| /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
| |
| Copyright (C) 1999-2018 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "inferior.h" |
| #include "gdbcore.h" |
| #include "arch-utils.h" |
| #include "floatformat.h" |
| #include "gdbtypes.h" |
| #include "regcache.h" |
| #include "reggroups.h" |
| #include "frame.h" |
| #include "frame-base.h" |
| #include "frame-unwind.h" |
| #include "target-float.h" |
| #include "value.h" |
| #include "objfiles.h" |
| #include "elf/common.h" /* for DT_PLTGOT value */ |
| #include "elf-bfd.h" |
| #include "dis-asm.h" |
| #include "infcall.h" |
| #include "osabi.h" |
| #include "ia64-tdep.h" |
| #include "cp-abi.h" |
| |
| #ifdef HAVE_LIBUNWIND_IA64_H |
| #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
| #include "ia64-libunwind-tdep.h" |
| |
| /* Note: KERNEL_START is supposed to be an address which is not going |
| to ever contain any valid unwind info. For ia64 linux, the choice |
| of 0xc000000000000000 is fairly safe since that's uncached space. |
| |
| We use KERNEL_START as follows: after obtaining the kernel's |
| unwind table via getunwind(), we project its unwind data into |
| address-range KERNEL_START-(KERNEL_START+ktab_size) and then |
| when ia64_access_mem() sees a memory access to this |
| address-range, we redirect it to ktab instead. |
| |
| None of this hackery is needed with a modern kernel/libcs |
| which uses the kernel virtual DSO to provide access to the |
| kernel's unwind info. In that case, ktab_size remains 0 and |
| hence the value of KERNEL_START doesn't matter. */ |
| |
| #define KERNEL_START 0xc000000000000000ULL |
| |
| static size_t ktab_size = 0; |
| struct ia64_table_entry |
| { |
| uint64_t start_offset; |
| uint64_t end_offset; |
| uint64_t info_offset; |
| }; |
| |
| static struct ia64_table_entry *ktab = NULL; |
| static gdb::optional<gdb::byte_vector> ktab_buf; |
| |
| #endif |
| |
| /* An enumeration of the different IA-64 instruction types. */ |
| |
| typedef enum instruction_type |
| { |
| A, /* Integer ALU ; I-unit or M-unit */ |
| I, /* Non-ALU integer; I-unit */ |
| M, /* Memory ; M-unit */ |
| F, /* Floating-point ; F-unit */ |
| B, /* Branch ; B-unit */ |
| L, /* Extended (L+X) ; I-unit */ |
| X, /* Extended (L+X) ; I-unit */ |
| undefined /* undefined or reserved */ |
| } instruction_type; |
| |
| /* We represent IA-64 PC addresses as the value of the instruction |
| pointer or'd with some bit combination in the low nibble which |
| represents the slot number in the bundle addressed by the |
| instruction pointer. The problem is that the Linux kernel |
| multiplies its slot numbers (for exceptions) by one while the |
| disassembler multiplies its slot numbers by 6. In addition, I've |
| heard it said that the simulator uses 1 as the multiplier. |
| |
| I've fixed the disassembler so that the bytes_per_line field will |
| be the slot multiplier. If bytes_per_line comes in as zero, it |
| is set to six (which is how it was set up initially). -- objdump |
| displays pretty disassembly dumps with this value. For our purposes, |
| we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we |
| never want to also display the raw bytes the way objdump does. */ |
| |
| #define SLOT_MULTIPLIER 1 |
| |
| /* Length in bytes of an instruction bundle. */ |
| |
| #define BUNDLE_LEN 16 |
| |
| /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */ |
| |
| #if BREAKPOINT_MAX < BUNDLE_LEN - 2 |
| # error "BREAKPOINT_MAX < BUNDLE_LEN - 2" |
| #endif |
| |
| static gdbarch_init_ftype ia64_gdbarch_init; |
| |
| static gdbarch_register_name_ftype ia64_register_name; |
| static gdbarch_register_type_ftype ia64_register_type; |
| static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
| static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
| static struct type *is_float_or_hfa_type (struct type *t); |
| static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch, |
| CORE_ADDR faddr); |
| |
| #define NUM_IA64_RAW_REGS 462 |
| |
| /* Big enough to hold a FP register in bytes. */ |
| #define IA64_FP_REGISTER_SIZE 16 |
| |
| static int sp_regnum = IA64_GR12_REGNUM; |
| |
| /* NOTE: we treat the register stack registers r32-r127 as |
| pseudo-registers because they may not be accessible via the ptrace |
| register get/set interfaces. */ |
| |
| enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, |
| VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
| V127_REGNUM = V32_REGNUM + 95, |
| VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, |
| VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; |
| |
| /* Array of register names; There should be ia64_num_regs strings in |
| the initializer. */ |
| |
| static const char *ia64_register_names[] = |
| { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| |
| "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", |
| "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", |
| "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", |
| "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", |
| "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", |
| "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", |
| "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", |
| "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", |
| "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", |
| "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", |
| "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", |
| "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", |
| "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", |
| "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", |
| "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", |
| "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", |
| |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", |
| |
| "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", |
| |
| "vfp", "vrap", |
| |
| "pr", "ip", "psr", "cfm", |
| |
| "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", |
| "", "", "", "", "", "", "", "", |
| "rsc", "bsp", "bspstore", "rnat", |
| "", "fcr", "", "", |
| "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", |
| "ccv", "", "", "", "unat", "", "", "", |
| "fpsr", "", "", "", "itc", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", |
| "pfs", "lc", "ec", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", "", |
| "", "", "", "", "", "", "", "", "", "", |
| "", |
| "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", |
| "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", |
| "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", |
| "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", |
| "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", |
| "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", |
| "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", |
| "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", |
| "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", |
| "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", |
| "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", |
| "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", |
| "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", |
| "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", |
| "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", |
| "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", |
| |
| "bof", |
| |
| "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", |
| "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", |
| "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", |
| "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", |
| "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", |
| "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", |
| "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", |
| "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", |
| "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", |
| "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", |
| "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", |
| "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", |
| |
| "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", |
| "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", |
| "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", |
| "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", |
| "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", |
| "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", |
| "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", |
| "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", |
| }; |
| |
| struct ia64_frame_cache |
| { |
| CORE_ADDR base; /* frame pointer base for frame */ |
| CORE_ADDR pc; /* function start pc for frame */ |
| CORE_ADDR saved_sp; /* stack pointer for frame */ |
| CORE_ADDR bsp; /* points at r32 for the current frame */ |
| CORE_ADDR cfm; /* cfm value for current frame */ |
| CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
| int frameless; |
| int sof; /* Size of frame (decoded from cfm value). */ |
| int sol; /* Size of locals (decoded from cfm value). */ |
| int sor; /* Number of rotating registers (decoded from |
| cfm value). */ |
| CORE_ADDR after_prologue; |
| /* Address of first instruction after the last |
| prologue instruction; Note that there may |
| be instructions from the function's body |
| intermingled with the prologue. */ |
| int mem_stack_frame_size; |
| /* Size of the memory stack frame (may be zero), |
| or -1 if it has not been determined yet. */ |
| int fp_reg; /* Register number (if any) used a frame pointer |
| for this frame. 0 if no register is being used |
| as the frame pointer. */ |
| |
| /* Saved registers. */ |
| CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; |
| |
| }; |
| |
| static int |
| floatformat_valid (const struct floatformat *fmt, const void *from) |
| { |
| return 1; |
| } |
| |
| static const struct floatformat floatformat_ia64_ext_little = |
| { |
| floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, |
| floatformat_intbit_yes, "floatformat_ia64_ext_little", floatformat_valid, NULL |
| }; |
| |
| static const struct floatformat floatformat_ia64_ext_big = |
| { |
| floatformat_big, 82, 46, 47, 17, 65535, 0x1ffff, 64, 64, |
| floatformat_intbit_yes, "floatformat_ia64_ext_big", floatformat_valid |
| }; |
| |
| static const struct floatformat *floatformats_ia64_ext[2] = |
| { |
| &floatformat_ia64_ext_big, |
| &floatformat_ia64_ext_little |
| }; |
| |
| static struct type * |
| ia64_ext_type (struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (!tdep->ia64_ext_type) |
| tdep->ia64_ext_type |
| = arch_float_type (gdbarch, 128, "builtin_type_ia64_ext", |
| floatformats_ia64_ext); |
| |
| return tdep->ia64_ext_type; |
| } |
| |
| static int |
| ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| struct reggroup *group) |
| { |
| int vector_p; |
| int float_p; |
| int raw_p; |
| if (group == all_reggroup) |
| return 1; |
| vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); |
| float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; |
| raw_p = regnum < NUM_IA64_RAW_REGS; |
| if (group == float_reggroup) |
| return float_p; |
| if (group == vector_reggroup) |
| return vector_p; |
| if (group == general_reggroup) |
| return (!vector_p && !float_p); |
| if (group == save_reggroup || group == restore_reggroup) |
| return raw_p; |
| return 0; |
| } |
| |
| static const char * |
| ia64_register_name (struct gdbarch *gdbarch, int reg) |
| { |
| return ia64_register_names[reg]; |
| } |
| |
| struct type * |
| ia64_register_type (struct gdbarch *arch, int reg) |
| { |
| if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
| return ia64_ext_type (arch); |
| else |
| return builtin_type (arch)->builtin_long; |
| } |
| |
| static int |
| ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
| return V32_REGNUM + (reg - IA64_GR32_REGNUM); |
| return reg; |
| } |
| |
| |
| /* Extract ``len'' bits from an instruction bundle starting at |
| bit ``from''. */ |
| |
| static long long |
| extract_bit_field (const gdb_byte *bundle, int from, int len) |
| { |
| long long result = 0LL; |
| int to = from + len; |
| int from_byte = from / 8; |
| int to_byte = to / 8; |
| unsigned char *b = (unsigned char *) bundle; |
| unsigned char c; |
| int lshift; |
| int i; |
| |
| c = b[from_byte]; |
| if (from_byte == to_byte) |
| c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); |
| result = c >> (from % 8); |
| lshift = 8 - (from % 8); |
| |
| for (i = from_byte+1; i < to_byte; i++) |
| { |
| result |= ((long long) b[i]) << lshift; |
| lshift += 8; |
| } |
| |
| if (from_byte < to_byte && (to % 8 != 0)) |
| { |
| c = b[to_byte]; |
| c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); |
| result |= ((long long) c) << lshift; |
| } |
| |
| return result; |
| } |
| |
| /* Replace the specified bits in an instruction bundle. */ |
| |
| static void |
| replace_bit_field (gdb_byte *bundle, long long val, int from, int len) |
| { |
| int to = from + len; |
| int from_byte = from / 8; |
| int to_byte = to / 8; |
| unsigned char *b = (unsigned char *) bundle; |
| unsigned char c; |
| |
| if (from_byte == to_byte) |
| { |
| unsigned char left, right; |
| c = b[from_byte]; |
| left = (c >> (to % 8)) << (to % 8); |
| right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); |
| c = (unsigned char) (val & 0xff); |
| c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); |
| c |= right | left; |
| b[from_byte] = c; |
| } |
| else |
| { |
| int i; |
| c = b[from_byte]; |
| c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); |
| c = c | (val << (from % 8)); |
| b[from_byte] = c; |
| val >>= 8 - from % 8; |
| |
| for (i = from_byte+1; i < to_byte; i++) |
| { |
| c = val & 0xff; |
| val >>= 8; |
| b[i] = c; |
| } |
| |
| if (to % 8 != 0) |
| { |
| unsigned char cv = (unsigned char) val; |
| c = b[to_byte]; |
| c = c >> (to % 8) << (to % 8); |
| c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); |
| b[to_byte] = c; |
| } |
| } |
| } |
| |
| /* Return the contents of slot N (for N = 0, 1, or 2) in |
| and instruction bundle. */ |
| |
| static long long |
| slotN_contents (gdb_byte *bundle, int slotnum) |
| { |
| return extract_bit_field (bundle, 5+41*slotnum, 41); |
| } |
| |
| /* Store an instruction in an instruction bundle. */ |
| |
| static void |
| replace_slotN_contents (gdb_byte *bundle, long long instr, int slotnum) |
| { |
| replace_bit_field (bundle, instr, 5+41*slotnum, 41); |
| } |
| |
| static const enum instruction_type template_encoding_table[32][3] = |
| { |
| { M, I, I }, /* 00 */ |
| { M, I, I }, /* 01 */ |
| { M, I, I }, /* 02 */ |
| { M, I, I }, /* 03 */ |
| { M, L, X }, /* 04 */ |
| { M, L, X }, /* 05 */ |
| { undefined, undefined, undefined }, /* 06 */ |
| { undefined, undefined, undefined }, /* 07 */ |
| { M, M, I }, /* 08 */ |
| { M, M, I }, /* 09 */ |
| { M, M, I }, /* 0A */ |
| { M, M, I }, /* 0B */ |
| { M, F, I }, /* 0C */ |
| { M, F, I }, /* 0D */ |
| { M, M, F }, /* 0E */ |
| { M, M, F }, /* 0F */ |
| { M, I, B }, /* 10 */ |
| { M, I, B }, /* 11 */ |
| { M, B, B }, /* 12 */ |
| { M, B, B }, /* 13 */ |
| { undefined, undefined, undefined }, /* 14 */ |
| { undefined, undefined, undefined }, /* 15 */ |
| { B, B, B }, /* 16 */ |
| { B, B, B }, /* 17 */ |
| { M, M, B }, /* 18 */ |
| { M, M, B }, /* 19 */ |
| { undefined, undefined, undefined }, /* 1A */ |
| { undefined, undefined, undefined }, /* 1B */ |
| { M, F, B }, /* 1C */ |
| { M, F, B }, /* 1D */ |
| { undefined, undefined, undefined }, /* 1E */ |
| { undefined, undefined, undefined }, /* 1F */ |
| }; |
| |
| /* Fetch and (partially) decode an instruction at ADDR and return the |
| address of the next instruction to fetch. */ |
| |
| static CORE_ADDR |
| fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) |
| { |
| gdb_byte bundle[BUNDLE_LEN]; |
| int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; |
| long long templ; |
| int val; |
| |
| /* Warn about slot numbers greater than 2. We used to generate |
| an error here on the assumption that the user entered an invalid |
| address. But, sometimes GDB itself requests an invalid address. |
| This can (easily) happen when execution stops in a function for |
| which there are no symbols. The prologue scanner will attempt to |
| find the beginning of the function - if the nearest symbol |
| happens to not be aligned on a bundle boundary (16 bytes), the |
| resulting starting address will cause GDB to think that the slot |
| number is too large. |
| |
| So we warn about it and set the slot number to zero. It is |
| not necessarily a fatal condition, particularly if debugging |
| at the assembly language level. */ |
| if (slotnum > 2) |
| { |
| warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
| "Using slot 0 instead")); |
| slotnum = 0; |
| } |
| |
| addr &= ~0x0f; |
| |
| val = target_read_memory (addr, bundle, BUNDLE_LEN); |
| |
| if (val != 0) |
| return 0; |
| |
| *instr = slotN_contents (bundle, slotnum); |
| templ = extract_bit_field (bundle, 0, 5); |
| *it = template_encoding_table[(int)templ][slotnum]; |
| |
| if (slotnum == 2 || (slotnum == 1 && *it == L)) |
| addr += 16; |
| else |
| addr += (slotnum + 1) * SLOT_MULTIPLIER; |
| |
| return addr; |
| } |
| |
| /* There are 5 different break instructions (break.i, break.b, |
| break.m, break.f, and break.x), but they all have the same |
| encoding. (The five bit template in the low five bits of the |
| instruction bundle distinguishes one from another.) |
| |
| The runtime architecture manual specifies that break instructions |
| used for debugging purposes must have the upper two bits of the 21 |
| bit immediate set to a 0 and a 1 respectively. A breakpoint |
| instruction encodes the most significant bit of its 21 bit |
| immediate at bit 36 of the 41 bit instruction. The penultimate msb |
| is at bit 25 which leads to the pattern below. |
| |
| Originally, I had this set up to do, e.g, a "break.i 0x80000" But |
| it turns out that 0x80000 was used as the syscall break in the early |
| simulators. So I changed the pattern slightly to do "break.i 0x080001" |
| instead. But that didn't work either (I later found out that this |
| pattern was used by the simulator that I was using.) So I ended up |
| using the pattern seen below. |
| |
| SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN) |
| while we need bit-based addressing as the instructions length is 41 bits and |
| we must not modify/corrupt the adjacent slots in the same bundle. |
| Fortunately we may store larger memory incl. the adjacent bits with the |
| original memory content (not the possibly already stored breakpoints there). |
| We need to be careful in ia64_memory_remove_breakpoint to always restore |
| only the specific bits of this instruction ignoring any adjacent stored |
| bits. |
| |
| We use the original addressing with the low nibble in the range <0..2> which |
| gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows |
| as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN |
| bytes just without these two possibly skipped bytes to not to exceed to the |
| next bundle. |
| |
| If we would like to store the whole bundle to SHADOW_CONTENTS we would have |
| to store already the base address (`address & ~0x0f') into PLACED_ADDRESS. |
| In such case there is no other place where to store |
| SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know |
| SLOTNUM in ia64_memory_remove_breakpoint. |
| |
| There is one special case where we need to be extra careful: |
| L-X instructions, which are instructions that occupy 2 slots |
| (The L part is always in slot 1, and the X part is always in |
| slot 2). We must refuse to insert breakpoints for an address |
| that points at slot 2 of a bundle where an L-X instruction is |
| present, since there is logically no instruction at that address. |
| However, to make things more interesting, the opcode of L-X |
| instructions is located in slot 2. This means that, to insert |
| a breakpoint at an address that points to slot 1, we actually |
| need to write the breakpoint in slot 2! Slot 1 is actually |
| the extended operand, so writing the breakpoint there would not |
| have the desired effect. Another side-effect of this issue |
| is that we need to make sure that the shadow contents buffer |
| does save byte 15 of our instruction bundle (this is the tail |
| end of slot 2, which wouldn't be saved if we were to insert |
| the breakpoint in slot 1). |
| |
| ia64 16-byte bundle layout: |
| | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits | |
| |
| The current addressing used by the code below: |
| original PC placed_address placed_size required covered |
| == bp_tgt->shadow_len reqd \subset covered |
| 0xABCDE0 0xABCDE0 0x10 <0x0...0x5> <0x0..0xF> |
| 0xABCDE1 0xABCDE1 0xF <0x5...0xA> <0x1..0xF> |
| 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF> |
| |
| L-X instructions are treated a little specially, as explained above: |
| 0xABCDE1 0xABCDE1 0xF <0xA...0xF> <0x1..0xF> |
| |
| `objdump -d' and some other tools show a bit unjustified offsets: |
| original PC byte where starts the instruction objdump offset |
| 0xABCDE0 0xABCDE0 0xABCDE0 |
| 0xABCDE1 0xABCDE5 0xABCDE6 |
| 0xABCDE2 0xABCDEA 0xABCDEC |
| */ |
| |
| #define IA64_BREAKPOINT 0x00003333300LL |
| |
| static int |
| ia64_memory_insert_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; |
| gdb_byte bundle[BUNDLE_LEN]; |
| int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum; |
| long long instr_breakpoint; |
| int val; |
| int templ; |
| |
| if (slotnum > 2) |
| error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
| |
| addr &= ~0x0f; |
| |
| /* Enable the automatic memory restoration from breakpoints while |
| we read our instruction bundle for the purpose of SHADOW_CONTENTS. |
| Otherwise, we could possibly store into the shadow parts of the adjacent |
| placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real |
| breakpoint instruction bits region. */ |
| scoped_restore restore_memory_0 |
| = make_scoped_restore_show_memory_breakpoints (0); |
| val = target_read_memory (addr, bundle, BUNDLE_LEN); |
| if (val != 0) |
| return val; |
| |
| /* SHADOW_SLOTNUM saves the original slot number as expected by the caller |
| for addressing the SHADOW_CONTENTS placement. */ |
| shadow_slotnum = slotnum; |
| |
| /* Always cover the last byte of the bundle in case we are inserting |
| a breakpoint on an L-X instruction. */ |
| bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum; |
| |
| templ = extract_bit_field (bundle, 0, 5); |
| if (template_encoding_table[templ][slotnum] == X) |
| { |
| /* X unit types can only be used in slot 2, and are actually |
| part of a 2-slot L-X instruction. We cannot break at this |
| address, as this is the second half of an instruction that |
| lives in slot 1 of that bundle. */ |
| gdb_assert (slotnum == 2); |
| error (_("Can't insert breakpoint for non-existing slot X")); |
| } |
| if (template_encoding_table[templ][slotnum] == L) |
| { |
| /* L unit types can only be used in slot 1. But the associated |
| opcode for that instruction is in slot 2, so bump the slot number |
| accordingly. */ |
| gdb_assert (slotnum == 1); |
| slotnum = 2; |
| } |
| |
| /* Store the whole bundle, except for the initial skipped bytes by the slot |
| number interpreted as bytes offset in PLACED_ADDRESS. */ |
| memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum, |
| bp_tgt->shadow_len); |
| |
| /* Re-read the same bundle as above except that, this time, read it in order |
| to compute the new bundle inside which we will be inserting the |
| breakpoint. Therefore, disable the automatic memory restoration from |
| breakpoints while we read our instruction bundle. Otherwise, the general |
| restoration mechanism kicks in and we would possibly remove parts of the |
| adjacent placed breakpoints. It is due to our SHADOW_CONTENTS overlapping |
| the real breakpoint instruction bits region. */ |
| scoped_restore restore_memory_1 |
| = make_scoped_restore_show_memory_breakpoints (1); |
| val = target_read_memory (addr, bundle, BUNDLE_LEN); |
| if (val != 0) |
| return val; |
| |
| /* Breakpoints already present in the code will get deteacted and not get |
| reinserted by bp_loc_is_permanent. Multiple breakpoints at the same |
| location cannot induce the internal error as they are optimized into |
| a single instance by update_global_location_list. */ |
| instr_breakpoint = slotN_contents (bundle, slotnum); |
| if (instr_breakpoint == IA64_BREAKPOINT) |
| internal_error (__FILE__, __LINE__, |
| _("Address %s already contains a breakpoint."), |
| paddress (gdbarch, bp_tgt->placed_address)); |
| replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
| |
| val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum, |
| bp_tgt->shadow_len); |
| |
| return val; |
| } |
| |
| static int |
| ia64_memory_remove_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| CORE_ADDR addr = bp_tgt->placed_address; |
| gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN]; |
| int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum; |
| long long instr_breakpoint, instr_saved; |
| int val; |
| int templ; |
| |
| addr &= ~0x0f; |
| |
| /* Disable the automatic memory restoration from breakpoints while |
| we read our instruction bundle. Otherwise, the general restoration |
| mechanism kicks in and we would possibly remove parts of the adjacent |
| placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real |
| breakpoint instruction bits region. */ |
| scoped_restore restore_memory_1 |
| = make_scoped_restore_show_memory_breakpoints (1); |
| val = target_read_memory (addr, bundle_mem, BUNDLE_LEN); |
| if (val != 0) |
| return val; |
| |
| /* SHADOW_SLOTNUM saves the original slot number as expected by the caller |
| for addressing the SHADOW_CONTENTS placement. */ |
| shadow_slotnum = slotnum; |
| |
| templ = extract_bit_field (bundle_mem, 0, 5); |
| if (template_encoding_table[templ][slotnum] == X) |
| { |
| /* X unit types can only be used in slot 2, and are actually |
| part of a 2-slot L-X instruction. We refuse to insert |
| breakpoints at this address, so there should be no reason |
| for us attempting to remove one there, except if the program's |
| code somehow got modified in memory. */ |
| gdb_assert (slotnum == 2); |
| warning (_("Cannot remove breakpoint at address %s from non-existing " |
| "X-type slot, memory has changed underneath"), |
| paddress (gdbarch, bp_tgt->placed_address)); |
| return -1; |
| } |
| if (template_encoding_table[templ][slotnum] == L) |
| { |
| /* L unit types can only be used in slot 1. But the breakpoint |
| was actually saved using slot 2, so update the slot number |
| accordingly. */ |
| gdb_assert (slotnum == 1); |
| slotnum = 2; |
| } |
| |
| gdb_assert (bp_tgt->shadow_len == BUNDLE_LEN - shadow_slotnum); |
| |
| instr_breakpoint = slotN_contents (bundle_mem, slotnum); |
| if (instr_breakpoint != IA64_BREAKPOINT) |
| { |
| warning (_("Cannot remove breakpoint at address %s, " |
| "no break instruction at such address."), |
| paddress (gdbarch, bp_tgt->placed_address)); |
| return -1; |
| } |
| |
| /* Extract the original saved instruction from SLOTNUM normalizing its |
| bit-shift for INSTR_SAVED. */ |
| memcpy (bundle_saved, bundle_mem, BUNDLE_LEN); |
| memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents, |
| bp_tgt->shadow_len); |
| instr_saved = slotN_contents (bundle_saved, slotnum); |
| |
| /* In BUNDLE_MEM, be careful to modify only the bits belonging to SLOTNUM |
| and not any of the other ones that are stored in SHADOW_CONTENTS. */ |
| replace_slotN_contents (bundle_mem, instr_saved, slotnum); |
| val = target_write_raw_memory (addr, bundle_mem, BUNDLE_LEN); |
| |
| return val; |
| } |
| |
| /* Implement the breakpoint_kind_from_pc gdbarch method. */ |
| |
| static int |
| ia64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) |
| { |
| /* A place holder of gdbarch method breakpoint_kind_from_pc. */ |
| return 0; |
| } |
| |
| /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64 |
| instruction slots ranges are bit-granular (41 bits) we have to provide an |
| extended range as described for ia64_memory_insert_breakpoint. We also take |
| care of preserving the `break' instruction 21-bit (or 62-bit) parameter to |
| make a match for permanent breakpoints. */ |
| |
| static const gdb_byte * |
| ia64_breakpoint_from_pc (struct gdbarch *gdbarch, |
| CORE_ADDR *pcptr, int *lenptr) |
| { |
| CORE_ADDR addr = *pcptr; |
| static gdb_byte bundle[BUNDLE_LEN]; |
| int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum; |
| long long instr_fetched; |
| int val; |
| int templ; |
| |
| if (slotnum > 2) |
| error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
| |
| addr &= ~0x0f; |
| |
| /* Enable the automatic memory restoration from breakpoints while |
| we read our instruction bundle to match bp_loc_is_permanent. */ |
| { |
| scoped_restore restore_memory_0 |
| = make_scoped_restore_show_memory_breakpoints (0); |
| val = target_read_memory (addr, bundle, BUNDLE_LEN); |
| } |
| |
| /* The memory might be unreachable. This can happen, for instance, |
| when the user inserts a breakpoint at an invalid address. */ |
| if (val != 0) |
| return NULL; |
| |
| /* SHADOW_SLOTNUM saves the original slot number as expected by the caller |
| for addressing the SHADOW_CONTENTS placement. */ |
| shadow_slotnum = slotnum; |
| |
| /* Cover always the last byte of the bundle for the L-X slot case. */ |
| *lenptr = BUNDLE_LEN - shadow_slotnum; |
| |
| /* Check for L type instruction in slot 1, if present then bump up the slot |
| number to the slot 2. */ |
| templ = extract_bit_field (bundle, 0, 5); |
| if (template_encoding_table[templ][slotnum] == X) |
| { |
| gdb_assert (slotnum == 2); |
| error (_("Can't insert breakpoint for non-existing slot X")); |
| } |
| if (template_encoding_table[templ][slotnum] == L) |
| { |
| gdb_assert (slotnum == 1); |
| slotnum = 2; |
| } |
| |
| /* A break instruction has its all its opcode bits cleared except for |
| the parameter value. For L+X slot pair we are at the X slot (slot 2) so |
| we should not touch the L slot - the upper 41 bits of the parameter. */ |
| instr_fetched = slotN_contents (bundle, slotnum); |
| instr_fetched &= 0x1003ffffc0LL; |
| replace_slotN_contents (bundle, instr_fetched, slotnum); |
| |
| return bundle + shadow_slotnum; |
| } |
| |
| static CORE_ADDR |
| ia64_read_pc (readable_regcache *regcache) |
| { |
| ULONGEST psr_value, pc_value; |
| int slot_num; |
| |
| regcache->cooked_read (IA64_PSR_REGNUM, &psr_value); |
| regcache->cooked_read (IA64_IP_REGNUM, &pc_value); |
| slot_num = (psr_value >> 41) & 3; |
| |
| return pc_value | (slot_num * SLOT_MULTIPLIER); |
| } |
| |
| void |
| ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc) |
| { |
| int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; |
| ULONGEST psr_value; |
| |
| regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); |
| psr_value &= ~(3LL << 41); |
| psr_value |= (ULONGEST)(slot_num & 0x3) << 41; |
| |
| new_pc &= ~0xfLL; |
| |
| regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value); |
| regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc); |
| } |
| |
| #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) |
| |
| /* Returns the address of the slot that's NSLOTS slots away from |
| the address ADDR. NSLOTS may be positive or negative. */ |
| static CORE_ADDR |
| rse_address_add(CORE_ADDR addr, int nslots) |
| { |
| CORE_ADDR new_addr; |
| int mandatory_nat_slots = nslots / 63; |
| int direction = nslots < 0 ? -1 : 1; |
| |
| new_addr = addr + 8 * (nslots + mandatory_nat_slots); |
| |
| if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) |
| new_addr += 8 * direction; |
| |
| if (IS_NaT_COLLECTION_ADDR(new_addr)) |
| new_addr += 8 * direction; |
| |
| return new_addr; |
| } |
| |
| static enum register_status |
| ia64_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| enum register_status status; |
| |
| if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
| { |
| #ifdef HAVE_LIBUNWIND_IA64_H |
| /* First try and use the libunwind special reg accessor, |
| otherwise fallback to standard logic. */ |
| if (!libunwind_is_initialized () |
| || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0) |
| #endif |
| { |
| /* The fallback position is to assume that r32-r127 are |
| found sequentially in memory starting at $bof. This |
| isn't always true, but without libunwind, this is the |
| best we can do. */ |
| ULONGEST cfm; |
| ULONGEST bsp; |
| CORE_ADDR reg; |
| |
| status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp); |
| if (status != REG_VALID) |
| return status; |
| |
| status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm); |
| if (status != REG_VALID) |
| return status; |
| |
| /* The bsp points at the end of the register frame so we |
| subtract the size of frame from it to get start of |
| register frame. */ |
| bsp = rse_address_add (bsp, -(cfm & 0x7f)); |
| |
| if ((cfm & 0x7f) > regnum - V32_REGNUM) |
| { |
| ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); |
| reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order); |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, reg); |
| } |
| else |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, 0); |
| } |
| } |
| else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) |
| { |
| ULONGEST unatN_val; |
| ULONGEST unat; |
| |
| status = regcache->cooked_read (IA64_UNAT_REGNUM, &unat); |
| if (status != REG_VALID) |
| return status; |
| unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, unatN_val); |
| } |
| else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
| { |
| ULONGEST natN_val = 0; |
| ULONGEST bsp; |
| ULONGEST cfm; |
| CORE_ADDR gr_addr = 0; |
| |
| status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp); |
| if (status != REG_VALID) |
| return status; |
| |
| status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm); |
| if (status != REG_VALID) |
| return status; |
| |
| /* The bsp points at the end of the register frame so we |
| subtract the size of frame from it to get start of register frame. */ |
| bsp = rse_address_add (bsp, -(cfm & 0x7f)); |
| |
| if ((cfm & 0x7f) > regnum - V32_REGNUM) |
| gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); |
| |
| if (gr_addr != 0) |
| { |
| /* Compute address of nat collection bits. */ |
| CORE_ADDR nat_addr = gr_addr | 0x1f8; |
| ULONGEST nat_collection; |
| int nat_bit; |
| /* If our nat collection address is bigger than bsp, we have to get |
| the nat collection from rnat. Otherwise, we fetch the nat |
| collection from the computed address. */ |
| if (nat_addr >= bsp) |
| regcache->cooked_read (IA64_RNAT_REGNUM, &nat_collection); |
| else |
| nat_collection = read_memory_integer (nat_addr, 8, byte_order); |
| nat_bit = (gr_addr >> 3) & 0x3f; |
| natN_val = (nat_collection >> nat_bit) & 1; |
| } |
| |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, natN_val); |
| } |
| else if (regnum == VBOF_REGNUM) |
| { |
| /* A virtual register frame start is provided for user convenience. |
| It can be calculated as the bsp - sof (sizeof frame). */ |
| ULONGEST bsp, vbsp; |
| ULONGEST cfm; |
| |
| status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp); |
| if (status != REG_VALID) |
| return status; |
| status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm); |
| if (status != REG_VALID) |
| return status; |
| |
| /* The bsp points at the end of the register frame so we |
| subtract the size of frame from it to get beginning of frame. */ |
| vbsp = rse_address_add (bsp, -(cfm & 0x7f)); |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, vbsp); |
| } |
| else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| ULONGEST pr; |
| ULONGEST cfm; |
| ULONGEST prN_val; |
| |
| status = regcache->cooked_read (IA64_PR_REGNUM, &pr); |
| if (status != REG_VALID) |
| return status; |
| status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm); |
| if (status != REG_VALID) |
| return status; |
| |
| if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| /* Fetch predicate register rename base from current frame |
| marker for this frame. */ |
| int rrb_pr = (cfm >> 32) & 0x3f; |
| |
| /* Adjust the register number to account for register rotation. */ |
| regnum = VP16_REGNUM |
| + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
| } |
| prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; |
| store_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order, prN_val); |
| } |
| else |
| memset (buf, 0, register_size (gdbarch, regnum)); |
| |
| return REG_VALID; |
| } |
| |
| static void |
| ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
| int regnum, const gdb_byte *buf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
| { |
| ULONGEST bsp; |
| ULONGEST cfm; |
| regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
| regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
| |
| bsp = rse_address_add (bsp, -(cfm & 0x7f)); |
| |
| if ((cfm & 0x7f) > regnum - V32_REGNUM) |
| { |
| ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); |
| write_memory (reg_addr, buf, 8); |
| } |
| } |
| else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) |
| { |
| ULONGEST unatN_val, unat, unatN_mask; |
| regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); |
| unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, |
| regnum), |
| byte_order); |
| unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
| if (unatN_val == 0) |
| unat &= ~unatN_mask; |
| else if (unatN_val == 1) |
| unat |= unatN_mask; |
| regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); |
| } |
| else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
| { |
| ULONGEST natN_val; |
| ULONGEST bsp; |
| ULONGEST cfm; |
| CORE_ADDR gr_addr = 0; |
| regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
| regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
| |
| /* The bsp points at the end of the register frame so we |
| subtract the size of frame from it to get start of register frame. */ |
| bsp = rse_address_add (bsp, -(cfm & 0x7f)); |
| |
| if ((cfm & 0x7f) > regnum - V32_REGNUM) |
| gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); |
| |
| natN_val = extract_unsigned_integer (buf, register_size (gdbarch, |
| regnum), |
| byte_order); |
| |
| if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) |
| { |
| /* Compute address of nat collection bits. */ |
| CORE_ADDR nat_addr = gr_addr | 0x1f8; |
| CORE_ADDR nat_collection; |
| int natN_bit = (gr_addr >> 3) & 0x3f; |
| ULONGEST natN_mask = (1LL << natN_bit); |
| /* If our nat collection address is bigger than bsp, we have to get |
| the nat collection from rnat. Otherwise, we fetch the nat |
| collection from the computed address. */ |
| if (nat_addr >= bsp) |
| { |
| regcache_cooked_read_unsigned (regcache, |
| IA64_RNAT_REGNUM, |
| &nat_collection); |
| if (natN_val) |
| nat_collection |= natN_mask; |
| else |
| nat_collection &= ~natN_mask; |
| regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, |
| nat_collection); |
| } |
| else |
| { |
| gdb_byte nat_buf[8]; |
| nat_collection = read_memory_integer (nat_addr, 8, byte_order); |
| if (natN_val) |
| nat_collection |= natN_mask; |
| else |
| nat_collection &= ~natN_mask; |
| store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), |
| byte_order, nat_collection); |
| write_memory (nat_addr, nat_buf, 8); |
| } |
| } |
| } |
| else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| ULONGEST pr; |
| ULONGEST cfm; |
| ULONGEST prN_val; |
| ULONGEST prN_mask; |
| |
| regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); |
| regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
| |
| if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| /* Fetch predicate register rename base from current frame |
| marker for this frame. */ |
| int rrb_pr = (cfm >> 32) & 0x3f; |
| |
| /* Adjust the register number to account for register rotation. */ |
| regnum = VP16_REGNUM |
| + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
| } |
| prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum), |
| byte_order); |
| prN_mask = (1LL << (regnum - VP0_REGNUM)); |
| if (prN_val == 0) |
| pr &= ~prN_mask; |
| else if (prN_val == 1) |
| pr |= prN_mask; |
| regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); |
| } |
| } |
| |
| /* The ia64 needs to convert between various ieee floating-point formats |
| and the special ia64 floating point register format. */ |
| |
| static int |
| ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type) |
| { |
| return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM |
| && TYPE_CODE (type) == TYPE_CODE_FLT |
| && type != ia64_ext_type (gdbarch)); |
| } |
| |
| static int |
| ia64_register_to_value (struct frame_info *frame, int regnum, |
| struct type *valtype, gdb_byte *out, |
| int *optimizedp, int *unavailablep) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| gdb_byte in[IA64_FP_REGISTER_SIZE]; |
| |
| /* Convert to TYPE. */ |
| if (!get_frame_register_bytes (frame, regnum, 0, |
| register_size (gdbarch, regnum), |
| in, optimizedp, unavailablep)) |
| return 0; |
| |
| target_float_convert (in, ia64_ext_type (gdbarch), out, valtype); |
| *optimizedp = *unavailablep = 0; |
| return 1; |
| } |
| |
| static void |
| ia64_value_to_register (struct frame_info *frame, int regnum, |
| struct type *valtype, const gdb_byte *in) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| gdb_byte out[IA64_FP_REGISTER_SIZE]; |
| target_float_convert (in, valtype, out, ia64_ext_type (gdbarch)); |
| put_frame_register (frame, regnum, out); |
| } |
| |
| |
| /* Limit the number of skipped non-prologue instructions since examining |
| of the prologue is expensive. */ |
| static int max_skip_non_prologue_insns = 40; |
| |
| /* Given PC representing the starting address of a function, and |
| LIM_PC which is the (sloppy) limit to which to scan when looking |
| for a prologue, attempt to further refine this limit by using |
| the line data in the symbol table. If successful, a better guess |
| on where the prologue ends is returned, otherwise the previous |
| value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag |
| which will be set to indicate whether the returned limit may be |
| used with no further scanning in the event that the function is |
| frameless. */ |
| |
| /* FIXME: cagney/2004-02-14: This function and logic have largely been |
| superseded by skip_prologue_using_sal. */ |
| |
| static CORE_ADDR |
| refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) |
| { |
| struct symtab_and_line prologue_sal; |
| CORE_ADDR start_pc = pc; |
| CORE_ADDR end_pc; |
| |
| /* The prologue can not possibly go past the function end itself, |
| so we can already adjust LIM_PC accordingly. */ |
| if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc) |
| lim_pc = end_pc; |
| |
| /* Start off not trusting the limit. */ |
| *trust_limit = 0; |
| |
| prologue_sal = find_pc_line (pc, 0); |
| if (prologue_sal.line != 0) |
| { |
| int i; |
| CORE_ADDR addr = prologue_sal.end; |
| |
| /* Handle the case in which compiler's optimizer/scheduler |
| has moved instructions into the prologue. We scan ahead |
| in the function looking for address ranges whose corresponding |
| line number is less than or equal to the first one that we |
| found for the function. (It can be less than when the |
| scheduler puts a body instruction before the first prologue |
| instruction.) */ |
| for (i = 2 * max_skip_non_prologue_insns; |
| i > 0 && (lim_pc == 0 || addr < lim_pc); |
| i--) |
| { |
| struct symtab_and_line sal; |
| |
| sal = find_pc_line (addr, 0); |
| if (sal.line == 0) |
| break; |
| if (sal.line <= prologue_sal.line |
| && sal.symtab == prologue_sal.symtab) |
| { |
| prologue_sal = sal; |
| } |
| addr = sal.end; |
| } |
| |
| if (lim_pc == 0 || prologue_sal.end < lim_pc) |
| { |
| lim_pc = prologue_sal.end; |
| if (start_pc == get_pc_function_start (lim_pc)) |
| *trust_limit = 1; |
| } |
| } |
| return lim_pc; |
| } |
| |
| #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
| || (8 <= (_regnum_) && (_regnum_) <= 11) \ |
| || (14 <= (_regnum_) && (_regnum_) <= 31)) |
| #define imm9(_instr_) \ |
| ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ |
| | (((_instr_) & 0x00008000000LL) >> 20) \ |
| | (((_instr_) & 0x00000001fc0LL) >> 6)) |
| |
| /* Allocate and initialize a frame cache. */ |
| |
| static struct ia64_frame_cache * |
| ia64_alloc_frame_cache (void) |
| { |
| struct ia64_frame_cache *cache; |
| int i; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); |
| |
| /* Base address. */ |
| cache->base = 0; |
| cache->pc = 0; |
| cache->cfm = 0; |
| cache->prev_cfm = 0; |
| cache->sof = 0; |
| cache->sol = 0; |
| cache->sor = 0; |
| cache->bsp = 0; |
| cache->fp_reg = 0; |
| cache->frameless = 1; |
| |
| for (i = 0; i < NUM_IA64_RAW_REGS; i++) |
| cache->saved_regs[i] = 0; |
| |
| return cache; |
| } |
| |
| static CORE_ADDR |
| examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, |
| struct frame_info *this_frame, |
| struct ia64_frame_cache *cache) |
| { |
| CORE_ADDR next_pc; |
| CORE_ADDR last_prologue_pc = pc; |
| instruction_type it; |
| long long instr; |
| int cfm_reg = 0; |
| int ret_reg = 0; |
| int fp_reg = 0; |
| int unat_save_reg = 0; |
| int pr_save_reg = 0; |
| int mem_stack_frame_size = 0; |
| int spill_reg = 0; |
| CORE_ADDR spill_addr = 0; |
| char instores[8]; |
| char infpstores[8]; |
| char reg_contents[256]; |
| int trust_limit; |
| int frameless = 1; |
| int i; |
| CORE_ADDR addr; |
| gdb_byte buf[8]; |
| CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; |
| |
| memset (instores, 0, sizeof instores); |
| memset (infpstores, 0, sizeof infpstores); |
| memset (reg_contents, 0, sizeof reg_contents); |
| |
| if (cache->after_prologue != 0 |
| && cache->after_prologue <= lim_pc) |
| return cache->after_prologue; |
| |
| lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
| next_pc = fetch_instruction (pc, &it, &instr); |
| |
| /* We want to check if we have a recognizable function start before we |
| look ahead for a prologue. */ |
| if (pc < lim_pc && next_pc |
| && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) |
| { |
| /* alloc - start of a regular function. */ |
| int sol_bits = (int) ((instr & 0x00007f00000LL) >> 20); |
| int sof_bits = (int) ((instr & 0x000000fe000LL) >> 13); |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| |
| /* Verify that the current cfm matches what we think is the |
| function start. If we have somehow jumped within a function, |
| we do not want to interpret the prologue and calculate the |
| addresses of various registers such as the return address. |
| We will instead treat the frame as frameless. */ |
| if (!this_frame || |
| (sof_bits == (cache->cfm & 0x7f) && |
| sol_bits == ((cache->cfm >> 7) & 0x7f))) |
| frameless = 0; |
| |
| cfm_reg = rN; |
| last_prologue_pc = next_pc; |
| pc = next_pc; |
| } |
| else |
| { |
| /* Look for a leaf routine. */ |
| if (pc < lim_pc && next_pc |
| && (it == I || it == M) |
| && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) |
| { |
| /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ |
| int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) |
| | ((instr & 0x001f8000000LL) >> 20) |
| | ((instr & 0x000000fe000LL) >> 13)); |
| int rM = (int) ((instr & 0x00007f00000LL) >> 20); |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) |
| { |
| /* mov r2, r12 - beginning of leaf routine. */ |
| fp_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| } |
| |
| /* If we don't recognize a regular function or leaf routine, we are |
| done. */ |
| if (!fp_reg) |
| { |
| pc = lim_pc; |
| if (trust_limit) |
| last_prologue_pc = lim_pc; |
| } |
| } |
| |
| /* Loop, looking for prologue instructions, keeping track of |
| where preserved registers were spilled. */ |
| while (pc < lim_pc) |
| { |
| next_pc = fetch_instruction (pc, &it, &instr); |
| if (next_pc == 0) |
| break; |
| |
| if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
| { |
| /* Exit loop upon hitting a non-nop branch instruction. */ |
| if (trust_limit) |
| lim_pc = pc; |
| break; |
| } |
| else if (((instr & 0x3fLL) != 0LL) && |
| (frameless || ret_reg != 0)) |
| { |
| /* Exit loop upon hitting a predicated instruction if |
| we already have the return register or if we are frameless. */ |
| if (trust_limit) |
| lim_pc = pc; |
| break; |
| } |
| else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) |
| { |
| /* Move from BR */ |
| int b2 = (int) ((instr & 0x0000000e000LL) >> 13); |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| int qp = (int) (instr & 0x0000000003f); |
| |
| if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) |
| { |
| ret_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if ((it == I || it == M) |
| && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) |
| { |
| /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ |
| int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) |
| | ((instr & 0x001f8000000LL) >> 20) |
| | ((instr & 0x000000fe000LL) >> 13)); |
| int rM = (int) ((instr & 0x00007f00000LL) >> 20); |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| int qp = (int) (instr & 0x0000000003fLL); |
| |
| if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) |
| { |
| /* mov rN, r12 */ |
| fp_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && rN == 12 && rM == 12) |
| { |
| /* adds r12, -mem_stack_frame_size, r12 */ |
| mem_stack_frame_size -= imm; |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && rN == 2 |
| && ((rM == fp_reg && fp_reg != 0) || rM == 12)) |
| { |
| CORE_ADDR saved_sp = 0; |
| /* adds r2, spilloffset, rFramePointer |
| or |
| adds r2, spilloffset, r12 |
| |
| Get ready for stf.spill or st8.spill instructions. |
| The address to start spilling at is loaded into r2. |
| FIXME: Why r2? That's what gcc currently uses; it |
| could well be different for other compilers. */ |
| |
| /* Hmm... whether or not this will work will depend on |
| where the pc is. If it's still early in the prologue |
| this'll be wrong. FIXME */ |
| if (this_frame) |
| saved_sp = get_frame_register_unsigned (this_frame, |
| sp_regnum); |
| spill_addr = saved_sp |
| + (rM == 12 ? 0 : mem_stack_frame_size) |
| + imm; |
| spill_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] && |
| rN < 256 && imm == 0) |
| { |
| /* mov rN, rM where rM is an input register. */ |
| reg_contents[rN] = rM; |
| last_prologue_pc = next_pc; |
| } |
| else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && |
| rM == 2) |
| { |
| /* mov r12, r2 */ |
| last_prologue_pc = next_pc; |
| break; |
| } |
| } |
| else if (it == M |
| && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
| || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) |
| { |
| /* stf.spill [rN] = fM, imm9 |
| or |
| stf.spill [rN] = fM */ |
| |
| int imm = imm9(instr); |
| int rN = (int) ((instr & 0x00007f00000LL) >> 20); |
| int fM = (int) ((instr & 0x000000fe000LL) >> 13); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && rN == spill_reg && spill_addr != 0 |
| && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) |
| { |
| cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
| |
| if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
| spill_addr += imm; |
| else |
| spill_addr = 0; /* last one; must be done. */ |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) |
| || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) |
| { |
| /* mov.m rN = arM |
| or |
| mov.i rN = arM */ |
| |
| int arM = (int) ((instr & 0x00007f00000LL) >> 20); |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) |
| { |
| /* We have something like "mov.m r3 = ar.unat". Remember the |
| r3 (or whatever) and watch for a store of this register... */ |
| unat_save_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) |
| { |
| /* mov rN = pr */ |
| int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && isScratch (rN)) |
| { |
| pr_save_reg = rN; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if (it == M |
| && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) |
| || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) |
| { |
| /* st8 [rN] = rM |
| or |
| st8 [rN] = rM, imm9 */ |
| int rN = (int) ((instr & 0x00007f00000LL) >> 20); |
| int rM = (int) ((instr & 0x000000fe000LL) >> 13); |
| int qp = (int) (instr & 0x0000000003fLL); |
| int indirect = rM < 256 ? reg_contents[rM] : 0; |
| if (qp == 0 && rN == spill_reg && spill_addr != 0 |
| && (rM == unat_save_reg || rM == pr_save_reg)) |
| { |
| /* We've found a spill of either the UNAT register or the PR |
| register. (Well, not exactly; what we've actually found is |
| a spill of the register that UNAT or PR was moved to). |
| Record that fact and move on... */ |
| if (rM == unat_save_reg) |
| { |
| /* Track UNAT register. */ |
| cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
| unat_save_reg = 0; |
| } |
| else |
| { |
| /* Track PR register. */ |
| cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
| pr_save_reg = 0; |
| } |
| if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) |
| /* st8 [rN] = rM, imm9 */ |
| spill_addr += imm9(instr); |
| else |
| spill_addr = 0; /* Must be done spilling. */ |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
| { |
| /* Allow up to one store of each input register. */ |
| instores[rM-32] = 1; |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && 32 <= indirect && indirect < 40 && |
| !instores[indirect-32]) |
| { |
| /* Allow an indirect store of an input register. */ |
| instores[indirect-32] = 1; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) |
| { |
| /* One of |
| st1 [rN] = rM |
| st2 [rN] = rM |
| st4 [rN] = rM |
| st8 [rN] = rM |
| Note that the st8 case is handled in the clause above. |
| |
| Advance over stores of input registers. One store per input |
| register is permitted. */ |
| int rM = (int) ((instr & 0x000000fe000LL) >> 13); |
| int qp = (int) (instr & 0x0000000003fLL); |
| int indirect = rM < 256 ? reg_contents[rM] : 0; |
| if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
| { |
| instores[rM-32] = 1; |
| last_prologue_pc = next_pc; |
| } |
| else if (qp == 0 && 32 <= indirect && indirect < 40 && |
| !instores[indirect-32]) |
| { |
| /* Allow an indirect store of an input register. */ |
| instores[indirect-32] = 1; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) |
| { |
| /* Either |
| stfs [rN] = fM |
| or |
| stfd [rN] = fM |
| |
| Advance over stores of floating point input registers. Again |
| one store per register is permitted. */ |
| int fM = (int) ((instr & 0x000000fe000LL) >> 13); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) |
| { |
| infpstores[fM-8] = 1; |
| last_prologue_pc = next_pc; |
| } |
| } |
| else if (it == M |
| && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) |
| || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) |
| { |
| /* st8.spill [rN] = rM |
| or |
| st8.spill [rN] = rM, imm9 */ |
| int rN = (int) ((instr & 0x00007f00000LL) >> 20); |
| int rM = (int) ((instr & 0x000000fe000LL) >> 13); |
| int qp = (int) (instr & 0x0000000003fLL); |
| if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) |
| { |
| /* We've found a spill of one of the preserved general purpose |
| regs. Record the spill address and advance the spill |
| register if appropriate. */ |
| cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
| if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
| /* st8.spill [rN] = rM, imm9 */ |
| spill_addr += imm9(instr); |
| else |
| spill_addr = 0; /* Done spilling. */ |
| last_prologue_pc = next_pc; |
| } |
| } |
| |
| pc = next_pc; |
| } |
| |
| /* If not frameless and we aren't called by skip_prologue, then we need |
| to calculate registers for the previous frame which will be needed |
| later. */ |
| |
| if (!frameless && this_frame) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Extract the size of the rotating portion of the stack |
| frame and the register rename base from the current |
| frame marker. */ |
| cfm = cache->cfm; |
| sor = cache->sor; |
| sof = cache->sof; |
| sol = cache->sol; |
| rrb_gr = (cfm >> 18) & 0x7f; |
| |
| /* Find the bof (beginning of frame). */ |
| bof = rse_address_add (cache->bsp, -sof); |
| |
| for (i = 0, addr = bof; |
| i < sof; |
| i++, addr += 8) |
| { |
| if (IS_NaT_COLLECTION_ADDR (addr)) |
| { |
| addr += 8; |
| } |
| if (i+32 == cfm_reg) |
| cache->saved_regs[IA64_CFM_REGNUM] = addr; |
| if (i+32 == ret_reg) |
| cache->saved_regs[IA64_VRAP_REGNUM] = addr; |
| if (i+32 == fp_reg) |
| cache->saved_regs[IA64_VFP_REGNUM] = addr; |
| } |
| |
| /* For the previous argument registers we require the previous bof. |
| If we can't find the previous cfm, then we can do nothing. */ |
| cfm = 0; |
| if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
| { |
| cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], |
| 8, byte_order); |
| } |
| else if (cfm_reg != 0) |
| { |
| get_frame_register (this_frame, cfm_reg, buf); |
| cfm = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| cache->prev_cfm = cfm; |
| |
| if (cfm != 0) |
| { |
| sor = ((cfm >> 14) & 0xf) * 8; |
| sof = (cfm & 0x7f); |
| sol = (cfm >> 7) & 0x7f; |
| rrb_gr = (cfm >> 18) & 0x7f; |
| |
| /* The previous bof only requires subtraction of the sol (size of |
| locals) due to the overlap between output and input of |
| subsequent frames. */ |
| bof = rse_address_add (bof, -sol); |
| |
| for (i = 0, addr = bof; |
| i < sof; |
| i++, addr += 8) |
| { |
| if (IS_NaT_COLLECTION_ADDR (addr)) |
| { |
| addr += 8; |
| } |
| if (i < sor) |
| cache->saved_regs[IA64_GR32_REGNUM |
| + ((i + (sor - rrb_gr)) % sor)] |
| = addr; |
| else |
| cache->saved_regs[IA64_GR32_REGNUM + i] = addr; |
| } |
| |
| } |
| } |
| |
| /* Try and trust the lim_pc value whenever possible. */ |
| if (trust_limit && lim_pc >= last_prologue_pc) |
| last_prologue_pc = lim_pc; |
| |
| cache->frameless = frameless; |
| cache->after_prologue = last_prologue_pc; |
| cache->mem_stack_frame_size = mem_stack_frame_size; |
| cache->fp_reg = fp_reg; |
| |
| return last_prologue_pc; |
| } |
| |
| CORE_ADDR |
| ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| struct ia64_frame_cache cache; |
| cache.base = 0; |
| cache.after_prologue = 0; |
| cache.cfm = 0; |
| cache.bsp = 0; |
| |
| /* Call examine_prologue with - as third argument since we don't |
| have a next frame pointer to send. */ |
| return examine_prologue (pc, pc+1024, 0, &cache); |
| } |
| |
| |
| /* Normal frames. */ |
| |
| static struct ia64_frame_cache * |
| ia64_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct ia64_frame_cache *cache; |
| gdb_byte buf[8]; |
| CORE_ADDR cfm; |
| |
| if (*this_cache) |
| return (struct ia64_frame_cache *) *this_cache; |
| |
| cache = ia64_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| get_frame_register (this_frame, sp_regnum, buf); |
| cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| /* We always want the bsp to point to the end of frame. |
| This way, we can always get the beginning of frame (bof) |
| by subtracting frame size. */ |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| cache->bsp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| get_frame_register (this_frame, IA64_PSR_REGNUM, buf); |
| |
| get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
| cfm = extract_unsigned_integer (buf, 8, byte_order); |
| |
| cache->sof = (cfm & 0x7f); |
| cache->sol = (cfm >> 7) & 0x7f; |
| cache->sor = ((cfm >> 14) & 0xf) * 8; |
| |
| cache->cfm = cfm; |
| |
| cache->pc = get_frame_func (this_frame); |
| |
| if (cache->pc != 0) |
| examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache); |
| |
| cache->base = cache->saved_sp + cache->mem_stack_frame_size; |
| |
| return cache; |
| } |
| |
| static void |
| ia64_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct ia64_frame_cache *cache = |
| ia64_frame_cache (this_frame, this_cache); |
| |
| /* If outermost frame, mark with null frame id. */ |
| if (cache->base != 0) |
| (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "regular frame id: code %s, stack %s, " |
| "special %s, this_frame %s\n", |
| paddress (gdbarch, this_id->code_addr), |
| paddress (gdbarch, this_id->stack_addr), |
| paddress (gdbarch, cache->bsp), |
| host_address_to_string (this_frame)); |
| } |
| |
| static struct value * |
| ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache); |
| gdb_byte buf[8]; |
| |
| gdb_assert (regnum >= 0); |
| |
| if (!target_has_registers) |
| error (_("No registers.")); |
| |
| if (regnum == gdbarch_sp_regnum (gdbarch)) |
| return frame_unwind_got_constant (this_frame, regnum, cache->base); |
| |
| else if (regnum == IA64_BSP_REGNUM) |
| { |
| struct value *val; |
| CORE_ADDR prev_cfm, bsp, prev_bsp; |
| |
| /* We want to calculate the previous bsp as the end of the previous |
| register stack frame. This corresponds to what the hardware bsp |
| register will be if we pop the frame back which is why we might |
| have been called. We know the beginning of the current frame is |
| cache->bsp - cache->sof. This value in the previous frame points |
| to the start of the output registers. We can calculate the end of |
| that frame by adding the size of output: |
| (sof (size of frame) - sol (size of locals)). */ |
| val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM); |
| prev_cfm = extract_unsigned_integer (value_contents_all (val), |
| 8, byte_order); |
| bsp = rse_address_add (cache->bsp, -(cache->sof)); |
| prev_bsp = |
| rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); |
| |
| return frame_unwind_got_constant (this_frame, regnum, prev_bsp); |
| } |
| |
| else if (regnum == IA64_CFM_REGNUM) |
| { |
| CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
| |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| if (cache->prev_cfm) |
| return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm); |
| |
| if (cache->frameless) |
| return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM, |
| IA64_PFS_REGNUM); |
| return frame_unwind_got_register (this_frame, regnum, 0); |
| } |
| |
| else if (regnum == IA64_VFP_REGNUM) |
| { |
| /* If the function in question uses an automatic register (r32-r127) |
| for the frame pointer, it'll be found by ia64_find_saved_register() |
| above. If the function lacks one of these frame pointers, we can |
| still provide a value since we know the size of the frame. */ |
| return frame_unwind_got_constant (this_frame, regnum, cache->base); |
| } |
| |
| else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| struct value *pr_val; |
| ULONGEST prN; |
| |
| pr_val = ia64_frame_prev_register (this_frame, this_cache, |
| IA64_PR_REGNUM); |
| if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| /* Fetch predicate register rename base from current frame |
| marker for this frame. */ |
| int rrb_pr = (cache->cfm >> 32) & 0x3f; |
| |
| /* Adjust the register number to account for register rotation. */ |
| regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
| } |
| prN = extract_bit_field (value_contents_all (pr_val), |
| regnum - VP0_REGNUM, 1); |
| return frame_unwind_got_constant (this_frame, regnum, prN); |
| } |
| |
| else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) |
| { |
| struct value *unat_val; |
| ULONGEST unatN; |
| unat_val = ia64_frame_prev_register (this_frame, this_cache, |
| IA64_UNAT_REGNUM); |
| unatN = extract_bit_field (value_contents_all (unat_val), |
| regnum - IA64_NAT0_REGNUM, 1); |
| return frame_unwind_got_constant (this_frame, regnum, unatN); |
| } |
| |
| else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
| { |
| int natval = 0; |
| /* Find address of general register corresponding to nat bit we're |
| interested in. */ |
| CORE_ADDR gr_addr; |
| |
| gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM]; |
| |
| if (gr_addr != 0) |
| { |
| /* Compute address of nat collection bits. */ |
| CORE_ADDR nat_addr = gr_addr | 0x1f8; |
| CORE_ADDR bsp; |
| CORE_ADDR nat_collection; |
| int nat_bit; |
| |
| /* If our nat collection address is bigger than bsp, we have to get |
| the nat collection from rnat. Otherwise, we fetch the nat |
| collection from the computed address. */ |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| bsp = extract_unsigned_integer (buf, 8, byte_order); |
| if (nat_addr >= bsp) |
| { |
| get_frame_register (this_frame, IA64_RNAT_REGNUM, buf); |
| nat_collection = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| else |
| nat_collection = read_memory_integer (nat_addr, 8, byte_order); |
| nat_bit = (gr_addr >> 3) & 0x3f; |
| natval = (nat_collection >> nat_bit) & 1; |
| } |
| |
| return frame_unwind_got_constant (this_frame, regnum, natval); |
| } |
| |
| else if (regnum == IA64_IP_REGNUM) |
| { |
| CORE_ADDR pc = 0; |
| CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
| |
| if (addr != 0) |
| { |
| read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
| pc = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| else if (cache->frameless) |
| { |
| get_frame_register (this_frame, IA64_BR0_REGNUM, buf); |
| pc = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| pc &= ~0xf; |
| return frame_unwind_got_constant (this_frame, regnum, pc); |
| } |
| |
| else if (regnum == IA64_PSR_REGNUM) |
| { |
| /* We don't know how to get the complete previous PSR, but we need it |
| for the slot information when we unwind the pc (pc is formed of IP |
| register plus slot information from PSR). To get the previous |
| slot information, we mask it off the return address. */ |
| ULONGEST slot_num = 0; |
| CORE_ADDR pc = 0; |
| CORE_ADDR psr = 0; |
| CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
| |
| get_frame_register (this_frame, IA64_PSR_REGNUM, buf); |
| psr = extract_unsigned_integer (buf, 8, byte_order); |
| |
| if (addr != 0) |
| { |
| read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
| pc = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| else if (cache->frameless) |
| { |
| get_frame_register (this_frame, IA64_BR0_REGNUM, buf); |
| pc = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| psr &= ~(3LL << 41); |
| slot_num = pc & 0x3LL; |
| psr |= (CORE_ADDR)slot_num << 41; |
| return frame_unwind_got_constant (this_frame, regnum, psr); |
| } |
| |
| else if (regnum == IA64_BR0_REGNUM) |
| { |
| CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; |
| |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| return frame_unwind_got_constant (this_frame, regnum, 0); |
| } |
| |
| else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) |
| || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) |
| { |
| CORE_ADDR addr = 0; |
| |
| if (regnum >= V32_REGNUM) |
| regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); |
| addr = cache->saved_regs[regnum]; |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| if (cache->frameless) |
| { |
| struct value *reg_val; |
| CORE_ADDR prev_cfm, prev_bsp, prev_bof; |
| |
| /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant |
| with the same code above? */ |
| if (regnum >= V32_REGNUM) |
| regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); |
| reg_val = ia64_frame_prev_register (this_frame, this_cache, |
| IA64_CFM_REGNUM); |
| prev_cfm = extract_unsigned_integer (value_contents_all (reg_val), |
| 8, byte_order); |
| reg_val = ia64_frame_prev_register (this_frame, this_cache, |
| IA64_BSP_REGNUM); |
| prev_bsp = extract_unsigned_integer (value_contents_all (reg_val), |
| 8, byte_order); |
| prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); |
| |
| addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| } |
| |
| return frame_unwind_got_constant (this_frame, regnum, 0); |
| } |
| |
| else /* All other registers. */ |
| { |
| CORE_ADDR addr = 0; |
| |
| if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
| { |
| /* Fetch floating point register rename base from current |
| frame marker for this frame. */ |
| int rrb_fr = (cache->cfm >> 25) & 0x7f; |
| |
| /* Adjust the floating point register number to account for |
| register rotation. */ |
| regnum = IA64_FR32_REGNUM |
| + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; |
| } |
| |
| /* If we have stored a memory address, access the register. */ |
| addr = cache->saved_regs[regnum]; |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| /* Otherwise, punt and get the current value of the register. */ |
| else |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| } |
| |
| static const struct frame_unwind ia64_frame_unwind = |
| { |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| &ia64_frame_this_id, |
| &ia64_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Signal trampolines. */ |
| |
| static void |
| ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame, |
| struct ia64_frame_cache *cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (tdep->sigcontext_register_address) |
| { |
| int regno; |
| |
| cache->saved_regs[IA64_VRAP_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_IP_REGNUM); |
| cache->saved_regs[IA64_CFM_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_CFM_REGNUM); |
| cache->saved_regs[IA64_PSR_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_PSR_REGNUM); |
| cache->saved_regs[IA64_BSP_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_BSP_REGNUM); |
| cache->saved_regs[IA64_RNAT_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_RNAT_REGNUM); |
| cache->saved_regs[IA64_CCV_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_CCV_REGNUM); |
| cache->saved_regs[IA64_UNAT_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_UNAT_REGNUM); |
| cache->saved_regs[IA64_FPSR_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_FPSR_REGNUM); |
| cache->saved_regs[IA64_PFS_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_PFS_REGNUM); |
| cache->saved_regs[IA64_LC_REGNUM] |
| = tdep->sigcontext_register_address (gdbarch, cache->base, |
| IA64_LC_REGNUM); |
| |
| for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) |
| cache->saved_regs[regno] = |
| tdep->sigcontext_register_address (gdbarch, cache->base, regno); |
| for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
| cache->saved_regs[regno] = |
| tdep->sigcontext_register_address (gdbarch, cache->base, regno); |
| for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
| cache->saved_regs[regno] = |
| tdep->sigcontext_register_address (gdbarch, cache->base, regno); |
| } |
| } |
| |
| static struct ia64_frame_cache * |
| ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct ia64_frame_cache *cache; |
| gdb_byte buf[8]; |
| |
| if (*this_cache) |
| return (struct ia64_frame_cache *) *this_cache; |
| |
| cache = ia64_alloc_frame_cache (); |
| |
| get_frame_register (this_frame, sp_regnum, buf); |
| /* Note that frame size is hard-coded below. We cannot calculate it |
| via prologue examination. */ |
| cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16; |
| |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| cache->bsp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
| cache->cfm = extract_unsigned_integer (buf, 8, byte_order); |
| cache->sof = cache->cfm & 0x7f; |
| |
| ia64_sigtramp_frame_init_saved_regs (this_frame, cache); |
| |
| *this_cache = cache; |
| return cache; |
| } |
| |
| static void |
| ia64_sigtramp_frame_this_id (struct frame_info *this_frame, |
| void **this_cache, struct frame_id *this_id) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct ia64_frame_cache *cache = |
| ia64_sigtramp_frame_cache (this_frame, this_cache); |
| |
| (*this_id) = frame_id_build_special (cache->base, |
| get_frame_pc (this_frame), |
| cache->bsp); |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "sigtramp frame id: code %s, stack %s, " |
| "special %s, this_frame %s\n", |
| paddress (gdbarch, this_id->code_addr), |
| paddress (gdbarch, this_id->stack_addr), |
| paddress (gdbarch, cache->bsp), |
| host_address_to_string (this_frame)); |
| } |
| |
| static struct value * |
| ia64_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct ia64_frame_cache *cache = |
| ia64_sigtramp_frame_cache (this_frame, this_cache); |
| |
| gdb_assert (regnum >= 0); |
| |
| if (!target_has_registers) |
| error (_("No registers.")); |
| |
| if (regnum == IA64_IP_REGNUM) |
| { |
| CORE_ADDR pc = 0; |
| CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
| |
| if (addr != 0) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| pc = read_memory_unsigned_integer (addr, 8, byte_order); |
| } |
| pc &= ~0xf; |
| return frame_unwind_got_constant (this_frame, regnum, pc); |
| } |
| |
| else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) |
| || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) |
| { |
| CORE_ADDR addr = 0; |
| |
| if (regnum >= V32_REGNUM) |
| regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); |
| addr = cache->saved_regs[regnum]; |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| return frame_unwind_got_constant (this_frame, regnum, 0); |
| } |
| |
| else /* All other registers not listed above. */ |
| { |
| CORE_ADDR addr = cache->saved_regs[regnum]; |
| |
| if (addr != 0) |
| return frame_unwind_got_memory (this_frame, regnum, addr); |
| |
| return frame_unwind_got_constant (this_frame, regnum, 0); |
| } |
| } |
| |
| static int |
| ia64_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
| if (tdep->pc_in_sigtramp) |
| { |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| if (tdep->pc_in_sigtramp (pc)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind ia64_sigtramp_frame_unwind = |
| { |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| ia64_sigtramp_frame_this_id, |
| ia64_sigtramp_frame_prev_register, |
| NULL, |
| ia64_sigtramp_frame_sniffer |
| }; |
| |
| |
| |
| static CORE_ADDR |
| ia64_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache); |
| |
| return cache->base; |
| } |
| |
| static const struct frame_base ia64_frame_base = |
| { |
| &ia64_frame_unwind, |
| ia64_frame_base_address, |
| ia64_frame_base_address, |
| ia64_frame_base_address |
| }; |
| |
| #ifdef HAVE_LIBUNWIND_IA64_H |
| |
| struct ia64_unwind_table_entry |
| { |
| unw_word_t start_offset; |
| unw_word_t end_offset; |
| unw_word_t info_offset; |
| }; |
| |
| static __inline__ uint64_t |
| ia64_rse_slot_num (uint64_t addr) |
| { |
| return (addr >> 3) & 0x3f; |
| } |
| |
| /* Skip over a designated number of registers in the backing |
| store, remembering every 64th position is for NAT. */ |
| static __inline__ uint64_t |
| ia64_rse_skip_regs (uint64_t addr, long num_regs) |
| { |
| long delta = ia64_rse_slot_num(addr) + num_regs; |
| |
| if (num_regs < 0) |
| delta -= 0x3e; |
| return addr + ((num_regs + delta/0x3f) << 3); |
| } |
| |
| /* Gdb ia64-libunwind-tdep callback function to convert from an ia64 gdb |
| register number to a libunwind register number. */ |
| static int |
| ia64_gdb2uw_regnum (int regnum) |
| { |
| if (regnum == sp_regnum) |
| return UNW_IA64_SP; |
| else if (regnum == IA64_BSP_REGNUM) |
| return UNW_IA64_BSP; |
| else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) |
| return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); |
| else if ((unsigned) (regnum - V32_REGNUM) < 95) |
| return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); |
| else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) |
| return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); |
| else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) |
| return -1; |
| else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) |
| return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); |
| else if (regnum == IA64_PR_REGNUM) |
| return UNW_IA64_PR; |
| else if (regnum == IA64_IP_REGNUM) |
| return UNW_REG_IP; |
| else if (regnum == IA64_CFM_REGNUM) |
| return UNW_IA64_CFM; |
| else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) |
| return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); |
| else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) |
| return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); |
| else |
| return -1; |
| } |
| |
| /* Gdb ia64-libunwind-tdep callback function to convert from a libunwind |
| register number to a ia64 gdb register number. */ |
| static int |
| ia64_uw2gdb_regnum (int uw_regnum) |
| { |
| if (uw_regnum == UNW_IA64_SP) |
| return sp_regnum; |
| else if (uw_regnum == UNW_IA64_BSP) |
| return IA64_BSP_REGNUM; |
| else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) |
| return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); |
| else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) |
| return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); |
| else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) |
| return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); |
| else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) |
| return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); |
| else if (uw_regnum == UNW_IA64_PR) |
| return IA64_PR_REGNUM; |
| else if (uw_regnum == UNW_REG_IP) |
| return IA64_IP_REGNUM; |
| else if (uw_regnum == UNW_IA64_CFM) |
| return IA64_CFM_REGNUM; |
| else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) |
| return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); |
| else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) |
| return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); |
| else |
| return -1; |
| } |
| |
| /* Gdb ia64-libunwind-tdep callback function to reveal if register is |
| a float register or not. */ |
| static int |
| ia64_is_fpreg (int uw_regnum) |
| { |
| return unw_is_fpreg (uw_regnum); |
| } |
| |
| /* Libunwind callback accessor function for general registers. */ |
| static int |
| ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, |
| int write, void *arg) |
| { |
| int regnum = ia64_uw2gdb_regnum (uw_regnum); |
| unw_word_t bsp, sof, cfm, psr, ip; |
| struct frame_info *this_frame = (struct frame_info *) arg; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| |
| /* We never call any libunwind routines that need to write registers. */ |
| gdb_assert (!write); |
| |
| switch (uw_regnum) |
| { |
| case UNW_REG_IP: |
| /* Libunwind expects to see the pc value which means the slot number |
| from the psr must be merged with the ip word address. */ |
| ip = get_frame_register_unsigned (this_frame, IA64_IP_REGNUM); |
| psr = get_frame_register_unsigned (this_frame, IA64_PSR_REGNUM); |
| *val = ip | ((psr >> 41) & 0x3); |
| break; |
| |
| case UNW_IA64_AR_BSP: |
| /* Libunwind expects to see the beginning of the current |
| register frame so we must account for the fact that |
| ptrace() will return a value for bsp that points *after* |
| the current register frame. */ |
| bsp = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM); |
| cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM); |
| sof = gdbarch_tdep (gdbarch)->size_of_register_frame (this_frame, cfm); |
| *val = ia64_rse_skip_regs (bsp, -sof); |
| break; |
| |
| case UNW_IA64_AR_BSPSTORE: |
| /* Libunwind wants bspstore to be after the current register frame. |
| This is what ptrace() and gdb treats as the regular bsp value. */ |
| *val = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM); |
| break; |
| |
| default: |
| /* For all other registers, just unwind the value directly. */ |
| *val = get_frame_register_unsigned (this_frame, regnum); |
| break; |
| } |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| " access_reg: from cache: %4s=%s\n", |
| (((unsigned) regnum <= IA64_NAT127_REGNUM) |
| ? ia64_register_names[regnum] : "r??"), |
| paddress (gdbarch, *val)); |
| return 0; |
| } |
| |
| /* Libunwind callback accessor function for floating-point registers. */ |
| static int |
| ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, |
| unw_fpreg_t *val, int write, void *arg) |
| { |
| int regnum = ia64_uw2gdb_regnum (uw_regnum); |
| struct frame_info *this_frame = (struct frame_info *) arg; |
| |
| /* We never call any libunwind routines that need to write registers. */ |
| gdb_assert (!write); |
| |
| get_frame_register (this_frame, regnum, (gdb_byte *) val); |
| |
| return 0; |
| } |
| |
| /* Libunwind callback accessor function for top-level rse registers. */ |
| static int |
| ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, |
| unw_word_t *val, int write, void *arg) |
| { |
| int regnum = ia64_uw2gdb_regnum (uw_regnum); |
| unw_word_t bsp, sof, cfm, psr, ip; |
| struct regcache *regcache = (struct regcache *) arg; |
| struct gdbarch *gdbarch = regcache->arch (); |
| |
| /* We never call any libunwind routines that need to write registers. */ |
| gdb_assert (!write); |
| |
| switch (uw_regnum) |
| { |
| case UNW_REG_IP: |
| /* Libunwind expects to see the pc value which means the slot number |
| from the psr must be merged with the ip word address. */ |
| regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &ip); |
| regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr); |
| *val = ip | ((psr >> 41) & 0x3); |
| break; |
| |
| case UNW_IA64_AR_BSP: |
| /* Libunwind expects to see the beginning of the current |
| register frame so we must account for the fact that |
| ptrace() will return a value for bsp that points *after* |
| the current register frame. */ |
| regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
| regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
| sof = (cfm & 0x7f); |
| *val = ia64_rse_skip_regs (bsp, -sof); |
| break; |
| |
| case UNW_IA64_AR_BSPSTORE: |
| /* Libunwind wants bspstore to be after the current register frame. |
| This is what ptrace() and gdb treats as the regular bsp value. */ |
| regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, val); |
| break; |
| |
| default: |
| /* For all other registers, just unwind the value directly. */ |
| regcache_cooked_read_unsigned (regcache, regnum, val); |
| break; |
| } |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| " access_rse_reg: from cache: %4s=%s\n", |
| (((unsigned) regnum <= IA64_NAT127_REGNUM) |
| ? ia64_register_names[regnum] : "r??"), |
| paddress (gdbarch, *val)); |
| |
| return 0; |
| } |
| |
| /* Libunwind callback accessor function for top-level fp registers. */ |
| static int |
| ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, |
| unw_fpreg_t *val, int write, void *arg) |
| { |
| int regnum = ia64_uw2gdb_regnum (uw_regnum); |
| struct regcache *regcache = (struct regcache *) arg; |
| |
| /* We never call any libunwind routines that need to write registers. */ |
| gdb_assert (!write); |
| |
| regcache->cooked_read (regnum, (gdb_byte *) val); |
| |
| return 0; |
| } |
| |
| /* Libunwind callback accessor function for accessing memory. */ |
| static int |
| ia64_access_mem (unw_addr_space_t as, |
| unw_word_t addr, unw_word_t *val, |
| int write, void *arg) |
| { |
| if (addr - KERNEL_START < ktab_size) |
| { |
| unw_word_t *laddr = (unw_word_t*) ((char *) ktab |
| + (addr - KERNEL_START)); |
| |
| if (write) |
| *laddr = *val; |
| else |
| *val = *laddr; |
| return 0; |
| } |
| |
| /* XXX do we need to normalize byte-order here? */ |
| if (write) |
| return target_write_memory (addr, (gdb_byte *) val, sizeof (unw_word_t)); |
| else |
| return target_read_memory (addr, (gdb_byte *) val, sizeof (unw_word_t)); |
| } |
| |
| /* Call low-level function to access the kernel unwind table. */ |
| static gdb::optional<gdb::byte_vector> |
| getunwind_table () |
| { |
| /* FIXME drow/2005-09-10: This code used to call |
| ia64_linux_xfer_unwind_table directly to fetch the unwind table |
| for the currently running ia64-linux kernel. That data should |
| come from the core file and be accessed via the auxv vector; if |
| we want to preserve fall back to the running kernel's table, then |
| we should find a way to override the corefile layer's |
| xfer_partial method. */ |
| |
| return target_read_alloc (current_top_target (), TARGET_OBJECT_UNWIND_TABLE, |
| NULL); |
| } |
| |
| /* Get the kernel unwind table. */ |
| static int |
| get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) |
| { |
| static struct ia64_table_entry *etab; |
| |
| if (!ktab) |
| { |
| ktab_buf = getunwind_table (); |
| if (!ktab_buf) |
| return -UNW_ENOINFO; |
| |
| ktab = (struct ia64_table_entry *) ktab_buf->data (); |
| ktab_size = ktab_buf->size (); |
| |
| for (etab = ktab; etab->start_offset; ++etab) |
| etab->info_offset += KERNEL_START; |
| } |
| |
| if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) |
| return -UNW_ENOINFO; |
| |
| di->format = UNW_INFO_FORMAT_TABLE; |
| di->gp = 0; |
| di->start_ip = ktab[0].start_offset; |
| di->end_ip = etab[-1].end_offset; |
| di->u.ti.name_ptr = (unw_word_t) "<kernel>"; |
| di->u.ti.segbase = 0; |
| di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); |
| di->u.ti.table_data = (unw_word_t *) ktab; |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " |
| "segbase=%s, length=%s, gp=%s\n", |
| (char *) di->u.ti.name_ptr, |
| hex_string (di->u.ti.segbase), |
| pulongest (di->u.ti.table_len), |
| hex_string (di->gp)); |
| return 0; |
| } |
| |
| /* Find the unwind table entry for a specified address. */ |
| static int |
| ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, |
| unw_dyn_info_t *dip, void **buf) |
| { |
| Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; |
| Elf_Internal_Ehdr *ehdr; |
| unw_word_t segbase = 0; |
| CORE_ADDR load_base; |
| bfd *bfd; |
| int i; |
| |
| bfd = objfile->obfd; |
| |
| ehdr = elf_tdata (bfd)->elf_header; |
| phdr = elf_tdata (bfd)->phdr; |
| |
| load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| for (i = 0; i < ehdr->e_phnum; ++i) |
| { |
| switch (phdr[i].p_type) |
| { |
| case PT_LOAD: |
| if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) |
| < phdr[i].p_memsz) |
| p_text = phdr + i; |
| break; |
| |
| case PT_IA_64_UNWIND: |
| p_unwind = phdr + i; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (!p_text || !p_unwind) |
| return -UNW_ENOINFO; |
| |
| /* Verify that the segment that contains the IP also contains |
| the static unwind table. If not, we may be in the Linux kernel's |
| DSO gate page in which case the unwind table is another segment. |
| Otherwise, we are dealing with runtime-generated code, for which we |
| have no info here. */ |
| segbase = p_text->p_vaddr + load_base; |
| |
| if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
| { |
| int ok = 0; |
| for (i = 0; i < ehdr->e_phnum; ++i) |
| { |
| if (phdr[i].p_type == PT_LOAD |
| && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) |
| { |
| ok = 1; |
| /* Get the segbase from the section containing the |
| libunwind table. */ |
| segbase = phdr[i].p_vaddr + load_base; |
| } |
| } |
| if (!ok) |
| return -UNW_ENOINFO; |
| } |
| |
| dip->start_ip = p_text->p_vaddr + load_base; |
| dip->end_ip = dip->start_ip + p_text->p_memsz; |
| dip->gp = ia64_find_global_pointer (get_objfile_arch (objfile), ip); |
| dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
| dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); |
| dip->u.rti.segbase = segbase; |
| dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); |
| dip->u.rti.table_data = p_unwind->p_vaddr + load_base; |
| |
| return 0; |
| } |
| |
| /* Libunwind callback accessor function to acquire procedure unwind-info. */ |
| static int |
| ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, |
| int need_unwind_info, void *arg) |
| { |
| struct obj_section *sec = find_pc_section (ip); |
| unw_dyn_info_t di; |
| int ret; |
| void *buf = NULL; |
| |
| if (!sec) |
| { |
| /* XXX This only works if the host and the target architecture are |
| both ia64 and if the have (more or less) the same kernel |
| version. */ |
| if (get_kernel_table (ip, &di) < 0) |
| return -UNW_ENOINFO; |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> " |
| "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s," |
| "length=%s,data=%s)\n", |
| hex_string (ip), (char *)di.u.ti.name_ptr, |
| hex_string (di.u.ti.segbase), |
| hex_string (di.start_ip), hex_string (di.end_ip), |
| hex_string (di.gp), |
| pulongest (di.u.ti.table_len), |
| hex_string ((CORE_ADDR)di.u.ti.table_data)); |
| } |
| else |
| { |
| ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); |
| if (ret < 0) |
| return ret; |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> " |
| "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s," |
| "length=%s,data=%s)\n", |
| hex_string (ip), (char *)di.u.rti.name_ptr, |
| hex_string (di.u.rti.segbase), |
| hex_string (di.start_ip), hex_string (di.end_ip), |
| hex_string (di.gp), |
| pulongest (di.u.rti.table_len), |
| hex_string (di.u.rti.table_data)); |
| } |
| |
| ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
| arg); |
| |
| /* We no longer need the dyn info storage so free it. */ |
| xfree (buf); |
| |
| return ret; |
| } |
| |
| /* Libunwind callback accessor function for cleanup. */ |
| static void |
| ia64_put_unwind_info (unw_addr_space_t as, |
| unw_proc_info_t *pip, void *arg) |
| { |
| /* Nothing required for now. */ |
| } |
| |
| /* Libunwind callback accessor function to get head of the dynamic |
| unwind-info registration list. */ |
| static int |
| ia64_get_dyn_info_list (unw_addr_space_t as, |
| unw_word_t *dilap, void *arg) |
| { |
| struct obj_section *text_sec; |
| struct objfile *objfile; |
| unw_word_t ip, addr; |
| unw_dyn_info_t di; |
| int ret; |
| |
| if (!libunwind_is_initialized ()) |
| return -UNW_ENOINFO; |
| |
| for (objfile = object_files; objfile; objfile = objfile->next) |
| { |
| void *buf = NULL; |
| |
| text_sec = objfile->sections + SECT_OFF_TEXT (objfile); |
| ip = obj_section_addr (text_sec); |
| ret = ia64_find_unwind_table (objfile, ip, &di, &buf); |
| if (ret >= 0) |
| { |
| addr = libunwind_find_dyn_list (as, &di, arg); |
| /* We no longer need the dyn info storage so free it. */ |
| xfree (buf); |
| |
| if (addr) |
| { |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "dynamic unwind table in objfile %s " |
| "at %s (gp=%s)\n", |
| bfd_get_filename (objfile->obfd), |
| hex_string (addr), hex_string (di.gp)); |
| *dilap = addr; |
| return 0; |
| } |
| } |
| } |
| return -UNW_ENOINFO; |
| } |
| |
| |
| /* Frame interface functions for libunwind. */ |
| |
| static void |
| ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct frame_id id = outer_frame_id; |
| gdb_byte buf[8]; |
| CORE_ADDR bsp; |
| |
| libunwind_frame_this_id (this_frame, this_cache, &id); |
| if (frame_id_eq (id, outer_frame_id)) |
| { |
| (*this_id) = outer_frame_id; |
| return; |
| } |
| |
| /* We must add the bsp as the special address for frame comparison |
| purposes. */ |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| bsp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "libunwind frame id: code %s, stack %s, " |
| "special %s, this_frame %s\n", |
| paddress (gdbarch, id.code_addr), |
| paddress (gdbarch, id.stack_addr), |
| paddress (gdbarch, bsp), |
| host_address_to_string (this_frame)); |
| } |
| |
| static struct value * |
| ia64_libunwind_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| int reg = regnum; |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct value *val; |
| |
| if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| reg = IA64_PR_REGNUM; |
| else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
| reg = IA64_UNAT_REGNUM; |
| |
| /* Let libunwind do most of the work. */ |
| val = libunwind_frame_prev_register (this_frame, this_cache, reg); |
| |
| if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| ULONGEST prN_val; |
| |
| if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) |
| { |
| int rrb_pr = 0; |
| ULONGEST cfm; |
| |
| /* Fetch predicate register rename base from current frame |
| marker for this frame. */ |
| cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM); |
| rrb_pr = (cfm >> 32) & 0x3f; |
| |
| /* Adjust the register number to account for register rotation. */ |
| regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
| } |
| prN_val = extract_bit_field (value_contents_all (val), |
| regnum - VP0_REGNUM, 1); |
| return frame_unwind_got_constant (this_frame, regnum, prN_val); |
| } |
| |
| else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
| { |
| ULONGEST unatN_val; |
| |
| unatN_val = extract_bit_field (value_contents_all (val), |
| regnum - IA64_NAT0_REGNUM, 1); |
| return frame_unwind_got_constant (this_frame, regnum, unatN_val); |
| } |
| |
| else if (regnum == IA64_BSP_REGNUM) |
| { |
| struct value *cfm_val; |
| CORE_ADDR prev_bsp, prev_cfm; |
| |
| /* We want to calculate the previous bsp as the end of the previous |
| register stack frame. This corresponds to what the hardware bsp |
| register will be if we pop the frame back which is why we might |
| have been called. We know that libunwind will pass us back the |
| beginning of the current frame so we should just add sof to it. */ |
| prev_bsp = extract_unsigned_integer (value_contents_all (val), |
| 8, byte_order); |
| cfm_val = libunwind_frame_prev_register (this_frame, this_cache, |
| IA64_CFM_REGNUM); |
| prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val), |
| 8, byte_order); |
| prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); |
| |
| return frame_unwind_got_constant (this_frame, regnum, prev_bsp); |
| } |
| else |
| return val; |
| } |
| |
| static int |
| ia64_libunwind_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_cache) |
| { |
| if (libunwind_is_initialized () |
| && libunwind_frame_sniffer (self, this_frame, this_cache)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind ia64_libunwind_frame_unwind = |
| { |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| ia64_libunwind_frame_this_id, |
| ia64_libunwind_frame_prev_register, |
| NULL, |
| ia64_libunwind_frame_sniffer, |
| libunwind_frame_dealloc_cache |
| }; |
| |
| static void |
| ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| CORE_ADDR bsp; |
| struct frame_id id = outer_frame_id; |
| |
| libunwind_frame_this_id (this_frame, this_cache, &id); |
| if (frame_id_eq (id, outer_frame_id)) |
| { |
| (*this_id) = outer_frame_id; |
| return; |
| } |
| |
| /* We must add the bsp as the special address for frame comparison |
| purposes. */ |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| bsp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| /* For a sigtramp frame, we don't make the check for previous ip being 0. */ |
| (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "libunwind sigtramp frame id: code %s, " |
| "stack %s, special %s, this_frame %s\n", |
| paddress (gdbarch, id.code_addr), |
| paddress (gdbarch, id.stack_addr), |
| paddress (gdbarch, bsp), |
| host_address_to_string (this_frame)); |
| } |
| |
| static struct value * |
| ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct value *prev_ip_val; |
| CORE_ADDR prev_ip; |
| |
| /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT |
| method of getting previous registers. */ |
| prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache, |
| IA64_IP_REGNUM); |
| prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val), |
| 8, byte_order); |
| |
| if (prev_ip == 0) |
| { |
| void *tmp_cache = NULL; |
| return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache, |
| regnum); |
| } |
| else |
| return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum); |
| } |
| |
| static int |
| ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_cache) |
| { |
| if (libunwind_is_initialized ()) |
| { |
| if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache)) |
| return 1; |
| return 0; |
| } |
| else |
| return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache); |
| } |
| |
| static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = |
| { |
| SIGTRAMP_FRAME, |
| default_frame_unwind_stop_reason, |
| ia64_libunwind_sigtramp_frame_this_id, |
| ia64_libunwind_sigtramp_frame_prev_register, |
| NULL, |
| ia64_libunwind_sigtramp_frame_sniffer |
| }; |
| |
| /* Set of libunwind callback acccessor functions. */ |
| unw_accessors_t ia64_unw_accessors = |
| { |
| ia64_find_proc_info_x, |
| ia64_put_unwind_info, |
| ia64_get_dyn_info_list, |
| ia64_access_mem, |
| ia64_access_reg, |
| ia64_access_fpreg, |
| /* resume */ |
| /* get_proc_name */ |
| }; |
| |
| /* Set of special libunwind callback acccessor functions specific for accessing |
| the rse registers. At the top of the stack, we want libunwind to figure out |
| how to read r32 - r127. Though usually they are found sequentially in |
| memory starting from $bof, this is not always true. */ |
| unw_accessors_t ia64_unw_rse_accessors = |
| { |
| ia64_find_proc_info_x, |
| ia64_put_unwind_info, |
| ia64_get_dyn_info_list, |
| ia64_access_mem, |
| ia64_access_rse_reg, |
| ia64_access_rse_fpreg, |
| /* resume */ |
| /* get_proc_name */ |
| }; |
| |
| /* Set of ia64-libunwind-tdep gdb callbacks and data for generic |
| ia64-libunwind-tdep code to use. */ |
| struct libunwind_descr ia64_libunwind_descr = |
| { |
| ia64_gdb2uw_regnum, |
| ia64_uw2gdb_regnum, |
| ia64_is_fpreg, |
| &ia64_unw_accessors, |
| &ia64_unw_rse_accessors, |
| }; |
| |
| #endif /* HAVE_LIBUNWIND_IA64_H */ |
| |
| static int |
| ia64_use_struct_convention (struct type *type) |
| { |
| struct type *float_elt_type; |
| |
| /* Don't use the struct convention for anything but structure, |
| union, or array types. */ |
| if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT |
| || TYPE_CODE (type) == TYPE_CODE_UNION |
| || TYPE_CODE (type) == TYPE_CODE_ARRAY)) |
| return 0; |
| |
| /* HFAs are structures (or arrays) consisting entirely of floating |
| point values of the same length. Up to 8 of these are returned |
| in registers. Don't use the struct convention when this is the |
| case. */ |
| float_elt_type = is_float_or_hfa_type (type); |
| if (float_elt_type != NULL |
| && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) |
| return 0; |
| |
| /* Other structs of length 32 or less are returned in r8-r11. |
| Don't use the struct convention for those either. */ |
| return TYPE_LENGTH (type) > 32; |
| } |
| |
| /* Return non-zero if TYPE is a structure or union type. */ |
| |
| static int |
| ia64_struct_type_p (const struct type *type) |
| { |
| return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
| || TYPE_CODE (type) == TYPE_CODE_UNION); |
| } |
| |
| static void |
| ia64_extract_return_value (struct type *type, struct regcache *regcache, |
| gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct type *float_elt_type; |
| |
| float_elt_type = is_float_or_hfa_type (type); |
| if (float_elt_type != NULL) |
| { |
| gdb_byte from[IA64_FP_REGISTER_SIZE]; |
| int offset = 0; |
| int regnum = IA64_FR8_REGNUM; |
| int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); |
| |
| while (n-- > 0) |
| { |
| regcache->cooked_read (regnum, from); |
| target_float_convert (from, ia64_ext_type (gdbarch), |
| valbuf + offset, float_elt_type); |
| offset += TYPE_LENGTH (float_elt_type); |
| regnum++; |
| } |
| } |
| else if (!ia64_struct_type_p (type) && TYPE_LENGTH (type) < 8) |
| { |
| /* This is an integral value, and its size is less than 8 bytes. |
| These values are LSB-aligned, so extract the relevant bytes, |
| and copy them into VALBUF. */ |
| /* brobecker/2005-12-30: Actually, all integral values are LSB aligned, |
| so I suppose we should also add handling here for integral values |
| whose size is greater than 8. But I wasn't able to create such |
| a type, neither in C nor in Ada, so not worrying about these yet. */ |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| ULONGEST val; |
| |
| regcache_cooked_read_unsigned (regcache, IA64_GR8_REGNUM, &val); |
| store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, val); |
| } |
| else |
| { |
| ULONGEST val; |
| int offset = 0; |
| int regnum = IA64_GR8_REGNUM; |
| int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM)); |
| int n = TYPE_LENGTH (type) / reglen; |
| int m = TYPE_LENGTH (type) % reglen; |
| |
| while (n-- > 0) |
| { |
| ULONGEST regval; |
| regcache_cooked_read_unsigned (regcache, regnum, ®val); |
| memcpy ((char *)valbuf + offset, ®val, reglen); |
| offset += reglen; |
| regnum++; |
| } |
| |
| if (m) |
| { |
| regcache_cooked_read_unsigned (regcache, regnum, &val); |
| memcpy ((char *)valbuf + offset, &val, m); |
| } |
| } |
| } |
| |
| static void |
| ia64_store_return_value (struct type *type, struct regcache *regcache, |
| const gdb_byte *valbuf) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct type *float_elt_type; |
| |
| float_elt_type = is_float_or_hfa_type (type); |
| if (float_elt_type != NULL) |
| { |
| gdb_byte to[IA64_FP_REGISTER_SIZE]; |
| int offset = 0; |
| int regnum = IA64_FR8_REGNUM; |
| int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); |
| |
| while (n-- > 0) |
| { |
| target_float_convert (valbuf + offset, float_elt_type, |
| to, ia64_ext_type (gdbarch)); |
| regcache->cooked_write (regnum, to); |
| offset += TYPE_LENGTH (float_elt_type); |
| regnum++; |
| } |
| } |
| else |
| { |
| int offset = 0; |
| int regnum = IA64_GR8_REGNUM; |
| int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM)); |
| int n = TYPE_LENGTH (type) / reglen; |
| int m = TYPE_LENGTH (type) % reglen; |
| |
| while (n-- > 0) |
| { |
| ULONGEST val; |
| memcpy (&val, (char *)valbuf + offset, reglen); |
| regcache_cooked_write_unsigned (regcache, regnum, val); |
| offset += reglen; |
| regnum++; |
| } |
| |
| if (m) |
| { |
| ULONGEST val; |
| memcpy (&val, (char *)valbuf + offset, m); |
| regcache_cooked_write_unsigned (regcache, regnum, val); |
| } |
| } |
| } |
| |
| static enum return_value_convention |
| ia64_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| int struct_return = ia64_use_struct_convention (valtype); |
| |
| if (writebuf != NULL) |
| { |
| gdb_assert (!struct_return); |
| ia64_store_return_value (valtype, regcache, writebuf); |
| } |
| |
| if (readbuf != NULL) |
| { |
| gdb_assert (!struct_return); |
| ia64_extract_return_value (valtype, regcache, readbuf); |
| } |
| |
| if (struct_return) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| else |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| static int |
| is_float_or_hfa_type_recurse (struct type *t, struct type **etp) |
| { |
| switch (TYPE_CODE (t)) |
| { |
| case TYPE_CODE_FLT: |
| if (*etp) |
| return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); |
| else |
| { |
| *etp = t; |
| return 1; |
| } |
| break; |
| case TYPE_CODE_ARRAY: |
| return |
| is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), |
| etp); |
| break; |
| case TYPE_CODE_STRUCT: |
| { |
| int i; |
| |
| for (i = 0; i < TYPE_NFIELDS (t); i++) |
| if (!is_float_or_hfa_type_recurse |
| (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) |
| return 0; |
| return 1; |
| } |
| break; |
| default: |
| return 0; |
| break; |
| } |
| } |
| |
| /* Determine if the given type is one of the floating point types or |
| and HFA (which is a struct, array, or combination thereof whose |
| bottom-most elements are all of the same floating point type). */ |
| |
| static struct type * |
| is_float_or_hfa_type (struct type *t) |
| { |
| struct type *et = 0; |
| |
| return is_float_or_hfa_type_recurse (t, &et) ? et : 0; |
| } |
| |
| |
| /* Return 1 if the alignment of T is such that the next even slot |
| should be used. Return 0, if the next available slot should |
| be used. (See section 8.5.1 of the IA-64 Software Conventions |
| and Runtime manual). */ |
| |
| static int |
| slot_alignment_is_next_even (struct type *t) |
| { |
| switch (TYPE_CODE (t)) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_FLT: |
| if (TYPE_LENGTH (t) > 8) |
| return 1; |
| else |
| return 0; |
| case TYPE_CODE_ARRAY: |
| return |
| slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); |
| case TYPE_CODE_STRUCT: |
| { |
| int i; |
| |
| for (i = 0; i < TYPE_NFIELDS (t); i++) |
| if (slot_alignment_is_next_even |
| (check_typedef (TYPE_FIELD_TYPE (t, i)))) |
| return 1; |
| return 0; |
| } |
| default: |
| return 0; |
| } |
| } |
| |
| /* Attempt to find (and return) the global pointer for the given |
| function. |
| |
| This is a rather nasty bit of code searchs for the .dynamic section |
| in the objfile corresponding to the pc of the function we're trying |
| to call. Once it finds the addresses at which the .dynamic section |
| lives in the child process, it scans the Elf64_Dyn entries for a |
| DT_PLTGOT tag. If it finds one of these, the corresponding |
| d_un.d_ptr value is the global pointer. */ |
| |
| static CORE_ADDR |
| ia64_find_global_pointer_from_dynamic_section (struct gdbarch *gdbarch, |
| CORE_ADDR faddr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct obj_section *faddr_sect; |
| |
| faddr_sect = find_pc_section (faddr); |
| if (faddr_sect != NULL) |
| { |
| struct obj_section *osect; |
| |
| ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
| { |
| if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) |
| break; |
| } |
| |
| if (osect < faddr_sect->objfile->sections_end) |
| { |
| CORE_ADDR addr, endaddr; |
| |
| addr = obj_section_addr (osect); |
| endaddr = obj_section_endaddr (osect); |
| |
| while (addr < endaddr) |
| { |
| int status; |
| LONGEST tag; |
| gdb_byte buf[8]; |
| |
| status = target_read_memory (addr, buf, sizeof (buf)); |
| if (status != 0) |
| break; |
| tag = extract_signed_integer (buf, sizeof (buf), byte_order); |
| |
| if (tag == DT_PLTGOT) |
| { |
| CORE_ADDR global_pointer; |
| |
| status = target_read_memory (addr + 8, buf, sizeof (buf)); |
| if (status != 0) |
| break; |
| global_pointer = extract_unsigned_integer (buf, sizeof (buf), |
| byte_order); |
| |
| /* The payoff... */ |
| return global_pointer; |
| } |
| |
| if (tag == DT_NULL) |
| break; |
| |
| addr += 16; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Attempt to find (and return) the global pointer for the given |
| function. We first try the find_global_pointer_from_solib routine |
| from the gdbarch tdep vector, if provided. And if that does not |
| work, then we try ia64_find_global_pointer_from_dynamic_section. */ |
| |
| static CORE_ADDR |
| ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| CORE_ADDR addr = 0; |
| |
| if (tdep->find_global_pointer_from_solib) |
| addr = tdep->find_global_pointer_from_solib (gdbarch, faddr); |
| if (addr == 0) |
| addr = ia64_find_global_pointer_from_dynamic_section (gdbarch, faddr); |
| return addr; |
| } |
| |
| /* Given a function's address, attempt to find (and return) the |
| corresponding (canonical) function descriptor. Return 0 if |
| not found. */ |
| static CORE_ADDR |
| find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct obj_section *faddr_sect; |
| |
| /* Return early if faddr is already a function descriptor. */ |
| faddr_sect = find_pc_section (faddr); |
| if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) |
| return faddr; |
| |
| if (faddr_sect != NULL) |
| { |
| struct obj_section *osect; |
| ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
| { |
| if (strcmp (osect->the_bfd_section->name, ".opd") == 0) |
| break; |
| } |
| |
| if (osect < faddr_sect->objfile->sections_end) |
| { |
| CORE_ADDR addr, endaddr; |
| |
| addr = obj_section_addr (osect); |
| endaddr = obj_section_endaddr (osect); |
| |
| while (addr < endaddr) |
| { |
| int status; |
| LONGEST faddr2; |
| gdb_byte buf[8]; |
| |
| status = target_read_memory (addr, buf, sizeof (buf)); |
| if (status != 0) |
| break; |
| faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order); |
| |
| if (faddr == faddr2) |
| return addr; |
| |
| addr += 16; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* Attempt to find a function descriptor corresponding to the |
| given address. If none is found, construct one on the |
| stack using the address at fdaptr. */ |
| |
| static CORE_ADDR |
| find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR fdesc; |
| |
| fdesc = find_extant_func_descr (gdbarch, faddr); |
| |
| if (fdesc == 0) |
| { |
| ULONGEST global_pointer; |
| gdb_byte buf[16]; |
| |
| fdesc = *fdaptr; |
| *fdaptr += 16; |
| |
| global_pointer = ia64_find_global_pointer (gdbarch, faddr); |
| |
| if (global_pointer == 0) |
| regcache_cooked_read_unsigned (regcache, |
| IA64_GR1_REGNUM, &global_pointer); |
| |
| store_unsigned_integer (buf, 8, byte_order, faddr); |
| store_unsigned_integer (buf + 8, 8, byte_order, global_pointer); |
| |
| write_memory (fdesc, buf, 16); |
| } |
| |
| return fdesc; |
| } |
| |
| /* Use the following routine when printing out function pointers |
| so the user can see the function address rather than just the |
| function descriptor. */ |
| static CORE_ADDR |
| ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
| struct target_ops *targ) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct obj_section *s; |
| gdb_byte buf[8]; |
| |
| s = find_pc_section (addr); |
| |
| /* check if ADDR points to a function descriptor. */ |
| if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) |
| return read_memory_unsigned_integer (addr, 8, byte_order); |
| |
| /* Normally, functions live inside a section that is executable. |
| So, if ADDR points to a non-executable section, then treat it |
| as a function descriptor and return the target address iff |
| the target address itself points to a section that is executable. |
| Check first the memory of the whole length of 8 bytes is readable. */ |
| if (s && (s->the_bfd_section->flags & SEC_CODE) == 0 |
| && target_read_memory (addr, buf, 8) == 0) |
| { |
| CORE_ADDR pc = extract_unsigned_integer (buf, 8, byte_order); |
| struct obj_section *pc_section = find_pc_section (pc); |
| |
| if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) |
| return pc; |
| } |
| |
| /* There are also descriptors embedded in vtables. */ |
| if (s) |
| { |
| struct bound_minimal_symbol minsym; |
| |
| minsym = lookup_minimal_symbol_by_pc (addr); |
| |
| if (minsym.minsym |
| && is_vtable_name (MSYMBOL_LINKAGE_NAME (minsym.minsym))) |
| return read_memory_unsigned_integer (addr, 8, byte_order); |
| } |
| |
| return addr; |
| } |
| |
| static CORE_ADDR |
| ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| { |
| return sp & ~0xfLL; |
| } |
| |
| /* The default "allocate_new_rse_frame" ia64_infcall_ops routine for ia64. */ |
| |
| static void |
| ia64_allocate_new_rse_frame (struct regcache *regcache, ULONGEST bsp, int sof) |
| { |
| ULONGEST cfm, pfs, new_bsp; |
| |
| regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
| |
| new_bsp = rse_address_add (bsp, sof); |
| regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp); |
| |
| regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs); |
| pfs &= 0xc000000000000000LL; |
| pfs |= (cfm & 0xffffffffffffLL); |
| regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs); |
| |
| cfm &= 0xc000000000000000LL; |
| cfm |= sof; |
| regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm); |
| } |
| |
| /* The default "store_argument_in_slot" ia64_infcall_ops routine for |
| ia64. */ |
| |
| static void |
| ia64_store_argument_in_slot (struct regcache *regcache, CORE_ADDR bsp, |
| int slotnum, gdb_byte *buf) |
| { |
| write_memory (rse_address_add (bsp, slotnum), buf, 8); |
| } |
| |
| /* The default "set_function_addr" ia64_infcall_ops routine for ia64. */ |
| |
| static void |
| ia64_set_function_addr (struct regcache *regcache, CORE_ADDR func_addr) |
| { |
| /* Nothing needed. */ |
| } |
| |
| static CORE_ADDR |
| ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int argno; |
| struct value *arg; |
| struct type *type; |
| int len, argoffset; |
| int nslots, rseslots, memslots, slotnum, nfuncargs; |
| int floatreg; |
| ULONGEST bsp; |
| CORE_ADDR funcdescaddr, global_pointer; |
| CORE_ADDR func_addr = find_function_addr (function, NULL); |
| |
| nslots = 0; |
| nfuncargs = 0; |
| /* Count the number of slots needed for the arguments. */ |
| for (argno = 0; argno < nargs; argno++) |
| { |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| if ((nslots & 1) && slot_alignment_is_next_even (type)) |
| nslots++; |
| |
| if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
| nfuncargs++; |
| |
| nslots += (len + 7) / 8; |
| } |
| |
| /* Divvy up the slots between the RSE and the memory stack. */ |
| rseslots = (nslots > 8) ? 8 : nslots; |
| memslots = nslots - rseslots; |
| |
| /* Allocate a new RSE frame. */ |
| regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
| tdep->infcall_ops.allocate_new_rse_frame (regcache, bsp, rseslots); |
| |
| /* We will attempt to find function descriptors in the .opd segment, |
| but if we can't we'll construct them ourselves. That being the |
| case, we'll need to reserve space on the stack for them. */ |
| funcdescaddr = sp - nfuncargs * 16; |
| funcdescaddr &= ~0xfLL; |
| |
| /* Adjust the stack pointer to it's new value. The calling conventions |
| require us to have 16 bytes of scratch, plus whatever space is |
| necessary for the memory slots and our function descriptors. */ |
| sp = sp - 16 - (memslots + nfuncargs) * 8; |
| sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
| |
| /* Place the arguments where they belong. The arguments will be |
| either placed in the RSE backing store or on the memory stack. |
| In addition, floating point arguments or HFAs are placed in |
| floating point registers. */ |
| slotnum = 0; |
| floatreg = IA64_FR8_REGNUM; |
| for (argno = 0; argno < nargs; argno++) |
| { |
| struct type *float_elt_type; |
| |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| /* Special handling for function parameters. */ |
| if (len == 8 |
| && TYPE_CODE (type) == TYPE_CODE_PTR |
| && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) |
| { |
| gdb_byte val_buf[8]; |
| ULONGEST faddr = extract_unsigned_integer (value_contents (arg), |
| 8, byte_order); |
| store_unsigned_integer (val_buf, 8, byte_order, |
| find_func_descr (regcache, faddr, |
| &funcdescaddr)); |
| if (slotnum < rseslots) |
| tdep->infcall_ops.store_argument_in_slot (regcache, bsp, |
| slotnum, val_buf); |
| else |
| write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); |
| slotnum++; |
| continue; |
| } |
| |
| /* Normal slots. */ |
| |
| /* Skip odd slot if necessary... */ |
| if ((slotnum & 1) && slot_alignment_is_next_even (type)) |
| slotnum++; |
| |
| argoffset = 0; |
| while (len > 0) |
| { |
| gdb_byte val_buf[8]; |
| |
| memset (val_buf, 0, 8); |
| if (!ia64_struct_type_p (type) && len < 8) |
| { |
| /* Integral types are LSB-aligned, so we have to be careful |
| to insert the argument on the correct side of the buffer. |
| This is why we use store_unsigned_integer. */ |
| store_unsigned_integer |
| (val_buf, 8, byte_order, |
| extract_unsigned_integer (value_contents (arg), len, |
| byte_order)); |
| } |
| else |
| { |
| /* This is either an 8bit integral type, or an aggregate. |
| For 8bit integral type, there is no problem, we just |
| copy the value over. |
| |
| For aggregates, the only potentially tricky portion |
| is to write the last one if it is less than 8 bytes. |
| In this case, the data is Byte0-aligned. Happy news, |
| this means that we don't need to differentiate the |
| handling of 8byte blocks and less-than-8bytes blocks. */ |
| memcpy (val_buf, value_contents (arg) + argoffset, |
| (len > 8) ? 8 : len); |
| } |
| |
| if (slotnum < rseslots) |
| tdep->infcall_ops.store_argument_in_slot (regcache, bsp, |
| slotnum, val_buf); |
| else |
| write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); |
| |
| argoffset += 8; |
| len -= 8; |
| slotnum++; |
| } |
| |
| /* Handle floating point types (including HFAs). */ |
| float_elt_type = is_float_or_hfa_type (type); |
| if (float_elt_type != NULL) |
| { |
| argoffset = 0; |
| len = TYPE_LENGTH (type); |
| while (len > 0 && floatreg < IA64_FR16_REGNUM) |
| { |
| gdb_byte to[IA64_FP_REGISTER_SIZE]; |
| target_float_convert (value_contents (arg) + argoffset, |
| float_elt_type, to, |
| ia64_ext_type (gdbarch)); |
| regcache->cooked_write (floatreg, to); |
| floatreg++; |
| argoffset += TYPE_LENGTH (float_elt_type); |
| len -= TYPE_LENGTH (float_elt_type); |
| } |
| } |
| } |
| |
| /* Store the struct return value in r8 if necessary. */ |
| if (return_method == return_method_struct) |
| regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, |
| (ULONGEST) struct_addr); |
| |
| global_pointer = ia64_find_global_pointer (gdbarch, func_addr); |
| |
| if (global_pointer != 0) |
| regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer); |
| |
| /* The following is not necessary on HP-UX, because we're using |
| a dummy code sequence pushed on the stack to make the call, and |
| this sequence doesn't need b0 to be set in order for our dummy |
| breakpoint to be hit. Nonetheless, this doesn't interfere, and |
| it's needed for other OSes, so we do this unconditionaly. */ |
| regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr); |
| |
| regcache_cooked_write_unsigned (regcache, sp_regnum, sp); |
| |
| tdep->infcall_ops.set_function_addr (regcache, func_addr); |
| |
| return sp; |
| } |
| |
| static const struct ia64_infcall_ops ia64_infcall_ops = |
| { |
| ia64_allocate_new_rse_frame, |
| ia64_store_argument_in_slot, |
| ia64_set_function_addr |
| }; |
| |
| static struct frame_id |
| ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| CORE_ADDR sp, bsp; |
| |
| get_frame_register (this_frame, sp_regnum, buf); |
| sp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
| bsp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| if (gdbarch_debug >= 1) |
| fprintf_unfiltered (gdb_stdlog, |
| "dummy frame id: code %s, stack %s, special %s\n", |
| paddress (gdbarch, get_frame_pc (this_frame)), |
| paddress (gdbarch, sp), paddress (gdbarch, bsp)); |
| |
| return frame_id_build_special (sp, get_frame_pc (this_frame), bsp); |
| } |
| |
| static CORE_ADDR |
| ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| CORE_ADDR ip, psr, pc; |
| |
| frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); |
| ip = extract_unsigned_integer (buf, 8, byte_order); |
| frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); |
| psr = extract_unsigned_integer (buf, 8, byte_order); |
| |
| pc = (ip & ~0xf) | ((psr >> 41) & 3); |
| return pc; |
| } |
| |
| static int |
| ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) |
| { |
| info->bytes_per_line = SLOT_MULTIPLIER; |
| return default_print_insn (memaddr, info); |
| } |
| |
| /* The default "size_of_register_frame" gdbarch_tdep routine for ia64. */ |
| |
| static int |
| ia64_size_of_register_frame (struct frame_info *this_frame, ULONGEST cfm) |
| { |
| return (cfm & 0x7f); |
| } |
| |
| static struct gdbarch * |
| ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_tdep *tdep; |
| |
| /* If there is already a candidate, use it. */ |
| arches = gdbarch_list_lookup_by_info (arches, &info); |
| if (arches != NULL) |
| return arches->gdbarch; |
| |
| tdep = XCNEW (struct gdbarch_tdep); |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| tdep->size_of_register_frame = ia64_size_of_register_frame; |
| |
| /* According to the ia64 specs, instructions that store long double |
| floats in memory use a long-double format different than that |
| used in the floating registers. The memory format matches the |
| x86 extended float format which is 80 bits. An OS may choose to |
| use this format (e.g. GNU/Linux) or choose to use a different |
| format for storing long doubles (e.g. HPUX). In the latter case, |
| the setting of the format may be moved/overridden in an |
| OS-specific tdep file. */ |
| set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
| |
| set_gdbarch_short_bit (gdbarch, 16); |
| set_gdbarch_int_bit (gdbarch, 32); |
| set_gdbarch_long_bit (gdbarch, 64); |
| set_gdbarch_long_long_bit (gdbarch, 64); |
| set_gdbarch_float_bit (gdbarch, 32); |
| set_gdbarch_double_bit (gdbarch, 64); |
| set_gdbarch_long_double_bit (gdbarch, 128); |
| set_gdbarch_ptr_bit (gdbarch, 64); |
| |
| set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
| set_gdbarch_num_pseudo_regs (gdbarch, |
| LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); |
| set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
| set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
| |
| set_gdbarch_register_name (gdbarch, ia64_register_name); |
| set_gdbarch_register_type (gdbarch, ia64_register_type); |
| |
| set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
| set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); |
| set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); |
| set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); |
| set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); |
| set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); |
| |
| set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
| |
| set_gdbarch_return_value (gdbarch, ia64_return_value); |
| |
| set_gdbarch_memory_insert_breakpoint (gdbarch, |
| ia64_memory_insert_breakpoint); |
| set_gdbarch_memory_remove_breakpoint (gdbarch, |
| ia64_memory_remove_breakpoint); |
| set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, ia64_breakpoint_kind_from_pc); |
| set_gdbarch_read_pc (gdbarch, ia64_read_pc); |
| set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
| |
| /* Settings for calling functions in the inferior. */ |
| set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
| tdep->infcall_ops = ia64_infcall_ops; |
| set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
| set_gdbarch_dummy_id (gdbarch, ia64_dummy_id); |
| |
| set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
| #ifdef HAVE_LIBUNWIND_IA64_H |
| frame_unwind_append_unwinder (gdbarch, |
| &ia64_libunwind_sigtramp_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind); |
| libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); |
| #else |
| frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind); |
| #endif |
| frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind); |
| frame_base_set_default (gdbarch, &ia64_frame_base); |
| |
| /* Settings that should be unnecessary. */ |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| |
| set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
| set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
| ia64_convert_from_func_ptr_addr); |
| |
| /* The virtual table contains 16-byte descriptors, not pointers to |
| descriptors. */ |
| set_gdbarch_vtable_function_descriptors (gdbarch, 1); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| return gdbarch; |
| } |
| |
| void |
| _initialize_ia64_tdep (void) |
| { |
| gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
| } |