->address (); | 
|  |  | 
|  | if (target_read_memory (address + offset, | 
|  | tmp.data (), baseclass->length ()) != 0) | 
|  | error (_("virtual baseclass botch")); | 
|  |  | 
|  | base_val = value_from_contents_and_address (baseclass, | 
|  | tmp.data (), | 
|  | address + offset); | 
|  | base_valaddr = base_val->contents_for_printing ().data (); | 
|  | this_offset = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | base_val = *arg1p; | 
|  | base_valaddr = (*arg1p)->contents_for_printing ().data (); | 
|  | this_offset = offset; | 
|  | } | 
|  |  | 
|  | base_offset = baseclass_offset (type, i, base_valaddr, | 
|  | this_offset, base_val->address (), | 
|  | base_val); | 
|  | } | 
|  | else | 
|  | { | 
|  | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | 
|  | } | 
|  | v = search_struct_method (name, arg1p, args, base_offset + offset, | 
|  | static_memfuncp, TYPE_BASECLASS (type, i)); | 
|  | if (v == (struct value *) - 1) | 
|  | { | 
|  | name_matched = 1; | 
|  | } | 
|  | else if (v) | 
|  | { | 
|  | /* FIXME-bothner:  Why is this commented out?  Why is it here?  */ | 
|  | /* *arg1p = arg1_tmp; */ | 
|  | return v; | 
|  | } | 
|  | } | 
|  | if (name_matched) | 
|  | return (struct value *) - 1; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Given *ARGP, a value of type (pointer to a)* structure/union, | 
|  | extract the component named NAME from the ultimate target | 
|  | structure/union and return it as a value with its appropriate type. | 
|  | ERR is used in the error message if *ARGP's type is wrong. | 
|  |  | 
|  | C++: ARGS is a list of argument types to aid in the selection of | 
|  | an appropriate method.  Also, handle derived types. | 
|  |  | 
|  | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | 
|  | where the truthvalue of whether the function that was resolved was | 
|  | a static member function or not is stored. | 
|  |  | 
|  | ERR is an error message to be printed in case the field is not | 
|  | found.  */ | 
|  |  | 
|  | struct value * | 
|  | value_struct_elt (struct value **argp, | 
|  | std::optional<gdb::array_view<value *>> args, | 
|  | const char *name, int *static_memfuncp, const char *err) | 
|  | { | 
|  | struct type *t; | 
|  | struct value *v; | 
|  |  | 
|  | *argp = coerce_array (*argp); | 
|  |  | 
|  | t = check_typedef ((*argp)->type ()); | 
|  |  | 
|  | /* Follow pointers until we get to a non-pointer.  */ | 
|  |  | 
|  | while (t->is_pointer_or_reference ()) | 
|  | { | 
|  | *argp = value_ind (*argp); | 
|  | /* Don't coerce fn pointer to fn and then back again!  */ | 
|  | if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC) | 
|  | *argp = coerce_array (*argp); | 
|  | t = check_typedef ((*argp)->type ()); | 
|  | } | 
|  |  | 
|  | if (t->code () != TYPE_CODE_STRUCT | 
|  | && t->code () != TYPE_CODE_UNION) | 
|  | error (_("Attempt to extract a component of a value that is not a %s."), | 
|  | err); | 
|  |  | 
|  | /* Assume it's not, unless we see that it is.  */ | 
|  | if (static_memfuncp) | 
|  | *static_memfuncp = 0; | 
|  |  | 
|  | if (!args.has_value ()) | 
|  | { | 
|  | /* if there are no arguments ...do this...  */ | 
|  |  | 
|  | /* Try as a field first, because if we succeed, there is less | 
|  | work to be done.  */ | 
|  | v = search_struct_field (name, *argp, t, 0); | 
|  | if (v) | 
|  | return v; | 
|  |  | 
|  | if (current_language->la_language == language_fortran) | 
|  | { | 
|  | /* If it is not a field it is the type name of an inherited | 
|  | structure.  */ | 
|  | v = search_struct_field (name, *argp, t, 1); | 
|  | if (v) | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* C++: If it was not found as a data field, then try to | 
|  | return it as a pointer to a method.  */ | 
|  | v = search_struct_method (name, argp, args, 0, | 
|  | static_memfuncp, t); | 
|  |  | 
|  | if (v == (struct value *) - 1) | 
|  | error (_("Cannot take address of method %s."), name); | 
|  | else if (v == 0) | 
|  | { | 
|  | if (TYPE_NFN_FIELDS (t)) | 
|  | error (_("There is no member or method named %s."), name); | 
|  | else | 
|  | error (_("There is no member named %s."), name); | 
|  | } | 
|  | return v; | 
|  | } | 
|  |  | 
|  | v = search_struct_method (name, argp, args, 0, | 
|  | static_memfuncp, t); | 
|  |  | 
|  | if (v == (struct value *) - 1) | 
|  | { | 
|  | error (_("One of the arguments you tried to pass to %s could not " | 
|  | "be converted to what the function wants."), name); | 
|  | } | 
|  | else if (v == 0) | 
|  | { | 
|  | /* See if user tried to invoke data as function.  If so, hand it | 
|  | back.  If it's not callable (i.e., a pointer to function), | 
|  | gdb should give an error.  */ | 
|  | v = search_struct_field (name, *argp, t, 0); | 
|  | /* If we found an ordinary field, then it is not a method call. | 
|  | So, treat it as if it were a static member function.  */ | 
|  | if (v && static_memfuncp) | 
|  | *static_memfuncp = 1; | 
|  | } | 
|  |  | 
|  | if (!v) | 
|  | throw_error (NOT_FOUND_ERROR, | 
|  | _("Structure has no component named %s."), name); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Given *ARGP, a value of type structure or union, or a pointer/reference | 
|  | to a structure or union, extract and return its component (field) of | 
|  | type FTYPE at the specified BITPOS. | 
|  | Throw an exception on error.  */ | 
|  |  | 
|  | struct value * | 
|  | value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype, | 
|  | const char *err) | 
|  | { | 
|  | struct type *t; | 
|  | int i; | 
|  |  | 
|  | *argp = coerce_array (*argp); | 
|  |  | 
|  | t = check_typedef ((*argp)->type ()); | 
|  |  | 
|  | while (t->is_pointer_or_reference ()) | 
|  | { | 
|  | *argp = value_ind (*argp); | 
|  | if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC) | 
|  | *argp = coerce_array (*argp); | 
|  | t = check_typedef ((*argp)->type ()); | 
|  | } | 
|  |  | 
|  | if (t->code () != TYPE_CODE_STRUCT | 
|  | && t->code () != TYPE_CODE_UNION) | 
|  | error (_("Attempt to extract a component of a value that is not a %s."), | 
|  | err); | 
|  |  | 
|  | for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++) | 
|  | { | 
|  | if (!t->field (i).is_static () | 
|  | && bitpos == t->field (i).loc_bitpos () | 
|  | && types_equal (ftype, t->field (i).type ())) | 
|  | return (*argp)->primitive_field (0, i, t); | 
|  | } | 
|  |  | 
|  | error (_("No field with matching bitpos and type.")); | 
|  |  | 
|  | /* Never hit.  */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Search through the methods of an object (and its bases) to find a | 
|  | specified method.  Return a reference to the fn_field list METHODS of | 
|  | overloaded instances defined in the source language.  If available | 
|  | and matching, a vector of matching xmethods defined in extension | 
|  | languages are also returned in XMETHODS. | 
|  |  | 
|  | Helper function for value_find_oload_list. | 
|  | ARGP is a pointer to a pointer to a value (the object). | 
|  | METHOD is a string containing the method name. | 
|  | OFFSET is the offset within the value. | 
|  | TYPE is the assumed type of the object. | 
|  | METHODS is a pointer to the matching overloaded instances defined | 
|  | in the source language.  Since this is a recursive function, | 
|  | *METHODS should be set to NULL when calling this function. | 
|  | NUM_FNS is the number of overloaded instances.  *NUM_FNS should be set to | 
|  | 0 when calling this function. | 
|  | XMETHODS is the vector of matching xmethod workers.  *XMETHODS | 
|  | should also be set to NULL when calling this function. | 
|  | BASETYPE is set to the actual type of the subobject where the | 
|  | method is found. | 
|  | BOFFSET is the offset of the base subobject where the method is found.  */ | 
|  |  | 
|  | static void | 
|  | find_method_list (struct value **argp, const char *method, | 
|  | LONGEST offset, struct type *type, | 
|  | gdb::array_view<fn_field> *methods, | 
|  | std::vector<xmethod_worker_up> *xmethods, | 
|  | struct type **basetype, LONGEST *boffset) | 
|  | { | 
|  | int i; | 
|  | struct fn_field *f = NULL; | 
|  |  | 
|  | gdb_assert (methods != NULL && xmethods != NULL); | 
|  | type = check_typedef (type); | 
|  |  | 
|  | /* First check in object itself. | 
|  | This function is called recursively to search through base classes. | 
|  | If there is a source method match found at some stage, then we need not | 
|  | look for source methods in consequent recursive calls.  */ | 
|  | if (methods->empty ()) | 
|  | { | 
|  | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | 
|  | { | 
|  | /* pai: FIXME What about operators and type conversions?  */ | 
|  | const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | 
|  |  | 
|  | if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0)) | 
|  | { | 
|  | int len = TYPE_FN_FIELDLIST_LENGTH (type, i); | 
|  | f = TYPE_FN_FIELDLIST1 (type, i); | 
|  | *methods = gdb::make_array_view (f, len); | 
|  |  | 
|  | *basetype = type; | 
|  | *boffset = offset; | 
|  |  | 
|  | /* Resolve any stub methods.  */ | 
|  | check_stub_method_group (type, i); | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unlike source methods, xmethods can be accumulated over successive | 
|  | recursive calls.  In other words, an xmethod named 'm' in a class | 
|  | will not hide an xmethod named 'm' in its base class(es).  We want | 
|  | it to be this way because xmethods are after all convenience functions | 
|  | and hence there is no point restricting them with something like method | 
|  | hiding.  Moreover, if hiding is done for xmethods as well, then we will | 
|  | have to provide a mechanism to un-hide (like the 'using' construct).  */ | 
|  | get_matching_xmethod_workers (type, method, xmethods); | 
|  |  | 
|  | /* If source methods are not found in current class, look for them in the | 
|  | base classes.  We also have to go through the base classes to gather | 
|  | extension methods.  */ | 
|  | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | 
|  | { | 
|  | LONGEST base_offset; | 
|  |  | 
|  | if (BASETYPE_VIA_VIRTUAL (type, i)) | 
|  | { | 
|  | base_offset = baseclass_offset (type, i, | 
|  | (*argp)->contents_for_printing ().data (), | 
|  | (*argp)->offset () + offset, | 
|  | (*argp)->address (), *argp); | 
|  | } | 
|  | else /* Non-virtual base, simply use bit position from debug | 
|  | info.  */ | 
|  | { | 
|  | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | 
|  | } | 
|  |  | 
|  | find_method_list (argp, method, base_offset + offset, | 
|  | TYPE_BASECLASS (type, i), methods, | 
|  | xmethods, basetype, boffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the list of overloaded methods of a specified name.  The methods | 
|  | could be those GDB finds in the binary, or xmethod.  Methods found in | 
|  | the binary are returned in METHODS, and xmethods are returned in | 
|  | XMETHODS. | 
|  |  | 
|  | ARGP is a pointer to a pointer to a value (the object). | 
|  | METHOD is the method name. | 
|  | OFFSET is the offset within the value contents. | 
|  | METHODS is the list of matching overloaded instances defined in | 
|  | the source language. | 
|  | XMETHODS is the vector of matching xmethod workers defined in | 
|  | extension languages. | 
|  | BASETYPE is set to the type of the base subobject that defines the | 
|  | method. | 
|  | BOFFSET is the offset of the base subobject which defines the method.  */ | 
|  |  | 
|  | static void | 
|  | value_find_oload_method_list (struct value **argp, const char *method, | 
|  | LONGEST offset, | 
|  | gdb::array_view<fn_field> *methods, | 
|  | std::vector<xmethod_worker_up> *xmethods, | 
|  | struct type **basetype, LONGEST *boffset) | 
|  | { | 
|  | struct type *t; | 
|  |  | 
|  | t = check_typedef ((*argp)->type ()); | 
|  |  | 
|  | /* Code snarfed from value_struct_elt.  */ | 
|  | while (t->is_pointer_or_reference ()) | 
|  | { | 
|  | *argp = value_ind (*argp); | 
|  | /* Don't coerce fn pointer to fn and then back again!  */ | 
|  | if (check_typedef ((*argp)->type ())->code () != TYPE_CODE_FUNC) | 
|  | *argp = coerce_array (*argp); | 
|  | t = check_typedef ((*argp)->type ()); | 
|  | } | 
|  |  | 
|  | if (t->code () != TYPE_CODE_STRUCT | 
|  | && t->code () != TYPE_CODE_UNION) | 
|  | error (_("Attempt to extract a component of a " | 
|  | "value that is not a struct or union")); | 
|  |  | 
|  | gdb_assert (methods != NULL && xmethods != NULL); | 
|  |  | 
|  | /* Clear the lists.  */ | 
|  | *methods = {}; | 
|  | xmethods->clear (); | 
|  |  | 
|  | find_method_list (argp, method, 0, t, methods, xmethods, | 
|  | basetype, boffset); | 
|  | } | 
|  |  | 
|  | /* Helper function for find_overload_match.  If no matches were | 
|  | found, this function may generate a hint for the user that some | 
|  | of the relevant types are incomplete, so GDB can't evaluate | 
|  | type relationships to properly evaluate overloads. | 
|  |  | 
|  | If no incomplete types are present, an empty string is returned.  */ | 
|  | static std::string | 
|  | incomplete_type_hint (gdb::array_view<value *> args) | 
|  | { | 
|  | int incomplete_types = 0; | 
|  | std::string incomplete_arg_names; | 
|  | for (const struct value *arg : args) | 
|  | { | 
|  | struct type *t = arg->type (); | 
|  | while (t->code () == TYPE_CODE_PTR) | 
|  | t = t->target_type (); | 
|  | if (t->is_stub ()) | 
|  | { | 
|  | string_file buffer; | 
|  | if (incomplete_types > 0) | 
|  | incomplete_arg_names += ", "; | 
|  |  | 
|  | current_language->print_type (arg->type (), "", &buffer, | 
|  | -1, 0, &type_print_raw_options); | 
|  |  | 
|  | incomplete_types++; | 
|  | incomplete_arg_names += buffer.string (); | 
|  | } | 
|  | } | 
|  | std::string hint; | 
|  | if (incomplete_types > 1) | 
|  | hint = string_printf (_("\nThe types: '%s' aren't fully known to GDB." | 
|  | " Please cast them directly to the desired" | 
|  | " typed in the function call."), | 
|  | incomplete_arg_names.c_str ()); | 
|  | else if (incomplete_types == 1) | 
|  | hint = string_printf (_("\nThe type: '%s' isn't fully known to GDB." | 
|  | " Please cast it directly to the desired" | 
|  | " typed in the function call."), | 
|  | incomplete_arg_names.c_str ()); | 
|  | return hint; | 
|  | } | 
|  |  | 
|  | /* Given an array of arguments (ARGS) (which includes an entry for | 
|  | "this" in the case of C++ methods), the NAME of a function, and | 
|  | whether it's a method or not (METHOD), find the best function that | 
|  | matches on the argument types according to the overload resolution | 
|  | rules. | 
|  |  | 
|  | METHOD can be one of three values: | 
|  | NON_METHOD for non-member functions. | 
|  | METHOD: for member functions. | 
|  | BOTH: used for overload resolution of operators where the | 
|  | candidates are expected to be either member or non member | 
|  | functions.  In this case the first argument ARGTYPES | 
|  | (representing 'this') is expected to be a reference to the | 
|  | target object, and will be dereferenced when attempting the | 
|  | non-member search. | 
|  |  | 
|  | In the case of class methods, the parameter OBJ is an object value | 
|  | in which to search for overloaded methods. | 
|  |  | 
|  | In the case of non-method functions, the parameter FSYM is a symbol | 
|  | corresponding to one of the overloaded functions. | 
|  |  | 
|  | Return value is an integer: 0 -> good match, 10 -> debugger applied | 
|  | non-standard coercions, 100 -> incompatible. | 
|  |  | 
|  | If a method is being searched for, VALP will hold the value. | 
|  | If a non-method is being searched for, SYMP will hold the symbol | 
|  | for it. | 
|  |  | 
|  | If a method is being searched for, and it is a static method, | 
|  | then STATICP will point to a non-zero value. | 
|  |  | 
|  | If NO_ADL argument dependent lookup is disabled.  This is used to prevent | 
|  | ADL overload candidates when performing overload resolution for a fully | 
|  | qualified name. | 
|  |  | 
|  | If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be | 
|  | read while picking the best overload match (it may be all zeroes and thus | 
|  | not have a vtable pointer), in which case skip virtual function lookup. | 
|  | This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine | 
|  | the result type. | 
|  |  | 
|  | Note: This function does *not* check the value of | 
|  | overload_resolution.  Caller must check it to see whether overload | 
|  | resolution is permitted.  */ | 
|  |  | 
|  | int | 
|  | find_overload_match (gdb::array_view<value *> args, | 
|  | const char *name, enum oload_search_type method, | 
|  | struct value **objp, struct symbol *fsym, | 
|  | struct value **valp, struct symbol **symp, | 
|  | int *staticp, const int no_adl, | 
|  | const enum noside noside) | 
|  | { | 
|  | struct value *obj = (objp ? *objp : NULL); | 
|  | struct type *obj_type = obj ? obj->type () : NULL; | 
|  | /* Index of best overloaded function.  */ | 
|  | int func_oload_champ = -1; | 
|  | int method_oload_champ = -1; | 
|  | int src_method_oload_champ = -1; | 
|  | int ext_method_oload_champ = -1; | 
|  |  | 
|  | /* The measure for the current best match.  */ | 
|  | badness_vector method_badness; | 
|  | badness_vector func_badness; | 
|  | badness_vector ext_method_badness; | 
|  | badness_vector src_method_badness; | 
|  |  | 
|  | struct value *temp = obj; | 
|  | /* For methods, the list of overloaded methods.  */ | 
|  | gdb::array_view<fn_field> methods; | 
|  | /* For non-methods, the list of overloaded function symbols.  */ | 
|  | std::vector<symbol *> functions; | 
|  | /* For xmethods, the vector of xmethod workers.  */ | 
|  | std::vector<xmethod_worker_up> xmethods; | 
|  | struct type *basetype = NULL; | 
|  | LONGEST boffset; | 
|  |  | 
|  | const char *obj_type_name = NULL; | 
|  | const char *func_name = NULL; | 
|  | gdb::unique_xmalloc_ptr<char> temp_func; | 
|  | enum oload_classification match_quality; | 
|  | enum oload_classification method_match_quality = INCOMPATIBLE; | 
|  | enum oload_classification src_method_match_quality = INCOMPATIBLE; | 
|  | enum oload_classification ext_method_match_quality = INCOMPATIBLE; | 
|  | enum oload_classification func_match_quality = INCOMPATIBLE; | 
|  |  | 
|  | /* Get the list of overloaded methods or functions.  */ | 
|  | if (method == METHOD || method == BOTH) | 
|  | { | 
|  | gdb_assert (obj); | 
|  |  | 
|  | /* OBJ may be a pointer value rather than the object itself.  */ | 
|  | obj = coerce_ref (obj); | 
|  | while (check_typedef (obj->type ())->code () == TYPE_CODE_PTR) | 
|  | obj = coerce_ref (value_ind (obj)); | 
|  | obj_type_name = obj->type ()->name (); | 
|  |  | 
|  | /* First check whether this is a data member, e.g. a pointer to | 
|  | a function.  */ | 
|  | if (check_typedef (obj->type ())->code () == TYPE_CODE_STRUCT) | 
|  | { | 
|  | *valp = search_struct_field (name, obj, | 
|  | check_typedef (obj->type ()), 0); | 
|  | if (*valp) | 
|  | { | 
|  | *staticp = 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Retrieve the list of methods with the name NAME.  */ | 
|  | value_find_oload_method_list (&temp, name, 0, &methods, | 
|  | &xmethods, &basetype, &boffset); | 
|  | /* If this is a method only search, and no methods were found | 
|  | the search has failed.  */ | 
|  | if (method == METHOD && methods.empty () && xmethods.empty ()) | 
|  | error (_("Couldn't find method %s%s%s"), | 
|  | obj_type_name, | 
|  | (obj_type_name && *obj_type_name) ? "::" : "", | 
|  | name); | 
|  | /* If we are dealing with stub method types, they should have | 
|  | been resolved by find_method_list via | 
|  | value_find_oload_method_list above.  */ | 
|  | if (!methods.empty ()) | 
|  | { | 
|  | gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL); | 
|  |  | 
|  | src_method_oload_champ | 
|  | = find_oload_champ (args, | 
|  | methods.size (), | 
|  | methods.data (), NULL, NULL, | 
|  | &src_method_badness); | 
|  |  | 
|  | src_method_match_quality = classify_oload_match | 
|  | (src_method_badness, args.size (), | 
|  | oload_method_static_p (methods.data (), src_method_oload_champ)); | 
|  | } | 
|  |  | 
|  | if (!xmethods.empty ()) | 
|  | { | 
|  | ext_method_oload_champ | 
|  | = find_oload_champ (args, | 
|  | xmethods.size (), | 
|  | NULL, xmethods.data (), NULL, | 
|  | &ext_method_badness); | 
|  | ext_method_match_quality = classify_oload_match (ext_method_badness, | 
|  | args.size (), 0); | 
|  | } | 
|  |  | 
|  | if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0) | 
|  | { | 
|  | switch (compare_badness (ext_method_badness, src_method_badness)) | 
|  | { | 
|  | case 0: /* Src method and xmethod are equally good.  */ | 
|  | /* If src method and xmethod are equally good, then | 
|  | xmethod should be the winner.  Hence, fall through to the | 
|  | case where a xmethod is better than the source | 
|  | method, except when the xmethod match quality is | 
|  | non-standard.  */ | 
|  | [[fallthrough]]; | 
|  | case 1: /* Src method and ext method are incompatible.  */ | 
|  | /* If ext method match is not standard, then let source method | 
|  | win.  Otherwise, fallthrough to let xmethod win.  */ | 
|  | if (ext_method_match_quality != STANDARD) | 
|  | { | 
|  | method_oload_champ = src_method_oload_champ; | 
|  | method_badness = src_method_badness; | 
|  | ext_method_oload_champ = -1; | 
|  | method_match_quality = src_method_match_quality; | 
|  | break; | 
|  | } | 
|  | [[fallthrough]]; | 
|  | case 2: /* Ext method is champion.  */ | 
|  | method_oload_champ = ext_method_oload_champ; | 
|  | method_badness = ext_method_badness; | 
|  | src_method_oload_champ = -1; | 
|  | method_match_quality = ext_method_match_quality; | 
|  | break; | 
|  | case 3: /* Src method is champion.  */ | 
|  | method_oload_champ = src_method_oload_champ; | 
|  | method_badness = src_method_badness; | 
|  | ext_method_oload_champ = -1; | 
|  | method_match_quality = src_method_match_quality; | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("Unexpected overload comparison " | 
|  | "result"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (src_method_oload_champ >= 0) | 
|  | { | 
|  | method_oload_champ = src_method_oload_champ; | 
|  | method_badness = src_method_badness; | 
|  | method_match_quality = src_method_match_quality; | 
|  | } | 
|  | else if (ext_method_oload_champ >= 0) | 
|  | { | 
|  | method_oload_champ = ext_method_oload_champ; | 
|  | method_badness = ext_method_badness; | 
|  | method_match_quality = ext_method_match_quality; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (method == NON_METHOD || method == BOTH) | 
|  | { | 
|  | const char *qualified_name = NULL; | 
|  |  | 
|  | /* If the overload match is being search for both as a method | 
|  | and non member function, the first argument must now be | 
|  | dereferenced.  */ | 
|  | if (method == BOTH) | 
|  | args[0] = value_ind (args[0]); | 
|  |  | 
|  | if (fsym) | 
|  | { | 
|  | qualified_name = fsym->natural_name (); | 
|  |  | 
|  | /* If we have a function with a C++ name, try to extract just | 
|  | the function part.  Do not try this for non-functions (e.g. | 
|  | function pointers).  */ | 
|  | if (qualified_name | 
|  | && (check_typedef (fsym->type ())->code () | 
|  | == TYPE_CODE_FUNC)) | 
|  | { | 
|  | temp_func = cp_func_name (qualified_name); | 
|  |  | 
|  | /* If cp_func_name did not remove anything, the name of the | 
|  | symbol did not include scope or argument types - it was | 
|  | probably a C-style function.  */ | 
|  | if (temp_func != nullptr) | 
|  | { | 
|  | if (strcmp (temp_func.get (), qualified_name) == 0) | 
|  | func_name = NULL; | 
|  | else | 
|  | func_name = temp_func.get (); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | func_name = name; | 
|  | qualified_name = name; | 
|  | } | 
|  |  | 
|  | /* If there was no C++ name, this must be a C-style function or | 
|  | not a function at all.  Just return the same symbol.  Do the | 
|  | same if cp_func_name fails for some reason.  */ | 
|  | if (func_name == NULL) | 
|  | { | 
|  | *symp = fsym; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | func_oload_champ = find_oload_champ_namespace (args, | 
|  | func_name, | 
|  | qualified_name, | 
|  | &functions, | 
|  | &func_badness, | 
|  | no_adl); | 
|  |  | 
|  | if (func_oload_champ >= 0) | 
|  | func_match_quality = classify_oload_match (func_badness, | 
|  | args.size (), 0); | 
|  | } | 
|  |  | 
|  | /* Did we find a match ?  */ | 
|  | if (method_oload_champ == -1 && func_oload_champ == -1) | 
|  | throw_error (NOT_FOUND_ERROR, | 
|  | _("No symbol \"%s\" in current context."), | 
|  | name); | 
|  |  | 
|  | /* If we have found both a method match and a function | 
|  | match, find out which one is better, and calculate match | 
|  | quality.  */ | 
|  | if (method_oload_champ >= 0 && func_oload_champ >= 0) | 
|  | { | 
|  | switch (compare_badness (func_badness, method_badness)) | 
|  | { | 
|  | case 0: /* Top two contenders are equally good.  */ | 
|  | /* FIXME: GDB does not support the general ambiguous case. | 
|  | All candidates should be collected and presented the | 
|  | user.  */ | 
|  | error (_("Ambiguous overload resolution")); | 
|  | break; | 
|  | case 1: /* Incomparable top contenders.  */ | 
|  | /* This is an error incompatible candidates | 
|  | should not have been proposed.  */ | 
|  | error (_("Internal error: incompatible " | 
|  | "overload candidates proposed")); | 
|  | break; | 
|  | case 2: /* Function champion.  */ | 
|  | method_oload_champ = -1; | 
|  | match_quality = func_match_quality; | 
|  | break; | 
|  | case 3: /* Method champion.  */ | 
|  | func_oload_champ = -1; | 
|  | match_quality = method_match_quality; | 
|  | break; | 
|  | default: | 
|  | error (_("Internal error: unexpected overload comparison result")); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We have either a method match or a function match.  */ | 
|  | if (method_oload_champ >= 0) | 
|  | match_quality = method_match_quality; | 
|  | else | 
|  | match_quality = func_match_quality; | 
|  | } | 
|  |  | 
|  | if (match_quality == INCOMPATIBLE) | 
|  | { | 
|  | std::string hint = incomplete_type_hint (args); | 
|  | if (method == METHOD) | 
|  | error (_("Cannot resolve method %s%s%s to any overloaded instance%s"), | 
|  | obj_type_name, | 
|  | (obj_type_name && *obj_type_name) ? "::" : "", | 
|  | name, hint.c_str ()); | 
|  | else | 
|  | error (_("Cannot resolve function %s to any overloaded instance%s"), | 
|  | func_name, hint.c_str ()); | 
|  | } | 
|  | else if (match_quality == NON_STANDARD) | 
|  | { | 
|  | if (method == METHOD) | 
|  | warning (_("Using non-standard conversion to match " | 
|  | "method %s%s%s to supplied arguments"), | 
|  | obj_type_name, | 
|  | (obj_type_name && *obj_type_name) ? "::" : "", | 
|  | name); | 
|  | else | 
|  | warning (_("Using non-standard conversion to match " | 
|  | "function %s to supplied arguments"), | 
|  | func_name); | 
|  | } | 
|  |  | 
|  | if (staticp != NULL) | 
|  | *staticp = oload_method_static_p (methods.data (), method_oload_champ); | 
|  |  | 
|  | if (method_oload_champ >= 0) | 
|  | { | 
|  | if (src_method_oload_champ >= 0) | 
|  | { | 
|  | if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ) | 
|  | && noside != EVAL_AVOID_SIDE_EFFECTS) | 
|  | { | 
|  | *valp = value_virtual_fn_field (&temp, methods.data (), | 
|  | method_oload_champ, basetype, | 
|  | boffset); | 
|  | } | 
|  | else | 
|  | *valp = value_fn_field (&temp, methods.data (), | 
|  | method_oload_champ, basetype, boffset); | 
|  | } | 
|  | else | 
|  | *valp = value::from_xmethod | 
|  | (std::move (xmethods[ext_method_oload_champ])); | 
|  | } | 
|  | else | 
|  | *symp = functions[func_oload_champ]; | 
|  |  | 
|  | if (objp) | 
|  | { | 
|  | struct type *temp_type = check_typedef (temp->type ()); | 
|  | struct type *objtype = check_typedef (obj_type); | 
|  |  | 
|  | if (temp_type->code () != TYPE_CODE_PTR | 
|  | && objtype->is_pointer_or_reference ()) | 
|  | { | 
|  | temp = value_addr (temp); | 
|  | } | 
|  | *objp = temp; | 
|  | } | 
|  |  | 
|  | switch (match_quality) | 
|  | { | 
|  | case INCOMPATIBLE: | 
|  | return 100; | 
|  | case NON_STANDARD: | 
|  | return 10; | 
|  | default:				/* STANDARD */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find the best overload match, searching for FUNC_NAME in namespaces | 
|  | contained in QUALIFIED_NAME until it either finds a good match or | 
|  | runs out of namespaces.  It stores the overloaded functions in | 
|  | *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  If NO_ADL, | 
|  | argument dependent lookup is not performed.  */ | 
|  |  | 
|  | static int | 
|  | find_oload_champ_namespace (gdb::array_view<value *> args, | 
|  | const char *func_name, | 
|  | const char *qualified_name, | 
|  | std::vector<symbol *> *oload_syms, | 
|  | badness_vector *oload_champ_bv, | 
|  | const int no_adl) | 
|  | { | 
|  | int oload_champ; | 
|  |  | 
|  | find_oload_champ_namespace_loop (args, | 
|  | func_name, | 
|  | qualified_name, 0, | 
|  | oload_syms, oload_champ_bv, | 
|  | &oload_champ, | 
|  | no_adl); | 
|  |  | 
|  | return oload_champ; | 
|  | } | 
|  |  | 
|  | /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is | 
|  | how deep we've looked for namespaces, and the champ is stored in | 
|  | OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0 | 
|  | if it isn't.  Other arguments are the same as in | 
|  | find_oload_champ_namespace.  */ | 
|  |  | 
|  | static int | 
|  | find_oload_champ_namespace_loop (gdb::array_view<value *> args, | 
|  | const char *func_name, | 
|  | const char *qualified_name, | 
|  | int namespace_len, | 
|  | std::vector<symbol *> *oload_syms, | 
|  | badness_vector *oload_champ_bv, | 
|  | int *oload_champ, | 
|  | const int no_adl) | 
|  | { | 
|  | int next_namespace_len = namespace_len; | 
|  | int searched_deeper = 0; | 
|  | int new_oload_champ; | 
|  | char *new_namespace; | 
|  |  | 
|  | if (next_namespace_len != 0) | 
|  | { | 
|  | gdb_assert (qualified_name[next_namespace_len] == ':'); | 
|  | next_namespace_len +=  2; | 
|  | } | 
|  | next_namespace_len += | 
|  | cp_find_first_component (qualified_name + next_namespace_len); | 
|  |  | 
|  | /* First, see if we have a deeper namespace we can search in. | 
|  | If we get a good match there, use it.  */ | 
|  |  | 
|  | if (qualified_name[next_namespace_len] == ':') | 
|  | { | 
|  | searched_deeper = 1; | 
|  |  | 
|  | if (find_oload_champ_namespace_loop (args, | 
|  | func_name, qualified_name, | 
|  | next_namespace_len, | 
|  | oload_syms, oload_champ_bv, | 
|  | oload_champ, no_adl)) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* If we reach here, either we're in the deepest namespace or we | 
|  | didn't find a good match in a deeper namespace.  But, in the | 
|  | latter case, we still have a bad match in a deeper namespace; | 
|  | note that we might not find any match at all in the current | 
|  | namespace.  (There's always a match in the deepest namespace, | 
|  | because this overload mechanism only gets called if there's a | 
|  | function symbol to start off with.)  */ | 
|  |  | 
|  | new_namespace = (char *) alloca (namespace_len + 1); | 
|  | strncpy (new_namespace, qualified_name, namespace_len); | 
|  | new_namespace[namespace_len] = '\0'; | 
|  |  | 
|  | std::vector<symbol *> new_oload_syms | 
|  | = make_symbol_overload_list (func_name, new_namespace); | 
|  |  | 
|  | /* If we have reached the deepest level perform argument | 
|  | determined lookup.  */ | 
|  | if (!searched_deeper && !no_adl) | 
|  | { | 
|  | int ix; | 
|  | struct type **arg_types; | 
|  |  | 
|  | /* Prepare list of argument types for overload resolution.  */ | 
|  | arg_types = (struct type **) | 
|  | alloca (args.size () * (sizeof (struct type *))); | 
|  | for (ix = 0; ix < args.size (); ix++) | 
|  | arg_types[ix] = args[ix]->type (); | 
|  | add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name, | 
|  | &new_oload_syms); | 
|  | } | 
|  |  | 
|  | badness_vector new_oload_champ_bv; | 
|  | new_oload_champ = find_oload_champ (args, | 
|  | new_oload_syms.size (), | 
|  | NULL, NULL, new_oload_syms.data (), | 
|  | &new_oload_champ_bv); | 
|  |  | 
|  | /* Case 1: We found a good match.  Free earlier matches (if any), | 
|  | and return it.  Case 2: We didn't find a good match, but we're | 
|  | not the deepest function.  Then go with the bad match that the | 
|  | deeper function found.  Case 3: We found a bad match, and we're | 
|  | the deepest function.  Then return what we found, even though | 
|  | it's a bad match.  */ | 
|  |  | 
|  | if (new_oload_champ != -1 | 
|  | && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD) | 
|  | { | 
|  | *oload_syms = std::move (new_oload_syms); | 
|  | *oload_champ = new_oload_champ; | 
|  | *oload_champ_bv = std::move (new_oload_champ_bv); | 
|  | return 1; | 
|  | } | 
|  | else if (searched_deeper) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | *oload_syms = std::move (new_oload_syms); | 
|  | *oload_champ = new_oload_champ; | 
|  | *oload_champ_bv = std::move (new_oload_champ_bv); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Look for a function to take ARGS.  Find the best match from among | 
|  | the overloaded methods or functions given by METHODS or FUNCTIONS | 
|  | or XMETHODS, respectively.  One, and only one of METHODS, FUNCTIONS | 
|  | and XMETHODS can be non-NULL. | 
|  |  | 
|  | NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS | 
|  | or XMETHODS, whichever is non-NULL. | 
|  |  | 
|  | Return the index of the best match; store an indication of the | 
|  | quality of the match in OLOAD_CHAMP_BV.  */ | 
|  |  | 
|  | static int | 
|  | find_oload_champ (gdb::array_view<value *> args, | 
|  | size_t num_fns, | 
|  | fn_field *methods, | 
|  | xmethod_worker_up *xmethods, | 
|  | symbol **functions, | 
|  | badness_vector *oload_champ_bv) | 
|  | { | 
|  | /* A measure of how good an overloaded instance is.  */ | 
|  | badness_vector bv; | 
|  | /* Index of best overloaded function.  */ | 
|  | int oload_champ = -1; | 
|  | /* Current ambiguity state for overload resolution.  */ | 
|  | int oload_ambiguous = 0; | 
|  | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */ | 
|  |  | 
|  | /* A champion can be found among methods alone, or among functions | 
|  | alone, or in xmethods alone, but not in more than one of these | 
|  | groups.  */ | 
|  | gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL) | 
|  | == 1); | 
|  |  | 
|  | /* Consider each candidate in turn.  */ | 
|  | for (size_t ix = 0; ix < num_fns; ix++) | 
|  | { | 
|  | int jj; | 
|  | int static_offset = 0; | 
|  | bool varargs = false; | 
|  | std::vector<type *> parm_types; | 
|  |  | 
|  | if (xmethods != NULL) | 
|  | parm_types = xmethods[ix]->get_arg_types (); | 
|  | else | 
|  | { | 
|  | size_t nparms; | 
|  |  | 
|  | if (methods != NULL) | 
|  | { | 
|  | nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields (); | 
|  | static_offset = oload_method_static_p (methods, ix); | 
|  | varargs = TYPE_FN_FIELD_TYPE (methods, ix)->has_varargs (); | 
|  | } | 
|  | else | 
|  | { | 
|  | nparms = functions[ix]->type ()->num_fields (); | 
|  | varargs = functions[ix]->type ()->has_varargs (); | 
|  | } | 
|  |  | 
|  | parm_types.reserve (nparms); | 
|  | for (jj = 0; jj < nparms; jj++) | 
|  | { | 
|  | type *t = (methods != NULL | 
|  | ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ()) | 
|  | : functions[ix]->type ()->field (jj).type ()); | 
|  | parm_types.push_back (t); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compare parameter types to supplied argument types.  Skip | 
|  | THIS for static methods.  */ | 
|  | bv = rank_function (parm_types, | 
|  | args.slice (static_offset), | 
|  | varargs); | 
|  |  | 
|  | if (overload_debug) | 
|  | { | 
|  | if (methods != NULL) | 
|  | gdb_printf (gdb_stderr, | 
|  | "Overloaded method instance %s, # of parms %d\n", | 
|  | methods[ix].physname, (int) parm_types.size ()); | 
|  | else if (xmethods != NULL) | 
|  | gdb_printf (gdb_stderr, | 
|  | "Xmethod worker, # of parms %d\n", | 
|  | (int) parm_types.size ()); | 
|  | else | 
|  | gdb_printf (gdb_stderr, | 
|  | "Overloaded function instance " | 
|  | "%s # of parms %d\n", | 
|  | functions[ix]->demangled_name (), | 
|  | (int) parm_types.size ()); | 
|  |  | 
|  | gdb_printf (gdb_stderr, | 
|  | "...Badness of length : {%d, %d}\n", | 
|  | bv[0].rank, bv[0].subrank); | 
|  |  | 
|  | for (jj = 1; jj < bv.size (); jj++) | 
|  | gdb_printf (gdb_stderr, | 
|  | "...Badness of arg %d : {%d, %d}\n", | 
|  | jj, bv[jj].rank, bv[jj].subrank); | 
|  | } | 
|  |  | 
|  | if (oload_champ_bv->empty ()) | 
|  | { | 
|  | *oload_champ_bv = std::move (bv); | 
|  | oload_champ = 0; | 
|  | } | 
|  | else /* See whether current candidate is better or worse than | 
|  | previous best.  */ | 
|  | switch (compare_badness (bv, *oload_champ_bv)) | 
|  | { | 
|  | case 0:		/* Top two contenders are equally good.  */ | 
|  | oload_ambiguous = 1; | 
|  | break; | 
|  | case 1:		/* Incomparable top contenders.  */ | 
|  | oload_ambiguous = 2; | 
|  | break; | 
|  | case 2:		/* New champion, record details.  */ | 
|  | *oload_champ_bv = std::move (bv); | 
|  | oload_ambiguous = 0; | 
|  | oload_champ = ix; | 
|  | break; | 
|  | case 3: | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (overload_debug) | 
|  | gdb_printf (gdb_stderr, "Overload resolution " | 
|  | "champion is %d, ambiguous? %d\n", | 
|  | oload_champ, oload_ambiguous); | 
|  | } | 
|  |  | 
|  | return oload_champ; | 
|  | } | 
|  |  | 
|  | /* Return 1 if we're looking at a static method, 0 if we're looking at | 
|  | a non-static method or a function that isn't a method.  */ | 
|  |  | 
|  | static int | 
|  | oload_method_static_p (struct fn_field *fns_ptr, int index) | 
|  | { | 
|  | if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index)) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check how good an overload match OLOAD_CHAMP_BV represents.  */ | 
|  |  | 
|  | static enum oload_classification | 
|  | classify_oload_match (const badness_vector &oload_champ_bv, | 
|  | int nargs, | 
|  | int static_offset) | 
|  | { | 
|  | int ix; | 
|  | enum oload_classification worst = STANDARD; | 
|  |  | 
|  | for (ix = 1; ix <= nargs - static_offset; ix++) | 
|  | { | 
|  | /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS | 
|  | or worse return INCOMPATIBLE.  */ | 
|  | if (compare_ranks (oload_champ_bv[ix], | 
|  | INCOMPATIBLE_TYPE_BADNESS) <= 0) | 
|  | return INCOMPATIBLE;	/* Truly mismatched types.  */ | 
|  | /* Otherwise If this conversion is as bad as | 
|  | NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD.  */ | 
|  | else if (compare_ranks (oload_champ_bv[ix], | 
|  | NS_POINTER_CONVERSION_BADNESS) <= 0) | 
|  | worst = NON_STANDARD;	/* Non-standard type conversions | 
|  | needed.  */ | 
|  | } | 
|  |  | 
|  | /* If no INCOMPATIBLE classification was found, return the worst one | 
|  | that was found (if any).  */ | 
|  | return worst; | 
|  | } | 
|  |  | 
|  | /* C++: return 1 is NAME is a legitimate name for the destructor of | 
|  | type TYPE.  If TYPE does not have a destructor, or if NAME is | 
|  | inappropriate for TYPE, an error is signaled.  Parameter TYPE should not yet | 
|  | have CHECK_TYPEDEF applied, this function will apply it itself.  */ | 
|  |  | 
|  | int | 
|  | destructor_name_p (const char *name, struct type *type) | 
|  | { | 
|  | if (name[0] == '~') | 
|  | { | 
|  | const char *dname = type_name_or_error (type); | 
|  | const char *cp = strchr (dname, '<'); | 
|  | unsigned int len; | 
|  |  | 
|  | /* Do not compare the template part for template classes.  */ | 
|  | if (cp == NULL) | 
|  | len = strlen (dname); | 
|  | else | 
|  | len = cp - dname; | 
|  | if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0) | 
|  | error (_("name of destructor must equal name of class")); | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find an enum constant named NAME in TYPE.  TYPE must be an "enum | 
|  | class".  If the name is found, return a value representing it; | 
|  | otherwise throw an exception.  */ | 
|  |  | 
|  | static struct value * | 
|  | enum_constant_from_type (struct type *type, const char *name) | 
|  | { | 
|  | int i; | 
|  | int name_len = strlen (name); | 
|  |  | 
|  | gdb_assert (type->code () == TYPE_CODE_ENUM | 
|  | && type->is_declared_class ()); | 
|  |  | 
|  | for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i) | 
|  | { | 
|  | const char *fname = type->field (i).name (); | 
|  | int len; | 
|  |  | 
|  | if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL | 
|  | || fname == NULL) | 
|  | continue; | 
|  |  | 
|  | /* Look for the trailing "::NAME", since enum class constant | 
|  | names are qualified here.  */ | 
|  | len = strlen (fname); | 
|  | if (len + 2 >= name_len | 
|  | && fname[len - name_len - 2] == ':' | 
|  | && fname[len - name_len - 1] == ':' | 
|  | && strcmp (&fname[len - name_len], name) == 0) | 
|  | return value_from_longest (type, type->field (i).loc_enumval ()); | 
|  | } | 
|  |  | 
|  | error (_("no constant named \"%s\" in enum \"%s\""), | 
|  | name, type->name ()); | 
|  | } | 
|  |  | 
|  | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | 
|  | return the appropriate member (or the address of the member, if | 
|  | WANT_ADDRESS).  This function is used to resolve user expressions | 
|  | of the form "DOMAIN::NAME".  For more details on what happens, see | 
|  | the comment before value_struct_elt_for_reference.  */ | 
|  |  | 
|  | struct value * | 
|  | value_aggregate_elt (struct type *curtype, const char *name, | 
|  | struct type *expect_type, int want_address, | 
|  | enum noside noside) | 
|  | { | 
|  | switch (curtype->code ()) | 
|  | { | 
|  | case TYPE_CODE_STRUCT: | 
|  | case TYPE_CODE_UNION: | 
|  | return value_struct_elt_for_reference (curtype, 0, curtype, | 
|  | name, expect_type, | 
|  | want_address, noside); | 
|  | case TYPE_CODE_NAMESPACE: | 
|  | return value_namespace_elt (curtype, name, | 
|  | want_address, noside); | 
|  |  | 
|  | case TYPE_CODE_ENUM: | 
|  | return enum_constant_from_type (curtype, name); | 
|  |  | 
|  | default: | 
|  | internal_error (_("non-aggregate type in value_aggregate_elt")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compares the two method/function types T1 and T2 for "equality" | 
|  | with respect to the methods' parameters.  If the types of the | 
|  | two parameter lists are the same, returns 1; 0 otherwise.  This | 
|  | comparison may ignore any artificial parameters in T1 if | 
|  | SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip | 
|  | the first artificial parameter in T1, assumed to be a 'this' pointer. | 
|  |  | 
|  | The type T2 is expected to have come from make_params (in eval.c).  */ | 
|  |  | 
|  | static int | 
|  | compare_parameters (struct type *t1, struct type *t2, int skip_artificial) | 
|  | { | 
|  | int start = 0; | 
|  |  | 
|  | if (t1->num_fields () > 0 && t1->field (0).is_artificial ()) | 
|  | ++start; | 
|  |  | 
|  | /* If skipping artificial fields, find the first real field | 
|  | in T1.  */ | 
|  | if (skip_artificial) | 
|  | { | 
|  | while (start < t1->num_fields () | 
|  | && t1->field (start).is_artificial ()) | 
|  | ++start; | 
|  | } | 
|  |  | 
|  | /* Now compare parameters.  */ | 
|  |  | 
|  | /* Special case: a method taking void.  T1 will contain no | 
|  | non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */ | 
|  | if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1 | 
|  | && t2->field (0).type ()->code () == TYPE_CODE_VOID) | 
|  | return 1; | 
|  |  | 
|  | if ((t1->num_fields () - start) == t2->num_fields ()) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < t2->num_fields (); ++i) | 
|  | { | 
|  | if (compare_ranks (rank_one_type (t1->field (start + i).type (), | 
|  | t2->field (i).type (), NULL), | 
|  | EXACT_MATCH_BADNESS) != 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* C++: Given an aggregate type VT, and a class type CLS, search | 
|  | recursively for CLS using value V; If found, store the offset | 
|  | which is either fetched from the virtual base pointer if CLS | 
|  | is virtual or accumulated offset of its parent classes if | 
|  | CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS | 
|  | is virtual, and return true.  If not found, return false.  */ | 
|  |  | 
|  | static bool | 
|  | get_baseclass_offset (struct type *vt, struct type *cls, | 
|  | struct value *v, int *boffs, bool *isvirt) | 
|  | { | 
|  | for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++) | 
|  | { | 
|  | struct type *t = vt->field (i).type (); | 
|  | if (types_equal (t, cls)) | 
|  | { | 
|  | if (BASETYPE_VIA_VIRTUAL (vt, i)) | 
|  | { | 
|  | const gdb_byte *adr = v->contents_for_printing ().data (); | 
|  | *boffs = baseclass_offset (vt, i, adr, v->offset (), | 
|  | value_as_long (v), v); | 
|  | *isvirt = true; | 
|  | } | 
|  | else | 
|  | *isvirt = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt)) | 
|  | { | 
|  | if (*isvirt == false)	/* Add non-virtual base offset.  */ | 
|  | { | 
|  | const gdb_byte *adr = v->contents_for_printing ().data (); | 
|  | *boffs += baseclass_offset (vt, i, adr, v->offset (), | 
|  | value_as_long (v), v); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | 
|  | return the address of this member as a "pointer to member" type. | 
|  | If INTYPE is non-null, then it will be the type of the member we | 
|  | are looking for.  This will help us resolve "pointers to member | 
|  | functions".  This function is used to resolve user expressions of | 
|  | the form "DOMAIN::NAME".  */ | 
|  |  | 
|  | static struct value * | 
|  | value_struct_elt_for_reference (struct type *domain, int offset, | 
|  | struct type *curtype, const char *name, | 
|  | struct type *intype, | 
|  | int want_address, | 
|  | enum noside noside) | 
|  | { | 
|  | struct type *t = check_typedef (curtype); | 
|  | int i; | 
|  | struct value *result; | 
|  |  | 
|  | if (t->code () != TYPE_CODE_STRUCT | 
|  | && t->code () != TYPE_CODE_UNION) | 
|  | error (_("Internal error: non-aggregate type " | 
|  | "to value_struct_elt_for_reference")); | 
|  |  | 
|  | for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--) | 
|  | { | 
|  | const char *t_field_name = t->field (i).name (); | 
|  |  | 
|  | if (t_field_name && strcmp (t_field_name, name) == 0) | 
|  | { | 
|  | if (t->field (i).is_static ()) | 
|  | { | 
|  | struct value *v = value_static_field (t, i); | 
|  | if (want_address) | 
|  | v = value_addr (v); | 
|  | return v; | 
|  | } | 
|  | if (t->field (i).is_packed ()) | 
|  | error (_("pointers to bitfield members not allowed")); | 
|  |  | 
|  | if (want_address) | 
|  | return value_from_longest | 
|  | (lookup_memberptr_type (t->field (i).type (), domain), | 
|  | offset + (LONGEST) (t->field (i).loc_bitpos () >> 3)); | 
|  | else if (noside != EVAL_NORMAL) | 
|  | return value::allocate (t->field (i).type ()); | 
|  | else | 
|  | { | 
|  | /* Try to evaluate NAME as a qualified name with implicit | 
|  | this pointer.  In this case, attempt to return the | 
|  | equivalent to `this->*(&TYPE::NAME)'.  */ | 
|  | struct value *v = value_of_this_silent (current_language); | 
|  | if (v != NULL) | 
|  | { | 
|  | struct value *ptr, *this_v = v; | 
|  | long mem_offset; | 
|  | struct type *type, *tmp; | 
|  |  | 
|  | ptr = value_aggregate_elt (domain, name, NULL, 1, noside); | 
|  | type = check_typedef (ptr->type ()); | 
|  | gdb_assert (type != NULL | 
|  | && type->code () == TYPE_CODE_MEMBERPTR); | 
|  | tmp = lookup_pointer_type (TYPE_SELF_TYPE (type)); | 
|  | v = value_cast_pointers (tmp, v, 1); | 
|  | mem_offset = value_as_long (ptr); | 
|  | if (domain != curtype) | 
|  | { | 
|  | /* Find class offset of type CURTYPE from either its | 
|  | parent type DOMAIN or the type of implied this.  */ | 
|  | int boff = 0; | 
|  | bool isvirt = false; | 
|  | if (get_baseclass_offset (domain, curtype, v, &boff, | 
|  | &isvirt)) | 
|  | mem_offset += boff; | 
|  | else | 
|  | { | 
|  | struct type *p = check_typedef (this_v->type ()); | 
|  | p = check_typedef (p->target_type ()); | 
|  | if (get_baseclass_offset (p, curtype, this_v, | 
|  | &boff, &isvirt)) | 
|  | mem_offset += boff; | 
|  | } | 
|  | } | 
|  | tmp = lookup_pointer_type (type->target_type ()); | 
|  | result = value_from_pointer (tmp, | 
|  | value_as_long (v) + mem_offset); | 
|  | return value_ind (result); | 
|  | } | 
|  |  | 
|  | error (_("Cannot reference non-static field \"%s\""), name); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* C++: If it was not found as a data field, then try to return it | 
|  | as a pointer to a method.  */ | 
|  |  | 
|  | /* Perform all necessary dereferencing.  */ | 
|  | while (intype && intype->code () == TYPE_CODE_PTR) | 
|  | intype = intype->target_type (); | 
|  |  | 
|  | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | 
|  | { | 
|  | const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | 
|  |  | 
|  | if (t_field_name && strcmp (t_field_name, name) == 0) | 
|  | { | 
|  | int j; | 
|  | int len = TYPE_FN_FIELDLIST_LENGTH (t, i); | 
|  | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | 
|  |  | 
|  | check_stub_method_group (t, i); | 
|  |  | 
|  | if (intype) | 
|  | { | 
|  | for (j = 0; j < len; ++j) | 
|  | { | 
|  | if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j)) | 
|  | continue; | 
|  | if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j)) | 
|  | continue; | 
|  |  | 
|  | if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0) | 
|  | || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), | 
|  | intype, 1)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (j == len) | 
|  | error (_("no member function matches " | 
|  | "that type instantiation")); | 
|  | } | 
|  | else | 
|  | { | 
|  | int ii; | 
|  |  | 
|  | j = -1; | 
|  | for (ii = 0; ii < len; ++ii) | 
|  | { | 
|  | /* Skip artificial methods.  This is necessary if, | 
|  | for example, the user wants to "print | 
|  | subclass::subclass" with only one user-defined | 
|  | constructor.  There is no ambiguity in this case. | 
|  | We are careful here to allow artificial methods | 
|  | if they are the unique result.  */ | 
|  | if (TYPE_FN_FIELD_ARTIFICIAL (f, ii)) | 
|  | { | 
|  | if (j == -1) | 
|  | j = ii; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Desired method is ambiguous if more than one | 
|  | method is defined.  */ | 
|  | if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j)) | 
|  | error (_("non-unique member `%s' requires " | 
|  | "type instantiation"), name); | 
|  |  | 
|  | j = ii; | 
|  | } | 
|  |  | 
|  | if (j == -1) | 
|  | error (_("no matching member function")); | 
|  | } | 
|  |  | 
|  | if (TYPE_FN_FIELD_STATIC_P (f, j)) | 
|  | { | 
|  | struct symbol *s = | 
|  | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | 
|  | 0, SEARCH_FUNCTION_DOMAIN, 0).symbol; | 
|  |  | 
|  | if (s == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (want_address) | 
|  | return value_addr (read_var_value (s, 0, 0)); | 
|  | else | 
|  | return read_var_value (s, 0, 0); | 
|  | } | 
|  |  | 
|  | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | 
|  | { | 
|  | if (want_address) | 
|  | { | 
|  | result = value::allocate | 
|  | (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | 
|  | cplus_make_method_ptr (result->type (), | 
|  | result->contents_writeable ().data (), | 
|  | TYPE_FN_FIELD_VOFFSET (f, j), 1); | 
|  | } | 
|  | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | 
|  | return value::allocate (TYPE_FN_FIELD_TYPE (f, j)); | 
|  | else | 
|  | error (_("Cannot reference virtual member function \"%s\""), | 
|  | name); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct symbol *s = | 
|  | lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | 
|  | 0, SEARCH_FUNCTION_DOMAIN, 0).symbol; | 
|  |  | 
|  | if (s == NULL) | 
|  | return NULL; | 
|  |  | 
|  | struct value *v = read_var_value (s, 0, 0); | 
|  | if (!want_address) | 
|  | result = v; | 
|  | else | 
|  | { | 
|  | result = value::allocate (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j))); | 
|  | cplus_make_method_ptr (result->type (), | 
|  | result->contents_writeable ().data (), | 
|  | v->address (), 0); | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  | } | 
|  | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | 
|  | { | 
|  | struct value *v; | 
|  | int base_offset; | 
|  |  | 
|  | if (BASETYPE_VIA_VIRTUAL (t, i)) | 
|  | base_offset = 0; | 
|  | else | 
|  | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | 
|  | v = value_struct_elt_for_reference (domain, | 
|  | offset + base_offset, | 
|  | TYPE_BASECLASS (t, i), | 
|  | name, intype, | 
|  | want_address, noside); | 
|  | if (v) | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* As a last chance, pretend that CURTYPE is a namespace, and look | 
|  | it up that way; this (frequently) works for types nested inside | 
|  | classes.  */ | 
|  |  | 
|  | return value_maybe_namespace_elt (curtype, name, | 
|  | want_address, noside); | 
|  | } | 
|  |  | 
|  | /* C++: Return the member NAME of the namespace given by the type | 
|  | CURTYPE.  */ | 
|  |  | 
|  | static struct value * | 
|  | value_namespace_elt (const struct type *curtype, | 
|  | const char *name, int want_address, | 
|  | enum noside noside) | 
|  | { | 
|  | struct value *retval = value_maybe_namespace_elt (curtype, name, | 
|  | want_address, | 
|  | noside); | 
|  |  | 
|  | if (retval == NULL) | 
|  | error (_("No symbol \"%s\" in namespace \"%s\"."), | 
|  | name, curtype->name ()); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* A helper function used by value_namespace_elt and | 
|  | value_struct_elt_for_reference.  It looks up NAME inside the | 
|  | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | 
|  | is a class and NAME refers to a type in CURTYPE itself (as opposed | 
|  | to, say, some base class of CURTYPE).  */ | 
|  |  | 
|  | static struct value * | 
|  | value_maybe_namespace_elt (const struct type *curtype, | 
|  | const char *name, int want_address, | 
|  | enum noside noside) | 
|  | { | 
|  | const char *namespace_name = curtype->name (); | 
|  | struct block_symbol sym; | 
|  | struct value *result; | 
|  |  | 
|  | sym = cp_lookup_symbol_namespace (namespace_name, name, | 
|  | get_selected_block (0), SEARCH_VFT); | 
|  |  | 
|  | if (sym.symbol == NULL) | 
|  | return NULL; | 
|  | else if ((noside == EVAL_AVOID_SIDE_EFFECTS) | 
|  | && (sym.symbol->aclass () == LOC_TYPEDEF)) | 
|  | result = value::allocate (sym.symbol->type ()); | 
|  | else | 
|  | result = value_of_variable (sym.symbol, sym.block); | 
|  |  | 
|  | if (want_address) | 
|  | result = value_addr (result); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Given a pointer or a reference value V, find its real (RTTI) type. | 
|  |  | 
|  | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | 
|  | and refer to the values computed for the object pointed to.  */ | 
|  |  | 
|  | struct type * | 
|  | value_rtti_indirect_type (struct value *v, int *full, | 
|  | LONGEST *top, int *using_enc) | 
|  | { | 
|  | struct value *target = NULL; | 
|  | struct type *type, *real_type, *target_type; | 
|  |  | 
|  | type = v->type (); | 
|  | type = check_typedef (type); | 
|  | if (TYPE_IS_REFERENCE (type)) | 
|  | target = coerce_ref (v); | 
|  | else if (type->code () == TYPE_CODE_PTR) | 
|  | { | 
|  |  | 
|  | try | 
|  | { | 
|  | target = value_ind (v); | 
|  | } | 
|  | catch (const gdb_exception_error &except) | 
|  | { | 
|  | if (except.error == MEMORY_ERROR) | 
|  | { | 
|  | /* value_ind threw a memory error. The pointer is NULL or | 
|  | contains an uninitialized value: we can't determine any | 
|  | type.  */ | 
|  | return NULL; | 
|  | } | 
|  | throw; | 
|  | } | 
|  | } | 
|  | else | 
|  | return NULL; | 
|  |  | 
|  | real_type = value_rtti_type (target, full, top, using_enc); | 
|  |  | 
|  | if (real_type) | 
|  | { | 
|  | /* Copy qualifiers to the referenced object.  */ | 
|  | target_type = target->type (); | 
|  | real_type = make_cv_type (TYPE_CONST (target_type), | 
|  | TYPE_VOLATILE (target_type), real_type, NULL); | 
|  | if (TYPE_IS_REFERENCE (type)) | 
|  | real_type = lookup_reference_type (real_type, type->code ()); | 
|  | else if (type->code () == TYPE_CODE_PTR) | 
|  | real_type = lookup_pointer_type (real_type); | 
|  | else | 
|  | internal_error (_("Unexpected value type.")); | 
|  |  | 
|  | /* Copy qualifiers to the pointer/reference.  */ | 
|  | real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), | 
|  | real_type, NULL); | 
|  | } | 
|  |  | 
|  | return real_type; | 
|  | } | 
|  |  | 
|  | /* Given a value pointed to by ARGP, check its real run-time type, and | 
|  | if that is different from the enclosing type, create a new value | 
|  | using the real run-time type as the enclosing type (and of the same | 
|  | type as ARGP) and return it, with the embedded offset adjusted to | 
|  | be the correct offset to the enclosed object.  RTYPE is the type, | 
|  | and XFULL, XTOP, and XUSING_ENC are the other parameters, computed | 
|  | by value_rtti_type().  If these are available, they can be supplied | 
|  | and a second call to value_rtti_type() is avoided.  (Pass RTYPE == | 
|  | NULL if they're not available.  */ | 
|  |  | 
|  | struct value * | 
|  | value_full_object (struct value *argp, | 
|  | struct type *rtype, | 
|  | int xfull, int xtop, | 
|  | int xusing_enc) | 
|  | { | 
|  | struct type *real_type; | 
|  | int full = 0; | 
|  | LONGEST top = -1; | 
|  | int using_enc = 0; | 
|  | struct value *new_val; | 
|  |  | 
|  | if (rtype) | 
|  | { | 
|  | real_type = rtype; | 
|  | full = xfull; | 
|  | top = xtop; | 
|  | using_enc = xusing_enc; | 
|  | } | 
|  | else | 
|  | real_type = value_rtti_type (argp, &full, &top, &using_enc); | 
|  |  | 
|  | /* If no RTTI data, or if object is already complete, do nothing.  */ | 
|  | if (!real_type || real_type == argp->enclosing_type ()) | 
|  | return argp; | 
|  |  | 
|  | /* In a destructor we might see a real type that is a superclass of | 
|  | the object's type.  In this case it is better to leave the object | 
|  | as-is.  */ | 
|  | if (full | 
|  | && real_type->length () < argp->enclosing_type ()->length ()) | 
|  | return argp; | 
|  |  | 
|  | /* If we have the full object, but for some reason the enclosing | 
|  | type is wrong, set it.  */ | 
|  | /* pai: FIXME -- sounds iffy */ | 
|  | if (full) | 
|  | { | 
|  | argp = argp->copy (); | 
|  | argp->set_enclosing_type (real_type); | 
|  | return argp; | 
|  | } | 
|  |  | 
|  | /* Check if object is in memory.  */ | 
|  | if (argp->lval () != lval_memory) | 
|  | { | 
|  | warning (_("Couldn't retrieve complete object of RTTI " | 
|  | "type %s; object may be in register(s)."), | 
|  | real_type->name ()); | 
|  |  | 
|  | return argp; | 
|  | } | 
|  |  | 
|  | /* All other cases -- retrieve the complete object.  */ | 
|  | /* Go back by the computed top_offset from the beginning of the | 
|  | object, adjusting for the embedded offset of argp if that's what | 
|  | value_rtti_type used for its computation.  */ | 
|  | new_val = value_at_lazy (real_type, argp->address () - top + | 
|  | (using_enc ? 0 : argp->embedded_offset ())); | 
|  | new_val->deprecated_set_type (argp->type ()); | 
|  | new_val->set_embedded_offset ((using_enc | 
|  | ? top + argp->embedded_offset () | 
|  | : top)); | 
|  | return new_val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return the value of the local variable, if one exists.  Throw error | 
|  | otherwise, such as if the request is made in an inappropriate context.  */ | 
|  |  | 
|  | struct value * | 
|  | value_of_this (const struct language_defn *lang) | 
|  | { | 
|  | struct block_symbol sym; | 
|  | const struct block *b; | 
|  | frame_info_ptr frame; | 
|  |  | 
|  | if (lang->name_of_this () == NULL) | 
|  | error (_("no `this' in current language")); | 
|  |  | 
|  | frame = get_selected_frame (_("no frame selected")); | 
|  |  | 
|  | b = get_frame_block (frame, NULL); | 
|  |  | 
|  | sym = lookup_language_this (lang, b); | 
|  | if (sym.symbol == NULL) | 
|  | error (_("current stack frame does not contain a variable named `%s'"), | 
|  | lang->name_of_this ()); | 
|  |  | 
|  | return read_var_value (sym.symbol, sym.block, frame); | 
|  | } | 
|  |  | 
|  | /* Return the value of the local variable, if one exists.  Return NULL | 
|  | otherwise.  Never throw error.  */ | 
|  |  | 
|  | struct value * | 
|  | value_of_this_silent (const struct language_defn *lang) | 
|  | { | 
|  | struct value *ret = NULL; | 
|  |  | 
|  | try | 
|  | { | 
|  | ret = value_of_this (lang); | 
|  | } | 
|  | catch (const gdb_exception_error &except) | 
|  | { | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH | 
|  | elements long, starting at LOWBOUND.  The result has the same lower | 
|  | bound as the original ARRAY.  */ | 
|  |  | 
|  | struct value * | 
|  | value_slice (struct value *array, int lowbound, int length) | 
|  | { | 
|  | struct type *slice_range_type, *slice_type, *range_type; | 
|  | LONGEST lowerbound, upperbound; | 
|  | struct value *slice; | 
|  | struct type *array_type; | 
|  |  | 
|  | array_type = check_typedef (array->type ()); | 
|  | if (array_type->code () != TYPE_CODE_ARRAY | 
|  | && array_type->code () != TYPE_CODE_STRING) | 
|  | error (_("cannot take slice of non-array")); | 
|  |  | 
|  | if (type_not_allocated (array_type)) | 
|  | error (_("array not allocated")); | 
|  | if (type_not_associated (array_type)) | 
|  | error (_("array not associated")); | 
|  |  | 
|  | range_type = array_type->index_type (); | 
|  | if (!get_discrete_bounds (range_type, &lowerbound, &upperbound)) | 
|  | error (_("slice from bad array or bitstring")); | 
|  |  | 
|  | if (lowbound < lowerbound || length < 0 | 
|  | || lowbound + length - 1 > upperbound) | 
|  | error (_("slice out of range")); | 
|  |  | 
|  | /* FIXME-type-allocation: need a way to free this type when we are | 
|  | done with it.  */ | 
|  | type_allocator alloc (range_type->target_type ()); | 
|  | slice_range_type = create_static_range_type (alloc, | 
|  | range_type->target_type (), | 
|  | lowbound, | 
|  | lowbound + length - 1); | 
|  |  | 
|  | { | 
|  | struct type *element_type = array_type->target_type (); | 
|  | LONGEST offset | 
|  | = (lowbound - lowerbound) * check_typedef (element_type)->length (); | 
|  |  | 
|  | slice_type = create_array_type (alloc, | 
|  | element_type, | 
|  | slice_range_type); | 
|  | slice_type->set_code (array_type->code ()); | 
|  |  | 
|  | if (array->lval () == lval_memory && array->lazy ()) | 
|  | slice = value::allocate_lazy (slice_type); | 
|  | else | 
|  | { | 
|  | slice = value::allocate (slice_type); | 
|  | array->contents_copy (slice, 0, offset, | 
|  | type_length_units (slice_type)); | 
|  | } | 
|  |  | 
|  | slice->set_component_location (array); | 
|  | slice->set_offset (array->offset () + offset); | 
|  | } | 
|  |  | 
|  | return slice; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_literal_complex (struct value *arg1, | 
|  | struct value *arg2, | 
|  | struct type *type) | 
|  | { | 
|  | struct value *val; | 
|  | struct type *real_type = type->target_type (); | 
|  |  | 
|  | val = value::allocate (type); | 
|  | arg1 = value_cast (real_type, arg1); | 
|  | arg2 = value_cast (real_type, arg2); | 
|  |  | 
|  | int len = real_type->length (); | 
|  |  | 
|  | copy (arg1->contents (), | 
|  | val->contents_raw ().slice (0, len)); | 
|  | copy (arg2->contents (), | 
|  | val->contents_raw ().slice (len, len)); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_real_part (struct value *value) | 
|  | { | 
|  | struct type *type = check_typedef (value->type ()); | 
|  | struct type *ttype = type->target_type (); | 
|  |  | 
|  | gdb_assert (type->code () == TYPE_CODE_COMPLEX); | 
|  | return value_from_component (value, ttype, 0); | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | struct value * | 
|  | value_imaginary_part (struct value *value) | 
|  | { | 
|  | struct type *type = check_typedef (value->type ()); | 
|  | struct type *ttype = type->target_type (); | 
|  |  | 
|  | gdb_assert (type->code () == TYPE_CODE_COMPLEX); | 
|  | return value_from_component (value, ttype, | 
|  | check_typedef (ttype)->length ()); | 
|  | } | 
|  |  | 
|  | /* Cast a value into the appropriate complex data type.  */ | 
|  |  | 
|  | static struct value * | 
|  | cast_into_complex (struct type *type, struct value *val) | 
|  | { | 
|  | struct type *real_type = type->target_type (); | 
|  |  | 
|  | if (val->type ()->code () == TYPE_CODE_COMPLEX) | 
|  | { | 
|  | struct type *val_real_type = val->type ()->target_type (); | 
|  | struct value *re_val = value::allocate (val_real_type); | 
|  | struct value *im_val = value::allocate (val_real_type); | 
|  | int len = val_real_type->length (); | 
|  |  | 
|  | copy (val->contents ().slice (0, len), | 
|  | re_val->contents_raw ()); | 
|  | copy (val->contents ().slice (len, len), | 
|  | im_val->contents_raw ()); | 
|  |  | 
|  | return value_literal_complex (re_val, im_val, type); | 
|  | } | 
|  | else if (val->type ()->code () == TYPE_CODE_FLT | 
|  | || val->type ()->code () == TYPE_CODE_INT) | 
|  | return value_literal_complex (val, | 
|  | value::zero (real_type, not_lval), | 
|  | type); | 
|  | else | 
|  | error (_("cannot cast non-number to complex")); | 
|  | } | 
|  |  | 
|  | void _initialize_valops (); | 
|  | void | 
|  | _initialize_valops () | 
|  | { | 
|  | add_setshow_boolean_cmd ("overload-resolution", class_support, | 
|  | &overload_resolution, _("\ | 
|  | Set overload resolution in evaluating C++ functions."), _("\ | 
|  | Show overload resolution in evaluating C++ functions."), | 
|  | NULL, NULL, | 
|  | show_overload_resolution, | 
|  | &setlist, &showlist); | 
|  | overload_resolution = 1; | 
|  | } |