| /* DWARF 2 debugging format support for GDB. |
| |
| Copyright (C) 1994-2020 Free Software Foundation, Inc. |
| |
| Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology, |
| Inc. with support from Florida State University (under contract |
| with the Ada Joint Program Office), and Silicon Graphics, Inc. |
| Initial contribution by Brent Benson, Harris Computer Systems, Inc., |
| based on Fred Fish's (Cygnus Support) implementation of DWARF 1 |
| support. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* FIXME: Various die-reading functions need to be more careful with |
| reading off the end of the section. |
| E.g., load_partial_dies, read_partial_die. */ |
| |
| #include "defs.h" |
| #include "dwarf2/read.h" |
| #include "dwarf2/abbrev.h" |
| #include "dwarf2/attribute.h" |
| #include "dwarf2/index-cache.h" |
| #include "dwarf2/index-common.h" |
| #include "dwarf2/leb.h" |
| #include "bfd.h" |
| #include "elf-bfd.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "objfiles.h" |
| #include "dwarf2.h" |
| #include "buildsym.h" |
| #include "demangle.h" |
| #include "gdb-demangle.h" |
| #include "filenames.h" /* for DOSish file names */ |
| #include "macrotab.h" |
| #include "language.h" |
| #include "complaints.h" |
| #include "dwarf2/expr.h" |
| #include "dwarf2/loc.h" |
| #include "cp-support.h" |
| #include "hashtab.h" |
| #include "command.h" |
| #include "gdbcmd.h" |
| #include "block.h" |
| #include "addrmap.h" |
| #include "typeprint.h" |
| #include "psympriv.h" |
| #include "c-lang.h" |
| #include "go-lang.h" |
| #include "valprint.h" |
| #include "gdbcore.h" /* for gnutarget */ |
| #include "gdb/gdb-index.h" |
| #include "gdb_bfd.h" |
| #include "f-lang.h" |
| #include "source.h" |
| #include "build-id.h" |
| #include "namespace.h" |
| #include "gdbsupport/function-view.h" |
| #include "gdbsupport/gdb_optional.h" |
| #include "gdbsupport/underlying.h" |
| #include "gdbsupport/hash_enum.h" |
| #include "filename-seen-cache.h" |
| #include "producer.h" |
| #include <fcntl.h> |
| #include <algorithm> |
| #include <unordered_map> |
| #include "gdbsupport/selftest.h" |
| #include "rust-lang.h" |
| #include "gdbsupport/pathstuff.h" |
| |
| /* When == 1, print basic high level tracing messages. |
| When > 1, be more verbose. |
| This is in contrast to the low level DIE reading of dwarf_die_debug. */ |
| static unsigned int dwarf_read_debug = 0; |
| |
| /* When non-zero, dump DIEs after they are read in. */ |
| static unsigned int dwarf_die_debug = 0; |
| |
| /* When non-zero, dump line number entries as they are read in. */ |
| static unsigned int dwarf_line_debug = 0; |
| |
| /* When true, cross-check physname against demangler. */ |
| static bool check_physname = false; |
| |
| /* When true, do not reject deprecated .gdb_index sections. */ |
| static bool use_deprecated_index_sections = false; |
| |
| static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key; |
| |
| /* The "aclass" indices for various kinds of computed DWARF symbols. */ |
| |
| static int dwarf2_locexpr_index; |
| static int dwarf2_loclist_index; |
| static int dwarf2_locexpr_block_index; |
| static int dwarf2_loclist_block_index; |
| |
| /* An index into a (C++) symbol name component in a symbol name as |
| recorded in the mapped_index's symbol table. For each C++ symbol |
| in the symbol table, we record one entry for the start of each |
| component in the symbol in a table of name components, and then |
| sort the table, in order to be able to binary search symbol names, |
| ignoring leading namespaces, both completion and regular look up. |
| For example, for symbol "A::B::C", we'll have an entry that points |
| to "A::B::C", another that points to "B::C", and another for "C". |
| Note that function symbols in GDB index have no parameter |
| information, just the function/method names. You can convert a |
| name_component to a "const char *" using the |
| 'mapped_index::symbol_name_at(offset_type)' method. */ |
| |
| struct name_component |
| { |
| /* Offset in the symbol name where the component starts. Stored as |
| a (32-bit) offset instead of a pointer to save memory and improve |
| locality on 64-bit architectures. */ |
| offset_type name_offset; |
| |
| /* The symbol's index in the symbol and constant pool tables of a |
| mapped_index. */ |
| offset_type idx; |
| }; |
| |
| /* Base class containing bits shared by both .gdb_index and |
| .debug_name indexes. */ |
| |
| struct mapped_index_base |
| { |
| mapped_index_base () = default; |
| DISABLE_COPY_AND_ASSIGN (mapped_index_base); |
| |
| /* The name_component table (a sorted vector). See name_component's |
| description above. */ |
| std::vector<name_component> name_components; |
| |
| /* How NAME_COMPONENTS is sorted. */ |
| enum case_sensitivity name_components_casing; |
| |
| /* Return the number of names in the symbol table. */ |
| virtual size_t symbol_name_count () const = 0; |
| |
| /* Get the name of the symbol at IDX in the symbol table. */ |
| virtual const char *symbol_name_at (offset_type idx) const = 0; |
| |
| /* Return whether the name at IDX in the symbol table should be |
| ignored. */ |
| virtual bool symbol_name_slot_invalid (offset_type idx) const |
| { |
| return false; |
| } |
| |
| /* Build the symbol name component sorted vector, if we haven't |
| yet. */ |
| void build_name_components (); |
| |
| /* Returns the lower (inclusive) and upper (exclusive) bounds of the |
| possible matches for LN_NO_PARAMS in the name component |
| vector. */ |
| std::pair<std::vector<name_component>::const_iterator, |
| std::vector<name_component>::const_iterator> |
| find_name_components_bounds (const lookup_name_info &ln_no_params, |
| enum language lang) const; |
| |
| /* Prevent deleting/destroying via a base class pointer. */ |
| protected: |
| ~mapped_index_base() = default; |
| }; |
| |
| /* A description of the mapped index. The file format is described in |
| a comment by the code that writes the index. */ |
| struct mapped_index final : public mapped_index_base |
| { |
| /* A slot/bucket in the symbol table hash. */ |
| struct symbol_table_slot |
| { |
| const offset_type name; |
| const offset_type vec; |
| }; |
| |
| /* Index data format version. */ |
| int version = 0; |
| |
| /* The address table data. */ |
| gdb::array_view<const gdb_byte> address_table; |
| |
| /* The symbol table, implemented as a hash table. */ |
| gdb::array_view<symbol_table_slot> symbol_table; |
| |
| /* A pointer to the constant pool. */ |
| const char *constant_pool = nullptr; |
| |
| bool symbol_name_slot_invalid (offset_type idx) const override |
| { |
| const auto &bucket = this->symbol_table[idx]; |
| return bucket.name == 0 && bucket.vec == 0; |
| } |
| |
| /* Convenience method to get at the name of the symbol at IDX in the |
| symbol table. */ |
| const char *symbol_name_at (offset_type idx) const override |
| { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); } |
| |
| size_t symbol_name_count () const override |
| { return this->symbol_table.size (); } |
| }; |
| |
| /* A description of the mapped .debug_names. |
| Uninitialized map has CU_COUNT 0. */ |
| struct mapped_debug_names final : public mapped_index_base |
| { |
| mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_) |
| : dwarf2_per_objfile (dwarf2_per_objfile_) |
| {} |
| |
| struct dwarf2_per_objfile *dwarf2_per_objfile; |
| bfd_endian dwarf5_byte_order; |
| bool dwarf5_is_dwarf64; |
| bool augmentation_is_gdb; |
| uint8_t offset_size; |
| uint32_t cu_count = 0; |
| uint32_t tu_count, bucket_count, name_count; |
| const gdb_byte *cu_table_reordered, *tu_table_reordered; |
| const uint32_t *bucket_table_reordered, *hash_table_reordered; |
| const gdb_byte *name_table_string_offs_reordered; |
| const gdb_byte *name_table_entry_offs_reordered; |
| const gdb_byte *entry_pool; |
| |
| struct index_val |
| { |
| ULONGEST dwarf_tag; |
| struct attr |
| { |
| /* Attribute name DW_IDX_*. */ |
| ULONGEST dw_idx; |
| |
| /* Attribute form DW_FORM_*. */ |
| ULONGEST form; |
| |
| /* Value if FORM is DW_FORM_implicit_const. */ |
| LONGEST implicit_const; |
| }; |
| std::vector<attr> attr_vec; |
| }; |
| |
| std::unordered_map<ULONGEST, index_val> abbrev_map; |
| |
| const char *namei_to_name (uint32_t namei) const; |
| |
| /* Implementation of the mapped_index_base virtual interface, for |
| the name_components cache. */ |
| |
| const char *symbol_name_at (offset_type idx) const override |
| { return namei_to_name (idx); } |
| |
| size_t symbol_name_count () const override |
| { return this->name_count; } |
| }; |
| |
| /* See dwarf2read.h. */ |
| |
| dwarf2_per_objfile * |
| get_dwarf2_per_objfile (struct objfile *objfile) |
| { |
| return dwarf2_objfile_data_key.get (objfile); |
| } |
| |
| /* Default names of the debugging sections. */ |
| |
| /* Note that if the debugging section has been compressed, it might |
| have a name like .zdebug_info. */ |
| |
| static const struct dwarf2_debug_sections dwarf2_elf_names = |
| { |
| { ".debug_info", ".zdebug_info" }, |
| { ".debug_abbrev", ".zdebug_abbrev" }, |
| { ".debug_line", ".zdebug_line" }, |
| { ".debug_loc", ".zdebug_loc" }, |
| { ".debug_loclists", ".zdebug_loclists" }, |
| { ".debug_macinfo", ".zdebug_macinfo" }, |
| { ".debug_macro", ".zdebug_macro" }, |
| { ".debug_str", ".zdebug_str" }, |
| { ".debug_str_offsets", ".zdebug_str_offsets" }, |
| { ".debug_line_str", ".zdebug_line_str" }, |
| { ".debug_ranges", ".zdebug_ranges" }, |
| { ".debug_rnglists", ".zdebug_rnglists" }, |
| { ".debug_types", ".zdebug_types" }, |
| { ".debug_addr", ".zdebug_addr" }, |
| { ".debug_frame", ".zdebug_frame" }, |
| { ".eh_frame", NULL }, |
| { ".gdb_index", ".zgdb_index" }, |
| { ".debug_names", ".zdebug_names" }, |
| { ".debug_aranges", ".zdebug_aranges" }, |
| 23 |
| }; |
| |
| /* List of DWO/DWP sections. */ |
| |
| static const struct dwop_section_names |
| { |
| struct dwarf2_section_names abbrev_dwo; |
| struct dwarf2_section_names info_dwo; |
| struct dwarf2_section_names line_dwo; |
| struct dwarf2_section_names loc_dwo; |
| struct dwarf2_section_names loclists_dwo; |
| struct dwarf2_section_names macinfo_dwo; |
| struct dwarf2_section_names macro_dwo; |
| struct dwarf2_section_names str_dwo; |
| struct dwarf2_section_names str_offsets_dwo; |
| struct dwarf2_section_names types_dwo; |
| struct dwarf2_section_names cu_index; |
| struct dwarf2_section_names tu_index; |
| } |
| dwop_section_names = |
| { |
| { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" }, |
| { ".debug_info.dwo", ".zdebug_info.dwo" }, |
| { ".debug_line.dwo", ".zdebug_line.dwo" }, |
| { ".debug_loc.dwo", ".zdebug_loc.dwo" }, |
| { ".debug_loclists.dwo", ".zdebug_loclists.dwo" }, |
| { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" }, |
| { ".debug_macro.dwo", ".zdebug_macro.dwo" }, |
| { ".debug_str.dwo", ".zdebug_str.dwo" }, |
| { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" }, |
| { ".debug_types.dwo", ".zdebug_types.dwo" }, |
| { ".debug_cu_index", ".zdebug_cu_index" }, |
| { ".debug_tu_index", ".zdebug_tu_index" }, |
| }; |
| |
| /* local data types */ |
| |
| /* The data in a compilation unit header, after target2host |
| translation, looks like this. */ |
| struct comp_unit_head |
| { |
| unsigned int length; |
| short version; |
| unsigned char addr_size; |
| unsigned char signed_addr_p; |
| sect_offset abbrev_sect_off; |
| |
| /* Size of file offsets; either 4 or 8. */ |
| unsigned int offset_size; |
| |
| /* Size of the length field; either 4 or 12. */ |
| unsigned int initial_length_size; |
| |
| enum dwarf_unit_type unit_type; |
| |
| /* Offset to the first byte of this compilation unit header in the |
| .debug_info section, for resolving relative reference dies. */ |
| sect_offset sect_off; |
| |
| /* Offset to first die in this cu from the start of the cu. |
| This will be the first byte following the compilation unit header. */ |
| cu_offset first_die_cu_offset; |
| |
| |
| /* 64-bit signature of this unit. For type units, it denotes the signature of |
| the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5). |
| Also used in DWARF 5, to denote the dwo id when the unit type is |
| DW_UT_skeleton or DW_UT_split_compile. */ |
| ULONGEST signature; |
| |
| /* For types, offset in the type's DIE of the type defined by this TU. */ |
| cu_offset type_cu_offset_in_tu; |
| }; |
| |
| /* Type used for delaying computation of method physnames. |
| See comments for compute_delayed_physnames. */ |
| struct delayed_method_info |
| { |
| /* The type to which the method is attached, i.e., its parent class. */ |
| struct type *type; |
| |
| /* The index of the method in the type's function fieldlists. */ |
| int fnfield_index; |
| |
| /* The index of the method in the fieldlist. */ |
| int index; |
| |
| /* The name of the DIE. */ |
| const char *name; |
| |
| /* The DIE associated with this method. */ |
| struct die_info *die; |
| }; |
| |
| /* Internal state when decoding a particular compilation unit. */ |
| struct dwarf2_cu |
| { |
| explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu); |
| ~dwarf2_cu (); |
| |
| DISABLE_COPY_AND_ASSIGN (dwarf2_cu); |
| |
| /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope. |
| Create the set of symtabs used by this TU, or if this TU is sharing |
| symtabs with another TU and the symtabs have already been created |
| then restore those symtabs in the line header. |
| We don't need the pc/line-number mapping for type units. */ |
| void setup_type_unit_groups (struct die_info *die); |
| |
| /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the |
| buildsym_compunit constructor. */ |
| struct compunit_symtab *start_symtab (const char *name, |
| const char *comp_dir, |
| CORE_ADDR low_pc); |
| |
| /* Reset the builder. */ |
| void reset_builder () { m_builder.reset (); } |
| |
| /* The header of the compilation unit. */ |
| struct comp_unit_head header {}; |
| |
| /* Base address of this compilation unit. */ |
| CORE_ADDR base_address = 0; |
| |
| /* Non-zero if base_address has been set. */ |
| int base_known = 0; |
| |
| /* The language we are debugging. */ |
| enum language language = language_unknown; |
| const struct language_defn *language_defn = nullptr; |
| |
| const char *producer = nullptr; |
| |
| private: |
| /* The symtab builder for this CU. This is only non-NULL when full |
| symbols are being read. */ |
| std::unique_ptr<buildsym_compunit> m_builder; |
| |
| public: |
| /* The generic symbol table building routines have separate lists for |
| file scope symbols and all all other scopes (local scopes). So |
| we need to select the right one to pass to add_symbol_to_list(). |
| We do it by keeping a pointer to the correct list in list_in_scope. |
| |
| FIXME: The original dwarf code just treated the file scope as the |
| first local scope, and all other local scopes as nested local |
| scopes, and worked fine. Check to see if we really need to |
| distinguish these in buildsym.c. */ |
| struct pending **list_in_scope = nullptr; |
| |
| /* Hash table holding all the loaded partial DIEs |
| with partial_die->offset.SECT_OFF as hash. */ |
| htab_t partial_dies = nullptr; |
| |
| /* Storage for things with the same lifetime as this read-in compilation |
| unit, including partial DIEs. */ |
| auto_obstack comp_unit_obstack; |
| |
| /* When multiple dwarf2_cu structures are living in memory, this field |
| chains them all together, so that they can be released efficiently. |
| We will probably also want a generation counter so that most-recently-used |
| compilation units are cached... */ |
| struct dwarf2_per_cu_data *read_in_chain = nullptr; |
| |
| /* Backlink to our per_cu entry. */ |
| struct dwarf2_per_cu_data *per_cu; |
| |
| /* How many compilation units ago was this CU last referenced? */ |
| int last_used = 0; |
| |
| /* A hash table of DIE cu_offset for following references with |
| die_info->offset.sect_off as hash. */ |
| htab_t die_hash = nullptr; |
| |
| /* Full DIEs if read in. */ |
| struct die_info *dies = nullptr; |
| |
| /* A set of pointers to dwarf2_per_cu_data objects for compilation |
| units referenced by this one. Only set during full symbol processing; |
| partial symbol tables do not have dependencies. */ |
| htab_t dependencies = nullptr; |
| |
| /* Header data from the line table, during full symbol processing. */ |
| struct line_header *line_header = nullptr; |
| /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise, |
| it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL, |
| this is the DW_TAG_compile_unit die for this CU. We'll hold on |
| to the line header as long as this DIE is being processed. See |
| process_die_scope. */ |
| die_info *line_header_die_owner = nullptr; |
| |
| /* A list of methods which need to have physnames computed |
| after all type information has been read. */ |
| std::vector<delayed_method_info> method_list; |
| |
| /* To be copied to symtab->call_site_htab. */ |
| htab_t call_site_htab = nullptr; |
| |
| /* Non-NULL if this CU came from a DWO file. |
| There is an invariant here that is important to remember: |
| Except for attributes copied from the top level DIE in the "main" |
| (or "stub") file in preparation for reading the DWO file |
| (e.g., DW_AT_addr_base), we KISS: there is only *one* CU. |
| Either there isn't a DWO file (in which case this is NULL and the point |
| is moot), or there is and either we're not going to read it (in which |
| case this is NULL) or there is and we are reading it (in which case this |
| is non-NULL). */ |
| struct dwo_unit *dwo_unit = nullptr; |
| |
| /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present. |
| Note this value comes from the Fission stub CU/TU's DIE. */ |
| gdb::optional<ULONGEST> addr_base; |
| |
| /* The DW_AT_rnglists_base attribute if present. |
| Note this value comes from the Fission stub CU/TU's DIE. |
| Also note that the value is zero in the non-DWO case so this value can |
| be used without needing to know whether DWO files are in use or not. |
| N.B. This does not apply to DW_AT_ranges appearing in |
| DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever |
| DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then |
| DW_AT_rnglists_base *would* have to be applied, and we'd have to care |
| whether the DW_AT_ranges attribute came from the skeleton or DWO. */ |
| ULONGEST ranges_base = 0; |
| |
| /* When reading debug info generated by older versions of rustc, we |
| have to rewrite some union types to be struct types with a |
| variant part. This rewriting must be done after the CU is fully |
| read in, because otherwise at the point of rewriting some struct |
| type might not have been fully processed. So, we keep a list of |
| all such types here and process them after expansion. */ |
| std::vector<struct type *> rust_unions; |
| |
| /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO |
| files, the value is implicitly zero. For DWARF 5 version DWO files, the |
| value is often implicit and is the size of the header of |
| .debug_str_offsets section (8 or 4, depending on the address size). */ |
| gdb::optional<ULONGEST> str_offsets_base; |
| |
| /* Mark used when releasing cached dies. */ |
| bool mark : 1; |
| |
| /* This CU references .debug_loc. See the symtab->locations_valid field. |
| This test is imperfect as there may exist optimized debug code not using |
| any location list and still facing inlining issues if handled as |
| unoptimized code. For a future better test see GCC PR other/32998. */ |
| bool has_loclist : 1; |
| |
| /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true |
| if all the producer_is_* fields are valid. This information is cached |
| because profiling CU expansion showed excessive time spent in |
| producer_is_gxx_lt_4_6. */ |
| bool checked_producer : 1; |
| bool producer_is_gxx_lt_4_6 : 1; |
| bool producer_is_gcc_lt_4_3 : 1; |
| bool producer_is_icc : 1; |
| bool producer_is_icc_lt_14 : 1; |
| bool producer_is_codewarrior : 1; |
| |
| /* When true, the file that we're processing is known to have |
| debugging info for C++ namespaces. GCC 3.3.x did not produce |
| this information, but later versions do. */ |
| |
| bool processing_has_namespace_info : 1; |
| |
| struct partial_die_info *find_partial_die (sect_offset sect_off); |
| |
| /* If this CU was inherited by another CU (via specification, |
| abstract_origin, etc), this is the ancestor CU. */ |
| dwarf2_cu *ancestor; |
| |
| /* Get the buildsym_compunit for this CU. */ |
| buildsym_compunit *get_builder () |
| { |
| /* If this CU has a builder associated with it, use that. */ |
| if (m_builder != nullptr) |
| return m_builder.get (); |
| |
| /* Otherwise, search ancestors for a valid builder. */ |
| if (ancestor != nullptr) |
| return ancestor->get_builder (); |
| |
| return nullptr; |
| } |
| }; |
| |
| /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list. |
| This includes type_unit_group and quick_file_names. */ |
| |
| struct stmt_list_hash |
| { |
| /* The DWO unit this table is from or NULL if there is none. */ |
| struct dwo_unit *dwo_unit; |
| |
| /* Offset in .debug_line or .debug_line.dwo. */ |
| sect_offset line_sect_off; |
| }; |
| |
| /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to |
| an object of this type. */ |
| |
| struct type_unit_group |
| { |
| /* dwarf2read.c's main "handle" on a TU symtab. |
| To simplify things we create an artificial CU that "includes" all the |
| type units using this stmt_list so that the rest of the code still has |
| a "per_cu" handle on the symtab. |
| This PER_CU is recognized by having no section. */ |
| #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL) |
| struct dwarf2_per_cu_data per_cu; |
| |
| /* The TUs that share this DW_AT_stmt_list entry. |
| This is added to while parsing type units to build partial symtabs, |
| and is deleted afterwards and not used again. */ |
| std::vector<signatured_type *> *tus; |
| |
| /* The compunit symtab. |
| Type units in a group needn't all be defined in the same source file, |
| so we create an essentially anonymous symtab as the compunit symtab. */ |
| struct compunit_symtab *compunit_symtab; |
| |
| /* The data used to construct the hash key. */ |
| struct stmt_list_hash hash; |
| |
| /* The number of symtabs from the line header. |
| The value here must match line_header.num_file_names. */ |
| unsigned int num_symtabs; |
| |
| /* The symbol tables for this TU (obtained from the files listed in |
| DW_AT_stmt_list). |
| WARNING: The order of entries here must match the order of entries |
| in the line header. After the first TU using this type_unit_group, the |
| line header for the subsequent TUs is recreated from this. This is done |
| because we need to use the same symtabs for each TU using the same |
| DW_AT_stmt_list value. Also note that symtabs may be repeated here, |
| there's no guarantee the line header doesn't have duplicate entries. */ |
| struct symtab **symtabs; |
| }; |
| |
| /* These sections are what may appear in a (real or virtual) DWO file. */ |
| |
| struct dwo_sections |
| { |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info loclists; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info str_offsets; |
| /* In the case of a virtual DWO file, these two are unused. */ |
| struct dwarf2_section_info info; |
| std::vector<dwarf2_section_info> types; |
| }; |
| |
| /* CUs/TUs in DWP/DWO files. */ |
| |
| struct dwo_unit |
| { |
| /* Backlink to the containing struct dwo_file. */ |
| struct dwo_file *dwo_file; |
| |
| /* The "id" that distinguishes this CU/TU. |
| .debug_info calls this "dwo_id", .debug_types calls this "signature". |
| Since signatures came first, we stick with it for consistency. */ |
| ULONGEST signature; |
| |
| /* The section this CU/TU lives in, in the DWO file. */ |
| struct dwarf2_section_info *section; |
| |
| /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */ |
| sect_offset sect_off; |
| unsigned int length; |
| |
| /* For types, offset in the type's DIE of the type defined by this TU. */ |
| cu_offset type_offset_in_tu; |
| }; |
| |
| /* include/dwarf2.h defines the DWP section codes. |
| It defines a max value but it doesn't define a min value, which we |
| use for error checking, so provide one. */ |
| |
| enum dwp_v2_section_ids |
| { |
| DW_SECT_MIN = 1 |
| }; |
| |
| /* Data for one DWO file. |
| |
| This includes virtual DWO files (a virtual DWO file is a DWO file as it |
| appears in a DWP file). DWP files don't really have DWO files per se - |
| comdat folding of types "loses" the DWO file they came from, and from |
| a high level view DWP files appear to contain a mass of random types. |
| However, to maintain consistency with the non-DWP case we pretend DWP |
| files contain virtual DWO files, and we assign each TU with one virtual |
| DWO file (generally based on the line and abbrev section offsets - |
| a heuristic that seems to work in practice). */ |
| |
| struct dwo_file |
| { |
| dwo_file () = default; |
| DISABLE_COPY_AND_ASSIGN (dwo_file); |
| |
| /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. |
| For virtual DWO files the name is constructed from the section offsets |
| of abbrev,line,loc,str_offsets so that we combine virtual DWO files |
| from related CU+TUs. */ |
| const char *dwo_name = nullptr; |
| |
| /* The DW_AT_comp_dir attribute. */ |
| const char *comp_dir = nullptr; |
| |
| /* The bfd, when the file is open. Otherwise this is NULL. |
| This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */ |
| gdb_bfd_ref_ptr dbfd; |
| |
| /* The sections that make up this DWO file. |
| Remember that for virtual DWO files in DWP V2, these are virtual |
| sections (for lack of a better name). */ |
| struct dwo_sections sections {}; |
| |
| /* The CUs in the file. |
| Each element is a struct dwo_unit. Multiple CUs per DWO are supported as |
| an extension to handle LLVM's Link Time Optimization output (where |
| multiple source files may be compiled into a single object/dwo pair). */ |
| htab_up cus; |
| |
| /* Table of TUs in the file. |
| Each element is a struct dwo_unit. */ |
| htab_up tus; |
| }; |
| |
| /* These sections are what may appear in a DWP file. */ |
| |
| struct dwp_sections |
| { |
| /* These are used by both DWP version 1 and 2. */ |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info cu_index; |
| struct dwarf2_section_info tu_index; |
| |
| /* These are only used by DWP version 2 files. |
| In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other |
| sections are referenced by section number, and are not recorded here. |
| In DWP version 2 there is at most one copy of all these sections, each |
| section being (effectively) comprised of the concatenation of all of the |
| individual sections that exist in the version 1 format. |
| To keep the code simple we treat each of these concatenated pieces as a |
| section itself (a virtual section?). */ |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info info; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info str_offsets; |
| struct dwarf2_section_info types; |
| }; |
| |
| /* These sections are what may appear in a virtual DWO file in DWP version 1. |
| A virtual DWO file is a DWO file as it appears in a DWP file. */ |
| |
| struct virtual_v1_dwo_sections |
| { |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info str_offsets; |
| /* Each DWP hash table entry records one CU or one TU. |
| That is recorded here, and copied to dwo_unit.section. */ |
| struct dwarf2_section_info info_or_types; |
| }; |
| |
| /* Similar to virtual_v1_dwo_sections, but for DWP version 2. |
| In version 2, the sections of the DWO files are concatenated together |
| and stored in one section of that name. Thus each ELF section contains |
| several "virtual" sections. */ |
| |
| struct virtual_v2_dwo_sections |
| { |
| bfd_size_type abbrev_offset; |
| bfd_size_type abbrev_size; |
| |
| bfd_size_type line_offset; |
| bfd_size_type line_size; |
| |
| bfd_size_type loc_offset; |
| bfd_size_type loc_size; |
| |
| bfd_size_type macinfo_offset; |
| bfd_size_type macinfo_size; |
| |
| bfd_size_type macro_offset; |
| bfd_size_type macro_size; |
| |
| bfd_size_type str_offsets_offset; |
| bfd_size_type str_offsets_size; |
| |
| /* Each DWP hash table entry records one CU or one TU. |
| That is recorded here, and copied to dwo_unit.section. */ |
| bfd_size_type info_or_types_offset; |
| bfd_size_type info_or_types_size; |
| }; |
| |
| /* Contents of DWP hash tables. */ |
| |
| struct dwp_hash_table |
| { |
| uint32_t version, nr_columns; |
| uint32_t nr_units, nr_slots; |
| const gdb_byte *hash_table, *unit_table; |
| union |
| { |
| struct |
| { |
| const gdb_byte *indices; |
| } v1; |
| struct |
| { |
| /* This is indexed by column number and gives the id of the section |
| in that column. */ |
| #define MAX_NR_V2_DWO_SECTIONS \ |
| (1 /* .debug_info or .debug_types */ \ |
| + 1 /* .debug_abbrev */ \ |
| + 1 /* .debug_line */ \ |
| + 1 /* .debug_loc */ \ |
| + 1 /* .debug_str_offsets */ \ |
| + 1 /* .debug_macro or .debug_macinfo */) |
| int section_ids[MAX_NR_V2_DWO_SECTIONS]; |
| const gdb_byte *offsets; |
| const gdb_byte *sizes; |
| } v2; |
| } section_pool; |
| }; |
| |
| /* Data for one DWP file. */ |
| |
| struct dwp_file |
| { |
| dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd) |
| : name (name_), |
| dbfd (std::move (abfd)) |
| { |
| } |
| |
| /* Name of the file. */ |
| const char *name; |
| |
| /* File format version. */ |
| int version = 0; |
| |
| /* The bfd. */ |
| gdb_bfd_ref_ptr dbfd; |
| |
| /* Section info for this file. */ |
| struct dwp_sections sections {}; |
| |
| /* Table of CUs in the file. */ |
| const struct dwp_hash_table *cus = nullptr; |
| |
| /* Table of TUs in the file. */ |
| const struct dwp_hash_table *tus = nullptr; |
| |
| /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */ |
| htab_t loaded_cus {}; |
| htab_t loaded_tus {}; |
| |
| /* Table to map ELF section numbers to their sections. |
| This is only needed for the DWP V1 file format. */ |
| unsigned int num_sections = 0; |
| asection **elf_sections = nullptr; |
| }; |
| |
| /* Struct used to pass misc. parameters to read_die_and_children, et |
| al. which are used for both .debug_info and .debug_types dies. |
| All parameters here are unchanging for the life of the call. This |
| struct exists to abstract away the constant parameters of die reading. */ |
| |
| struct die_reader_specs |
| { |
| /* The bfd of die_section. */ |
| bfd* abfd; |
| |
| /* The CU of the DIE we are parsing. */ |
| struct dwarf2_cu *cu; |
| |
| /* Non-NULL if reading a DWO file (including one packaged into a DWP). */ |
| struct dwo_file *dwo_file; |
| |
| /* The section the die comes from. |
| This is either .debug_info or .debug_types, or the .dwo variants. */ |
| struct dwarf2_section_info *die_section; |
| |
| /* die_section->buffer. */ |
| const gdb_byte *buffer; |
| |
| /* The end of the buffer. */ |
| const gdb_byte *buffer_end; |
| |
| /* The abbreviation table to use when reading the DIEs. */ |
| struct abbrev_table *abbrev_table; |
| }; |
| |
| /* A subclass of die_reader_specs that holds storage and has complex |
| constructor and destructor behavior. */ |
| |
| class cutu_reader : public die_reader_specs |
| { |
| public: |
| |
| cutu_reader (struct dwarf2_per_cu_data *this_cu, |
| struct abbrev_table *abbrev_table, |
| int use_existing_cu, int keep, |
| bool skip_partial); |
| |
| explicit cutu_reader (struct dwarf2_per_cu_data *this_cu, |
| struct dwarf2_cu *parent_cu = nullptr, |
| struct dwo_file *dwo_file = nullptr); |
| |
| ~cutu_reader (); |
| |
| DISABLE_COPY_AND_ASSIGN (cutu_reader); |
| |
| const gdb_byte *info_ptr = nullptr; |
| struct die_info *comp_unit_die = nullptr; |
| bool dummy_p = false; |
| |
| private: |
| void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, |
| int use_existing_cu, int keep); |
| |
| struct dwarf2_per_cu_data *m_this_cu; |
| int m_keep = 0; |
| std::unique_ptr<dwarf2_cu> m_new_cu; |
| |
| /* The ordinary abbreviation table. */ |
| abbrev_table_up m_abbrev_table_holder; |
| |
| /* The DWO abbreviation table. */ |
| abbrev_table_up m_dwo_abbrev_table; |
| }; |
| |
| /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and |
| later. */ |
| typedef int dir_index; |
| |
| /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 |
| and later. */ |
| typedef int file_name_index; |
| |
| struct file_entry |
| { |
| file_entry () = default; |
| |
| file_entry (const char *name_, dir_index d_index_, |
| unsigned int mod_time_, unsigned int length_) |
| : name (name_), |
| d_index (d_index_), |
| mod_time (mod_time_), |
| length (length_) |
| {} |
| |
| /* Return the include directory at D_INDEX stored in LH. Returns |
| NULL if D_INDEX is out of bounds. */ |
| const char *include_dir (const line_header *lh) const; |
| |
| /* The file name. Note this is an observing pointer. The memory is |
| owned by debug_line_buffer. */ |
| const char *name {}; |
| |
| /* The directory index (1-based). */ |
| dir_index d_index {}; |
| |
| unsigned int mod_time {}; |
| |
| unsigned int length {}; |
| |
| /* True if referenced by the Line Number Program. */ |
| bool included_p {}; |
| |
| /* The associated symbol table, if any. */ |
| struct symtab *symtab {}; |
| }; |
| |
| /* The line number information for a compilation unit (found in the |
| .debug_line section) begins with a "statement program header", |
| which contains the following information. */ |
| struct line_header |
| { |
| line_header () |
| : offset_in_dwz {} |
| {} |
| |
| /* Add an entry to the include directory table. */ |
| void add_include_dir (const char *include_dir); |
| |
| /* Add an entry to the file name table. */ |
| void add_file_name (const char *name, dir_index d_index, |
| unsigned int mod_time, unsigned int length); |
| |
| /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before). |
| Returns NULL if INDEX is out of bounds. */ |
| const char *include_dir_at (dir_index index) const |
| { |
| int vec_index; |
| if (version >= 5) |
| vec_index = index; |
| else |
| vec_index = index - 1; |
| if (vec_index < 0 || vec_index >= m_include_dirs.size ()) |
| return NULL; |
| return m_include_dirs[vec_index]; |
| } |
| |
| bool is_valid_file_index (int file_index) |
| { |
| if (version >= 5) |
| return 0 <= file_index && file_index < file_names_size (); |
| return 1 <= file_index && file_index <= file_names_size (); |
| } |
| |
| /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before). |
| Returns NULL if INDEX is out of bounds. */ |
| file_entry *file_name_at (file_name_index index) |
| { |
| int vec_index; |
| if (version >= 5) |
| vec_index = index; |
| else |
| vec_index = index - 1; |
| if (vec_index < 0 || vec_index >= m_file_names.size ()) |
| return NULL; |
| return &m_file_names[vec_index]; |
| } |
| |
| /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore, |
| this method should only be used to iterate through all file entries in an |
| index-agnostic manner. */ |
| std::vector<file_entry> &file_names () |
| { return m_file_names; } |
| |
| /* Offset of line number information in .debug_line section. */ |
| sect_offset sect_off {}; |
| |
| /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */ |
| unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */ |
| |
| unsigned int total_length {}; |
| unsigned short version {}; |
| unsigned int header_length {}; |
| unsigned char minimum_instruction_length {}; |
| unsigned char maximum_ops_per_instruction {}; |
| unsigned char default_is_stmt {}; |
| int line_base {}; |
| unsigned char line_range {}; |
| unsigned char opcode_base {}; |
| |
| /* standard_opcode_lengths[i] is the number of operands for the |
| standard opcode whose value is i. This means that |
| standard_opcode_lengths[0] is unused, and the last meaningful |
| element is standard_opcode_lengths[opcode_base - 1]. */ |
| std::unique_ptr<unsigned char[]> standard_opcode_lengths; |
| |
| int file_names_size () |
| { return m_file_names.size(); } |
| |
| /* The start and end of the statement program following this |
| header. These point into dwarf2_per_objfile->line_buffer. */ |
| const gdb_byte *statement_program_start {}, *statement_program_end {}; |
| |
| private: |
| /* The include_directories table. Note these are observing |
| pointers. The memory is owned by debug_line_buffer. */ |
| std::vector<const char *> m_include_dirs; |
| |
| /* The file_names table. This is private because the meaning of indexes |
| differs among DWARF versions (The first valid index is 1 in DWARF 4 and |
| before, and is 0 in DWARF 5 and later). So the client should use |
| file_name_at method for access. */ |
| std::vector<file_entry> m_file_names; |
| }; |
| |
| typedef std::unique_ptr<line_header> line_header_up; |
| |
| const char * |
| file_entry::include_dir (const line_header *lh) const |
| { |
| return lh->include_dir_at (d_index); |
| } |
| |
| /* When we construct a partial symbol table entry we only |
| need this much information. */ |
| struct partial_die_info : public allocate_on_obstack |
| { |
| partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev); |
| |
| /* Disable assign but still keep copy ctor, which is needed |
| load_partial_dies. */ |
| partial_die_info& operator=(const partial_die_info& rhs) = delete; |
| |
| /* Adjust the partial die before generating a symbol for it. This |
| function may set the is_external flag or change the DIE's |
| name. */ |
| void fixup (struct dwarf2_cu *cu); |
| |
| /* Read a minimal amount of information into the minimal die |
| structure. */ |
| const gdb_byte *read (const struct die_reader_specs *reader, |
| const struct abbrev_info &abbrev, |
| const gdb_byte *info_ptr); |
| |
| /* Offset of this DIE. */ |
| const sect_offset sect_off; |
| |
| /* DWARF-2 tag for this DIE. */ |
| const ENUM_BITFIELD(dwarf_tag) tag : 16; |
| |
| /* Assorted flags describing the data found in this DIE. */ |
| const unsigned int has_children : 1; |
| |
| unsigned int is_external : 1; |
| unsigned int is_declaration : 1; |
| unsigned int has_type : 1; |
| unsigned int has_specification : 1; |
| unsigned int has_pc_info : 1; |
| unsigned int may_be_inlined : 1; |
| |
| /* This DIE has been marked DW_AT_main_subprogram. */ |
| unsigned int main_subprogram : 1; |
| |
| /* Flag set if the SCOPE field of this structure has been |
| computed. */ |
| unsigned int scope_set : 1; |
| |
| /* Flag set if the DIE has a byte_size attribute. */ |
| unsigned int has_byte_size : 1; |
| |
| /* Flag set if the DIE has a DW_AT_const_value attribute. */ |
| unsigned int has_const_value : 1; |
| |
| /* Flag set if any of the DIE's children are template arguments. */ |
| unsigned int has_template_arguments : 1; |
| |
| /* Flag set if fixup has been called on this die. */ |
| unsigned int fixup_called : 1; |
| |
| /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */ |
| unsigned int is_dwz : 1; |
| |
| /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */ |
| unsigned int spec_is_dwz : 1; |
| |
| /* The name of this DIE. Normally the value of DW_AT_name, but |
| sometimes a default name for unnamed DIEs. */ |
| const char *name = nullptr; |
| |
| /* The linkage name, if present. */ |
| const char *linkage_name = nullptr; |
| |
| /* The scope to prepend to our children. This is generally |
| allocated on the comp_unit_obstack, so will disappear |
| when this compilation unit leaves the cache. */ |
| const char *scope = nullptr; |
| |
| /* Some data associated with the partial DIE. The tag determines |
| which field is live. */ |
| union |
| { |
| /* The location description associated with this DIE, if any. */ |
| struct dwarf_block *locdesc; |
| /* The offset of an import, for DW_TAG_imported_unit. */ |
| sect_offset sect_off; |
| } d {}; |
| |
| /* If HAS_PC_INFO, the PC range associated with this DIE. */ |
| CORE_ADDR lowpc = 0; |
| CORE_ADDR highpc = 0; |
| |
| /* Pointer into the info_buffer (or types_buffer) pointing at the target of |
| DW_AT_sibling, if any. */ |
| /* NOTE: This member isn't strictly necessary, partial_die_info::read |
| could return DW_AT_sibling values to its caller load_partial_dies. */ |
| const gdb_byte *sibling = nullptr; |
| |
| /* If HAS_SPECIFICATION, the offset of the DIE referred to by |
| DW_AT_specification (or DW_AT_abstract_origin or |
| DW_AT_extension). */ |
| sect_offset spec_offset {}; |
| |
| /* Pointers to this DIE's parent, first child, and next sibling, |
| if any. */ |
| struct partial_die_info *die_parent = nullptr; |
| struct partial_die_info *die_child = nullptr; |
| struct partial_die_info *die_sibling = nullptr; |
| |
| friend struct partial_die_info * |
| dwarf2_cu::find_partial_die (sect_offset sect_off); |
| |
| private: |
| /* Only need to do look up in dwarf2_cu::find_partial_die. */ |
| partial_die_info (sect_offset sect_off) |
| : partial_die_info (sect_off, DW_TAG_padding, 0) |
| { |
| } |
| |
| partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_, |
| int has_children_) |
| : sect_off (sect_off_), tag (tag_), has_children (has_children_) |
| { |
| is_external = 0; |
| is_declaration = 0; |
| has_type = 0; |
| has_specification = 0; |
| has_pc_info = 0; |
| may_be_inlined = 0; |
| main_subprogram = 0; |
| scope_set = 0; |
| has_byte_size = 0; |
| has_const_value = 0; |
| has_template_arguments = 0; |
| fixup_called = 0; |
| is_dwz = 0; |
| spec_is_dwz = 0; |
| } |
| }; |
| |
| /* This data structure holds a complete die structure. */ |
| struct die_info |
| { |
| /* DWARF-2 tag for this DIE. */ |
| ENUM_BITFIELD(dwarf_tag) tag : 16; |
| |
| /* Number of attributes */ |
| unsigned char num_attrs; |
| |
| /* True if we're presently building the full type name for the |
| type derived from this DIE. */ |
| unsigned char building_fullname : 1; |
| |
| /* True if this die is in process. PR 16581. */ |
| unsigned char in_process : 1; |
| |
| /* True if this DIE has children. */ |
| unsigned char has_children : 1; |
| |
| /* Abbrev number */ |
| unsigned int abbrev; |
| |
| /* Offset in .debug_info or .debug_types section. */ |
| sect_offset sect_off; |
| |
| /* The dies in a compilation unit form an n-ary tree. PARENT |
| points to this die's parent; CHILD points to the first child of |
| this node; and all the children of a given node are chained |
| together via their SIBLING fields. */ |
| struct die_info *child; /* Its first child, if any. */ |
| struct die_info *sibling; /* Its next sibling, if any. */ |
| struct die_info *parent; /* Its parent, if any. */ |
| |
| /* An array of attributes, with NUM_ATTRS elements. There may be |
| zero, but it's not common and zero-sized arrays are not |
| sufficiently portable C. */ |
| struct attribute attrs[1]; |
| }; |
| |
| /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte, |
| but this would require a corresponding change in unpack_field_as_long |
| and friends. */ |
| static int bits_per_byte = 8; |
| |
| /* When reading a variant or variant part, we track a bit more |
| information about the field, and store it in an object of this |
| type. */ |
| |
| struct variant_field |
| { |
| /* If we see a DW_TAG_variant, then this will be the discriminant |
| value. */ |
| ULONGEST discriminant_value; |
| /* If we see a DW_TAG_variant, then this will be set if this is the |
| default branch. */ |
| bool default_branch; |
| /* While reading a DW_TAG_variant_part, this will be set if this |
| field is the discriminant. */ |
| bool is_discriminant; |
| }; |
| |
| struct nextfield |
| { |
| int accessibility = 0; |
| int virtuality = 0; |
| /* Extra information to describe a variant or variant part. */ |
| struct variant_field variant {}; |
| struct field field {}; |
| }; |
| |
| struct fnfieldlist |
| { |
| const char *name = nullptr; |
| std::vector<struct fn_field> fnfields; |
| }; |
| |
| /* The routines that read and process dies for a C struct or C++ class |
| pass lists of data member fields and lists of member function fields |
| in an instance of a field_info structure, as defined below. */ |
| struct field_info |
| { |
| /* List of data member and baseclasses fields. */ |
| std::vector<struct nextfield> fields; |
| std::vector<struct nextfield> baseclasses; |
| |
| /* Number of fields (including baseclasses). */ |
| int nfields = 0; |
| |
| /* Set if the accessibility of one of the fields is not public. */ |
| int non_public_fields = 0; |
| |
| /* Member function fieldlist array, contains name of possibly overloaded |
| member function, number of overloaded member functions and a pointer |
| to the head of the member function field chain. */ |
| std::vector<struct fnfieldlist> fnfieldlists; |
| |
| /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of |
| a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */ |
| std::vector<struct decl_field> typedef_field_list; |
| |
| /* Nested types defined by this class and the number of elements in this |
| list. */ |
| std::vector<struct decl_field> nested_types_list; |
| }; |
| |
| /* Loaded secondary compilation units are kept in memory until they |
| have not been referenced for the processing of this many |
| compilation units. Set this to zero to disable caching. Cache |
| sizes of up to at least twenty will improve startup time for |
| typical inter-CU-reference binaries, at an obvious memory cost. */ |
| static int dwarf_max_cache_age = 5; |
| static void |
| show_dwarf_max_cache_age (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("The upper bound on the age of cached " |
| "DWARF compilation units is %s.\n"), |
| value); |
| } |
| |
| /* local function prototypes */ |
| |
| static void dwarf2_find_base_address (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static dwarf2_psymtab *create_partial_symtab |
| (struct dwarf2_per_cu_data *per_cu, const char *name); |
| |
| static void build_type_psymtabs_reader (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct die_info *type_unit_die); |
| |
| static void dwarf2_build_psymtabs_hard |
| (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static void scan_partial_symbols (struct partial_die_info *, |
| CORE_ADDR *, CORE_ADDR *, |
| int, struct dwarf2_cu *); |
| |
| static void add_partial_symbol (struct partial_die_info *, |
| struct dwarf2_cu *); |
| |
| static void add_partial_namespace (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int set_addrmap, struct dwarf2_cu *cu); |
| |
| static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int set_addrmap, |
| struct dwarf2_cu *cu); |
| |
| static void add_partial_enumeration (struct partial_die_info *enum_pdi, |
| struct dwarf2_cu *cu); |
| |
| static void add_partial_subprogram (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int need_pc, struct dwarf2_cu *cu); |
| |
| static unsigned int peek_abbrev_code (bfd *, const gdb_byte *); |
| |
| static struct partial_die_info *load_partial_dies |
| (const struct die_reader_specs *, const gdb_byte *, int); |
| |
| /* A pair of partial_die_info and compilation unit. */ |
| struct cu_partial_die_info |
| { |
| /* The compilation unit of the partial_die_info. */ |
| struct dwarf2_cu *cu; |
| /* A partial_die_info. */ |
| struct partial_die_info *pdi; |
| |
| cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi) |
| : cu (cu), |
| pdi (pdi) |
| { /* Nothing. */ } |
| |
| private: |
| cu_partial_die_info () = delete; |
| }; |
| |
| static const struct cu_partial_die_info find_partial_die (sect_offset, int, |
| struct dwarf2_cu *); |
| |
| static const gdb_byte *read_attribute (const struct die_reader_specs *, |
| struct attribute *, struct attr_abbrev *, |
| const gdb_byte *, bool *need_reprocess); |
| |
| static void read_attribute_reprocess (const struct die_reader_specs *reader, |
| struct attribute *attr); |
| |
| static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index); |
| |
| static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *, |
| unsigned int *); |
| |
| static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *); |
| |
| static LONGEST read_checked_initial_length_and_offset |
| (bfd *, const gdb_byte *, const struct comp_unit_head *, |
| unsigned int *, unsigned int *); |
| |
| static LONGEST read_offset (bfd *, const gdb_byte *, |
| const struct comp_unit_head *, |
| unsigned int *); |
| |
| static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int); |
| |
| static sect_offset read_abbrev_offset |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *, sect_offset); |
| |
| static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int); |
| |
| static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *); |
| |
| static const char *read_indirect_string |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *, |
| const struct comp_unit_head *, unsigned int *); |
| |
| static const char *read_indirect_line_string |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *, |
| const struct comp_unit_head *, unsigned int *); |
| |
| static const char *read_indirect_string_at_offset |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd, |
| LONGEST str_offset); |
| |
| static const char *read_indirect_string_from_dwz |
| (struct objfile *objfile, struct dwz_file *, LONGEST); |
| |
| static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, |
| const gdb_byte *, |
| unsigned int *); |
| |
| static const char *read_dwo_str_index (const struct die_reader_specs *reader, |
| ULONGEST str_index); |
| |
| static const char *read_stub_str_index (struct dwarf2_cu *cu, |
| ULONGEST str_index); |
| |
| static void set_cu_language (unsigned int, struct dwarf2_cu *); |
| |
| static struct attribute *dwarf2_attr (struct die_info *, unsigned int, |
| struct dwarf2_cu *); |
| |
| static struct attribute *dwarf2_attr_no_follow (struct die_info *, |
| unsigned int); |
| |
| static const char *dwarf2_string_attr (struct die_info *die, unsigned int name, |
| struct dwarf2_cu *cu); |
| |
| static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static int dwarf2_flag_true_p (struct die_info *die, unsigned name, |
| struct dwarf2_cu *cu); |
| |
| static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu); |
| |
| static struct die_info *die_specification (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static line_header_up dwarf_decode_line_header (sect_offset sect_off, |
| struct dwarf2_cu *cu); |
| |
| static void dwarf_decode_lines (struct line_header *, const char *, |
| struct dwarf2_cu *, dwarf2_psymtab *, |
| CORE_ADDR, int decode_mapping); |
| |
| static void dwarf2_start_subfile (struct dwarf2_cu *, const char *, |
| const char *); |
| |
| static struct symbol *new_symbol (struct die_info *, struct type *, |
| struct dwarf2_cu *, struct symbol * = NULL); |
| |
| static void dwarf2_const_value (const struct attribute *, struct symbol *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_const_value_attr (const struct attribute *attr, |
| struct type *type, |
| const char *name, |
| struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, |
| const gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton); |
| |
| static struct type *die_type (struct die_info *, struct dwarf2_cu *); |
| |
| static int need_gnat_info (struct dwarf2_cu *); |
| |
| static struct type *die_descriptive_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void set_descriptive_type (struct type *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *die_containing_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *lookup_die_type (struct die_info *, const struct attribute *, |
| struct dwarf2_cu *); |
| |
| static struct type *read_type_die (struct die_info *, struct dwarf2_cu *); |
| |
| static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *); |
| |
| static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *); |
| |
| static char *typename_concat (struct obstack *obs, const char *prefix, |
| const char *suffix, int physname, |
| struct dwarf2_cu *cu); |
| |
| static void read_file_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_func_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void read_variable (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *, |
| struct dwarf2_cu *, dwarf2_psymtab *); |
| |
| /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return |
| values. Keep the items ordered with increasing constraints compliance. */ |
| enum pc_bounds_kind |
| { |
| /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */ |
| PC_BOUNDS_NOT_PRESENT, |
| |
| /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges |
| were present but they do not form a valid range of PC addresses. */ |
| PC_BOUNDS_INVALID, |
| |
| /* Discontiguous range was found - that is DW_AT_ranges was found. */ |
| PC_BOUNDS_RANGES, |
| |
| /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */ |
| PC_BOUNDS_HIGH_LOW, |
| }; |
| |
| static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *, |
| CORE_ADDR *, CORE_ADDR *, |
| struct dwarf2_cu *, |
| dwarf2_psymtab *); |
| |
| static void get_scope_pc_bounds (struct die_info *, |
| CORE_ADDR *, CORE_ADDR *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_record_block_ranges (struct die_info *, struct block *, |
| CORE_ADDR, struct dwarf2_cu *); |
| |
| static void dwarf2_add_field (struct field_info *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fields_to_type (struct field_info *, |
| struct type *, struct dwarf2_cu *); |
| |
| static void dwarf2_add_member_fn (struct field_info *, |
| struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fn_fields_to_type (struct field_info *, |
| struct type *, |
| struct dwarf2_cu *); |
| |
| static void process_structure_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_common_block (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_namespace (struct die_info *die, struct dwarf2_cu *); |
| |
| static void read_module (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static struct using_direct **using_directives (struct dwarf2_cu *cu); |
| |
| static void read_import_statement (struct die_info *die, struct dwarf2_cu *); |
| |
| static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static struct type *read_module_type (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static const char *namespace_name (struct die_info *die, |
| int *is_anonymous, struct dwarf2_cu *); |
| |
| static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *); |
| |
| static enum dwarf_array_dim_ordering read_array_order (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct die_info *read_die_and_siblings_1 |
| (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **, |
| struct die_info *); |
| |
| static struct die_info *read_die_and_siblings (const struct die_reader_specs *, |
| const gdb_byte *info_ptr, |
| const gdb_byte **new_info_ptr, |
| struct die_info *parent); |
| |
| static const gdb_byte *read_full_die_1 (const struct die_reader_specs *, |
| struct die_info **, const gdb_byte *, |
| int); |
| |
| static const gdb_byte *read_full_die (const struct die_reader_specs *, |
| struct die_info **, const gdb_byte *); |
| |
| static void process_die (struct die_info *, struct dwarf2_cu *); |
| |
| static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *, |
| struct obstack *); |
| |
| static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *); |
| |
| static const char *dwarf2_full_name (const char *name, |
| struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static const char *dwarf2_physname (const char *name, struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static struct die_info *dwarf2_extension (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static const char *dwarf_tag_name (unsigned int); |
| |
| static const char *dwarf_attr_name (unsigned int); |
| |
| static const char *dwarf_unit_type_name (int unit_type); |
| |
| static const char *dwarf_form_name (unsigned int); |
| |
| static const char *dwarf_bool_name (unsigned int); |
| |
| static const char *dwarf_type_encoding_name (unsigned int); |
| |
| static struct die_info *sibling_die (struct die_info *); |
| |
| static void dump_die_shallow (struct ui_file *, int indent, struct die_info *); |
| |
| static void dump_die_for_error (struct die_info *); |
| |
| static void dump_die_1 (struct ui_file *, int level, int max_level, |
| struct die_info *); |
| |
| /*static*/ void dump_die (struct die_info *, int max_level); |
| |
| static void store_in_ref_table (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static sect_offset dwarf2_get_ref_die_offset (const struct attribute *); |
| |
| static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int); |
| |
| static struct die_info *follow_die_ref_or_sig (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_ref (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_sig (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct type *get_signatured_type (struct die_info *, ULONGEST, |
| struct dwarf2_cu *); |
| |
| static struct type *get_DW_AT_signature_type (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu *); |
| |
| static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu); |
| |
| static void read_signatured_type (struct signatured_type *); |
| |
| static int attr_to_dynamic_prop (const struct attribute *attr, |
| struct die_info *die, struct dwarf2_cu *cu, |
| struct dynamic_prop *prop, struct type *type); |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *); |
| |
| static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int); |
| |
| static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int); |
| |
| static void fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| const struct attribute *attr); |
| |
| static void dwarf2_symbol_mark_computed (const struct attribute *attr, |
| struct symbol *sym, |
| struct dwarf2_cu *cu, |
| int is_block); |
| |
| static const gdb_byte *skip_one_die (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct abbrev_info *abbrev); |
| |
| static hashval_t partial_die_hash (const void *item); |
| |
| static int partial_die_eq (const void *item_lhs, const void *item_rhs); |
| |
| static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit |
| (sect_offset sect_off, unsigned int offset_in_dwz, |
| struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static void prepare_one_comp_unit (struct dwarf2_cu *cu, |
| struct die_info *comp_unit_die, |
| enum language pretend_language); |
| |
| static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *); |
| |
| static struct type *set_die_type (struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool, |
| enum language); |
| |
| static void process_full_comp_unit (struct dwarf2_per_cu_data *, |
| enum language); |
| |
| static void process_full_type_unit (struct dwarf2_per_cu_data *, |
| enum language); |
| |
| static void dwarf2_add_dependence (struct dwarf2_cu *, |
| struct dwarf2_per_cu_data *); |
| |
| static void dwarf2_mark (struct dwarf2_cu *); |
| |
| static void dwarf2_clear_marks (struct dwarf2_per_cu_data *); |
| |
| static struct type *get_die_type_at_offset (sect_offset, |
| struct dwarf2_per_cu_data *); |
| |
| static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language); |
| |
| static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu); |
| static struct type *dwarf2_per_cu_addr_sized_int_type |
| (struct dwarf2_per_cu_data *per_cu, bool unsigned_p); |
| static struct type *dwarf2_per_cu_int_type |
| (struct dwarf2_per_cu_data *per_cu, int size_in_bytes, |
| bool unsigned_p); |
| |
| /* Class, the destructor of which frees all allocated queue entries. This |
| will only have work to do if an error was thrown while processing the |
| dwarf. If no error was thrown then the queue entries should have all |
| been processed, and freed, as we went along. */ |
| |
| class dwarf2_queue_guard |
| { |
| public: |
| explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile) |
| : m_per_objfile (per_objfile) |
| { |
| } |
| |
| /* Free any entries remaining on the queue. There should only be |
| entries left if we hit an error while processing the dwarf. */ |
| ~dwarf2_queue_guard () |
| { |
| /* Ensure that no memory is allocated by the queue. */ |
| std::queue<dwarf2_queue_item> empty; |
| std::swap (m_per_objfile->queue, empty); |
| } |
| |
| DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard); |
| |
| private: |
| dwarf2_per_objfile *m_per_objfile; |
| }; |
| |
| dwarf2_queue_item::~dwarf2_queue_item () |
| { |
| /* Anything still marked queued is likely to be in an |
| inconsistent state, so discard it. */ |
| if (per_cu->queued) |
| { |
| if (per_cu->cu != NULL) |
| free_one_cached_comp_unit (per_cu); |
| per_cu->queued = 0; |
| } |
| } |
| |
| /* The return type of find_file_and_directory. Note, the enclosed |
| string pointers are only valid while this object is valid. */ |
| |
| struct file_and_directory |
| { |
| /* The filename. This is never NULL. */ |
| const char *name; |
| |
| /* The compilation directory. NULL if not known. If we needed to |
| compute a new string, this points to COMP_DIR_STORAGE, otherwise, |
| points directly to the DW_AT_comp_dir string attribute owned by |
| the obstack that owns the DIE. */ |
| const char *comp_dir; |
| |
| /* If we needed to build a new string for comp_dir, this is what |
| owns the storage. */ |
| std::string comp_dir_storage; |
| }; |
| |
| static file_and_directory find_file_and_directory (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static char *file_full_name (int file, struct line_header *lh, |
| const char *comp_dir); |
| |
| /* Expected enum dwarf_unit_type for read_comp_unit_head. */ |
| enum class rcuh_kind { COMPILE, TYPE }; |
| |
| static const gdb_byte *read_and_check_comp_unit_head |
| (struct dwarf2_per_objfile* dwarf2_per_objfile, |
| struct comp_unit_head *header, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr, |
| rcuh_kind section_kind); |
| |
| static htab_up allocate_signatured_type_table (struct objfile *objfile); |
| |
| static htab_up allocate_dwo_unit_table (struct objfile *objfile); |
| |
| static struct dwo_unit *lookup_dwo_unit_in_dwp |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwp_file *dwp_file, const char *comp_dir, |
| ULONGEST signature, int is_debug_types); |
| |
| static struct dwp_file *get_dwp_file |
| (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static struct dwo_unit *lookup_dwo_comp_unit |
| (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST); |
| |
| static struct dwo_unit *lookup_dwo_type_unit |
| (struct signatured_type *, const char *, const char *); |
| |
| static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *); |
| |
| /* A unique pointer to a dwo_file. */ |
| |
| typedef std::unique_ptr<struct dwo_file> dwo_file_up; |
| |
| static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile); |
| |
| static void check_producer (struct dwarf2_cu *cu); |
| |
| static void free_line_header_voidp (void *arg); |
| |
| /* Various complaints about symbol reading that don't abort the process. */ |
| |
| static void |
| dwarf2_statement_list_fits_in_line_number_section_complaint (void) |
| { |
| complaint (_("statement list doesn't fit in .debug_line section")); |
| } |
| |
| static void |
| dwarf2_debug_line_missing_file_complaint (void) |
| { |
| complaint (_(".debug_line section has line data without a file")); |
| } |
| |
| static void |
| dwarf2_debug_line_missing_end_sequence_complaint (void) |
| { |
| complaint (_(".debug_line section has line " |
| "program sequence without an end")); |
| } |
| |
| static void |
| dwarf2_complex_location_expr_complaint (void) |
| { |
| complaint (_("location expression too complex")); |
| } |
| |
| static void |
| dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2, |
| int arg3) |
| { |
| complaint (_("const value length mismatch for '%s', got %d, expected %d"), |
| arg1, arg2, arg3); |
| } |
| |
| static void |
| dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section) |
| { |
| complaint (_("debug info runs off end of %s section" |
| " [in module %s]"), |
| section->get_name (), |
| section->get_file_name ()); |
| } |
| |
| static void |
| dwarf2_macro_malformed_definition_complaint (const char *arg1) |
| { |
| complaint (_("macro debug info contains a " |
| "malformed macro definition:\n`%s'"), |
| arg1); |
| } |
| |
| static void |
| dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2) |
| { |
| complaint (_("invalid attribute class or form for '%s' in '%s'"), |
| arg1, arg2); |
| } |
| |
| /* Hash function for line_header_hash. */ |
| |
| static hashval_t |
| line_header_hash (const struct line_header *ofs) |
| { |
| return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz; |
| } |
| |
| /* Hash function for htab_create_alloc_ex for line_header_hash. */ |
| |
| static hashval_t |
| line_header_hash_voidp (const void *item) |
| { |
| const struct line_header *ofs = (const struct line_header *) item; |
| |
| return line_header_hash (ofs); |
| } |
| |
| /* Equality function for line_header_hash. */ |
| |
| static int |
| line_header_eq_voidp (const void *item_lhs, const void *item_rhs) |
| { |
| const struct line_header *ofs_lhs = (const struct line_header *) item_lhs; |
| const struct line_header *ofs_rhs = (const struct line_header *) item_rhs; |
| |
| return (ofs_lhs->sect_off == ofs_rhs->sect_off |
| && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz); |
| } |
| |
| |
| |
| /* See declaration. */ |
| |
| dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_, |
| const dwarf2_debug_sections *names, |
| bool can_copy_) |
| : objfile (objfile_), |
| can_copy (can_copy_) |
| { |
| if (names == NULL) |
| names = &dwarf2_elf_names; |
| |
| bfd *obfd = objfile->obfd; |
| |
| for (asection *sec = obfd->sections; sec != NULL; sec = sec->next) |
| locate_sections (obfd, sec, *names); |
| } |
| |
| dwarf2_per_objfile::~dwarf2_per_objfile () |
| { |
| /* Cached DIE trees use xmalloc and the comp_unit_obstack. */ |
| free_cached_comp_units (); |
| |
| if (quick_file_names_table) |
| htab_delete (quick_file_names_table); |
| |
| for (dwarf2_per_cu_data *per_cu : all_comp_units) |
| per_cu->imported_symtabs_free (); |
| |
| for (signatured_type *sig_type : all_type_units) |
| sig_type->per_cu.imported_symtabs_free (); |
| |
| /* Everything else should be on the objfile obstack. */ |
| } |
| |
| /* See declaration. */ |
| |
| void |
| dwarf2_per_objfile::free_cached_comp_units () |
| { |
| dwarf2_per_cu_data *per_cu = read_in_chain; |
| dwarf2_per_cu_data **last_chain = &read_in_chain; |
| while (per_cu != NULL) |
| { |
| dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain; |
| |
| delete per_cu->cu; |
| *last_chain = next_cu; |
| per_cu = next_cu; |
| } |
| } |
| |
| /* A helper class that calls free_cached_comp_units on |
| destruction. */ |
| |
| class free_cached_comp_units |
| { |
| public: |
| |
| explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile) |
| : m_per_objfile (per_objfile) |
| { |
| } |
| |
| ~free_cached_comp_units () |
| { |
| m_per_objfile->free_cached_comp_units (); |
| } |
| |
| DISABLE_COPY_AND_ASSIGN (free_cached_comp_units); |
| |
| private: |
| |
| dwarf2_per_objfile *m_per_objfile; |
| }; |
| |
| /* Try to locate the sections we need for DWARF 2 debugging |
| information and return true if we have enough to do something. |
| NAMES points to the dwarf2 section names, or is NULL if the standard |
| ELF names are used. CAN_COPY is true for formats where symbol |
| interposition is possible and so symbol values must follow copy |
| relocation rules. */ |
| |
| int |
| dwarf2_has_info (struct objfile *objfile, |
| const struct dwarf2_debug_sections *names, |
| bool can_copy) |
| { |
| if (objfile->flags & OBJF_READNEVER) |
| return 0; |
| |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| if (dwarf2_per_objfile == NULL) |
| dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, |
| names, |
| can_copy); |
| |
| return (!dwarf2_per_objfile->info.is_virtual |
| && dwarf2_per_objfile->info.s.section != NULL |
| && !dwarf2_per_objfile->abbrev.is_virtual |
| && dwarf2_per_objfile->abbrev.s.section != NULL); |
| } |
| |
| /* When loading sections, we look either for uncompressed section or for |
| compressed section names. */ |
| |
| static int |
| section_is_p (const char *section_name, |
| const struct dwarf2_section_names *names) |
| { |
| if (names->normal != NULL |
| && strcmp (section_name, names->normal) == 0) |
| return 1; |
| if (names->compressed != NULL |
| && strcmp (section_name, names->compressed) == 0) |
| return 1; |
| return 0; |
| } |
| |
| /* See declaration. */ |
| |
| void |
| dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp, |
| const dwarf2_debug_sections &names) |
| { |
| flagword aflag = bfd_section_flags (sectp); |
| |
| if ((aflag & SEC_HAS_CONTENTS) == 0) |
| { |
| } |
| else if (elf_section_data (sectp)->this_hdr.sh_size |
| > bfd_get_file_size (abfd)) |
| { |
| bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size; |
| warning (_("Discarding section %s which has a section size (%s" |
| ") larger than the file size [in module %s]"), |
| bfd_section_name (sectp), phex_nz (size, sizeof (size)), |
| bfd_get_filename (abfd)); |
| } |
| else if (section_is_p (sectp->name, &names.info)) |
| { |
| this->info.s.section = sectp; |
| this->info.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.abbrev)) |
| { |
| this->abbrev.s.section = sectp; |
| this->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.line)) |
| { |
| this->line.s.section = sectp; |
| this->line.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.loc)) |
| { |
| this->loc.s.section = sectp; |
| this->loc.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.loclists)) |
| { |
| this->loclists.s.section = sectp; |
| this->loclists.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.macinfo)) |
| { |
| this->macinfo.s.section = sectp; |
| this->macinfo.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.macro)) |
| { |
| this->macro.s.section = sectp; |
| this->macro.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.str)) |
| { |
| this->str.s.section = sectp; |
| this->str.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.str_offsets)) |
| { |
| this->str_offsets.s.section = sectp; |
| this->str_offsets.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.line_str)) |
| { |
| this->line_str.s.section = sectp; |
| this->line_str.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.addr)) |
| { |
| this->addr.s.section = sectp; |
| this->addr.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.frame)) |
| { |
| this->frame.s.section = sectp; |
| this->frame.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.eh_frame)) |
| { |
| this->eh_frame.s.section = sectp; |
| this->eh_frame.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.ranges)) |
| { |
| this->ranges.s.section = sectp; |
| this->ranges.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.rnglists)) |
| { |
| this->rnglists.s.section = sectp; |
| this->rnglists.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.types)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| type_section.s.section = sectp; |
| type_section.size = bfd_section_size (sectp); |
| |
| this->types.push_back (type_section); |
| } |
| else if (section_is_p (sectp->name, &names.gdb_index)) |
| { |
| this->gdb_index.s.section = sectp; |
| this->gdb_index.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.debug_names)) |
| { |
| this->debug_names.s.section = sectp; |
| this->debug_names.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names.debug_aranges)) |
| { |
| this->debug_aranges.s.section = sectp; |
| this->debug_aranges.size = bfd_section_size (sectp); |
| } |
| |
| if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC)) |
| && bfd_section_vma (sectp) == 0) |
| this->has_section_at_zero = true; |
| } |
| |
| /* A helper function that returns the size of a section in a safe way. |
| If you are positive that the section has been read before using the |
| size, then it is safe to refer to the dwarf2_section_info object's |
| "size" field directly. In other cases, you must call this |
| function, because for compressed sections the size field is not set |
| correctly until the section has been read. */ |
| |
| static bfd_size_type |
| dwarf2_section_size (struct objfile *objfile, |
| struct dwarf2_section_info *info) |
| { |
| if (!info->readin) |
| info->read (objfile); |
| return info->size; |
| } |
| |
| /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and |
| SECTION_NAME. */ |
| |
| void |
| dwarf2_get_section_info (struct objfile *objfile, |
| enum dwarf2_section_enum sect, |
| asection **sectp, const gdb_byte **bufp, |
| bfd_size_type *sizep) |
| { |
| struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile); |
| struct dwarf2_section_info *info; |
| |
| /* We may see an objfile without any DWARF, in which case we just |
| return nothing. */ |
| if (data == NULL) |
| { |
| *sectp = NULL; |
| *bufp = NULL; |
| *sizep = 0; |
| return; |
| } |
| switch (sect) |
| { |
| case DWARF2_DEBUG_FRAME: |
| info = &data->frame; |
| break; |
| case DWARF2_EH_FRAME: |
| info = &data->eh_frame; |
| break; |
| default: |
| gdb_assert_not_reached ("unexpected section"); |
| } |
| |
| info->read (objfile); |
| |
| *sectp = info->get_bfd_section (); |
| *bufp = info->buffer; |
| *sizep = info->size; |
| } |
| |
| /* A helper function to find the sections for a .dwz file. */ |
| |
| static void |
| locate_dwz_sections (bfd *abfd, asection *sectp, void *arg) |
| { |
| struct dwz_file *dwz_file = (struct dwz_file *) arg; |
| |
| /* Note that we only support the standard ELF names, because .dwz |
| is ELF-only (at the time of writing). */ |
| if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev)) |
| { |
| dwz_file->abbrev.s.section = sectp; |
| dwz_file->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.info)) |
| { |
| dwz_file->info.s.section = sectp; |
| dwz_file->info.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.str)) |
| { |
| dwz_file->str.s.section = sectp; |
| dwz_file->str.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.line)) |
| { |
| dwz_file->line.s.section = sectp; |
| dwz_file->line.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.macro)) |
| { |
| dwz_file->macro.s.section = sectp; |
| dwz_file->macro.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index)) |
| { |
| dwz_file->gdb_index.s.section = sectp; |
| dwz_file->gdb_index.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names)) |
| { |
| dwz_file->debug_names.s.section = sectp; |
| dwz_file->debug_names.size = bfd_section_size (sectp); |
| } |
| } |
| |
| /* See dwarf2read.h. */ |
| |
| struct dwz_file * |
| dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| const char *filename; |
| bfd_size_type buildid_len_arg; |
| size_t buildid_len; |
| bfd_byte *buildid; |
| |
| if (dwarf2_per_objfile->dwz_file != NULL) |
| return dwarf2_per_objfile->dwz_file.get (); |
| |
| bfd_set_error (bfd_error_no_error); |
| gdb::unique_xmalloc_ptr<char> data |
| (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd, |
| &buildid_len_arg, &buildid)); |
| if (data == NULL) |
| { |
| if (bfd_get_error () == bfd_error_no_error) |
| return NULL; |
| error (_("could not read '.gnu_debugaltlink' section: %s"), |
| bfd_errmsg (bfd_get_error ())); |
| } |
| |
| gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid); |
| |
| buildid_len = (size_t) buildid_len_arg; |
| |
| filename = data.get (); |
| |
| std::string abs_storage; |
| if (!IS_ABSOLUTE_PATH (filename)) |
| { |
| gdb::unique_xmalloc_ptr<char> abs |
| = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile)); |
| |
| abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename; |
| filename = abs_storage.c_str (); |
| } |
| |
| /* First try the file name given in the section. If that doesn't |
| work, try to use the build-id instead. */ |
| gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1)); |
| if (dwz_bfd != NULL) |
| { |
| if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid)) |
| dwz_bfd.reset (nullptr); |
| } |
| |
| if (dwz_bfd == NULL) |
| dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid); |
| |
| if (dwz_bfd == NULL) |
| error (_("could not find '.gnu_debugaltlink' file for %s"), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| |
| std::unique_ptr<struct dwz_file> result |
| (new struct dwz_file (std::move (dwz_bfd))); |
| |
| bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections, |
| result.get ()); |
| |
| gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, |
| result->dwz_bfd.get ()); |
| dwarf2_per_objfile->dwz_file = std::move (result); |
| return dwarf2_per_objfile->dwz_file.get (); |
| } |
| |
| /* DWARF quick_symbols_functions support. */ |
| |
| /* TUs can share .debug_line entries, and there can be a lot more TUs than |
| unique line tables, so we maintain a separate table of all .debug_line |
| derived entries to support the sharing. |
| All the quick functions need is the list of file names. We discard the |
| line_header when we're done and don't need to record it here. */ |
| struct quick_file_names |
| { |
| /* The data used to construct the hash key. */ |
| struct stmt_list_hash hash; |
| |
| /* The number of entries in file_names, real_names. */ |
| unsigned int num_file_names; |
| |
| /* The file names from the line table, after being run through |
| file_full_name. */ |
| const char **file_names; |
| |
| /* The file names from the line table after being run through |
| gdb_realpath. These are computed lazily. */ |
| const char **real_names; |
| }; |
| |
| /* When using the index (and thus not using psymtabs), each CU has an |
| object of this type. This is used to hold information needed by |
| the various "quick" methods. */ |
| struct dwarf2_per_cu_quick_data |
| { |
| /* The file table. This can be NULL if there was no file table |
| or it's currently not read in. |
| NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */ |
| struct quick_file_names *file_names; |
| |
| /* The corresponding symbol table. This is NULL if symbols for this |
| CU have not yet been read. */ |
| struct compunit_symtab *compunit_symtab; |
| |
| /* A temporary mark bit used when iterating over all CUs in |
| expand_symtabs_matching. */ |
| unsigned int mark : 1; |
| |
| /* True if we've tried to read the file table and found there isn't one. |
| There will be no point in trying to read it again next time. */ |
| unsigned int no_file_data : 1; |
| }; |
| |
| /* Utility hash function for a stmt_list_hash. */ |
| |
| static hashval_t |
| hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash) |
| { |
| hashval_t v = 0; |
| |
| if (stmt_list_hash->dwo_unit != NULL) |
| v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file; |
| v += to_underlying (stmt_list_hash->line_sect_off); |
| return v; |
| } |
| |
| /* Utility equality function for a stmt_list_hash. */ |
| |
| static int |
| eq_stmt_list_entry (const struct stmt_list_hash *lhs, |
| const struct stmt_list_hash *rhs) |
| { |
| if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL)) |
| return 0; |
| if (lhs->dwo_unit != NULL |
| && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file) |
| return 0; |
| |
| return lhs->line_sect_off == rhs->line_sect_off; |
| } |
| |
| /* Hash function for a quick_file_names. */ |
| |
| static hashval_t |
| hash_file_name_entry (const void *e) |
| { |
| const struct quick_file_names *file_data |
| = (const struct quick_file_names *) e; |
| |
| return hash_stmt_list_entry (&file_data->hash); |
| } |
| |
| /* Equality function for a quick_file_names. */ |
| |
| static int |
| eq_file_name_entry (const void *a, const void *b) |
| { |
| const struct quick_file_names *ea = (const struct quick_file_names *) a; |
| const struct quick_file_names *eb = (const struct quick_file_names *) b; |
| |
| return eq_stmt_list_entry (&ea->hash, &eb->hash); |
| } |
| |
| /* Delete function for a quick_file_names. */ |
| |
| static void |
| delete_file_name_entry (void *e) |
| { |
| struct quick_file_names *file_data = (struct quick_file_names *) e; |
| int i; |
| |
| for (i = 0; i < file_data->num_file_names; ++i) |
| { |
| xfree ((void*) file_data->file_names[i]); |
| if (file_data->real_names) |
| xfree ((void*) file_data->real_names[i]); |
| } |
| |
| /* The space for the struct itself lives on objfile_obstack, |
| so we don't free it here. */ |
| } |
| |
| /* Create a quick_file_names hash table. */ |
| |
| static htab_t |
| create_quick_file_names_table (unsigned int nr_initial_entries) |
| { |
| return htab_create_alloc (nr_initial_entries, |
| hash_file_name_entry, eq_file_name_entry, |
| delete_file_name_entry, xcalloc, xfree); |
| } |
| |
| /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would |
| have to be created afterwards. You should call age_cached_comp_units after |
| processing PER_CU->CU. dw2_setup must have been already called. */ |
| |
| static void |
| load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial) |
| { |
| if (per_cu->is_debug_types) |
| load_full_type_unit (per_cu); |
| else |
| load_full_comp_unit (per_cu, skip_partial, language_minimal); |
| |
| if (per_cu->cu == NULL) |
| return; /* Dummy CU. */ |
| |
| dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu); |
| } |
| |
| /* Read in the symbols for PER_CU. */ |
| |
| static void |
| dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| |
| /* Skip type_unit_groups, reading the type units they contain |
| is handled elsewhere. */ |
| if (IS_TYPE_UNIT_GROUP (per_cu)) |
| return; |
| |
| /* The destructor of dwarf2_queue_guard frees any entries left on |
| the queue. After this point we're guaranteed to leave this function |
| with the dwarf queue empty. */ |
| dwarf2_queue_guard q_guard (dwarf2_per_objfile); |
| |
| if (dwarf2_per_objfile->using_index |
| ? per_cu->v.quick->compunit_symtab == NULL |
| : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin)) |
| { |
| queue_comp_unit (per_cu, language_minimal); |
| load_cu (per_cu, skip_partial); |
| |
| /* If we just loaded a CU from a DWO, and we're working with an index |
| that may badly handle TUs, load all the TUs in that DWO as well. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */ |
| if (!per_cu->is_debug_types |
| && per_cu->cu != NULL |
| && per_cu->cu->dwo_unit != NULL |
| && dwarf2_per_objfile->index_table != NULL |
| && dwarf2_per_objfile->index_table->version <= 7 |
| /* DWP files aren't supported yet. */ |
| && get_dwp_file (dwarf2_per_objfile) == NULL) |
| queue_and_load_all_dwo_tus (per_cu); |
| } |
| |
| process_queue (dwarf2_per_objfile); |
| |
| /* Age the cache, releasing compilation units that have not |
| been used recently. */ |
| age_cached_comp_units (dwarf2_per_objfile); |
| } |
| |
| /* Ensure that the symbols for PER_CU have been read in. OBJFILE is |
| the objfile from which this CU came. Returns the resulting symbol |
| table. */ |
| |
| static struct compunit_symtab * |
| dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| |
| gdb_assert (dwarf2_per_objfile->using_index); |
| if (!per_cu->v.quick->compunit_symtab) |
| { |
| free_cached_comp_units freer (dwarf2_per_objfile); |
| scoped_restore decrementer = increment_reading_symtab (); |
| dw2_do_instantiate_symtab (per_cu, skip_partial); |
| process_cu_includes (dwarf2_per_objfile); |
| } |
| |
| return per_cu->v.quick->compunit_symtab; |
| } |
| |
| /* See declaration. */ |
| |
| dwarf2_per_cu_data * |
| dwarf2_per_objfile::get_cutu (int index) |
| { |
| if (index >= this->all_comp_units.size ()) |
| { |
| index -= this->all_comp_units.size (); |
| gdb_assert (index < this->all_type_units.size ()); |
| return &this->all_type_units[index]->per_cu; |
| } |
| |
| return this->all_comp_units[index]; |
| } |
| |
| /* See declaration. */ |
| |
| dwarf2_per_cu_data * |
| dwarf2_per_objfile::get_cu (int index) |
| { |
| gdb_assert (index >= 0 && index < this->all_comp_units.size ()); |
| |
| return this->all_comp_units[index]; |
| } |
| |
| /* See declaration. */ |
| |
| signatured_type * |
| dwarf2_per_objfile::get_tu (int index) |
| { |
| gdb_assert (index >= 0 && index < this->all_type_units.size ()); |
| |
| return this->all_type_units[index]; |
| } |
| |
| /* Return a new dwarf2_per_cu_data allocated on OBJFILE's |
| objfile_obstack, and constructed with the specified field |
| values. */ |
| |
| static dwarf2_per_cu_data * |
| create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section, |
| int is_dwz, |
| sect_offset sect_off, ULONGEST length) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| dwarf2_per_cu_data *the_cu |
| = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_data); |
| the_cu->sect_off = sect_off; |
| the_cu->length = length; |
| the_cu->dwarf2_per_objfile = dwarf2_per_objfile; |
| the_cu->section = section; |
| the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| the_cu->is_dwz = is_dwz; |
| return the_cu; |
| } |
| |
| /* A helper for create_cus_from_index that handles a given list of |
| CUs. */ |
| |
| static void |
| create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const gdb_byte *cu_list, offset_type n_elements, |
| struct dwarf2_section_info *section, |
| int is_dwz) |
| { |
| for (offset_type i = 0; i < n_elements; i += 2) |
| { |
| gdb_static_assert (sizeof (ULONGEST) >= 8); |
| |
| sect_offset sect_off |
| = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE); |
| ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE); |
| cu_list += 2 * 8; |
| |
| dwarf2_per_cu_data *per_cu |
| = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz, |
| sect_off, length); |
| dwarf2_per_objfile->all_comp_units.push_back (per_cu); |
| } |
| } |
| |
| /* Read the CU list from the mapped index, and use it to create all |
| the CU objects for this objfile. */ |
| |
| static void |
| create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const gdb_byte *cu_list, offset_type cu_list_elements, |
| const gdb_byte *dwz_list, offset_type dwz_elements) |
| { |
| gdb_assert (dwarf2_per_objfile->all_comp_units.empty ()); |
| dwarf2_per_objfile->all_comp_units.reserve |
| ((cu_list_elements + dwz_elements) / 2); |
| |
| create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements, |
| &dwarf2_per_objfile->info, 0); |
| |
| if (dwz_elements == 0) |
| return; |
| |
| dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements, |
| &dwz->info, 1); |
| } |
| |
| /* Create the signatured type hash table from the index. */ |
| |
| static void |
| create_signatured_type_table_from_index |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section, |
| const gdb_byte *bytes, |
| offset_type elements) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| gdb_assert (dwarf2_per_objfile->all_type_units.empty ()); |
| dwarf2_per_objfile->all_type_units.reserve (elements / 3); |
| |
| htab_up sig_types_hash = allocate_signatured_type_table (objfile); |
| |
| for (offset_type i = 0; i < elements; i += 3) |
| { |
| struct signatured_type *sig_type; |
| ULONGEST signature; |
| void **slot; |
| cu_offset type_offset_in_tu; |
| |
| gdb_static_assert (sizeof (ULONGEST) >= 8); |
| sect_offset sect_off |
| = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE); |
| type_offset_in_tu |
| = (cu_offset) extract_unsigned_integer (bytes + 8, 8, |
| BFD_ENDIAN_LITTLE); |
| signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE); |
| bytes += 3 * 8; |
| |
| sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| sig_type->signature = signature; |
| sig_type->type_offset_in_tu = type_offset_in_tu; |
| sig_type->per_cu.is_debug_types = 1; |
| sig_type->per_cu.section = section; |
| sig_type->per_cu.sect_off = sect_off; |
| sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile; |
| sig_type->per_cu.v.quick |
| = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| |
| slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT); |
| *slot = sig_type; |
| |
| dwarf2_per_objfile->all_type_units.push_back (sig_type); |
| } |
| |
| dwarf2_per_objfile->signatured_types = std::move (sig_types_hash); |
| } |
| |
| /* Create the signatured type hash table from .debug_names. */ |
| |
| static void |
| create_signatured_type_table_from_debug_names |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const mapped_debug_names &map, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| section->read (objfile); |
| abbrev_section->read (objfile); |
| |
| gdb_assert (dwarf2_per_objfile->all_type_units.empty ()); |
| dwarf2_per_objfile->all_type_units.reserve (map.tu_count); |
| |
| htab_up sig_types_hash = allocate_signatured_type_table (objfile); |
| |
| for (uint32_t i = 0; i < map.tu_count; ++i) |
| { |
| struct signatured_type *sig_type; |
| void **slot; |
| |
| sect_offset sect_off |
| = (sect_offset) (extract_unsigned_integer |
| (map.tu_table_reordered + i * map.offset_size, |
| map.offset_size, |
| map.dwarf5_byte_order)); |
| |
| comp_unit_head cu_header; |
| read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section, |
| abbrev_section, |
| section->buffer + to_underlying (sect_off), |
| rcuh_kind::TYPE); |
| |
| sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| sig_type->signature = cu_header.signature; |
| sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu; |
| sig_type->per_cu.is_debug_types = 1; |
| sig_type->per_cu.section = section; |
| sig_type->per_cu.sect_off = sect_off; |
| sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile; |
| sig_type->per_cu.v.quick |
| = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| |
| slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT); |
| *slot = sig_type; |
| |
| dwarf2_per_objfile->all_type_units.push_back (sig_type); |
| } |
| |
| dwarf2_per_objfile->signatured_types = std::move (sig_types_hash); |
| } |
| |
| /* Read the address map data from the mapped index, and use it to |
| populate the objfile's psymtabs_addrmap. */ |
| |
| static void |
| create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct mapped_index *index) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| const gdb_byte *iter, *end; |
| struct addrmap *mutable_map; |
| CORE_ADDR baseaddr; |
| |
| auto_obstack temp_obstack; |
| |
| mutable_map = addrmap_create_mutable (&temp_obstack); |
| |
| iter = index->address_table.data (); |
| end = iter + index->address_table.size (); |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| while (iter < end) |
| { |
| ULONGEST hi, lo, cu_index; |
| lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE); |
| iter += 8; |
| hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE); |
| iter += 8; |
| cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE); |
| iter += 4; |
| |
| if (lo > hi) |
| { |
| complaint (_(".gdb_index address table has invalid range (%s - %s)"), |
| hex_string (lo), hex_string (hi)); |
| continue; |
| } |
| |
| if (cu_index >= dwarf2_per_objfile->all_comp_units.size ()) |
| { |
| complaint (_(".gdb_index address table has invalid CU number %u"), |
| (unsigned) cu_index); |
| continue; |
| } |
| |
| lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr; |
| hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr; |
| addrmap_set_empty (mutable_map, lo, hi - 1, |
| dwarf2_per_objfile->get_cu (cu_index)); |
| } |
| |
| objfile->partial_symtabs->psymtabs_addrmap |
| = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ()); |
| } |
| |
| /* Read the address map data from DWARF-5 .debug_aranges, and use it to |
| populate the objfile's psymtabs_addrmap. */ |
| |
| static void |
| create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *abfd = objfile->obfd; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| const CORE_ADDR baseaddr = objfile->text_section_offset (); |
| |
| auto_obstack temp_obstack; |
| addrmap *mutable_map = addrmap_create_mutable (&temp_obstack); |
| |
| std::unordered_map<sect_offset, |
| dwarf2_per_cu_data *, |
| gdb::hash_enum<sect_offset>> |
| debug_info_offset_to_per_cu; |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| const auto insertpair |
| = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu); |
| if (!insertpair.second) |
| { |
| warning (_("Section .debug_aranges in %s has duplicate " |
| "debug_info_offset %s, ignoring .debug_aranges."), |
| objfile_name (objfile), sect_offset_str (per_cu->sect_off)); |
| return; |
| } |
| } |
| |
| section->read (objfile); |
| |
| const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch); |
| |
| const gdb_byte *addr = section->buffer; |
| |
| while (addr < section->buffer + section->size) |
| { |
| const gdb_byte *const entry_addr = addr; |
| unsigned int bytes_read; |
| |
| const LONGEST entry_length = read_initial_length (abfd, addr, |
| &bytes_read); |
| addr += bytes_read; |
| |
| const gdb_byte *const entry_end = addr + entry_length; |
| const bool dwarf5_is_dwarf64 = bytes_read != 4; |
| const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4; |
| if (addr + entry_length > section->buffer + section->size) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "length %s exceeds section length %s, " |
| "ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer), |
| plongest (bytes_read + entry_length), |
| pulongest (section->size)); |
| return; |
| } |
| |
| /* The version number. */ |
| const uint16_t version = read_2_bytes (abfd, addr); |
| addr += 2; |
| if (version != 2) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "has unsupported version %d, ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer), version); |
| return; |
| } |
| |
| const uint64_t debug_info_offset |
| = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order); |
| addr += offset_size; |
| const auto per_cu_it |
| = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset)); |
| if (per_cu_it == debug_info_offset_to_per_cu.cend ()) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "debug_info_offset %s does not exists, " |
| "ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer), |
| pulongest (debug_info_offset)); |
| return; |
| } |
| dwarf2_per_cu_data *const per_cu = per_cu_it->second; |
| |
| const uint8_t address_size = *addr++; |
| if (address_size < 1 || address_size > 8) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "address_size %u is invalid, ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer), address_size); |
| return; |
| } |
| |
| const uint8_t segment_selector_size = *addr++; |
| if (segment_selector_size != 0) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "segment_selector_size %u is not supported, " |
| "ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer), |
| segment_selector_size); |
| return; |
| } |
| |
| /* Must pad to an alignment boundary that is twice the address |
| size. It is undocumented by the DWARF standard but GCC does |
| use it. */ |
| for (size_t padding = ((-(addr - section->buffer)) |
| & (2 * address_size - 1)); |
| padding > 0; padding--) |
| if (*addr++ != 0) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "padding is not zero, ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer)); |
| return; |
| } |
| |
| for (;;) |
| { |
| if (addr + 2 * address_size > entry_end) |
| { |
| warning (_("Section .debug_aranges in %s entry at offset %s " |
| "address list is not properly terminated, " |
| "ignoring .debug_aranges."), |
| objfile_name (objfile), |
| plongest (entry_addr - section->buffer)); |
| return; |
| } |
| ULONGEST start = extract_unsigned_integer (addr, address_size, |
| dwarf5_byte_order); |
| addr += address_size; |
| ULONGEST length = extract_unsigned_integer (addr, address_size, |
| dwarf5_byte_order); |
| addr += address_size; |
| if (start == 0 && length == 0) |
| break; |
| if (start == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* Symbol was eliminated due to a COMDAT group. */ |
| continue; |
| } |
| ULONGEST end = start + length; |
| start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr) |
| - baseaddr); |
| end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr) |
| - baseaddr); |
| addrmap_set_empty (mutable_map, start, end - 1, per_cu); |
| } |
| } |
| |
| objfile->partial_symtabs->psymtabs_addrmap |
| = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ()); |
| } |
| |
| /* Find a slot in the mapped index INDEX for the object named NAME. |
| If NAME is found, set *VEC_OUT to point to the CU vector in the |
| constant pool and return true. If NAME cannot be found, return |
| false. */ |
| |
| static bool |
| find_slot_in_mapped_hash (struct mapped_index *index, const char *name, |
| offset_type **vec_out) |
| { |
| offset_type hash; |
| offset_type slot, step; |
| int (*cmp) (const char *, const char *); |
| |
| gdb::unique_xmalloc_ptr<char> without_params; |
| if (current_language->la_language == language_cplus |
| || current_language->la_language == language_fortran |
| || current_language->la_language == language_d) |
| { |
| /* NAME is already canonical. Drop any qualifiers as .gdb_index does |
| not contain any. */ |
| |
| if (strchr (name, '(') != NULL) |
| { |
| without_params = cp_remove_params (name); |
| |
| if (without_params != NULL) |
| name = without_params.get (); |
| } |
| } |
| |
| /* Index version 4 did not support case insensitive searches. But the |
| indices for case insensitive languages are built in lowercase, therefore |
| simulate our NAME being searched is also lowercased. */ |
| hash = mapped_index_string_hash ((index->version == 4 |
| && case_sensitivity == case_sensitive_off |
| ? 5 : index->version), |
| name); |
| |
| slot = hash & (index->symbol_table.size () - 1); |
| step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1; |
| cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp); |
| |
| for (;;) |
| { |
| const char *str; |
| |
| const auto &bucket = index->symbol_table[slot]; |
| if (bucket.name == 0 && bucket.vec == 0) |
| return false; |
| |
| str = index->constant_pool + MAYBE_SWAP (bucket.name); |
| if (!cmp (name, str)) |
| { |
| *vec_out = (offset_type *) (index->constant_pool |
| + MAYBE_SWAP (bucket.vec)); |
| return true; |
| } |
| |
| slot = (slot + step) & (index->symbol_table.size () - 1); |
| } |
| } |
| |
| /* A helper function that reads the .gdb_index from BUFFER and fills |
| in MAP. FILENAME is the name of the file containing the data; |
| it is used for error reporting. DEPRECATED_OK is true if it is |
| ok to use deprecated sections. |
| |
| CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are |
| out parameters that are filled in with information about the CU and |
| TU lists in the section. |
| |
| Returns true if all went well, false otherwise. */ |
| |
| static bool |
| read_gdb_index_from_buffer (struct objfile *objfile, |
| const char *filename, |
| bool deprecated_ok, |
| gdb::array_view<const gdb_byte> buffer, |
| struct mapped_index *map, |
| const gdb_byte **cu_list, |
| offset_type *cu_list_elements, |
| const gdb_byte **types_list, |
| offset_type *types_list_elements) |
| { |
| const gdb_byte *addr = &buffer[0]; |
| |
| /* Version check. */ |
| offset_type version = MAYBE_SWAP (*(offset_type *) addr); |
| /* Versions earlier than 3 emitted every copy of a psymbol. This |
| causes the index to behave very poorly for certain requests. Version 3 |
| contained incomplete addrmap. So, it seems better to just ignore such |
| indices. */ |
| if (version < 4) |
| { |
| static int warning_printed = 0; |
| if (!warning_printed) |
| { |
| warning (_("Skipping obsolete .gdb_index section in %s."), |
| filename); |
| warning_printed = 1; |
| } |
| return 0; |
| } |
| /* Index version 4 uses a different hash function than index version |
| 5 and later. |
| |
| Versions earlier than 6 did not emit psymbols for inlined |
| functions. Using these files will cause GDB not to be able to |
| set breakpoints on inlined functions by name, so we ignore these |
| indices unless the user has done |
| "set use-deprecated-index-sections on". */ |
| if (version < 6 && !deprecated_ok) |
| { |
| static int warning_printed = 0; |
| if (!warning_printed) |
| { |
| warning (_("\ |
| Skipping deprecated .gdb_index section in %s.\n\ |
| Do \"set use-deprecated-index-sections on\" before the file is read\n\ |
| to use the section anyway."), |
| filename); |
| warning_printed = 1; |
| } |
| return 0; |
| } |
| /* Version 7 indices generated by gold refer to the CU for a symbol instead |
| of the TU (for symbols coming from TUs), |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021. |
| Plus gold-generated indices can have duplicate entries for global symbols, |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15646. |
| These are just performance bugs, and we can't distinguish gdb-generated |
| indices from gold-generated ones, so issue no warning here. */ |
| |
| /* Indexes with higher version than the one supported by GDB may be no |
| longer backward compatible. */ |
| if (version > 8) |
| return 0; |
| |
| map->version = version; |
| |
| offset_type *metadata = (offset_type *) (addr + sizeof (offset_type)); |
| |
| int i = 0; |
| *cu_list = addr + MAYBE_SWAP (metadata[i]); |
| *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i])) |
| / 8); |
| ++i; |
| |
| *types_list = addr + MAYBE_SWAP (metadata[i]); |
| *types_list_elements = ((MAYBE_SWAP (metadata[i + 1]) |
| - MAYBE_SWAP (metadata[i])) |
| / 8); |
| ++i; |
| |
| const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]); |
| const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]); |
| map->address_table |
| = gdb::array_view<const gdb_byte> (address_table, address_table_end); |
| ++i; |
| |
| const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]); |
| const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]); |
| map->symbol_table |
| = gdb::array_view<mapped_index::symbol_table_slot> |
| ((mapped_index::symbol_table_slot *) symbol_table, |
| (mapped_index::symbol_table_slot *) symbol_table_end); |
| |
| ++i; |
| map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i])); |
| |
| return 1; |
| } |
| |
| /* Callback types for dwarf2_read_gdb_index. */ |
| |
| typedef gdb::function_view |
| <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)> |
| get_gdb_index_contents_ftype; |
| typedef gdb::function_view |
| <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)> |
| get_gdb_index_contents_dwz_ftype; |
| |
| /* Read .gdb_index. If everything went ok, initialize the "quick" |
| elements of all the CUs and return 1. Otherwise, return 0. */ |
| |
| static int |
| dwarf2_read_gdb_index |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| get_gdb_index_contents_ftype get_gdb_index_contents, |
| get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz) |
| { |
| const gdb_byte *cu_list, *types_list, *dwz_list = NULL; |
| offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0; |
| struct dwz_file *dwz; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| gdb::array_view<const gdb_byte> main_index_contents |
| = get_gdb_index_contents (objfile, dwarf2_per_objfile); |
| |
| if (main_index_contents.empty ()) |
| return 0; |
| |
| std::unique_ptr<struct mapped_index> map (new struct mapped_index); |
| if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile), |
| use_deprecated_index_sections, |
| main_index_contents, map.get (), &cu_list, |
| &cu_list_elements, &types_list, |
| &types_list_elements)) |
| return 0; |
| |
| /* Don't use the index if it's empty. */ |
| if (map->symbol_table.empty ()) |
| return 0; |
| |
| /* If there is a .dwz file, read it so we can get its CU list as |
| well. */ |
| dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| if (dwz != NULL) |
| { |
| struct mapped_index dwz_map; |
| const gdb_byte *dwz_types_ignore; |
| offset_type dwz_types_elements_ignore; |
| |
| gdb::array_view<const gdb_byte> dwz_index_content |
| = get_gdb_index_contents_dwz (objfile, dwz); |
| |
| if (dwz_index_content.empty ()) |
| return 0; |
| |
| if (!read_gdb_index_from_buffer (objfile, |
| bfd_get_filename (dwz->dwz_bfd.get ()), |
| 1, dwz_index_content, &dwz_map, |
| &dwz_list, &dwz_list_elements, |
| &dwz_types_ignore, |
| &dwz_types_elements_ignore)) |
| { |
| warning (_("could not read '.gdb_index' section from %s; skipping"), |
| bfd_get_filename (dwz->dwz_bfd.get ())); |
| return 0; |
| } |
| } |
| |
| create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements, |
| dwz_list, dwz_list_elements); |
| |
| if (types_list_elements) |
| { |
| /* We can only handle a single .debug_types when we have an |
| index. */ |
| if (dwarf2_per_objfile->types.size () != 1) |
| return 0; |
| |
| dwarf2_section_info *section = &dwarf2_per_objfile->types[0]; |
| |
| create_signatured_type_table_from_index (dwarf2_per_objfile, section, |
| types_list, types_list_elements); |
| } |
| |
| create_addrmap_from_index (dwarf2_per_objfile, map.get ()); |
| |
| dwarf2_per_objfile->index_table = std::move (map); |
| dwarf2_per_objfile->using_index = 1; |
| dwarf2_per_objfile->quick_file_names_table = |
| create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ()); |
| |
| return 1; |
| } |
| |
| /* die_reader_func for dw2_get_file_names. */ |
| |
| static void |
| dw2_get_file_names_reader (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct die_info *comp_unit_die) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_per_cu_data *this_cu = cu->per_cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_per_cu_data *lh_cu; |
| struct attribute *attr; |
| void **slot; |
| struct quick_file_names *qfn; |
| |
| gdb_assert (! this_cu->is_debug_types); |
| |
| /* Our callers never want to match partial units -- instead they |
| will match the enclosing full CU. */ |
| if (comp_unit_die->tag == DW_TAG_partial_unit) |
| { |
| this_cu->v.quick->no_file_data = 1; |
| return; |
| } |
| |
| lh_cu = this_cu; |
| slot = NULL; |
| |
| line_header_up lh; |
| sect_offset line_offset {}; |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu); |
| if (attr != nullptr) |
| { |
| struct quick_file_names find_entry; |
| |
| line_offset = (sect_offset) DW_UNSND (attr); |
| |
| /* We may have already read in this line header (TU line header sharing). |
| If we have we're done. */ |
| find_entry.hash.dwo_unit = cu->dwo_unit; |
| find_entry.hash.line_sect_off = line_offset; |
| slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table, |
| &find_entry, INSERT); |
| if (*slot != NULL) |
| { |
| lh_cu->v.quick->file_names = (struct quick_file_names *) *slot; |
| return; |
| } |
| |
| lh = dwarf_decode_line_header (line_offset, cu); |
| } |
| if (lh == NULL) |
| { |
| lh_cu->v.quick->no_file_data = 1; |
| return; |
| } |
| |
| qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names); |
| qfn->hash.dwo_unit = cu->dwo_unit; |
| qfn->hash.line_sect_off = line_offset; |
| gdb_assert (slot != NULL); |
| *slot = qfn; |
| |
| file_and_directory fnd = find_file_and_directory (comp_unit_die, cu); |
| |
| int offset = 0; |
| if (strcmp (fnd.name, "<unknown>") != 0) |
| ++offset; |
| |
| qfn->num_file_names = offset + lh->file_names_size (); |
| qfn->file_names = |
| XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names); |
| if (offset != 0) |
| qfn->file_names[0] = xstrdup (fnd.name); |
| for (int i = 0; i < lh->file_names_size (); ++i) |
| qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir); |
| qfn->real_names = NULL; |
| |
| lh_cu->v.quick->file_names = qfn; |
| } |
| |
| /* A helper for the "quick" functions which attempts to read the line |
| table for THIS_CU. */ |
| |
| static struct quick_file_names * |
| dw2_get_file_names (struct dwarf2_per_cu_data *this_cu) |
| { |
| /* This should never be called for TUs. */ |
| gdb_assert (! this_cu->is_debug_types); |
| /* Nor type unit groups. */ |
| gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu)); |
| |
| if (this_cu->v.quick->file_names != NULL) |
| return this_cu->v.quick->file_names; |
| /* If we know there is no line data, no point in looking again. */ |
| if (this_cu->v.quick->no_file_data) |
| return NULL; |
| |
| cutu_reader reader (this_cu); |
| if (!reader.dummy_p) |
| dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die); |
| |
| if (this_cu->v.quick->no_file_data) |
| return NULL; |
| return this_cu->v.quick->file_names; |
| } |
| |
| /* A helper for the "quick" functions which computes and caches the |
| real path for a given file name from the line table. */ |
| |
| static const char * |
| dw2_get_real_path (struct objfile *objfile, |
| struct quick_file_names *qfn, int index) |
| { |
| if (qfn->real_names == NULL) |
| qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack, |
| qfn->num_file_names, const char *); |
| |
| if (qfn->real_names[index] == NULL) |
| qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release (); |
| |
| return qfn->real_names[index]; |
| } |
| |
| static struct symtab * |
| dw2_find_last_source_symtab (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back (); |
| compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false); |
| |
| if (cust == NULL) |
| return NULL; |
| |
| return compunit_primary_filetab (cust); |
| } |
| |
| /* Traversal function for dw2_forget_cached_source_info. */ |
| |
| static int |
| dw2_free_cached_file_names (void **slot, void *info) |
| { |
| struct quick_file_names *file_data = (struct quick_file_names *) *slot; |
| |
| if (file_data->real_names) |
| { |
| int i; |
| |
| for (i = 0; i < file_data->num_file_names; ++i) |
| { |
| xfree ((void*) file_data->real_names[i]); |
| file_data->real_names[i] = NULL; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void |
| dw2_forget_cached_source_info (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table, |
| dw2_free_cached_file_names, NULL); |
| } |
| |
| /* Helper function for dw2_map_symtabs_matching_filename that expands |
| the symtabs and calls the iterator. */ |
| |
| static int |
| dw2_map_expand_apply (struct objfile *objfile, |
| struct dwarf2_per_cu_data *per_cu, |
| const char *name, const char *real_path, |
| gdb::function_view<bool (symtab *)> callback) |
| { |
| struct compunit_symtab *last_made = objfile->compunit_symtabs; |
| |
| /* Don't visit already-expanded CUs. */ |
| if (per_cu->v.quick->compunit_symtab) |
| return 0; |
| |
| /* This may expand more than one symtab, and we want to iterate over |
| all of them. */ |
| dw2_instantiate_symtab (per_cu, false); |
| |
| return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs, |
| last_made, callback); |
| } |
| |
| /* Implementation of the map_symtabs_matching_filename method. */ |
| |
| static bool |
| dw2_map_symtabs_matching_filename |
| (struct objfile *objfile, const char *name, const char *real_path, |
| gdb::function_view<bool (symtab *)> callback) |
| { |
| const char *name_basename = lbasename (name); |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* The rule is CUs specify all the files, including those used by |
| any TU, so there's no need to scan TUs here. */ |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->compunit_symtab) |
| continue; |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_name = file_data->file_names[j]; |
| const char *this_real_name; |
| |
| if (compare_filenames_for_search (this_name, name)) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, name, real_path, |
| callback)) |
| return true; |
| continue; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if (! basenames_may_differ |
| && FILENAME_CMP (lbasename (this_name), name_basename) != 0) |
| continue; |
| |
| this_real_name = dw2_get_real_path (objfile, file_data, j); |
| if (compare_filenames_for_search (this_real_name, name)) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, name, real_path, |
| callback)) |
| return true; |
| continue; |
| } |
| |
| if (real_path != NULL) |
| { |
| gdb_assert (IS_ABSOLUTE_PATH (real_path)); |
| gdb_assert (IS_ABSOLUTE_PATH (name)); |
| if (this_real_name != NULL |
| && FILENAME_CMP (real_path, this_real_name) == 0) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, name, real_path, |
| callback)) |
| return true; |
| continue; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Struct used to manage iterating over all CUs looking for a symbol. */ |
| |
| struct dw2_symtab_iterator |
| { |
| /* The dwarf2_per_objfile owning the CUs we are iterating on. */ |
| struct dwarf2_per_objfile *dwarf2_per_objfile; |
| /* If set, only look for symbols that match that block. Valid values are |
| GLOBAL_BLOCK and STATIC_BLOCK. */ |
| gdb::optional<block_enum> block_index; |
| /* The kind of symbol we're looking for. */ |
| domain_enum domain; |
| /* The list of CUs from the index entry of the symbol, |
| or NULL if not found. */ |
| offset_type *vec; |
| /* The next element in VEC to look at. */ |
| int next; |
| /* The number of elements in VEC, or zero if there is no match. */ |
| int length; |
| /* Have we seen a global version of the symbol? |
| If so we can ignore all further global instances. |
| This is to work around gold/15646, inefficient gold-generated |
| indices. */ |
| int global_seen; |
| }; |
| |
| /* Initialize the index symtab iterator ITER. */ |
| |
| static void |
| dw2_symtab_iter_init (struct dw2_symtab_iterator *iter, |
| struct dwarf2_per_objfile *dwarf2_per_objfile, |
| gdb::optional<block_enum> block_index, |
| domain_enum domain, |
| const char *name) |
| { |
| iter->dwarf2_per_objfile = dwarf2_per_objfile; |
| iter->block_index = block_index; |
| iter->domain = domain; |
| iter->next = 0; |
| iter->global_seen = 0; |
| |
| mapped_index *index = dwarf2_per_objfile->index_table.get (); |
| |
| /* index is NULL if OBJF_READNOW. */ |
| if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec)) |
| iter->length = MAYBE_SWAP (*iter->vec); |
| else |
| { |
| iter->vec = NULL; |
| iter->length = 0; |
| } |
| } |
| |
| /* Return the next matching CU or NULL if there are no more. */ |
| |
| static struct dwarf2_per_cu_data * |
| dw2_symtab_iter_next (struct dw2_symtab_iterator *iter) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile; |
| |
| for ( ; iter->next < iter->length; ++iter->next) |
| { |
| offset_type cu_index_and_attrs = |
| MAYBE_SWAP (iter->vec[iter->next + 1]); |
| offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs); |
| gdb_index_symbol_kind symbol_kind = |
| GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs); |
| /* Only check the symbol attributes if they're present. |
| Indices prior to version 7 don't record them, |
| and indices >= 7 may elide them for certain symbols |
| (gold does this). */ |
| int attrs_valid = |
| (dwarf2_per_objfile->index_table->version >= 7 |
| && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE); |
| |
| /* Don't crash on bad data. */ |
| if (cu_index >= (dwarf2_per_objfile->all_comp_units.size () |
| + dwarf2_per_objfile->all_type_units.size ())) |
| { |
| complaint (_(".gdb_index entry has bad CU index" |
| " [in module %s]"), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| continue; |
| } |
| |
| dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index); |
| |
| /* Skip if already read in. */ |
| if (per_cu->v.quick->compunit_symtab) |
| continue; |
| |
| /* Check static vs global. */ |
| if (attrs_valid) |
| { |
| bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs); |
| |
| if (iter->block_index.has_value ()) |
| { |
| bool want_static = *iter->block_index == STATIC_BLOCK; |
| |
| if (is_static != want_static) |
| continue; |
| } |
| |
| /* Work around gold/15646. */ |
| if (!is_static && iter->global_seen) |
| continue; |
| if (!is_static) |
| iter->global_seen = 1; |
| } |
| |
| /* Only check the symbol's kind if it has one. */ |
| if (attrs_valid) |
| { |
| switch (iter->domain) |
| { |
| case VAR_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE |
| && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION |
| /* Some types are also in VAR_DOMAIN. */ |
| && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE) |
| continue; |
| break; |
| case STRUCT_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE) |
| continue; |
| break; |
| case LABEL_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER) |
| continue; |
| break; |
| case MODULE_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER) |
| continue; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| ++iter->next; |
| return per_cu; |
| } |
| |
| return NULL; |
| } |
| |
| static struct compunit_symtab * |
| dw2_lookup_symbol (struct objfile *objfile, block_enum block_index, |
| const char *name, domain_enum domain) |
| { |
| struct compunit_symtab *stab_best = NULL; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| lookup_name_info lookup_name (name, symbol_name_match_type::FULL); |
| |
| struct dw2_symtab_iterator iter; |
| struct dwarf2_per_cu_data *per_cu; |
| |
| dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name); |
| |
| while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL) |
| { |
| struct symbol *sym, *with_opaque = NULL; |
| struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false); |
| const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab); |
| const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index); |
| |
| sym = block_find_symbol (block, name, domain, |
| block_find_non_opaque_type_preferred, |
| &with_opaque); |
| |
| /* Some caution must be observed with overloaded functions |
| and methods, since the index will not contain any overload |
| information (but NAME might contain it). */ |
| |
| if (sym != NULL |
| && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name)) |
| return stab; |
| if (with_opaque != NULL |
| && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name)) |
| stab_best = stab; |
| |
| /* Keep looking through other CUs. */ |
| } |
| |
| return stab_best; |
| } |
| |
| static void |
| dw2_print_stats (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| int total = (dwarf2_per_objfile->all_comp_units.size () |
| + dwarf2_per_objfile->all_type_units.size ()); |
| int count = 0; |
| |
| for (int i = 0; i < total; ++i) |
| { |
| dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i); |
| |
| if (!per_cu->v.quick->compunit_symtab) |
| ++count; |
| } |
| printf_filtered (_(" Number of read CUs: %d\n"), total - count); |
| printf_filtered (_(" Number of unread CUs: %d\n"), count); |
| } |
| |
| /* This dumps minimal information about the index. |
| It is called via "mt print objfiles". |
| One use is to verify .gdb_index has been loaded by the |
| gdb.dwarf2/gdb-index.exp testcase. */ |
| |
| static void |
| dw2_dump (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| gdb_assert (dwarf2_per_objfile->using_index); |
| printf_filtered (".gdb_index:"); |
| if (dwarf2_per_objfile->index_table != NULL) |
| { |
| printf_filtered (" version %d\n", |
| dwarf2_per_objfile->index_table->version); |
| } |
| else |
| printf_filtered (" faked for \"readnow\"\n"); |
| printf_filtered ("\n"); |
| } |
| |
| static void |
| dw2_expand_symtabs_for_function (struct objfile *objfile, |
| const char *func_name) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| struct dw2_symtab_iterator iter; |
| struct dwarf2_per_cu_data *per_cu; |
| |
| dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name); |
| |
| while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL) |
| dw2_instantiate_symtab (per_cu, false); |
| |
| } |
| |
| static void |
| dw2_expand_all_symtabs (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| int total_units = (dwarf2_per_objfile->all_comp_units.size () |
| + dwarf2_per_objfile->all_type_units.size ()); |
| |
| for (int i = 0; i < total_units; ++i) |
| { |
| dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i); |
| |
| /* We don't want to directly expand a partial CU, because if we |
| read it with the wrong language, then assertion failures can |
| be triggered later on. See PR symtab/23010. So, tell |
| dw2_instantiate_symtab to skip partial CUs -- any important |
| partial CU will be read via DW_TAG_imported_unit anyway. */ |
| dw2_instantiate_symtab (per_cu, true); |
| } |
| } |
| |
| static void |
| dw2_expand_symtabs_with_fullname (struct objfile *objfile, |
| const char *fullname) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* We don't need to consider type units here. |
| This is only called for examining code, e.g. expand_line_sal. |
| There can be an order of magnitude (or more) more type units |
| than comp units, and we avoid them if we can. */ |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->compunit_symtab) |
| continue; |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_fullname = file_data->file_names[j]; |
| |
| if (filename_cmp (this_fullname, fullname) == 0) |
| { |
| dw2_instantiate_symtab (per_cu, false); |
| break; |
| } |
| } |
| } |
| } |
| |
| static void |
| dw2_map_matching_symbols |
| (struct objfile *objfile, |
| const lookup_name_info &name, domain_enum domain, |
| int global, |
| gdb::function_view<symbol_found_callback_ftype> callback, |
| symbol_compare_ftype *ordered_compare) |
| { |
| /* Currently unimplemented; used for Ada. The function can be called if the |
| current language is Ada for a non-Ada objfile using GNU index. As Ada |
| does not look for non-Ada symbols this function should just return. */ |
| } |
| |
| /* Starting from a search name, return the string that finds the upper |
| bound of all strings that start with SEARCH_NAME in a sorted name |
| list. Returns the empty string to indicate that the upper bound is |
| the end of the list. */ |
| |
| static std::string |
| make_sort_after_prefix_name (const char *search_name) |
| { |
| /* When looking to complete "func", we find the upper bound of all |
| symbols that start with "func" by looking for where we'd insert |
| the closest string that would follow "func" in lexicographical |
| order. Usually, that's "func"-with-last-character-incremented, |
| i.e. "fund". Mind non-ASCII characters, though. Usually those |
| will be UTF-8 multi-byte sequences, but we can't be certain. |
| Especially mind the 0xff character, which is a valid character in |
| non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't |
| rule out compilers allowing it in identifiers. Note that |
| conveniently, strcmp/strcasecmp are specified to compare |
| characters interpreted as unsigned char. So what we do is treat |
| the whole string as a base 256 number composed of a sequence of |
| base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps |
| to 0, and carries 1 to the following more-significant position. |
| If the very first character in SEARCH_NAME ends up incremented |
| and carries/overflows, then the upper bound is the end of the |
| list. The string after the empty string is also the empty |
| string. |
| |
| Some examples of this operation: |
| |
| SEARCH_NAME => "+1" RESULT |
| |
| "abc" => "abd" |
| "ab\xff" => "ac" |
| "\xff" "a" "\xff" => "\xff" "b" |
| "\xff" => "" |
| "\xff\xff" => "" |
| "" => "" |
| |
| Then, with these symbols for example: |
| |
| func |
| func1 |
| fund |
| |
| completing "func" looks for symbols between "func" and |
| "func"-with-last-character-incremented, i.e. "fund" (exclusive), |
| which finds "func" and "func1", but not "fund". |
| |
| And with: |
| |
| funcÿ (Latin1 'ÿ' [0xff]) |
| funcÿ1 |
| fund |
| |
| completing "funcÿ" looks for symbols between "funcÿ" and "fund" |
| (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund". |
| |
| And with: |
| |
| ÿÿ (Latin1 'ÿ' [0xff]) |
| ÿÿ1 |
| |
| completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and |
| the end of the list. |
| */ |
| std::string after = search_name; |
| while (!after.empty () && (unsigned char) after.back () == 0xff) |
| after.pop_back (); |
| if (!after.empty ()) |
| after.back () = (unsigned char) after.back () + 1; |
| return after; |
| } |
| |
| /* See declaration. */ |
| |
| std::pair<std::vector<name_component>::const_iterator, |
| std::vector<name_component>::const_iterator> |
| mapped_index_base::find_name_components_bounds |
| (const lookup_name_info &lookup_name_without_params, language lang) const |
| { |
| auto *name_cmp |
| = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp; |
| |
| const char *lang_name |
| = lookup_name_without_params.language_lookup_name (lang).c_str (); |
| |
| /* Comparison function object for lower_bound that matches against a |
| given symbol name. */ |
| auto lookup_compare_lower = [&] (const name_component &elem, |
| const char *name) |
| { |
| const char *elem_qualified = this->symbol_name_at (elem.idx); |
| const char *elem_name = elem_qualified + elem.name_offset; |
| return name_cmp (elem_name, name) < 0; |
| }; |
| |
| /* Comparison function object for upper_bound that matches against a |
| given symbol name. */ |
| auto lookup_compare_upper = [&] (const char *name, |
| const name_component &elem) |
| { |
| const char *elem_qualified = this->symbol_name_at (elem.idx); |
| const char *elem_name = elem_qualified + elem.name_offset; |
| return name_cmp (name, elem_name) < 0; |
| }; |
| |
| auto begin = this->name_components.begin (); |
| auto end = this->name_components.end (); |
| |
| /* Find the lower bound. */ |
| auto lower = [&] () |
| { |
| if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0') |
| return begin; |
| else |
| return std::lower_bound (begin, end, lang_name, lookup_compare_lower); |
| } (); |
| |
| /* Find the upper bound. */ |
| auto upper = [&] () |
| { |
| if (lookup_name_without_params.completion_mode ()) |
| { |
| /* In completion mode, we want UPPER to point past all |
| symbols names that have the same prefix. I.e., with |
| these symbols, and completing "func": |
| |
| function << lower bound |
| function1 |
| other_function << upper bound |
| |
| We find the upper bound by looking for the insertion |
| point of "func"-with-last-character-incremented, |
| i.e. "fund". */ |
| std::string after = make_sort_after_prefix_name (lang_name); |
| if (after.empty ()) |
| return end; |
| return std::lower_bound (lower, end, after.c_str (), |
| lookup_compare_lower); |
| } |
| else |
| return std::upper_bound (lower, end, lang_name, lookup_compare_upper); |
| } (); |
| |
| return {lower, upper}; |
| } |
| |
| /* See declaration. */ |
| |
| void |
| mapped_index_base::build_name_components () |
| { |
| if (!this->name_components.empty ()) |
| return; |
| |
| this->name_components_casing = case_sensitivity; |
| auto *name_cmp |
| = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp; |
| |
| /* The code below only knows how to break apart components of C++ |
| symbol names (and other languages that use '::' as |
| namespace/module separator) and Ada symbol names. */ |
| auto count = this->symbol_name_count (); |
| for (offset_type idx = 0; idx < count; idx++) |
| { |
| if (this->symbol_name_slot_invalid (idx)) |
| continue; |
| |
| const char *name = this->symbol_name_at (idx); |
| |
| /* Add each name component to the name component table. */ |
| unsigned int previous_len = 0; |
| |
| if (strstr (name, "::") != nullptr) |
| { |
| for (unsigned int current_len = cp_find_first_component (name); |
| name[current_len] != '\0'; |
| current_len += cp_find_first_component (name + current_len)) |
| { |
| gdb_assert (name[current_len] == ':'); |
| this->name_components.push_back ({previous_len, idx}); |
| /* Skip the '::'. */ |
| current_len += 2; |
| previous_len = current_len; |
| } |
| } |
| else |
| { |
| /* Handle the Ada encoded (aka mangled) form here. */ |
| for (const char *iter = strstr (name, "__"); |
| iter != nullptr; |
| iter = strstr (iter, "__")) |
| { |
| this->name_components.push_back ({previous_len, idx}); |
| iter += 2; |
| previous_len = iter - name; |
| } |
| } |
| |
| this->name_components.push_back ({previous_len, idx}); |
| } |
| |
| /* Sort name_components elements by name. */ |
| auto name_comp_compare = [&] (const name_component &left, |
| const name_component &right) |
| { |
| const char *left_qualified = this->symbol_name_at (left.idx); |
| const char *right_qualified = this->symbol_name_at (right.idx); |
| |
| const char *left_name = left_qualified + left.name_offset; |
| const char *right_name = right_qualified + right.name_offset; |
| |
| return name_cmp (left_name, right_name) < 0; |
| }; |
| |
| std::sort (this->name_components.begin (), |
| this->name_components.end (), |
| name_comp_compare); |
| } |
| |
| /* Helper for dw2_expand_symtabs_matching that works with a |
| mapped_index_base instead of the containing objfile. This is split |
| to a separate function in order to be able to unit test the |
| name_components matching using a mock mapped_index_base. For each |
| symbol name that matches, calls MATCH_CALLBACK, passing it the |
| symbol's index in the mapped_index_base symbol table. */ |
| |
| static void |
| dw2_expand_symtabs_matching_symbol |
| (mapped_index_base &index, |
| const lookup_name_info &lookup_name_in, |
| gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher, |
| enum search_domain kind, |
| gdb::function_view<bool (offset_type)> match_callback) |
| { |
| lookup_name_info lookup_name_without_params |
| = lookup_name_in.make_ignore_params (); |
| |
| /* Build the symbol name component sorted vector, if we haven't |
| yet. */ |
| index.build_name_components (); |
| |
| /* The same symbol may appear more than once in the range though. |
| E.g., if we're looking for symbols that complete "w", and we have |
| a symbol named "w1::w2", we'll find the two name components for |
| that same symbol in the range. To be sure we only call the |
| callback once per symbol, we first collect the symbol name |
| indexes that matched in a temporary vector and ignore |
| duplicates. */ |
| std::vector<offset_type> matches; |
| |
| struct name_and_matcher |
| { |
| symbol_name_matcher_ftype *matcher; |
| const std::string &name; |
| |
| bool operator== (const name_and_matcher &other) const |
| { |
| return matcher == other.matcher && name == other.name; |
| } |
| }; |
| |
| /* A vector holding all the different symbol name matchers, for all |
| languages. */ |
| std::vector<name_and_matcher> matchers; |
| |
| for (int i = 0; i < nr_languages; i++) |
| { |
| enum language lang_e = (enum language) i; |
| |
| const language_defn *lang = language_def (lang_e); |
| symbol_name_matcher_ftype *name_matcher |
| = get_symbol_name_matcher (lang, lookup_name_without_params); |
| |
| name_and_matcher key { |
| name_matcher, |
| lookup_name_without_params.language_lookup_name (lang_e) |
| }; |
| |
| /* Don't insert the same comparison routine more than once. |
| Note that we do this linear walk. This is not a problem in |
| practice because the number of supported languages is |
| low. */ |
| if (std::find (matchers.begin (), matchers.end (), key) |
| != matchers.end ()) |
| continue; |
| matchers.push_back (std::move (key)); |
| |
| auto bounds |
| = index.find_name_components_bounds (lookup_name_without_params, |
| lang_e); |
| |
| /* Now for each symbol name in range, check to see if we have a name |
| match, and if so, call the MATCH_CALLBACK callback. */ |
| |
| for (; bounds.first != bounds.second; ++bounds.first) |
| { |
| const char *qualified = index.symbol_name_at (bounds.first->idx); |
| |
| if (!name_matcher (qualified, lookup_name_without_params, NULL) |
| || (symbol_matcher != NULL && !symbol_matcher (qualified))) |
| continue; |
| |
| matches.push_back (bounds.first->idx); |
| } |
| } |
| |
| std::sort (matches.begin (), matches.end ()); |
| |
| /* Finally call the callback, once per match. */ |
| ULONGEST prev = -1; |
| for (offset_type idx : matches) |
| { |
| if (prev != idx) |
| { |
| if (!match_callback (idx)) |
| break; |
| prev = idx; |
| } |
| } |
| |
| /* Above we use a type wider than idx's for 'prev', since 0 and |
| (offset_type)-1 are both possible values. */ |
| static_assert (sizeof (prev) > sizeof (offset_type), ""); |
| } |
| |
| #if GDB_SELF_TEST |
| |
| namespace selftests { namespace dw2_expand_symtabs_matching { |
| |
| /* A mock .gdb_index/.debug_names-like name index table, enough to |
| exercise dw2_expand_symtabs_matching_symbol, which works with the |
| mapped_index_base interface. Builds an index from the symbol list |
| passed as parameter to the constructor. */ |
| class mock_mapped_index : public mapped_index_base |
| { |
| public: |
| mock_mapped_index (gdb::array_view<const char *> symbols) |
| : m_symbol_table (symbols) |
| {} |
| |
| DISABLE_COPY_AND_ASSIGN (mock_mapped_index); |
| |
| /* Return the number of names in the symbol table. */ |
| size_t symbol_name_count () const override |
| { |
| return m_symbol_table.size (); |
| } |
| |
| /* Get the name of the symbol at IDX in the symbol table. */ |
| const char *symbol_name_at (offset_type idx) const override |
| { |
| return m_symbol_table[idx]; |
| } |
| |
| private: |
| gdb::array_view<const char *> m_symbol_table; |
| }; |
| |
| /* Convenience function that converts a NULL pointer to a "<null>" |
| string, to pass to print routines. */ |
| |
| static const char * |
| string_or_null (const char *str) |
| { |
| return str != NULL ? str : "<null>"; |
| } |
| |
| /* Check if a lookup_name_info built from |
| NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock |
| index. EXPECTED_LIST is the list of expected matches, in expected |
| matching order. If no match expected, then an empty list is |
| specified. Returns true on success. On failure prints a warning |
| indicating the file:line that failed, and returns false. */ |
| |
| static bool |
| check_match (const char *file, int line, |
| mock_mapped_index &mock_index, |
| const char *name, symbol_name_match_type match_type, |
| bool completion_mode, |
| std::initializer_list<const char *> expected_list) |
| { |
| lookup_name_info lookup_name (name, match_type, completion_mode); |
| |
| bool matched = true; |
| |
| auto mismatch = [&] (const char *expected_str, |
| const char *got) |
| { |
| warning (_("%s:%d: match_type=%s, looking-for=\"%s\", " |
| "expected=\"%s\", got=\"%s\"\n"), |
| file, line, |
| (match_type == symbol_name_match_type::FULL |
| ? "FULL" : "WILD"), |
| name, string_or_null (expected_str), string_or_null (got)); |
| matched = false; |
| }; |
| |
| auto expected_it = expected_list.begin (); |
| auto expected_end = expected_list.end (); |
| |
| dw2_expand_symtabs_matching_symbol (mock_index, lookup_name, |
| NULL, ALL_DOMAIN, |
| [&] (offset_type idx) |
| { |
| const char *matched_name = mock_index.symbol_name_at (idx); |
| const char *expected_str |
| = expected_it == expected_end ? NULL : *expected_it++; |
| |
| if (expected_str == NULL || strcmp (expected_str, matched_name) != 0) |
| mismatch (expected_str, matched_name); |
| return true; |
| }); |
| |
| const char *expected_str |
| = expected_it == expected_end ? NULL : *expected_it++; |
| if (expected_str != NULL) |
| mismatch (expected_str, NULL); |
| |
| return matched; |
| } |
| |
| /* The symbols added to the mock mapped_index for testing (in |
| canonical form). */ |
| static const char *test_symbols[] = { |
| "function", |
| "std::bar", |
| "std::zfunction", |
| "std::zfunction2", |
| "w1::w2", |
| "ns::foo<char*>", |
| "ns::foo<int>", |
| "ns::foo<long>", |
| "ns2::tmpl<int>::foo2", |
| "(anonymous namespace)::A::B::C", |
| |
| /* These are used to check that the increment-last-char in the |
| matching algorithm for completion doesn't match "t1_fund" when |
| completing "t1_func". */ |
| "t1_func", |
| "t1_func1", |
| "t1_fund", |
| "t1_fund1", |
| |
| /* A UTF-8 name with multi-byte sequences to make sure that |
| cp-name-parser understands this as a single identifier ("função" |
| is "function" in PT). */ |
| u8"u8função", |
| |
| /* \377 (0xff) is Latin1 'ÿ'. */ |
| "yfunc\377", |
| |
| /* \377 (0xff) is Latin1 'ÿ'. */ |
| "\377", |
| "\377\377123", |
| |
| /* A name with all sorts of complications. Starts with "z" to make |
| it easier for the completion tests below. */ |
| #define Z_SYM_NAME \ |
| "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \ |
| "::tuple<(anonymous namespace)::ui*, " \ |
| "std::default_delete<(anonymous namespace)::ui>, void>" |
| |
| Z_SYM_NAME |
| }; |
| |
| /* Returns true if the mapped_index_base::find_name_component_bounds |
| method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME, |
| in completion mode. */ |
| |
| static bool |
| check_find_bounds_finds (mapped_index_base &index, |
| const char *search_name, |
| gdb::array_view<const char *> expected_syms) |
| { |
| lookup_name_info lookup_name (search_name, |
| symbol_name_match_type::FULL, true); |
| |
| auto bounds = index.find_name_components_bounds (lookup_name, |
| language_cplus); |
| |
| size_t distance = std::distance (bounds.first, bounds.second); |
| if (distance != expected_syms.size ()) |
| return false; |
| |
| for (size_t exp_elem = 0; exp_elem < distance; exp_elem++) |
| { |
| auto nc_elem = bounds.first + exp_elem; |
| const char *qualified = index.symbol_name_at (nc_elem->idx); |
| if (strcmp (qualified, expected_syms[exp_elem]) != 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Test the lower-level mapped_index::find_name_component_bounds |
| method. */ |
| |
| static void |
| test_mapped_index_find_name_component_bounds () |
| { |
| mock_mapped_index mock_index (test_symbols); |
| |
| mock_index.build_name_components (); |
| |
| /* Test the lower-level mapped_index::find_name_component_bounds |
| method in completion mode. */ |
| { |
| static const char *expected_syms[] = { |
| "t1_func", |
| "t1_func1", |
| }; |
| |
| SELF_CHECK (check_find_bounds_finds (mock_index, |
| "t1_func", expected_syms)); |
| } |
| |
| /* Check that the increment-last-char in the name matching algorithm |
| for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */ |
| { |
| static const char *expected_syms1[] = { |
| "\377", |
| "\377\377123", |
| }; |
| SELF_CHECK (check_find_bounds_finds (mock_index, |
| "\377", expected_syms1)); |
| |
| static const char *expected_syms2[] = { |
| "\377\377123", |
| }; |
| SELF_CHECK (check_find_bounds_finds (mock_index, |
| "\377\377", expected_syms2)); |
| } |
| } |
| |
| /* Test dw2_expand_symtabs_matching_symbol. */ |
| |
| static void |
| test_dw2_expand_symtabs_matching_symbol () |
| { |
| mock_mapped_index mock_index (test_symbols); |
| |
| /* We let all tests run until the end even if some fails, for debug |
| convenience. */ |
| bool any_mismatch = false; |
| |
| /* Create the expected symbols list (an initializer_list). Needed |
| because lists have commas, and we need to pass them to CHECK, |
| which is a macro. */ |
| #define EXPECT(...) { __VA_ARGS__ } |
| |
| /* Wrapper for check_match that passes down the current |
| __FILE__/__LINE__. */ |
| #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \ |
| any_mismatch |= !check_match (__FILE__, __LINE__, \ |
| mock_index, \ |
| NAME, MATCH_TYPE, COMPLETION_MODE, \ |
| EXPECTED_LIST) |
| |
| /* Identity checks. */ |
| for (const char *sym : test_symbols) |
| { |
| /* Should be able to match all existing symbols. */ |
| CHECK_MATCH (sym, symbol_name_match_type::FULL, false, |
| EXPECT (sym)); |
| |
| /* Should be able to match all existing symbols with |
| parameters. */ |
| std::string with_params = std::string (sym) + "(int)"; |
| CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false, |
| EXPECT (sym)); |
| |
| /* Should be able to match all existing symbols with |
| parameters and qualifiers. */ |
| with_params = std::string (sym) + " ( int ) const"; |
| CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false, |
| EXPECT (sym)); |
| |
| /* This should really find sym, but cp-name-parser.y doesn't |
| know about lvalue/rvalue qualifiers yet. */ |
| with_params = std::string (sym) + " ( int ) &&"; |
| CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false, |
| {}); |
| } |
| |
| /* Check that the name matching algorithm for completion doesn't get |
| confused with Latin1 'ÿ' / 0xff. */ |
| { |
| static const char str[] = "\377"; |
| CHECK_MATCH (str, symbol_name_match_type::FULL, true, |
| EXPECT ("\377", "\377\377123")); |
| } |
| |
| /* Check that the increment-last-char in the matching algorithm for |
| completion doesn't match "t1_fund" when completing "t1_func". */ |
| { |
| static const char str[] = "t1_func"; |
| CHECK_MATCH (str, symbol_name_match_type::FULL, true, |
| EXPECT ("t1_func", "t1_func1")); |
| } |
| |
| /* Check that completion mode works at each prefix of the expected |
| symbol name. */ |
| { |
| static const char str[] = "function(int)"; |
| size_t len = strlen (str); |
| std::string lookup; |
| |
| for (size_t i = 1; i < len; i++) |
| { |
| lookup.assign (str, i); |
| CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true, |
| EXPECT ("function")); |
| } |
| } |
| |
| /* While "w" is a prefix of both components, the match function |
| should still only be called once. */ |
| { |
| CHECK_MATCH ("w", symbol_name_match_type::FULL, true, |
| EXPECT ("w1::w2")); |
| CHECK_MATCH ("w", symbol_name_match_type::WILD, true, |
| EXPECT ("w1::w2")); |
| } |
| |
| /* Same, with a "complicated" symbol. */ |
| { |
| static const char str[] = Z_SYM_NAME; |
| size_t len = strlen (str); |
| std::string lookup; |
| |
| for (size_t i = 1; i < len; i++) |
| { |
| lookup.assign (str, i); |
| CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true, |
| EXPECT (Z_SYM_NAME)); |
| } |
| } |
| |
| /* In FULL mode, an incomplete symbol doesn't match. */ |
| { |
| CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false, |
| {}); |
| } |
| |
| /* A complete symbol with parameters matches any overload, since the |
| index has no overload info. */ |
| { |
| CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true, |
| EXPECT ("std::zfunction", "std::zfunction2")); |
| CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true, |
| EXPECT ("std::zfunction", "std::zfunction2")); |
| CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true, |
| EXPECT ("std::zfunction", "std::zfunction2")); |
| } |
| |
| /* Check that whitespace is ignored appropriately. A symbol with a |
| template argument list. */ |
| { |
| static const char expected[] = "ns::foo<int>"; |
| CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false, |
| EXPECT (expected)); |
| CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false, |
| EXPECT (expected)); |
| } |
| |
| /* Check that whitespace is ignored appropriately. A symbol with a |
| template argument list that includes a pointer. */ |
| { |
| static const char expected[] = "ns::foo<char*>"; |
| /* Try both completion and non-completion modes. */ |
| static const bool completion_mode[2] = {false, true}; |
| for (size_t i = 0; i < 2; i++) |
| { |
| CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL, |
| completion_mode[i], EXPECT (expected)); |
| CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD, |
| completion_mode[i], EXPECT (expected)); |
| |
| CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL, |
| completion_mode[i], EXPECT (expected)); |
| CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD, |
| completion_mode[i], EXPECT (expected)); |
| } |
| } |
| |
| { |
| /* Check method qualifiers are ignored. */ |
| static const char expected[] = "ns::foo<char*>"; |
| CHECK_MATCH ("ns :: foo < char * > ( int ) const", |
| symbol_name_match_type::FULL, true, EXPECT (expected)); |
| CHECK_MATCH ("ns :: foo < char * > ( int ) &&", |
| symbol_name_match_type::FULL, true, EXPECT (expected)); |
| CHECK_MATCH ("foo < char * > ( int ) const", |
| symbol_name_match_type::WILD, true, EXPECT (expected)); |
| CHECK_MATCH ("foo < char * > ( int ) &&", |
| symbol_name_match_type::WILD, true, EXPECT (expected)); |
| } |
| |
| /* Test lookup names that don't match anything. */ |
| { |
| CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false, |
| {}); |
| |
| CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false, |
| {}); |
| } |
| |
| /* Some wild matching tests, exercising "(anonymous namespace)", |
| which should not be confused with a parameter list. */ |
| { |
| static const char *syms[] = { |
| "A::B::C", |
| "B::C", |
| "C", |
| "A :: B :: C ( int )", |
| "B :: C ( int )", |
| "C ( int )", |
| }; |
| |
| for (const char *s : syms) |
| { |
| CHECK_MATCH (s, symbol_name_match_type::WILD, false, |
| EXPECT ("(anonymous namespace)::A::B::C")); |
| } |
| } |
| |
| { |
| static const char expected[] = "ns2::tmpl<int>::foo2"; |
| CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true, |
| EXPECT (expected)); |
| CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true, |
| EXPECT (expected)); |
| } |
| |
| SELF_CHECK (!any_mismatch); |
| |
| #undef EXPECT |
| #undef CHECK_MATCH |
| } |
| |
| static void |
| run_test () |
| { |
| test_mapped_index_find_name_component_bounds (); |
| test_dw2_expand_symtabs_matching_symbol (); |
| } |
| |
| }} // namespace selftests::dw2_expand_symtabs_matching |
| |
| #endif /* GDB_SELF_TEST */ |
| |
| /* If FILE_MATCHER is NULL or if PER_CU has |
| dwarf2_per_cu_quick_data::MARK set (see |
| dw_expand_symtabs_matching_file_matcher), expand the CU and call |
| EXPANSION_NOTIFY on it. */ |
| |
| static void |
| dw2_expand_symtabs_matching_one |
| (struct dwarf2_per_cu_data *per_cu, |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher, |
| gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify) |
| { |
| if (file_matcher == NULL || per_cu->v.quick->mark) |
| { |
| bool symtab_was_null |
| = (per_cu->v.quick->compunit_symtab == NULL); |
| |
| dw2_instantiate_symtab (per_cu, false); |
| |
| if (expansion_notify != NULL |
| && symtab_was_null |
| && per_cu->v.quick->compunit_symtab != NULL) |
| expansion_notify (per_cu->v.quick->compunit_symtab); |
| } |
| } |
| |
| /* Helper for dw2_expand_matching symtabs. Called on each symbol |
| matched, to expand corresponding CUs that were marked. IDX is the |
| index of the symbol name that matched. */ |
| |
| static void |
| dw2_expand_marked_cus |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx, |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher, |
| gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify, |
| search_domain kind) |
| { |
| offset_type *vec, vec_len, vec_idx; |
| bool global_seen = false; |
| mapped_index &index = *dwarf2_per_objfile->index_table; |
| |
| vec = (offset_type *) (index.constant_pool |
| + MAYBE_SWAP (index.symbol_table[idx].vec)); |
| vec_len = MAYBE_SWAP (vec[0]); |
| for (vec_idx = 0; vec_idx < vec_len; ++vec_idx) |
| { |
| offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]); |
| /* This value is only valid for index versions >= 7. */ |
| int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs); |
| gdb_index_symbol_kind symbol_kind = |
| GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs); |
| int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs); |
| /* Only check the symbol attributes if they're present. |
| Indices prior to version 7 don't record them, |
| and indices >= 7 may elide them for certain symbols |
| (gold does this). */ |
| int attrs_valid = |
| (index.version >= 7 |
| && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE); |
| |
| /* Work around gold/15646. */ |
| if (attrs_valid) |
| { |
| if (!is_static && global_seen) |
| continue; |
| if (!is_static) |
| global_seen = true; |
| } |
| |
| /* Only check the symbol's kind if it has one. */ |
| if (attrs_valid) |
| { |
| switch (kind) |
| { |
| case VARIABLES_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE) |
| continue; |
| break; |
| case FUNCTIONS_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION) |
| continue; |
| break; |
| case TYPES_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE) |
| continue; |
| break; |
| case MODULES_DOMAIN: |
| if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER) |
| continue; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Don't crash on bad data. */ |
| if (cu_index >= (dwarf2_per_objfile->all_comp_units.size () |
| + dwarf2_per_objfile->all_type_units.size ())) |
| { |
| complaint (_(".gdb_index entry has bad CU index" |
| " [in module %s]"), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| continue; |
| } |
| |
| dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index); |
| dw2_expand_symtabs_matching_one (per_cu, file_matcher, |
| expansion_notify); |
| } |
| } |
| |
| /* If FILE_MATCHER is non-NULL, set all the |
| dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE |
| that match FILE_MATCHER. */ |
| |
| static void |
| dw_expand_symtabs_matching_file_matcher |
| (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher) |
| { |
| if (file_matcher == NULL) |
| return; |
| |
| objfile *const objfile = dwarf2_per_objfile->objfile; |
| |
| htab_up visited_found (htab_create_alloc (10, htab_hash_pointer, |
| htab_eq_pointer, |
| NULL, xcalloc, xfree)); |
| htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer, |
| htab_eq_pointer, |
| NULL, xcalloc, xfree)); |
| |
| /* The rule is CUs specify all the files, including those used by |
| any TU, so there's no need to scan TUs here. */ |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| QUIT; |
| |
| per_cu->v.quick->mark = 0; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->compunit_symtab) |
| continue; |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| if (htab_find (visited_not_found.get (), file_data) != NULL) |
| continue; |
| else if (htab_find (visited_found.get (), file_data) != NULL) |
| { |
| per_cu->v.quick->mark = 1; |
| continue; |
| } |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_real_name; |
| |
| if (file_matcher (file_data->file_names[j], false)) |
| { |
| per_cu->v.quick->mark = 1; |
| break; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if (!basenames_may_differ |
| && !file_matcher (lbasename (file_data->file_names[j]), |
| true)) |
| continue; |
| |
| this_real_name = dw2_get_real_path (objfile, file_data, j); |
| if (file_matcher (this_real_name, false)) |
| { |
| per_cu->v.quick->mark = 1; |
| break; |
| } |
| } |
| |
| void **slot = htab_find_slot (per_cu->v.quick->mark |
| ? visited_found.get () |
| : visited_not_found.get (), |
| file_data, INSERT); |
| *slot = file_data; |
| } |
| } |
| |
| static void |
| dw2_expand_symtabs_matching |
| (struct objfile *objfile, |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher, |
| const lookup_name_info &lookup_name, |
| gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher, |
| gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify, |
| enum search_domain kind) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* index_table is NULL if OBJF_READNOW. */ |
| if (!dwarf2_per_objfile->index_table) |
| return; |
| |
| dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher); |
| |
| mapped_index &index = *dwarf2_per_objfile->index_table; |
| |
| dw2_expand_symtabs_matching_symbol (index, lookup_name, |
| symbol_matcher, |
| kind, [&] (offset_type idx) |
| { |
| dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher, |
| expansion_notify, kind); |
| return true; |
| }); |
| } |
| |
| /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific |
| symtab. */ |
| |
| static struct compunit_symtab * |
| recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust, |
| CORE_ADDR pc) |
| { |
| int i; |
| |
| if (COMPUNIT_BLOCKVECTOR (cust) != NULL |
| && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc)) |
| return cust; |
| |
| if (cust->includes == NULL) |
| return NULL; |
| |
| for (i = 0; cust->includes[i]; ++i) |
| { |
| struct compunit_symtab *s = cust->includes[i]; |
| |
| s = recursively_find_pc_sect_compunit_symtab (s, pc); |
| if (s != NULL) |
| return s; |
| } |
| |
| return NULL; |
| } |
| |
| static struct compunit_symtab * |
| dw2_find_pc_sect_compunit_symtab (struct objfile *objfile, |
| struct bound_minimal_symbol msymbol, |
| CORE_ADDR pc, |
| struct obj_section *section, |
| int warn_if_readin) |
| { |
| struct dwarf2_per_cu_data *data; |
| struct compunit_symtab *result; |
| |
| if (!objfile->partial_symtabs->psymtabs_addrmap) |
| return NULL; |
| |
| CORE_ADDR baseaddr = objfile->text_section_offset (); |
| data = (struct dwarf2_per_cu_data *) addrmap_find |
| (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr); |
| if (!data) |
| return NULL; |
| |
| if (warn_if_readin && data->v.quick->compunit_symtab) |
| warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"), |
| paddress (get_objfile_arch (objfile), pc)); |
| |
| result |
| = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data, |
| false), |
| pc); |
| gdb_assert (result != NULL); |
| return result; |
| } |
| |
| static void |
| dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun, |
| void *data, int need_fullname) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| if (!dwarf2_per_objfile->filenames_cache) |
| { |
| dwarf2_per_objfile->filenames_cache.emplace (); |
| |
| htab_up visited (htab_create_alloc (10, |
| htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree)); |
| |
| /* The rule is CUs specify all the files, including those used |
| by any TU, so there's no need to scan TUs here. We can |
| ignore file names coming from already-expanded CUs. */ |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| if (per_cu->v.quick->compunit_symtab) |
| { |
| void **slot = htab_find_slot (visited.get (), |
| per_cu->v.quick->file_names, |
| INSERT); |
| |
| *slot = per_cu->v.quick->file_names; |
| } |
| } |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->compunit_symtab) |
| continue; |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| void **slot = htab_find_slot (visited.get (), file_data, INSERT); |
| if (*slot) |
| { |
| /* Already visited. */ |
| continue; |
| } |
| *slot = file_data; |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *filename = file_data->file_names[j]; |
| dwarf2_per_objfile->filenames_cache->seen (filename); |
| } |
| } |
| } |
| |
| dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename) |
| { |
| gdb::unique_xmalloc_ptr<char> this_real_name; |
| |
| if (need_fullname) |
| this_real_name = gdb_realpath (filename); |
| (*fun) (filename, this_real_name.get (), data); |
| }); |
| } |
| |
| static int |
| dw2_has_symbols (struct objfile *objfile) |
| { |
| return 1; |
| } |
| |
| const struct quick_symbol_functions dwarf2_gdb_index_functions = |
| { |
| dw2_has_symbols, |
| dw2_find_last_source_symtab, |
| dw2_forget_cached_source_info, |
| dw2_map_symtabs_matching_filename, |
| dw2_lookup_symbol, |
| dw2_print_stats, |
| dw2_dump, |
| dw2_expand_symtabs_for_function, |
| dw2_expand_all_symtabs, |
| dw2_expand_symtabs_with_fullname, |
| dw2_map_matching_symbols, |
| dw2_expand_symtabs_matching, |
| dw2_find_pc_sect_compunit_symtab, |
| NULL, |
| dw2_map_symbol_filenames |
| }; |
| |
| /* DWARF-5 debug_names reader. */ |
| |
| /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */ |
| static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 }; |
| |
| /* A helper function that reads the .debug_names section in SECTION |
| and fills in MAP. FILENAME is the name of the file containing the |
| section; it is used for error reporting. |
| |
| Returns true if all went well, false otherwise. */ |
| |
| static bool |
| read_debug_names_from_section (struct objfile *objfile, |
| const char *filename, |
| struct dwarf2_section_info *section, |
| mapped_debug_names &map) |
| { |
| if (section->empty ()) |
| return false; |
| |
| /* Older elfutils strip versions could keep the section in the main |
| executable while splitting it for the separate debug info file. */ |
| if ((section->get_flags () & SEC_HAS_CONTENTS) == 0) |
| return false; |
| |
| section->read (objfile); |
| |
| map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile)); |
| |
| const gdb_byte *addr = section->buffer; |
| |
| bfd *const abfd = section->get_bfd_owner (); |
| |
| unsigned int bytes_read; |
| LONGEST length = read_initial_length (abfd, addr, &bytes_read); |
| addr += bytes_read; |
| |
| map.dwarf5_is_dwarf64 = bytes_read != 4; |
| map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4; |
| if (bytes_read + length != section->size) |
| { |
| /* There may be multiple per-CU indices. */ |
| warning (_("Section .debug_names in %s length %s does not match " |
| "section length %s, ignoring .debug_names."), |
| filename, plongest (bytes_read + length), |
| pulongest (section->size)); |
| return false; |
| } |
| |
| /* The version number. */ |
| uint16_t version = read_2_bytes (abfd, addr); |
| addr += 2; |
| if (version != 5) |
| { |
| warning (_("Section .debug_names in %s has unsupported version %d, " |
| "ignoring .debug_names."), |
| filename, version); |
| return false; |
| } |
| |
| /* Padding. */ |
| uint16_t padding = read_2_bytes (abfd, addr); |
| addr += 2; |
| if (padding != 0) |
| { |
| warning (_("Section .debug_names in %s has unsupported padding %d, " |
| "ignoring .debug_names."), |
| filename, padding); |
| return false; |
| } |
| |
| /* comp_unit_count - The number of CUs in the CU list. */ |
| map.cu_count = read_4_bytes (abfd, addr); |
| addr += 4; |
| |
| /* local_type_unit_count - The number of TUs in the local TU |
| list. */ |
| map.tu_count = read_4_bytes (abfd, addr); |
| addr += 4; |
| |
| /* foreign_type_unit_count - The number of TUs in the foreign TU |
| list. */ |
| uint32_t foreign_tu_count = read_4_bytes (abfd, addr); |
| addr += 4; |
| if (foreign_tu_count != 0) |
| { |
| warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, " |
| "ignoring .debug_names."), |
| filename, static_cast<unsigned long> (foreign_tu_count)); |
| return false; |
| } |
| |
| /* bucket_count - The number of hash buckets in the hash lookup |
| table. */ |
| map.bucket_count = read_4_bytes (abfd, addr); |
| addr += 4; |
| |
| /* name_count - The number of unique names in the index. */ |
| map.name_count = read_4_bytes (abfd, addr); |
| addr += 4; |
| |
| /* abbrev_table_size - The size in bytes of the abbreviations |
| table. */ |
| uint32_t abbrev_table_size = read_4_bytes (abfd, addr); |
| addr += 4; |
| |
| /* augmentation_string_size - The size in bytes of the augmentation |
| string. This value is rounded up to a multiple of 4. */ |
| uint32_t augmentation_string_size = read_4_bytes (abfd, addr); |
| addr += 4; |
| map.augmentation_is_gdb = ((augmentation_string_size |
| == sizeof (dwarf5_augmentation)) |
| && memcmp (addr, dwarf5_augmentation, |
| sizeof (dwarf5_augmentation)) == 0); |
| augmentation_string_size += (-augmentation_string_size) & 3; |
| addr += augmentation_string_size; |
| |
| /* List of CUs */ |
| map.cu_table_reordered = addr; |
| addr += map.cu_count * map.offset_size; |
| |
| /* List of Local TUs */ |
| map.tu_table_reordered = addr; |
| addr += map.tu_count * map.offset_size; |
| |
| /* Hash Lookup Table */ |
| map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr); |
| addr += map.bucket_count * 4; |
| map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr); |
| addr += map.name_count * 4; |
| |
| /* Name Table */ |
| map.name_table_string_offs_reordered = addr; |
| addr += map.name_count * map.offset_size; |
| map.name_table_entry_offs_reordered = addr; |
| addr += map.name_count * map.offset_size; |
| |
| const gdb_byte *abbrev_table_start = addr; |
| for (;;) |
| { |
| const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read); |
| addr += bytes_read; |
| if (index_num == 0) |
| break; |
| |
| const auto insertpair |
| = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ()); |
| if (!insertpair.second) |
| { |
| warning (_("Section .debug_names in %s has duplicate index %s, " |
| "ignoring .debug_names."), |
| filename, pulongest (index_num)); |
| return false; |
| } |
| mapped_debug_names::index_val &indexval = insertpair.first->second; |
| indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read); |
| addr += bytes_read; |
| |
| for (;;) |
| { |
| mapped_debug_names::index_val::attr attr; |
| attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read); |
| addr += bytes_read; |
| attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read); |
| addr += bytes_read; |
| if (attr.form == DW_FORM_implicit_const) |
| { |
| attr.implicit_const = read_signed_leb128 (abfd, addr, |
| &bytes_read); |
| addr += bytes_read; |
| } |
| if (attr.dw_idx == 0 && attr.form == 0) |
| break; |
| indexval.attr_vec.push_back (std::move (attr)); |
| } |
| } |
| if (addr != abbrev_table_start + abbrev_table_size) |
| { |
| warning (_("Section .debug_names in %s has abbreviation_table " |
| "of size %s vs. written as %u, ignoring .debug_names."), |
| filename, plongest (addr - abbrev_table_start), |
| abbrev_table_size); |
| return false; |
| } |
| map.entry_pool = addr; |
| |
| return true; |
| } |
| |
| /* A helper for create_cus_from_debug_names that handles the MAP's CU |
| list. */ |
| |
| static void |
| create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const mapped_debug_names &map, |
| dwarf2_section_info §ion, |
| bool is_dwz) |
| { |
| sect_offset sect_off_prev; |
| for (uint32_t i = 0; i <= map.cu_count; ++i) |
| { |
| sect_offset sect_off_next; |
| if (i < map.cu_count) |
| { |
| sect_off_next |
| = (sect_offset) (extract_unsigned_integer |
| (map.cu_table_reordered + i * map.offset_size, |
| map.offset_size, |
| map.dwarf5_byte_order)); |
| } |
| else |
| sect_off_next = (sect_offset) section.size; |
| if (i >= 1) |
| { |
| const ULONGEST length = sect_off_next - sect_off_prev; |
| dwarf2_per_cu_data *per_cu |
| = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz, |
| sect_off_prev, length); |
| dwarf2_per_objfile->all_comp_units.push_back (per_cu); |
| } |
| sect_off_prev = sect_off_next; |
| } |
| } |
| |
| /* Read the CU list from the mapped index, and use it to create all |
| the CU objects for this dwarf2_per_objfile. */ |
| |
| static void |
| create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const mapped_debug_names &map, |
| const mapped_debug_names &dwz_map) |
| { |
| gdb_assert (dwarf2_per_objfile->all_comp_units.empty ()); |
| dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count); |
| |
| create_cus_from_debug_names_list (dwarf2_per_objfile, map, |
| dwarf2_per_objfile->info, |
| false /* is_dwz */); |
| |
| if (dwz_map.cu_count == 0) |
| return; |
| |
| dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info, |
| true /* is_dwz */); |
| } |
| |
| /* Read .debug_names. If everything went ok, initialize the "quick" |
| elements of all the CUs and return true. Otherwise, return false. */ |
| |
| static bool |
| dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| std::unique_ptr<mapped_debug_names> map |
| (new mapped_debug_names (dwarf2_per_objfile)); |
| mapped_debug_names dwz_map (dwarf2_per_objfile); |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| if (!read_debug_names_from_section (objfile, objfile_name (objfile), |
| &dwarf2_per_objfile->debug_names, |
| *map)) |
| return false; |
| |
| /* Don't use the index if it's empty. */ |
| if (map->name_count == 0) |
| return false; |
| |
| /* If there is a .dwz file, read it so we can get its CU list as |
| well. */ |
| dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| if (dwz != NULL) |
| { |
| if (!read_debug_names_from_section (objfile, |
| bfd_get_filename (dwz->dwz_bfd.get ()), |
| &dwz->debug_names, dwz_map)) |
| { |
| warning (_("could not read '.debug_names' section from %s; skipping"), |
| bfd_get_filename (dwz->dwz_bfd.get ())); |
| return false; |
| } |
| } |
| |
| create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map); |
| |
| if (map->tu_count != 0) |
| { |
| /* We can only handle a single .debug_types when we have an |
| index. */ |
| if (dwarf2_per_objfile->types.size () != 1) |
| return false; |
| |
| dwarf2_section_info *section = &dwarf2_per_objfile->types[0]; |
| |
| create_signatured_type_table_from_debug_names |
| (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev); |
| } |
| |
| create_addrmap_from_aranges (dwarf2_per_objfile, |
| &dwarf2_per_objfile->debug_aranges); |
| |
| dwarf2_per_objfile->debug_names_table = std::move (map); |
| dwarf2_per_objfile->using_index = 1; |
| dwarf2_per_objfile->quick_file_names_table = |
| create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ()); |
| |
| return true; |
| } |
| |
| /* Type used to manage iterating over all CUs looking for a symbol for |
| .debug_names. */ |
| |
| class dw2_debug_names_iterator |
| { |
| public: |
| dw2_debug_names_iterator (const mapped_debug_names &map, |
| gdb::optional<block_enum> block_index, |
| domain_enum domain, |
| const char *name) |
| : m_map (map), m_block_index (block_index), m_domain (domain), |
| m_addr (find_vec_in_debug_names (map, name)) |
| {} |
| |
| dw2_debug_names_iterator (const mapped_debug_names &map, |
| search_domain search, uint32_t namei) |
| : m_map (map), |
| m_search (search), |
| m_addr (find_vec_in_debug_names (map, namei)) |
| {} |
| |
| dw2_debug_names_iterator (const mapped_debug_names &map, |
| block_enum block_index, domain_enum domain, |
| uint32_t namei) |
| : m_map (map), m_block_index (block_index), m_domain (domain), |
| m_addr (find_vec_in_debug_names (map, namei)) |
| {} |
| |
| /* Return the next matching CU or NULL if there are no more. */ |
| dwarf2_per_cu_data *next (); |
| |
| private: |
| static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map, |
| const char *name); |
| static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map, |
| uint32_t namei); |
| |
| /* The internalized form of .debug_names. */ |
| const mapped_debug_names &m_map; |
| |
| /* If set, only look for symbols that match that block. Valid values are |
| GLOBAL_BLOCK and STATIC_BLOCK. */ |
| const gdb::optional<block_enum> m_block_index; |
| |
| /* The kind of symbol we're looking for. */ |
| const domain_enum m_domain = UNDEF_DOMAIN; |
| const search_domain m_search = ALL_DOMAIN; |
| |
| /* The list of CUs from the index entry of the symbol, or NULL if |
| not found. */ |
| const gdb_byte *m_addr; |
| }; |
| |
| const char * |
| mapped_debug_names::namei_to_name (uint32_t namei) const |
| { |
| const ULONGEST namei_string_offs |
| = extract_unsigned_integer ((name_table_string_offs_reordered |
| + namei * offset_size), |
| offset_size, |
| dwarf5_byte_order); |
| return read_indirect_string_at_offset |
| (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs); |
| } |
| |
| /* Find a slot in .debug_names for the object named NAME. If NAME is |
| found, return pointer to its pool data. If NAME cannot be found, |
| return NULL. */ |
| |
| const gdb_byte * |
| dw2_debug_names_iterator::find_vec_in_debug_names |
| (const mapped_debug_names &map, const char *name) |
| { |
| int (*cmp) (const char *, const char *); |
| |
| gdb::unique_xmalloc_ptr<char> without_params; |
| if (current_language->la_language == language_cplus |
| || current_language->la_language == language_fortran |
| || current_language->la_language == language_d) |
| { |
| /* NAME is already canonical. Drop any qualifiers as |
| .debug_names does not contain any. */ |
| |
| if (strchr (name, '(') != NULL) |
| { |
| without_params = cp_remove_params (name); |
| if (without_params != NULL) |
| name = without_params.get (); |
| } |
| } |
| |
| cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp); |
| |
| const uint32_t full_hash = dwarf5_djb_hash (name); |
| uint32_t namei |
| = extract_unsigned_integer (reinterpret_cast<const gdb_byte *> |
| (map.bucket_table_reordered |
| + (full_hash % map.bucket_count)), 4, |
| map.dwarf5_byte_order); |
| if (namei == 0) |
| return NULL; |
| --namei; |
| if (namei >= map.name_count) |
| { |
| complaint (_("Wrong .debug_names with name index %u but name_count=%u " |
| "[in module %s]"), |
| namei, map.name_count, |
| objfile_name (map.dwarf2_per_objfile->objfile)); |
| return NULL; |
| } |
| |
| for (;;) |
| { |
| const uint32_t namei_full_hash |
| = extract_unsigned_integer (reinterpret_cast<const gdb_byte *> |
| (map.hash_table_reordered + namei), 4, |
| map.dwarf5_byte_order); |
| if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count) |
| return NULL; |
| |
| if (full_hash == namei_full_hash) |
| { |
| const char *const namei_string = map.namei_to_name (namei); |
| |
| #if 0 /* An expensive sanity check. */ |
| if (namei_full_hash != dwarf5_djb_hash (namei_string)) |
| { |
| complaint (_("Wrong .debug_names hash for string at index %u " |
| "[in module %s]"), |
| namei, objfile_name (dwarf2_per_objfile->objfile)); |
| return NULL; |
| } |
| #endif |
| |
| if (cmp (namei_string, name) == 0) |
| { |
| const ULONGEST namei_entry_offs |
| = extract_unsigned_integer ((map.name_table_entry_offs_reordered |
| + namei * map.offset_size), |
| map.offset_size, map.dwarf5_byte_order); |
| return map.entry_pool + namei_entry_offs; |
| } |
| } |
| |
| ++namei; |
| if (namei >= map.name_count) |
| return NULL; |
| } |
| } |
| |
| const gdb_byte * |
| dw2_debug_names_iterator::find_vec_in_debug_names |
| (const mapped_debug_names &map, uint32_t namei) |
| { |
| if (namei >= map.name_count) |
| { |
| complaint (_("Wrong .debug_names with name index %u but name_count=%u " |
| "[in module %s]"), |
| namei, map.name_count, |
| objfile_name (map.dwarf2_per_objfile->objfile)); |
| return NULL; |
| } |
| |
| const ULONGEST namei_entry_offs |
| = extract_unsigned_integer ((map.name_table_entry_offs_reordered |
| + namei * map.offset_size), |
| map.offset_size, map.dwarf5_byte_order); |
| return map.entry_pool + namei_entry_offs; |
| } |
| |
| /* See dw2_debug_names_iterator. */ |
| |
| dwarf2_per_cu_data * |
| dw2_debug_names_iterator::next () |
| { |
| if (m_addr == NULL) |
| return NULL; |
| |
| struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *const abfd = objfile->obfd; |
| |
| again: |
| |
| unsigned int bytes_read; |
| const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read); |
| m_addr += bytes_read; |
| if (abbrev == 0) |
| return NULL; |
| |
| const auto indexval_it = m_map.abbrev_map.find (abbrev); |
| if (indexval_it == m_map.abbrev_map.cend ()) |
| { |
| complaint (_("Wrong .debug_names undefined abbrev code %s " |
| "[in module %s]"), |
| pulongest (abbrev), objfile_name (objfile)); |
| return NULL; |
| } |
| const mapped_debug_names::index_val &indexval = indexval_it->second; |
| enum class symbol_linkage { |
| unknown, |
| static_, |
| extern_, |
| } symbol_linkage_ = symbol_linkage::unknown; |
| dwarf2_per_cu_data *per_cu = NULL; |
| for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec) |
| { |
| ULONGEST ull; |
| switch (attr.form) |
| { |
| case DW_FORM_implicit_const: |
| ull = attr.implicit_const; |
| break; |
| case DW_FORM_flag_present: |
| ull = 1; |
| break; |
| case DW_FORM_udata: |
| ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read); |
| m_addr += bytes_read; |
| break; |
| default: |
| complaint (_("Unsupported .debug_names form %s [in module %s]"), |
| dwarf_form_name (attr.form), |
| objfile_name (objfile)); |
| return NULL; |
| } |
| switch (attr.dw_idx) |
| { |
| case DW_IDX_compile_unit: |
| /* Don't crash on bad data. */ |
| if (ull >= dwarf2_per_objfile->all_comp_units.size ()) |
| { |
| complaint (_(".debug_names entry has bad CU index %s" |
| " [in module %s]"), |
| pulongest (ull), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| continue; |
| } |
| per_cu = dwarf2_per_objfile->get_cutu (ull); |
| break; |
| case DW_IDX_type_unit: |
| /* Don't crash on bad data. */ |
| if (ull >= dwarf2_per_objfile->all_type_units.size ()) |
| { |
| complaint (_(".debug_names entry has bad TU index %s" |
| " [in module %s]"), |
| pulongest (ull), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| continue; |
| } |
| per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu; |
| break; |
| case DW_IDX_GNU_internal: |
| if (!m_map.augmentation_is_gdb) |
| break; |
| symbol_linkage_ = symbol_linkage::static_; |
| break; |
| case DW_IDX_GNU_external: |
| if (!m_map.augmentation_is_gdb) |
| break; |
| symbol_linkage_ = symbol_linkage::extern_; |
| break; |
| } |
| } |
| |
| /* Skip if already read in. */ |
| if (per_cu->v.quick->compunit_symtab) |
| goto again; |
| |
| /* Check static vs global. */ |
| if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ()) |
| { |
| const bool want_static = *m_block_index == STATIC_BLOCK; |
| const bool symbol_is_static = |
| symbol_linkage_ == symbol_linkage::static_; |
| if (want_static != symbol_is_static) |
| goto again; |
| } |
| |
| /* Match dw2_symtab_iter_next, symbol_kind |
| and debug_names::psymbol_tag. */ |
| switch (m_domain) |
| { |
| case VAR_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_variable: |
| case DW_TAG_subprogram: |
| /* Some types are also in VAR_DOMAIN. */ |
| case DW_TAG_typedef: |
| case DW_TAG_structure_type: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case STRUCT_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_typedef: |
| case DW_TAG_structure_type: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case LABEL_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case 0: |
| case DW_TAG_variable: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case MODULE_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_module: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* Match dw2_expand_symtabs_matching, symbol_kind and |
| debug_names::psymbol_tag. */ |
| switch (m_search) |
| { |
| case VARIABLES_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_variable: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case FUNCTIONS_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_subprogram: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case TYPES_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_typedef: |
| case DW_TAG_structure_type: |
| break; |
| default: |
| goto again; |
| } |
| break; |
| case MODULES_DOMAIN: |
| switch (indexval.dwarf_tag) |
| { |
| case DW_TAG_module: |
| break; |
| default: |
| goto again; |
| } |
| default: |
| break; |
| } |
| |
| return per_cu; |
| } |
| |
| static struct compunit_symtab * |
| dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index, |
| const char *name, domain_enum domain) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| const auto &mapp = dwarf2_per_objfile->debug_names_table; |
| if (!mapp) |
| { |
| /* index is NULL if OBJF_READNOW. */ |
| return NULL; |
| } |
| const auto &map = *mapp; |
| |
| dw2_debug_names_iterator iter (map, block_index, domain, name); |
| |
| struct compunit_symtab *stab_best = NULL; |
| struct dwarf2_per_cu_data *per_cu; |
| while ((per_cu = iter.next ()) != NULL) |
| { |
| struct symbol *sym, *with_opaque = NULL; |
| struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false); |
| const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab); |
| const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index); |
| |
| sym = block_find_symbol (block, name, domain, |
| block_find_non_opaque_type_preferred, |
| &with_opaque); |
| |
| /* Some caution must be observed with overloaded functions and |
| methods, since the index will not contain any overload |
| information (but NAME might contain it). */ |
| |
| if (sym != NULL |
| && strcmp_iw (sym->search_name (), name) == 0) |
| return stab; |
| if (with_opaque != NULL |
| && strcmp_iw (with_opaque->search_name (), name) == 0) |
| stab_best = stab; |
| |
| /* Keep looking through other CUs. */ |
| } |
| |
| return stab_best; |
| } |
| |
| /* This dumps minimal information about .debug_names. It is called |
| via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase |
| uses this to verify that .debug_names has been loaded. */ |
| |
| static void |
| dw2_debug_names_dump (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| gdb_assert (dwarf2_per_objfile->using_index); |
| printf_filtered (".debug_names:"); |
| if (dwarf2_per_objfile->debug_names_table) |
| printf_filtered (" exists\n"); |
| else |
| printf_filtered (" faked for \"readnow\"\n"); |
| printf_filtered ("\n"); |
| } |
| |
| static void |
| dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile, |
| const char *func_name) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */ |
| if (dwarf2_per_objfile->debug_names_table) |
| { |
| const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table; |
| |
| dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name); |
| |
| struct dwarf2_per_cu_data *per_cu; |
| while ((per_cu = iter.next ()) != NULL) |
| dw2_instantiate_symtab (per_cu, false); |
| } |
| } |
| |
| static void |
| dw2_debug_names_map_matching_symbols |
| (struct objfile *objfile, |
| const lookup_name_info &name, domain_enum domain, |
| int global, |
| gdb::function_view<symbol_found_callback_ftype> callback, |
| symbol_compare_ftype *ordered_compare) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* debug_names_table is NULL if OBJF_READNOW. */ |
| if (!dwarf2_per_objfile->debug_names_table) |
| return; |
| |
| mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table; |
| const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK; |
| |
| const char *match_name = name.ada ().lookup_name ().c_str (); |
| auto matcher = [&] (const char *symname) |
| { |
| if (ordered_compare == nullptr) |
| return true; |
| return ordered_compare (symname, match_name) == 0; |
| }; |
| |
| dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN, |
| [&] (offset_type namei) |
| { |
| /* The name was matched, now expand corresponding CUs that were |
| marked. */ |
| dw2_debug_names_iterator iter (map, block_kind, domain, namei); |
| |
| struct dwarf2_per_cu_data *per_cu; |
| while ((per_cu = iter.next ()) != NULL) |
| dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr); |
| return true; |
| }); |
| |
| /* It's a shame we couldn't do this inside the |
| dw2_expand_symtabs_matching_symbol callback, but that skips CUs |
| that have already been expanded. Instead, this loop matches what |
| the psymtab code does. */ |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab; |
| if (cust != nullptr) |
| { |
| const struct block *block |
| = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind); |
| if (!iterate_over_symbols_terminated (block, name, |
| domain, callback)) |
| break; |
| } |
| } |
| } |
| |
| static void |
| dw2_debug_names_expand_symtabs_matching |
| (struct objfile *objfile, |
| gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher, |
| const lookup_name_info &lookup_name, |
| gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher, |
| gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify, |
| enum search_domain kind) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* debug_names_table is NULL if OBJF_READNOW. */ |
| if (!dwarf2_per_objfile->debug_names_table) |
| return; |
| |
| dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher); |
| |
| mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table; |
| |
| dw2_expand_symtabs_matching_symbol (map, lookup_name, |
| symbol_matcher, |
| kind, [&] (offset_type namei) |
| { |
| /* The name was matched, now expand corresponding CUs that were |
| marked. */ |
| dw2_debug_names_iterator iter (map, kind, namei); |
| |
| struct dwarf2_per_cu_data *per_cu; |
| while ((per_cu = iter.next ()) != NULL) |
| dw2_expand_symtabs_matching_one (per_cu, file_matcher, |
| expansion_notify); |
| return true; |
| }); |
| } |
| |
| const struct quick_symbol_functions dwarf2_debug_names_functions = |
| { |
| dw2_has_symbols, |
| dw2_find_last_source_symtab, |
| dw2_forget_cached_source_info, |
| dw2_map_symtabs_matching_filename, |
| dw2_debug_names_lookup_symbol, |
| dw2_print_stats, |
| dw2_debug_names_dump, |
| dw2_debug_names_expand_symtabs_for_function, |
| dw2_expand_all_symtabs, |
| dw2_expand_symtabs_with_fullname, |
| dw2_debug_names_map_matching_symbols, |
| dw2_debug_names_expand_symtabs_matching, |
| dw2_find_pc_sect_compunit_symtab, |
| NULL, |
| dw2_map_symbol_filenames |
| }; |
| |
| /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point |
| to either a dwarf2_per_objfile or dwz_file object. */ |
| |
| template <typename T> |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_section (objfile *obj, T *section_owner) |
| { |
| dwarf2_section_info *section = §ion_owner->gdb_index; |
| |
| if (section->empty ()) |
| return {}; |
| |
| /* Older elfutils strip versions could keep the section in the main |
| executable while splitting it for the separate debug info file. */ |
| if ((section->get_flags () & SEC_HAS_CONTENTS) == 0) |
| return {}; |
| |
| section->read (obj); |
| |
| /* dwarf2_section_info::size is a bfd_size_type, while |
| gdb::array_view works with size_t. On 32-bit hosts, with |
| --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t |
| is 32-bit. So we need an explicit narrowing conversion here. |
| This is fine, because it's impossible to allocate or mmap an |
| array/buffer larger than what size_t can represent. */ |
| return gdb::make_array_view (section->buffer, section->size); |
| } |
| |
| /* Lookup the index cache for the contents of the index associated to |
| DWARF2_OBJ. */ |
| |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj) |
| { |
| const bfd_build_id *build_id = build_id_bfd_get (obj->obfd); |
| if (build_id == nullptr) |
| return {}; |
| |
| return global_index_cache.lookup_gdb_index (build_id, |
| &dwarf2_obj->index_cache_res); |
| } |
| |
| /* Same as the above, but for DWZ. */ |
| |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz) |
| { |
| const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ()); |
| if (build_id == nullptr) |
| return {}; |
| |
| return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res); |
| } |
| |
| /* See symfile.h. */ |
| |
| bool |
| dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| /* If we're about to read full symbols, don't bother with the |
| indices. In this case we also don't care if some other debug |
| format is making psymtabs, because they are all about to be |
| expanded anyway. */ |
| if ((objfile->flags & OBJF_READNOW)) |
| { |
| dwarf2_per_objfile->using_index = 1; |
| create_all_comp_units (dwarf2_per_objfile); |
| create_all_type_units (dwarf2_per_objfile); |
| dwarf2_per_objfile->quick_file_names_table |
| = create_quick_file_names_table |
| (dwarf2_per_objfile->all_comp_units.size ()); |
| |
| for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size () |
| + dwarf2_per_objfile->all_type_units.size ()); ++i) |
| { |
| dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i); |
| |
| per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| } |
| |
| /* Return 1 so that gdb sees the "quick" functions. However, |
| these functions will be no-ops because we will have expanded |
| all symtabs. */ |
| *index_kind = dw_index_kind::GDB_INDEX; |
| return true; |
| } |
| |
| if (dwarf2_read_debug_names (dwarf2_per_objfile)) |
| { |
| *index_kind = dw_index_kind::DEBUG_NAMES; |
| return true; |
| } |
| |
| if (dwarf2_read_gdb_index (dwarf2_per_objfile, |
| get_gdb_index_contents_from_section<struct dwarf2_per_objfile>, |
| get_gdb_index_contents_from_section<dwz_file>)) |
| { |
| *index_kind = dw_index_kind::GDB_INDEX; |
| return true; |
| } |
| |
| /* ... otherwise, try to find the index in the index cache. */ |
| if (dwarf2_read_gdb_index (dwarf2_per_objfile, |
| get_gdb_index_contents_from_cache, |
| get_gdb_index_contents_from_cache_dwz)) |
| { |
| global_index_cache.hit (); |
| *index_kind = dw_index_kind::GDB_INDEX; |
| return true; |
| } |
| |
| global_index_cache.miss (); |
| return false; |
| } |
| |
| |
| |
| /* Build a partial symbol table. */ |
| |
| void |
| dwarf2_build_psymtabs (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| init_psymbol_list (objfile, 1024); |
| |
| try |
| { |
| /* This isn't really ideal: all the data we allocate on the |
| objfile's obstack is still uselessly kept around. However, |
| freeing it seems unsafe. */ |
| psymtab_discarder psymtabs (objfile); |
| dwarf2_build_psymtabs_hard (dwarf2_per_objfile); |
| psymtabs.keep (); |
| |
| /* (maybe) store an index in the cache. */ |
| global_index_cache.store (dwarf2_per_objfile); |
| } |
| catch (const gdb_exception_error &except) |
| { |
| exception_print (gdb_stderr, except); |
| } |
| } |
| |
| /* Return the total length of the CU described by HEADER. */ |
| |
| static unsigned int |
| get_cu_length (const struct comp_unit_head *header) |
| { |
| return header->initial_length_size + header->length; |
| } |
| |
| /* Return TRUE if SECT_OFF is within CU_HEADER. */ |
| |
| static inline bool |
| offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off) |
| { |
| sect_offset bottom = cu_header->sect_off; |
| sect_offset top = cu_header->sect_off + get_cu_length (cu_header); |
| |
| return sect_off >= bottom && sect_off < top; |
| } |
| |
| /* Find the base address of the compilation unit for range lists and |
| location lists. It will normally be specified by DW_AT_low_pc. |
| In DWARF-3 draft 4, the base address could be overridden by |
| DW_AT_entry_pc. It's been removed, but GCC still uses this for |
| compilation units with discontinuous ranges. */ |
| |
| static void |
| dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| cu->base_known = 0; |
| cu->base_address = 0; |
| |
| attr = dwarf2_attr (die, DW_AT_entry_pc, cu); |
| if (attr != nullptr) |
| { |
| cu->base_address = attr->value_as_address (); |
| cu->base_known = 1; |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| cu->base_address = attr->value_as_address (); |
| cu->base_known = 1; |
| } |
| } |
| } |
| |
| /* Read in the comp unit header information from the debug_info at info_ptr. |
| Use rcuh_kind::COMPILE as the default type if not known by the caller. |
| NOTE: This leaves members offset, first_die_offset to be filled in |
| by the caller. */ |
| |
| static const gdb_byte * |
| read_comp_unit_head (struct comp_unit_head *cu_header, |
| const gdb_byte *info_ptr, |
| struct dwarf2_section_info *section, |
| rcuh_kind section_kind) |
| { |
| int signed_addr; |
| unsigned int bytes_read; |
| const char *filename = section->get_file_name (); |
| bfd *abfd = section->get_bfd_owner (); |
| |
| cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read); |
| cu_header->initial_length_size = bytes_read; |
| cu_header->offset_size = (bytes_read == 4) ? 4 : 8; |
| info_ptr += bytes_read; |
| cu_header->version = read_2_bytes (abfd, info_ptr); |
| if (cu_header->version < 2 || cu_header->version > 5) |
| error (_("Dwarf Error: wrong version in compilation unit header " |
| "(is %d, should be 2, 3, 4 or 5) [in module %s]"), |
| cu_header->version, filename); |
| info_ptr += 2; |
| if (cu_header->version < 5) |
| switch (section_kind) |
| { |
| case rcuh_kind::COMPILE: |
| cu_header->unit_type = DW_UT_compile; |
| break; |
| case rcuh_kind::TYPE: |
| cu_header->unit_type = DW_UT_type; |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_comp_unit_head: invalid section_kind")); |
| } |
| else |
| { |
| cu_header->unit_type = static_cast<enum dwarf_unit_type> |
| (read_1_byte (abfd, info_ptr)); |
| info_ptr += 1; |
| switch (cu_header->unit_type) |
| { |
| case DW_UT_compile: |
| case DW_UT_partial: |
| case DW_UT_skeleton: |
| case DW_UT_split_compile: |
| if (section_kind != rcuh_kind::COMPILE) |
| error (_("Dwarf Error: wrong unit_type in compilation unit header " |
| "(is %s, should be %s) [in module %s]"), |
| dwarf_unit_type_name (cu_header->unit_type), |
| dwarf_unit_type_name (DW_UT_type), filename); |
| break; |
| case DW_UT_type: |
| case DW_UT_split_type: |
| section_kind = rcuh_kind::TYPE; |
| break; |
| default: |
| error (_("Dwarf Error: wrong unit_type in compilation unit header " |
| "(is %#04x, should be one of: %s, %s, %s, %s or %s) " |
| "[in module %s]"), cu_header->unit_type, |
| dwarf_unit_type_name (DW_UT_compile), |
| dwarf_unit_type_name (DW_UT_skeleton), |
| dwarf_unit_type_name (DW_UT_split_compile), |
| dwarf_unit_type_name (DW_UT_type), |
| dwarf_unit_type_name (DW_UT_split_type), filename); |
| } |
| |
| cu_header->addr_size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| } |
| cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr, |
| cu_header, |
| &bytes_read); |
| info_ptr += bytes_read; |
| if (cu_header->version < 5) |
| { |
| cu_header->addr_size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| } |
| signed_addr = bfd_get_sign_extend_vma (abfd); |
| if (signed_addr < 0) |
| internal_error (__FILE__, __LINE__, |
| _("read_comp_unit_head: dwarf from non elf file")); |
| cu_header->signed_addr_p = signed_addr; |
| |
| bool header_has_signature = section_kind == rcuh_kind::TYPE |
| || cu_header->unit_type == DW_UT_skeleton |
| || cu_header->unit_type == DW_UT_split_compile; |
| |
| if (header_has_signature) |
| { |
| cu_header->signature = read_8_bytes (abfd, info_ptr); |
| info_ptr += 8; |
| } |
| |
| if (section_kind == rcuh_kind::TYPE) |
| { |
| LONGEST type_offset; |
| type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read); |
| info_ptr += bytes_read; |
| cu_header->type_cu_offset_in_tu = (cu_offset) type_offset; |
| if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset) |
| error (_("Dwarf Error: Too big type_offset in compilation unit " |
| "header (is %s) [in module %s]"), plongest (type_offset), |
| filename); |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Helper function that returns the proper abbrev section for |
| THIS_CU. */ |
| |
| static struct dwarf2_section_info * |
| get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu) |
| { |
| struct dwarf2_section_info *abbrev; |
| struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile; |
| |
| if (this_cu->is_dwz) |
| abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev; |
| else |
| abbrev = &dwarf2_per_objfile->abbrev; |
| |
| return abbrev; |
| } |
| |
| /* Subroutine of read_and_check_comp_unit_head and |
| read_and_check_type_unit_head to simplify them. |
| Perform various error checking on the header. */ |
| |
| static void |
| error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct comp_unit_head *header, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section) |
| { |
| const char *filename = section->get_file_name (); |
| |
| if (to_underlying (header->abbrev_sect_off) |
| >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section)) |
| error (_("Dwarf Error: bad offset (%s) in compilation unit header " |
| "(offset %s + 6) [in module %s]"), |
| sect_offset_str (header->abbrev_sect_off), |
| sect_offset_str (header->sect_off), |
| filename); |
| |
| /* Cast to ULONGEST to use 64-bit arithmetic when possible to |
| avoid potential 32-bit overflow. */ |
| if (((ULONGEST) header->sect_off + get_cu_length (header)) |
| > section->size) |
| error (_("Dwarf Error: bad length (0x%x) in compilation unit header " |
| "(offset %s + 0) [in module %s]"), |
| header->length, sect_offset_str (header->sect_off), |
| filename); |
| } |
| |
| /* Read in a CU/TU header and perform some basic error checking. |
| The contents of the header are stored in HEADER. |
| The result is a pointer to the start of the first DIE. */ |
| |
| static const gdb_byte * |
| read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct comp_unit_head *header, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section, |
| const gdb_byte *info_ptr, |
| rcuh_kind section_kind) |
| { |
| const gdb_byte *beg_of_comp_unit = info_ptr; |
| |
| header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer); |
| |
| info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind); |
| |
| header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit); |
| |
| error_check_comp_unit_head (dwarf2_per_objfile, header, section, |
| abbrev_section); |
| |
| return info_ptr; |
| } |
| |
| /* Fetch the abbreviation table offset from a comp or type unit header. */ |
| |
| static sect_offset |
| read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section, |
| sect_offset sect_off) |
| { |
| bfd *abfd = section->get_bfd_owner (); |
| const gdb_byte *info_ptr; |
| unsigned int initial_length_size, offset_size; |
| uint16_t version; |
| |
| section->read (dwarf2_per_objfile->objfile); |
| info_ptr = section->buffer + to_underlying (sect_off); |
| read_initial_length (abfd, info_ptr, &initial_length_size); |
| offset_size = initial_length_size == 4 ? 4 : 8; |
| info_ptr += initial_length_size; |
| |
| version = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| if (version >= 5) |
| { |
| /* Skip unit type and address size. */ |
| info_ptr += 2; |
| } |
| |
| return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size); |
| } |
| |
| /* Allocate a new partial symtab for file named NAME and mark this new |
| partial symtab as being an include of PST. */ |
| |
| static void |
| dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst, |
| struct objfile *objfile) |
| { |
| dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile); |
| |
| if (!IS_ABSOLUTE_PATH (subpst->filename)) |
| { |
| /* It shares objfile->objfile_obstack. */ |
| subpst->dirname = pst->dirname; |
| } |
| |
| subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1); |
| subpst->dependencies[0] = pst; |
| subpst->number_of_dependencies = 1; |
| |
| /* No private part is necessary for include psymtabs. This property |
| can be used to differentiate between such include psymtabs and |
| the regular ones. */ |
| subpst->per_cu_data = nullptr; |
| } |
| |
| /* Read the Line Number Program data and extract the list of files |
| included by the source file represented by PST. Build an include |
| partial symtab for each of these included files. */ |
| |
| static void |
| dwarf2_build_include_psymtabs (struct dwarf2_cu *cu, |
| struct die_info *die, |
| dwarf2_psymtab *pst) |
| { |
| line_header_up lh; |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr != nullptr) |
| lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu); |
| if (lh == NULL) |
| return; /* No linetable, so no includes. */ |
| |
| /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note |
| that we pass in the raw text_low here; that is ok because we're |
| only decoding the line table to make include partial symtabs, and |
| so the addresses aren't really used. */ |
| dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, |
| pst->raw_text_low (), 1); |
| } |
| |
| static hashval_t |
| hash_signatured_type (const void *item) |
| { |
| const struct signatured_type *sig_type |
| = (const struct signatured_type *) item; |
| |
| /* This drops the top 32 bits of the signature, but is ok for a hash. */ |
| return sig_type->signature; |
| } |
| |
| static int |
| eq_signatured_type (const void *item_lhs, const void *item_rhs) |
| { |
| const struct signatured_type *lhs = (const struct signatured_type *) item_lhs; |
| const struct signatured_type *rhs = (const struct signatured_type *) item_rhs; |
| |
| return lhs->signature == rhs->signature; |
| } |
| |
| /* Allocate a hash table for signatured types. */ |
| |
| static htab_up |
| allocate_signatured_type_table (struct objfile *objfile) |
| { |
| return htab_up (htab_create_alloc (41, |
| hash_signatured_type, |
| eq_signatured_type, |
| NULL, xcalloc, xfree)); |
| } |
| |
| /* A helper function to add a signatured type CU to a table. */ |
| |
| static int |
| add_signatured_type_cu_to_table (void **slot, void *datum) |
| { |
| struct signatured_type *sigt = (struct signatured_type *) *slot; |
| std::vector<signatured_type *> *all_type_units |
| = (std::vector<signatured_type *> *) datum; |
| |
| all_type_units->push_back (sigt); |
| |
| return 1; |
| } |
| |
| /* A helper for create_debug_types_hash_table. Read types from SECTION |
| and fill them into TYPES_HTAB. It will process only type units, |
| therefore DW_UT_type. */ |
| |
| static void |
| create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwo_file *dwo_file, |
| dwarf2_section_info *section, htab_up &types_htab, |
| rcuh_kind section_kind) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *abbrev_section; |
| bfd *abfd; |
| const gdb_byte *info_ptr, *end_ptr; |
| |
| abbrev_section = (dwo_file != NULL |
| ? &dwo_file->sections.abbrev |
| : &dwarf2_per_objfile->abbrev); |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n", |
| section->get_name (), |
| abbrev_section->get_file_name ()); |
| |
| section->read (objfile); |
| info_ptr = section->buffer; |
| |
| if (info_ptr == NULL) |
| return; |
| |
| /* We can't set abfd until now because the section may be empty or |
| not present, in which case the bfd is unknown. */ |
| abfd = section->get_bfd_owner (); |
| |
| /* We don't use cutu_reader here because we don't need to read |
| any dies: the signature is in the header. */ |
| |
| end_ptr = info_ptr + section->size; |
| while (info_ptr < end_ptr) |
| { |
| struct signatured_type *sig_type; |
| struct dwo_unit *dwo_tu; |
| void **slot; |
| const gdb_byte *ptr = info_ptr; |
| struct comp_unit_head header; |
| unsigned int length; |
| |
| sect_offset sect_off = (sect_offset) (ptr - section->buffer); |
| |
| /* Initialize it due to a false compiler warning. */ |
| header.signature = -1; |
| header.type_cu_offset_in_tu = (cu_offset) -1; |
| |
| /* We need to read the type's signature in order to build the hash |
| table, but we don't need anything else just yet. */ |
| |
| ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section, |
| abbrev_section, ptr, section_kind); |
| |
| length = get_cu_length (&header); |
| |
| /* Skip dummy type units. */ |
| if (ptr >= info_ptr + length |
| || peek_abbrev_code (abfd, ptr) == 0 |
| || header.unit_type != DW_UT_type) |
| { |
| info_ptr += length; |
| continue; |
| } |
| |
| if (types_htab == NULL) |
| { |
| if (dwo_file) |
| types_htab = allocate_dwo_unit_table (objfile); |
| else |
| types_htab = allocate_signatured_type_table (objfile); |
| } |
| |
| if (dwo_file) |
| { |
| sig_type = NULL; |
| dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwo_unit); |
| dwo_tu->dwo_file = dwo_file; |
| dwo_tu->signature = header.signature; |
| dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu; |
| dwo_tu->section = section; |
| dwo_tu->sect_off = sect_off; |
| dwo_tu->length = length; |
| } |
| else |
| { |
| /* N.B.: type_offset is not usable if this type uses a DWO file. |
| The real type_offset is in the DWO file. */ |
| dwo_tu = NULL; |
| sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| sig_type->signature = header.signature; |
| sig_type->type_offset_in_tu = header.type_cu_offset_in_tu; |
| sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile; |
| sig_type->per_cu.is_debug_types = 1; |
| sig_type->per_cu.section = section; |
| sig_type->per_cu.sect_off = sect_off; |
| sig_type->per_cu.length = length; |
| } |
| |
| slot = htab_find_slot (types_htab.get (), |
| dwo_file ? (void*) dwo_tu : (void *) sig_type, |
| INSERT); |
| gdb_assert (slot != NULL); |
| if (*slot != NULL) |
| { |
| sect_offset dup_sect_off; |
| |
| if (dwo_file) |
| { |
| const struct dwo_unit *dup_tu |
| = (const struct dwo_unit *) *slot; |
| |
| dup_sect_off = dup_tu->sect_off; |
| } |
| else |
| { |
| const struct signatured_type *dup_tu |
| = (const struct signatured_type *) *slot; |
| |
| dup_sect_off = dup_tu->per_cu.sect_off; |
| } |
| |
| complaint (_("debug type entry at offset %s is duplicate to" |
| " the entry at offset %s, signature %s"), |
| sect_offset_str (sect_off), sect_offset_str (dup_sect_off), |
| hex_string (header.signature)); |
| } |
| *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type; |
| |
| if (dwarf_read_debug > 1) |
| fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n", |
| sect_offset_str (sect_off), |
| hex_string (header.signature)); |
| |
| info_ptr += length; |
| } |
| } |
| |
| /* Create the hash table of all entries in the .debug_types |
| (or .debug_types.dwo) section(s). |
| If reading a DWO file, then DWO_FILE is a pointer to the DWO file object, |
| otherwise it is NULL. |
| |
| The result is a pointer to the hash table or NULL if there are no types. |
| |
| Note: This function processes DWO files only, not DWP files. */ |
| |
| static void |
| create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwo_file *dwo_file, |
| gdb::array_view<dwarf2_section_info> type_sections, |
| htab_up &types_htab) |
| { |
| for (dwarf2_section_info §ion : type_sections) |
| create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion, |
| types_htab, rcuh_kind::TYPE); |
| } |
| |
| /* Create the hash table of all entries in the .debug_types section, |
| and initialize all_type_units. |
| The result is zero if there is an error (e.g. missing .debug_types section), |
| otherwise non-zero. */ |
| |
| static int |
| create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| htab_up types_htab; |
| |
| create_debug_type_hash_table (dwarf2_per_objfile, NULL, |
| &dwarf2_per_objfile->info, types_htab, |
| rcuh_kind::COMPILE); |
| create_debug_types_hash_table (dwarf2_per_objfile, NULL, |
| dwarf2_per_objfile->types, types_htab); |
| if (types_htab == NULL) |
| { |
| dwarf2_per_objfile->signatured_types = NULL; |
| return 0; |
| } |
| |
| dwarf2_per_objfile->signatured_types = std::move (types_htab); |
| |
| gdb_assert (dwarf2_per_objfile->all_type_units.empty ()); |
| dwarf2_per_objfile->all_type_units.reserve |
| (htab_elements (dwarf2_per_objfile->signatured_types.get ())); |
| |
| htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (), |
| add_signatured_type_cu_to_table, |
| &dwarf2_per_objfile->all_type_units); |
| |
| return 1; |
| } |
| |
| /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. |
| If SLOT is non-NULL, it is the entry to use in the hash table. |
| Otherwise we find one. */ |
| |
| static struct signatured_type * |
| add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig, |
| void **slot) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| if (dwarf2_per_objfile->all_type_units.size () |
| == dwarf2_per_objfile->all_type_units.capacity ()) |
| ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs; |
| |
| signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| |
| dwarf2_per_objfile->all_type_units.push_back (sig_type); |
| sig_type->signature = sig; |
| sig_type->per_cu.is_debug_types = 1; |
| if (dwarf2_per_objfile->using_index) |
| { |
| sig_type->per_cu.v.quick = |
| OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| } |
| |
| if (slot == NULL) |
| { |
| slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (), |
| sig_type, INSERT); |
| } |
| gdb_assert (*slot == NULL); |
| *slot = sig_type; |
| /* The rest of sig_type must be filled in by the caller. */ |
| return sig_type; |
| } |
| |
| /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type. |
| Fill in SIG_ENTRY with DWO_ENTRY. */ |
| |
| static void |
| fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct signatured_type *sig_entry, |
| struct dwo_unit *dwo_entry) |
| { |
| /* Make sure we're not clobbering something we don't expect to. */ |
| gdb_assert (! sig_entry->per_cu.queued); |
| gdb_assert (sig_entry->per_cu.cu == NULL); |
| if (dwarf2_per_objfile->using_index) |
| { |
| gdb_assert (sig_entry->per_cu.v.quick != NULL); |
| gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL); |
| } |
| else |
| gdb_assert (sig_entry->per_cu.v.psymtab == NULL); |
| gdb_assert (sig_entry->signature == dwo_entry->signature); |
| gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0); |
| gdb_assert (sig_entry->type_unit_group == NULL); |
| gdb_assert (sig_entry->dwo_unit == NULL); |
| |
| sig_entry->per_cu.section = dwo_entry->section; |
| sig_entry->per_cu.sect_off = dwo_entry->sect_off; |
| sig_entry->per_cu.length = dwo_entry->length; |
| sig_entry->per_cu.reading_dwo_directly = 1; |
| sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile; |
| sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu; |
| sig_entry->dwo_unit = dwo_entry; |
| } |
| |
| /* Subroutine of lookup_signatured_type. |
| If we haven't read the TU yet, create the signatured_type data structure |
| for a TU to be read in directly from a DWO file, bypassing the stub. |
| This is the "Stay in DWO Optimization": When there is no DWP file and we're |
| using .gdb_index, then when reading a CU we want to stay in the DWO file |
| containing that CU. Otherwise we could end up reading several other DWO |
| files (due to comdat folding) to process the transitive closure of all the |
| mentioned TUs, and that can be slow. The current DWO file will have every |
| type signature that it needs. |
| We only do this for .gdb_index because in the psymtab case we already have |
| to read all the DWOs to build the type unit groups. */ |
| |
| static struct signatured_type * |
| lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwo_file *dwo_file; |
| struct dwo_unit find_dwo_entry, *dwo_entry; |
| struct signatured_type find_sig_entry, *sig_entry; |
| void **slot; |
| |
| gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index); |
| |
| /* If TU skeletons have been removed then we may not have read in any |
| TUs yet. */ |
| if (dwarf2_per_objfile->signatured_types == NULL) |
| { |
| dwarf2_per_objfile->signatured_types |
| = allocate_signatured_type_table (objfile); |
| } |
| |
| /* We only ever need to read in one copy of a signatured type. |
| Use the global signatured_types array to do our own comdat-folding |
| of types. If this is the first time we're reading this TU, and |
| the TU has an entry in .gdb_index, replace the recorded data from |
| .gdb_index with this TU. */ |
| |
| find_sig_entry.signature = sig; |
| slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (), |
| &find_sig_entry, INSERT); |
| sig_entry = (struct signatured_type *) *slot; |
| |
| /* We can get here with the TU already read, *or* in the process of being |
| read. Don't reassign the global entry to point to this DWO if that's |
| the case. Also note that if the TU is already being read, it may not |
| have come from a DWO, the program may be a mix of Fission-compiled |
| code and non-Fission-compiled code. */ |
| |
| /* Have we already tried to read this TU? |
| Note: sig_entry can be NULL if the skeleton TU was removed (thus it |
| needn't exist in the global table yet). */ |
| if (sig_entry != NULL && sig_entry->per_cu.tu_read) |
| return sig_entry; |
| |
| /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the |
| dwo_unit of the TU itself. */ |
| dwo_file = cu->dwo_unit->dwo_file; |
| |
| /* Ok, this is the first time we're reading this TU. */ |
| if (dwo_file->tus == NULL) |
| return NULL; |
| find_dwo_entry.signature = sig; |
| dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (), |
| &find_dwo_entry); |
| if (dwo_entry == NULL) |
| return NULL; |
| |
| /* If the global table doesn't have an entry for this TU, add one. */ |
| if (sig_entry == NULL) |
| sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot); |
| |
| fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry); |
| sig_entry->per_cu.tu_read = 1; |
| return sig_entry; |
| } |
| |
| /* Subroutine of lookup_signatured_type. |
| Look up the type for signature SIG, and if we can't find SIG in .gdb_index |
| then try the DWP file. If the TU stub (skeleton) has been removed then |
| it won't be in .gdb_index. */ |
| |
| static struct signatured_type * |
| lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile); |
| struct dwo_unit *dwo_entry; |
| struct signatured_type find_sig_entry, *sig_entry; |
| void **slot; |
| |
| gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index); |
| gdb_assert (dwp_file != NULL); |
| |
| /* If TU skeletons have been removed then we may not have read in any |
| TUs yet. */ |
| if (dwarf2_per_objfile->signatured_types == NULL) |
| { |
| dwarf2_per_objfile->signatured_types |
| = allocate_signatured_type_table (objfile); |
| } |
| |
| find_sig_entry.signature = sig; |
| slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (), |
| &find_sig_entry, INSERT); |
| sig_entry = (struct signatured_type *) *slot; |
| |
| /* Have we already tried to read this TU? |
| Note: sig_entry can be NULL if the skeleton TU was removed (thus it |
| needn't exist in the global table yet). */ |
| if (sig_entry != NULL) |
| return sig_entry; |
| |
| if (dwp_file->tus == NULL) |
| return NULL; |
| dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL, |
| sig, 1 /* is_debug_types */); |
| if (dwo_entry == NULL) |
| return NULL; |
| |
| sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot); |
| fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry); |
| |
| return sig_entry; |
| } |
| |
| /* Lookup a signature based type for DW_FORM_ref_sig8. |
| Returns NULL if signature SIG is not present in the table. |
| It is up to the caller to complain about this. */ |
| |
| static struct signatured_type * |
| lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| if (cu->dwo_unit |
| && dwarf2_per_objfile->using_index) |
| { |
| /* We're in a DWO/DWP file, and we're using .gdb_index. |
| These cases require special processing. */ |
| if (get_dwp_file (dwarf2_per_objfile) == NULL) |
| return lookup_dwo_signatured_type (cu, sig); |
| else |
| return lookup_dwp_signatured_type (cu, sig); |
| } |
| else |
| { |
| struct signatured_type find_entry, *entry; |
| |
| if (dwarf2_per_objfile->signatured_types == NULL) |
| return NULL; |
| find_entry.signature = sig; |
| entry = ((struct signatured_type *) |
| htab_find (dwarf2_per_objfile->signatured_types.get (), |
| &find_entry)); |
| return entry; |
| } |
| } |
| |
| /* Return the address base of the compile unit, which, if exists, is stored |
| either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */ |
| static gdb::optional<ULONGEST> |
| lookup_addr_base (struct die_info *comp_unit_die) |
| { |
| struct attribute *attr; |
| attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base); |
| if (attr == nullptr) |
| attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base); |
| if (attr == nullptr) |
| return gdb::optional<ULONGEST> (); |
| return DW_UNSND (attr); |
| } |
| |
| /* Return range lists base of the compile unit, which, if exists, is stored |
| either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */ |
| static ULONGEST |
| lookup_ranges_base (struct die_info *comp_unit_die) |
| { |
| struct attribute *attr; |
| attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base); |
| if (attr == nullptr) |
| attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base); |
| if (attr == nullptr) |
| return 0; |
| return DW_UNSND (attr); |
| } |
| |
| /* Low level DIE reading support. */ |
| |
| /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */ |
| |
| static void |
| init_cu_die_reader (struct die_reader_specs *reader, |
| struct dwarf2_cu *cu, |
| struct dwarf2_section_info *section, |
| struct dwo_file *dwo_file, |
| struct abbrev_table *abbrev_table) |
| { |
| gdb_assert (section->readin && section->buffer != NULL); |
| reader->abfd = section->get_bfd_owner (); |
| reader->cu = cu; |
| reader->dwo_file = dwo_file; |
| reader->die_section = section; |
| reader->buffer = section->buffer; |
| reader->buffer_end = section->buffer + section->size; |
| reader->abbrev_table = abbrev_table; |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| Read in the rest of a CU/TU top level DIE from DWO_UNIT. |
| There's just a lot of work to do, and cutu_reader is big enough |
| already. |
| |
| STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes |
| from it to the DIE in the DWO. If NULL we are skipping the stub. |
| STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly |
| from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir |
| attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and |
| STUB_COMP_DIR may be non-NULL. |
| *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE |
| are filled in with the info of the DIE from the DWO file. |
| *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated |
| from the dwo. Since *RESULT_READER references this abbrev table, it must be |
| kept around for at least as long as *RESULT_READER. |
| |
| The result is non-zero if a valid (non-dummy) DIE was found. */ |
| |
| static int |
| read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu, |
| struct dwo_unit *dwo_unit, |
| struct die_info *stub_comp_unit_die, |
| const char *stub_comp_dir, |
| struct die_reader_specs *result_reader, |
| const gdb_byte **result_info_ptr, |
| struct die_info **result_comp_unit_die, |
| abbrev_table_up *result_dwo_abbrev_table) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_cu *cu = this_cu->cu; |
| bfd *abfd; |
| const gdb_byte *begin_info_ptr, *info_ptr; |
| struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges; |
| int i,num_extra_attrs; |
| struct dwarf2_section_info *dwo_abbrev_section; |
| struct die_info *comp_unit_die; |
| |
| /* At most one of these may be provided. */ |
| gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1); |
| |
| /* These attributes aren't processed until later: |
| DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges. |
| DW_AT_comp_dir is used now, to find the DWO file, but it is also |
| referenced later. However, these attributes are found in the stub |
| which we won't have later. In order to not impose this complication |
| on the rest of the code, we read them here and copy them to the |
| DWO CU/TU die. */ |
| |
| stmt_list = NULL; |
| low_pc = NULL; |
| high_pc = NULL; |
| ranges = NULL; |
| comp_dir = NULL; |
| |
| if (stub_comp_unit_die != NULL) |
| { |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (! this_cu->is_debug_types) |
| stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu); |
| low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu); |
| high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu); |
| ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu); |
| comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu); |
| |
| cu->addr_base = lookup_addr_base (stub_comp_unit_die); |
| |
| /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute |
| here (if needed). We need the value before we can process |
| DW_AT_ranges. */ |
| cu->ranges_base = lookup_ranges_base (stub_comp_unit_die); |
| } |
| else if (stub_comp_dir != NULL) |
| { |
| /* Reconstruct the comp_dir attribute to simplify the code below. */ |
| comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute); |
| comp_dir->name = DW_AT_comp_dir; |
| comp_dir->form = DW_FORM_string; |
| DW_STRING_IS_CANONICAL (comp_dir) = 0; |
| DW_STRING (comp_dir) = stub_comp_dir; |
| } |
| |
| /* Set up for reading the DWO CU/TU. */ |
| cu->dwo_unit = dwo_unit; |
| dwarf2_section_info *section = dwo_unit->section; |
| section->read (objfile); |
| abfd = section->get_bfd_owner (); |
| begin_info_ptr = info_ptr = (section->buffer |
| + to_underlying (dwo_unit->sect_off)); |
| dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev; |
| |
| if (this_cu->is_debug_types) |
| { |
| struct signatured_type *sig_type = (struct signatured_type *) this_cu; |
| |
| info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, |
| &cu->header, section, |
| dwo_abbrev_section, |
| info_ptr, rcuh_kind::TYPE); |
| /* This is not an assert because it can be caused by bad debug info. */ |
| if (sig_type->signature != cu->header.signature) |
| { |
| error (_("Dwarf Error: signature mismatch %s vs %s while reading" |
| " TU at offset %s [in module %s]"), |
| hex_string (sig_type->signature), |
| hex_string (cu->header.signature), |
| sect_offset_str (dwo_unit->sect_off), |
| bfd_get_filename (abfd)); |
| } |
| gdb_assert (dwo_unit->sect_off == cu->header.sect_off); |
| /* For DWOs coming from DWP files, we don't know the CU length |
| nor the type's offset in the TU until now. */ |
| dwo_unit->length = get_cu_length (&cu->header); |
| dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu; |
| |
| /* Establish the type offset that can be used to lookup the type. |
| For DWO files, we don't know it until now. */ |
| sig_type->type_offset_in_section |
| = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu); |
| } |
| else |
| { |
| info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, |
| &cu->header, section, |
| dwo_abbrev_section, |
| info_ptr, rcuh_kind::COMPILE); |
| gdb_assert (dwo_unit->sect_off == cu->header.sect_off); |
| /* For DWOs coming from DWP files, we don't know the CU length |
| until now. */ |
| dwo_unit->length = get_cu_length (&cu->header); |
| } |
| |
| *result_dwo_abbrev_table |
| = abbrev_table_read_table (objfile, dwo_abbrev_section, |
| cu->header.abbrev_sect_off); |
| init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file, |
| result_dwo_abbrev_table->get ()); |
| |
| /* Read in the die, but leave space to copy over the attributes |
| from the stub. This has the benefit of simplifying the rest of |
| the code - all the work to maintain the illusion of a single |
| DW_TAG_{compile,type}_unit DIE is done here. */ |
| num_extra_attrs = ((stmt_list != NULL) |
| + (low_pc != NULL) |
| + (high_pc != NULL) |
| + (ranges != NULL) |
| + (comp_dir != NULL)); |
| info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr, |
| num_extra_attrs); |
| |
| /* Copy over the attributes from the stub to the DIE we just read in. */ |
| comp_unit_die = *result_comp_unit_die; |
| i = comp_unit_die->num_attrs; |
| if (stmt_list != NULL) |
| comp_unit_die->attrs[i++] = *stmt_list; |
| if (low_pc != NULL) |
| comp_unit_die->attrs[i++] = *low_pc; |
| if (high_pc != NULL) |
| comp_unit_die->attrs[i++] = *high_pc; |
| if (ranges != NULL) |
| comp_unit_die->attrs[i++] = *ranges; |
| if (comp_dir != NULL) |
| comp_unit_die->attrs[i++] = *comp_dir; |
| comp_unit_die->num_attrs += num_extra_attrs; |
| |
| if (dwarf_die_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Read die from %s@0x%x of %s:\n", |
| section->get_name (), |
| (unsigned) (begin_info_ptr - section->buffer), |
| bfd_get_filename (abfd)); |
| dump_die (comp_unit_die, dwarf_die_debug); |
| } |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + dwo_unit->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| return 0; |
| |
| *result_info_ptr = info_ptr; |
| return 1; |
| } |
| |
| /* Return the signature of the compile unit, if found. In DWARF 4 and before, |
| the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the |
| signature is part of the header. */ |
| static gdb::optional<ULONGEST> |
| lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die) |
| { |
| if (cu->header.version >= 5) |
| return cu->header.signature; |
| struct attribute *attr; |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu); |
| if (attr == nullptr) |
| return gdb::optional<ULONGEST> (); |
| return DW_UNSND (attr); |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU. |
| Returns NULL if the specified DWO unit cannot be found. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu, |
| struct die_info *comp_unit_die, |
| const char *dwo_name) |
| { |
| struct dwarf2_cu *cu = this_cu->cu; |
| struct dwo_unit *dwo_unit; |
| const char *comp_dir; |
| |
| gdb_assert (cu != NULL); |
| |
| /* Yeah, we look dwo_name up again, but it simplifies the code. */ |
| dwo_name = dwarf2_dwo_name (comp_unit_die, cu); |
| comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu); |
| |
| if (this_cu->is_debug_types) |
| { |
| struct signatured_type *sig_type; |
| |
| /* Since this_cu is the first member of struct signatured_type, |
| we can go from a pointer to one to a pointer to the other. */ |
| sig_type = (struct signatured_type *) this_cu; |
| dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir); |
| } |
| else |
| { |
| gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die); |
| if (!signature.has_value ()) |
| error (_("Dwarf Error: missing dwo_id for dwo_name %s" |
| " [in module %s]"), |
| dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile)); |
| dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir, |
| *signature); |
| } |
| |
| return dwo_unit; |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| See it for a description of the parameters. |
| Read a TU directly from a DWO file, bypassing the stub. */ |
| |
| void |
| cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, |
| int use_existing_cu, int keep) |
| { |
| struct signatured_type *sig_type; |
| struct die_reader_specs reader; |
| |
| /* Verify we can do the following downcast, and that we have the |
| data we need. */ |
| gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly); |
| sig_type = (struct signatured_type *) this_cu; |
| gdb_assert (sig_type->dwo_unit != NULL); |
| |
| if (use_existing_cu && this_cu->cu != NULL) |
| { |
| gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit); |
| /* There's no need to do the rereading_dwo_cu handling that |
| cutu_reader does since we don't read the stub. */ |
| } |
| else |
| { |
| /* If !use_existing_cu, this_cu->cu must be NULL. */ |
| gdb_assert (this_cu->cu == NULL); |
| m_new_cu.reset (new dwarf2_cu (this_cu)); |
| } |
| |
| /* A future optimization, if needed, would be to use an existing |
| abbrev table. When reading DWOs with skeletonless TUs, all the TUs |
| could share abbrev tables. */ |
| |
| if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit, |
| NULL /* stub_comp_unit_die */, |
| sig_type->dwo_unit->dwo_file->comp_dir, |
| &reader, &info_ptr, |
| &comp_unit_die, |
| &m_dwo_abbrev_table) == 0) |
| { |
| /* Dummy die. */ |
| dummy_p = true; |
| } |
| } |
| |
| /* Initialize a CU (or TU) and read its DIEs. |
| If the CU defers to a DWO file, read the DWO file as well. |
| |
| ABBREV_TABLE, if non-NULL, is the abbreviation table to use. |
| Otherwise the table specified in the comp unit header is read in and used. |
| This is an optimization for when we already have the abbrev table. |
| |
| If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it. |
| Otherwise, a new CU is allocated with xmalloc. |
| |
| If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to |
| read_in_chain. Otherwise the dwarf2_cu data is freed at the |
| end. */ |
| |
| cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu, |
| struct abbrev_table *abbrev_table, |
| int use_existing_cu, int keep, |
| bool skip_partial) |
| : die_reader_specs {}, |
| m_this_cu (this_cu), |
| m_keep (keep) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->section; |
| bfd *abfd = section->get_bfd_owner (); |
| struct dwarf2_cu *cu; |
| const gdb_byte *begin_info_ptr; |
| struct signatured_type *sig_type = NULL; |
| struct dwarf2_section_info *abbrev_section; |
| /* Non-zero if CU currently points to a DWO file and we need to |
| reread it. When this happens we need to reread the skeleton die |
| before we can reread the DWO file (this only applies to CUs, not TUs). */ |
| int rereading_dwo_cu = 0; |
| |
| if (dwarf_die_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n", |
| this_cu->is_debug_types ? "type" : "comp", |
| sect_offset_str (this_cu->sect_off)); |
| |
| if (use_existing_cu) |
| gdb_assert (keep); |
| |
| /* If we're reading a TU directly from a DWO file, including a virtual DWO |
| file (instead of going through the stub), short-circuit all of this. */ |
| if (this_cu->reading_dwo_directly) |
| { |
| /* Narrow down the scope of possibilities to have to understand. */ |
| gdb_assert (this_cu->is_debug_types); |
| gdb_assert (abbrev_table == NULL); |
| init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep); |
| return; |
| } |
| |
| /* This is cheap if the section is already read in. */ |
| section->read (objfile); |
| |
| begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off); |
| |
| abbrev_section = get_abbrev_section_for_cu (this_cu); |
| |
| if (use_existing_cu && this_cu->cu != NULL) |
| { |
| cu = this_cu->cu; |
| /* If this CU is from a DWO file we need to start over, we need to |
| refetch the attributes from the skeleton CU. |
| This could be optimized by retrieving those attributes from when we |
| were here the first time: the previous comp_unit_die was stored in |
| comp_unit_obstack. But there's no data yet that we need this |
| optimization. */ |
| if (cu->dwo_unit != NULL) |
| rereading_dwo_cu = 1; |
| } |
| else |
| { |
| /* If !use_existing_cu, this_cu->cu must be NULL. */ |
| gdb_assert (this_cu->cu == NULL); |
| m_new_cu.reset (new dwarf2_cu (this_cu)); |
| cu = m_new_cu.get (); |
| } |
| |
| /* Get the header. */ |
| if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu) |
| { |
| /* We already have the header, there's no need to read it in again. */ |
| info_ptr += to_underlying (cu->header.first_die_cu_offset); |
| } |
| else |
| { |
| if (this_cu->is_debug_types) |
| { |
| info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, |
| &cu->header, section, |
| abbrev_section, info_ptr, |
| rcuh_kind::TYPE); |
| |
| /* Since per_cu is the first member of struct signatured_type, |
| we can go from a pointer to one to a pointer to the other. */ |
| sig_type = (struct signatured_type *) this_cu; |
| gdb_assert (sig_type->signature == cu->header.signature); |
| gdb_assert (sig_type->type_offset_in_tu |
| == cu->header.type_cu_offset_in_tu); |
| gdb_assert (this_cu->sect_off == cu->header.sect_off); |
| |
| /* LENGTH has not been set yet for type units if we're |
| using .gdb_index. */ |
| this_cu->length = get_cu_length (&cu->header); |
| |
| /* Establish the type offset that can be used to lookup the type. */ |
| sig_type->type_offset_in_section = |
| this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu); |
| |
| this_cu->dwarf_version = cu->header.version; |
| } |
| else |
| { |
| info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, |
| &cu->header, section, |
| abbrev_section, |
| info_ptr, |
| rcuh_kind::COMPILE); |
| |
| gdb_assert (this_cu->sect_off == cu->header.sect_off); |
| gdb_assert (this_cu->length == get_cu_length (&cu->header)); |
| this_cu->dwarf_version = cu->header.version; |
| } |
| } |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + this_cu->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| { |
| dummy_p = true; |
| return; |
| } |
| |
| /* If we don't have them yet, read the abbrevs for this compilation unit. |
| And if we need to read them now, make sure they're freed when we're |
| done. */ |
| if (abbrev_table != NULL) |
| gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off); |
| else |
| { |
| m_abbrev_table_holder |
| = abbrev_table_read_table (objfile, abbrev_section, |
| cu->header.abbrev_sect_off); |
| abbrev_table = m_abbrev_table_holder.get (); |
| } |
| |
| /* Read the top level CU/TU die. */ |
| init_cu_die_reader (this, cu, section, NULL, abbrev_table); |
| info_ptr = read_full_die (this, &comp_unit_die, info_ptr); |
| |
| if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit) |
| { |
| dummy_p = true; |
| return; |
| } |
| |
| /* If we are in a DWO stub, process it and then read in the "real" CU/TU |
| from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation |
| table from the DWO file and pass the ownership over to us. It will be |
| referenced from READER, so we must make sure to free it after we're done |
| with READER. |
| |
| Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a |
| DWO CU, that this test will fail (the attribute will not be present). */ |
| const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu); |
| if (dwo_name != nullptr) |
| { |
| struct dwo_unit *dwo_unit; |
| struct die_info *dwo_comp_unit_die; |
| |
| if (comp_unit_die->has_children) |
| { |
| complaint (_("compilation unit with DW_AT_GNU_dwo_name" |
| " has children (offset %s) [in module %s]"), |
| sect_offset_str (this_cu->sect_off), |
| bfd_get_filename (abfd)); |
| } |
| dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name); |
| if (dwo_unit != NULL) |
| { |
| if (read_cutu_die_from_dwo (this_cu, dwo_unit, |
| comp_unit_die, NULL, |
| this, &info_ptr, |
| &dwo_comp_unit_die, |
| &m_dwo_abbrev_table) == 0) |
| { |
| /* Dummy die. */ |
| dummy_p = true; |
| return; |
| } |
| comp_unit_die = dwo_comp_unit_die; |
| } |
| else |
| { |
| /* Yikes, we couldn't find the rest of the DIE, we only have |
| the stub. A complaint has already been logged. There's |
| not much more we can do except pass on the stub DIE to |
| die_reader_func. We don't want to throw an error on bad |
| debug info. */ |
| } |
| } |
| } |
| |
| cutu_reader::~cutu_reader () |
| { |
| /* Done, clean up. */ |
| if (m_new_cu != NULL && m_keep && !dummy_p) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = m_this_cu->dwarf2_per_objfile; |
| /* Link this CU into read_in_chain. */ |
| m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain; |
| dwarf2_per_objfile->read_in_chain = m_this_cu; |
| /* The chain owns it now. */ |
| m_new_cu.release (); |
| } |
| } |
| |
| /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name) |
| if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is |
| assumed to have already done the lookup to find the DWO file). |
| |
| The caller is required to fill in THIS_CU->section, THIS_CU->offset, and |
| THIS_CU->is_debug_types, but nothing else. |
| |
| We fill in THIS_CU->length. |
| |
| THIS_CU->cu is always freed when done. |
| This is done in order to not leave THIS_CU->cu in a state where we have |
| to care whether it refers to the "main" CU or the DWO CU. |
| |
| When parent_cu is passed, it is used to provide a default value for |
| str_offsets_base and addr_base from the parent. */ |
| |
| cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu, |
| struct dwarf2_cu *parent_cu, |
| struct dwo_file *dwo_file) |
| : die_reader_specs {}, |
| m_this_cu (this_cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->section; |
| bfd *abfd = section->get_bfd_owner (); |
| struct dwarf2_section_info *abbrev_section; |
| const gdb_byte *begin_info_ptr, *info_ptr; |
| |
| if (dwarf_die_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n", |
| this_cu->is_debug_types ? "type" : "comp", |
| sect_offset_str (this_cu->sect_off)); |
| |
| gdb_assert (this_cu->cu == NULL); |
| |
| abbrev_section = (dwo_file != NULL |
| ? &dwo_file->sections.abbrev |
| : get_abbrev_section_for_cu (this_cu)); |
| |
| /* This is cheap if the section is already read in. */ |
| section->read (objfile); |
| |
| m_new_cu.reset (new dwarf2_cu (this_cu)); |
| |
| begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off); |
| info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, |
| &m_new_cu->header, section, |
| abbrev_section, info_ptr, |
| (this_cu->is_debug_types |
| ? rcuh_kind::TYPE |
| : rcuh_kind::COMPILE)); |
| |
| if (parent_cu != nullptr) |
| { |
| m_new_cu->str_offsets_base = parent_cu->str_offsets_base; |
| m_new_cu->addr_base = parent_cu->addr_base; |
| } |
| this_cu->length = get_cu_length (&m_new_cu->header); |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + this_cu->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| { |
| dummy_p = true; |
| return; |
| } |
| |
| m_abbrev_table_holder |
| = abbrev_table_read_table (objfile, abbrev_section, |
| m_new_cu->header.abbrev_sect_off); |
| |
| init_cu_die_reader (this, m_new_cu.get (), section, dwo_file, |
| m_abbrev_table_holder.get ()); |
| info_ptr = read_full_die (this, &comp_unit_die, info_ptr); |
| } |
| |
| |
| /* Type Unit Groups. |
| |
| Type Unit Groups are a way to collapse the set of all TUs (type units) into |
| a more manageable set. The grouping is done by DW_AT_stmt_list entry |
| so that all types coming from the same compilation (.o file) are grouped |
| together. A future step could be to put the types in the same symtab as |
| the CU the types ultimately came from. */ |
| |
| static hashval_t |
| hash_type_unit_group (const void *item) |
| { |
| const struct type_unit_group *tu_group |
| = (const struct type_unit_group *) item; |
| |
| return hash_stmt_list_entry (&tu_group->hash); |
| } |
| |
| static int |
| eq_type_unit_group (const void *item_lhs, const void *item_rhs) |
| { |
| const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs; |
| const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs; |
| |
| return eq_stmt_list_entry (&lhs->hash, &rhs->hash); |
| } |
| |
| /* Allocate a hash table for type unit groups. */ |
| |
| static htab_up |
| allocate_type_unit_groups_table (struct objfile *objfile) |
| { |
| return htab_up (htab_create_alloc (3, |
| hash_type_unit_group, |
| eq_type_unit_group, |
| NULL, xcalloc, xfree)); |
| } |
| |
| /* Type units that don't have DW_AT_stmt_list are grouped into their own |
| partial symtabs. We combine several TUs per psymtab to not let the size |
| of any one psymtab grow too big. */ |
| #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31) |
| #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10 |
| |
| /* Helper routine for get_type_unit_group. |
| Create the type_unit_group object used to hold one or more TUs. */ |
| |
| static struct type_unit_group * |
| create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_per_cu_data *per_cu; |
| struct type_unit_group *tu_group; |
| |
| tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct type_unit_group); |
| per_cu = &tu_group->per_cu; |
| per_cu->dwarf2_per_objfile = dwarf2_per_objfile; |
| |
| if (dwarf2_per_objfile->using_index) |
| { |
| per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| } |
| else |
| { |
| unsigned int line_offset = to_underlying (line_offset_struct); |
| dwarf2_psymtab *pst; |
| std::string name; |
| |
| /* Give the symtab a useful name for debug purposes. */ |
| if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0) |
| name = string_printf ("<type_units_%d>", |
| (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB)); |
| else |
| name = string_printf ("<type_units_at_0x%x>", line_offset); |
| |
| pst = create_partial_symtab (per_cu, name.c_str ()); |
| pst->anonymous = true; |
| } |
| |
| tu_group->hash.dwo_unit = cu->dwo_unit; |
| tu_group->hash.line_sect_off = line_offset_struct; |
| |
| return tu_group; |
| } |
| |
| /* Look up the type_unit_group for type unit CU, and create it if necessary. |
| STMT_LIST is a DW_AT_stmt_list attribute. */ |
| |
| static struct type_unit_group * |
| get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats; |
| struct type_unit_group *tu_group; |
| void **slot; |
| unsigned int line_offset; |
| struct type_unit_group type_unit_group_for_lookup; |
| |
| if (dwarf2_per_objfile->type_unit_groups == NULL) |
| { |
| dwarf2_per_objfile->type_unit_groups = |
| allocate_type_unit_groups_table (dwarf2_per_objfile->objfile); |
| } |
| |
| /* Do we need to create a new group, or can we use an existing one? */ |
| |
| if (stmt_list) |
| { |
| line_offset = DW_UNSND (stmt_list); |
| ++tu_stats->nr_symtab_sharers; |
| } |
| else |
| { |
| /* Ugh, no stmt_list. Rare, but we have to handle it. |
| We can do various things here like create one group per TU or |
| spread them over multiple groups to split up the expansion work. |
| To avoid worst case scenarios (too many groups or too large groups) |
| we, umm, group them in bunches. */ |
| line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB |
| | (tu_stats->nr_stmt_less_type_units |
| / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE)); |
| ++tu_stats->nr_stmt_less_type_units; |
| } |
| |
| type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit; |
| type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset; |
| slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (), |
| &type_unit_group_for_lookup, INSERT); |
| if (*slot != NULL) |
| { |
| tu_group = (struct type_unit_group *) *slot; |
| gdb_assert (tu_group != NULL); |
| } |
| else |
| { |
| sect_offset line_offset_struct = (sect_offset) line_offset; |
| tu_group = create_type_unit_group (cu, line_offset_struct); |
| *slot = tu_group; |
| ++tu_stats->nr_symtabs; |
| } |
| |
| return tu_group; |
| } |
| |
| /* Partial symbol tables. */ |
| |
| /* Create a psymtab named NAME and assign it to PER_CU. |
| |
| The caller must fill in the following details: |
| dirname, textlow, texthigh. */ |
| |
| static dwarf2_psymtab * |
| create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name) |
| { |
| struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile; |
| dwarf2_psymtab *pst; |
| |
| pst = new dwarf2_psymtab (name, objfile, 0); |
| |
| pst->psymtabs_addrmap_supported = true; |
| |
| /* This is the glue that links PST into GDB's symbol API. */ |
| pst->per_cu_data = per_cu; |
| per_cu->v.psymtab = pst; |
| |
| return pst; |
| } |
| |
| /* DIE reader function for process_psymtab_comp_unit. */ |
| |
| static void |
| process_psymtab_comp_unit_reader (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int want_partial_unit, |
| enum language pretend_language) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct dwarf2_per_cu_data *per_cu = cu->per_cu; |
| CORE_ADDR baseaddr; |
| CORE_ADDR best_lowpc = 0, best_highpc = 0; |
| dwarf2_psymtab *pst; |
| enum pc_bounds_kind cu_bounds_kind; |
| const char *filename; |
| |
| if (comp_unit_die->tag == DW_TAG_partial_unit && !want_partial_unit) |
| return; |
| |
| gdb_assert (! per_cu->is_debug_types); |
| |
| prepare_one_comp_unit (cu, comp_unit_die, pretend_language); |
| |
| /* Allocate a new partial symbol table structure. */ |
| filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu); |
| if (filename == NULL) |
| filename = ""; |
| |
| pst = create_partial_symtab (per_cu, filename); |
| |
| /* This must be done before calling dwarf2_build_include_psymtabs. */ |
| pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu); |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| dwarf2_find_base_address (comp_unit_die, cu); |
| |
| /* Possibly set the default values of LOWPC and HIGHPC from |
| `DW_AT_ranges'. */ |
| cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc, |
| &best_highpc, cu, pst); |
| if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc) |
| { |
| CORE_ADDR low |
| = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr) |
| - baseaddr); |
| CORE_ADDR high |
| = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr) |
| - baseaddr - 1); |
| /* Store the contiguous range if it is not empty; it can be |
| empty for CUs with no code. */ |
| addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap, |
| low, high, pst); |
| } |
| |
| /* Check if comp unit has_children. |
| If so, read the rest of the partial symbols from this comp unit. |
| If not, there's no more debug_info for this comp unit. */ |
| if (comp_unit_die->has_children) |
| { |
| struct partial_die_info *first_die; |
| CORE_ADDR lowpc, highpc; |
| |
| lowpc = ((CORE_ADDR) -1); |
| highpc = ((CORE_ADDR) 0); |
| |
| first_die = load_partial_dies (reader, info_ptr, 1); |
| |
| scan_partial_symbols (first_die, &lowpc, &highpc, |
| cu_bounds_kind <= PC_BOUNDS_INVALID, cu); |
| |
| /* If we didn't find a lowpc, set it to highpc to avoid |
| complaints from `maint check'. */ |
| if (lowpc == ((CORE_ADDR) -1)) |
| lowpc = highpc; |
| |
| /* If the compilation unit didn't have an explicit address range, |
| then use the information extracted from its child dies. */ |
| if (cu_bounds_kind <= PC_BOUNDS_INVALID) |
| { |
| best_lowpc = lowpc; |
| best_highpc = highpc; |
| } |
| } |
| pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch, |
| best_lowpc + baseaddr) |
| - baseaddr); |
| pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch, |
| best_highpc + baseaddr) |
| - baseaddr); |
| |
| end_psymtab_common (objfile, pst); |
| |
| if (!cu->per_cu->imported_symtabs_empty ()) |
| { |
| int i; |
| int len = cu->per_cu->imported_symtabs_size (); |
| |
| /* Fill in 'dependencies' here; we fill in 'users' in a |
| post-pass. */ |
| pst->number_of_dependencies = len; |
| pst->dependencies |
| = objfile->partial_symtabs->allocate_dependencies (len); |
| for (i = 0; i < len; ++i) |
| { |
| pst->dependencies[i] |
| = cu->per_cu->imported_symtabs->at (i)->v.psymtab; |
| } |
| |
| cu->per_cu->imported_symtabs_free (); |
| } |
| |
| /* Get the list of files included in the current compilation unit, |
| and build a psymtab for each of them. */ |
| dwarf2_build_include_psymtabs (cu, comp_unit_die, pst); |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, |
| "Psymtab for %s unit @%s: %s - %s" |
| ", %d global, %d static syms\n", |
| per_cu->is_debug_types ? "type" : "comp", |
| sect_offset_str (per_cu->sect_off), |
| paddress (gdbarch, pst->text_low (objfile)), |
| paddress (gdbarch, pst->text_high (objfile)), |
| pst->n_global_syms, pst->n_static_syms); |
| } |
| |
| /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. |
| Process compilation unit THIS_CU for a psymtab. */ |
| |
| static void |
| process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| int want_partial_unit, |
| enum language pretend_language) |
| { |
| /* If this compilation unit was already read in, free the |
| cached copy in order to read it in again. This is |
| necessary because we skipped some symbols when we first |
| read in the compilation unit (see load_partial_dies). |
| This problem could be avoided, but the benefit is unclear. */ |
| if (this_cu->cu != NULL) |
| free_one_cached_comp_unit (this_cu); |
| |
| cutu_reader reader (this_cu, NULL, 0, 0, false); |
| |
| if (reader.dummy_p) |
| { |
| /* Nothing. */ |
| } |
| else if (this_cu->is_debug_types) |
| build_type_psymtabs_reader (&reader, reader.info_ptr, |
| reader.comp_unit_die); |
| else |
| process_psymtab_comp_unit_reader (&reader, reader.info_ptr, |
| reader.comp_unit_die, |
| want_partial_unit, |
| pretend_language); |
| |
| /* Age out any secondary CUs. */ |
| age_cached_comp_units (this_cu->dwarf2_per_objfile); |
| } |
| |
| /* Reader function for build_type_psymtabs. */ |
| |
| static void |
| build_type_psymtabs_reader (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct die_info *type_unit_die) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = reader->cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_per_cu_data *per_cu = cu->per_cu; |
| struct signatured_type *sig_type; |
| struct type_unit_group *tu_group; |
| struct attribute *attr; |
| struct partial_die_info *first_die; |
| CORE_ADDR lowpc, highpc; |
| dwarf2_psymtab *pst; |
| |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| if (! type_unit_die->has_children) |
| return; |
| |
| attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list); |
| tu_group = get_type_unit_group (cu, attr); |
| |
| if (tu_group->tus == nullptr) |
| tu_group->tus = new std::vector<signatured_type *>; |
| tu_group->tus->push_back (sig_type); |
| |
| prepare_one_comp_unit (cu, type_unit_die, language_minimal); |
| pst = create_partial_symtab (per_cu, ""); |
| pst->anonymous = true; |
| |
| first_die = load_partial_dies (reader, info_ptr, 1); |
| |
| lowpc = (CORE_ADDR) -1; |
| highpc = (CORE_ADDR) 0; |
| scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu); |
| |
| end_psymtab_common (objfile, pst); |
| } |
| |
| /* Struct used to sort TUs by their abbreviation table offset. */ |
| |
| struct tu_abbrev_offset |
| { |
| tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_) |
| : sig_type (sig_type_), abbrev_offset (abbrev_offset_) |
| {} |
| |
| signatured_type *sig_type; |
| sect_offset abbrev_offset; |
| }; |
| |
| /* Helper routine for build_type_psymtabs_1, passed to std::sort. */ |
| |
| static bool |
| sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a, |
| const struct tu_abbrev_offset &b) |
| { |
| return a.abbrev_offset < b.abbrev_offset; |
| } |
| |
| /* Efficiently read all the type units. |
| This does the bulk of the work for build_type_psymtabs. |
| |
| The efficiency is because we sort TUs by the abbrev table they use and |
| only read each abbrev table once. In one program there are 200K TUs |
| sharing 8K abbrev tables. |
| |
| The main purpose of this function is to support building the |
| dwarf2_per_objfile->type_unit_groups table. |
| TUs typically share the DW_AT_stmt_list of the CU they came from, so we |
| can collapse the search space by grouping them by stmt_list. |
| The savings can be significant, in the same program from above the 200K TUs |
| share 8K stmt_list tables. |
| |
| FUNC is expected to call get_type_unit_group, which will create the |
| struct type_unit_group if necessary and add it to |
| dwarf2_per_objfile->type_unit_groups. */ |
| |
| static void |
| build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats; |
| abbrev_table_up abbrev_table; |
| sect_offset abbrev_offset; |
| |
| /* It's up to the caller to not call us multiple times. */ |
| gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL); |
| |
| if (dwarf2_per_objfile->all_type_units.empty ()) |
| return; |
| |
| /* TUs typically share abbrev tables, and there can be way more TUs than |
| abbrev tables. Sort by abbrev table to reduce the number of times we |
| read each abbrev table in. |
| Alternatives are to punt or to maintain a cache of abbrev tables. |
| This is simpler and efficient enough for now. |
| |
| Later we group TUs by their DW_AT_stmt_list value (as this defines the |
| symtab to use). Typically TUs with the same abbrev offset have the same |
| stmt_list value too so in practice this should work well. |
| |
| The basic algorithm here is: |
| |
| sort TUs by abbrev table |
| for each TU with same abbrev table: |
| read abbrev table if first user |
| read TU top level DIE |
| [IWBN if DWO skeletons had DW_AT_stmt_list] |
| call FUNC */ |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n"); |
| |
| /* Sort in a separate table to maintain the order of all_type_units |
| for .gdb_index: TU indices directly index all_type_units. */ |
| std::vector<tu_abbrev_offset> sorted_by_abbrev; |
| sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ()); |
| |
| for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units) |
| sorted_by_abbrev.emplace_back |
| (sig_type, read_abbrev_offset (dwarf2_per_objfile, |
| sig_type->per_cu.section, |
| sig_type->per_cu.sect_off)); |
| |
| std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (), |
| sort_tu_by_abbrev_offset); |
| |
| abbrev_offset = (sect_offset) ~(unsigned) 0; |
| |
| for (const tu_abbrev_offset &tu : sorted_by_abbrev) |
| { |
| /* Switch to the next abbrev table if necessary. */ |
| if (abbrev_table == NULL |
| || tu.abbrev_offset != abbrev_offset) |
| { |
| abbrev_offset = tu.abbrev_offset; |
| abbrev_table = |
| abbrev_table_read_table (dwarf2_per_objfile->objfile, |
| &dwarf2_per_objfile->abbrev, |
| abbrev_offset); |
| ++tu_stats->nr_uniq_abbrev_tables; |
| } |
| |
| cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (), |
| 0, 0, false); |
| if (!reader.dummy_p) |
| build_type_psymtabs_reader (&reader, reader.info_ptr, |
| reader.comp_unit_die); |
| } |
| } |
| |
| /* Print collected type unit statistics. */ |
| |
| static void |
| print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats; |
| |
| fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n"); |
| fprintf_unfiltered (gdb_stdlog, " %zu TUs\n", |
| dwarf2_per_objfile->all_type_units.size ()); |
| fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n", |
| tu_stats->nr_uniq_abbrev_tables); |
| fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n", |
| tu_stats->nr_symtabs); |
| fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n", |
| tu_stats->nr_symtab_sharers); |
| fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n", |
| tu_stats->nr_stmt_less_type_units); |
| fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n", |
| tu_stats->nr_all_type_units_reallocs); |
| } |
| |
| /* Traversal function for build_type_psymtabs. */ |
| |
| static int |
| build_type_psymtab_dependencies (void **slot, void *info) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = (struct dwarf2_per_objfile *) info; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct type_unit_group *tu_group = (struct type_unit_group *) *slot; |
| struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu; |
| dwarf2_psymtab *pst = per_cu->v.psymtab; |
| int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size (); |
| int i; |
| |
| gdb_assert (len > 0); |
| gdb_assert (IS_TYPE_UNIT_GROUP (per_cu)); |
| |
| pst->number_of_dependencies = len; |
| pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len); |
| for (i = 0; i < len; ++i) |
| { |
| struct signatured_type *iter = tu_group->tus->at (i); |
| gdb_assert (iter->per_cu.is_debug_types); |
| pst->dependencies[i] = iter->per_cu.v.psymtab; |
| iter->type_unit_group = tu_group; |
| } |
| |
| delete tu_group->tus; |
| tu_group->tus = nullptr; |
| |
| return 1; |
| } |
| |
| /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. |
| Build partial symbol tables for the .debug_types comp-units. */ |
| |
| static void |
| build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| if (! create_all_type_units (dwarf2_per_objfile)) |
| return; |
| |
| build_type_psymtabs_1 (dwarf2_per_objfile); |
| } |
| |
| /* Traversal function for process_skeletonless_type_unit. |
| Read a TU in a DWO file and build partial symbols for it. */ |
| |
| static int |
| process_skeletonless_type_unit (void **slot, void *info) |
| { |
| struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = (struct dwarf2_per_objfile *) info; |
| struct signatured_type find_entry, *entry; |
| |
| /* If this TU doesn't exist in the global table, add it and read it in. */ |
| |
| if (dwarf2_per_objfile->signatured_types == NULL) |
| { |
| dwarf2_per_objfile->signatured_types |
| = allocate_signatured_type_table (dwarf2_per_objfile->objfile); |
| } |
| |
| find_entry.signature = dwo_unit->signature; |
| slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (), |
| &find_entry, INSERT); |
| /* If we've already seen this type there's nothing to do. What's happening |
| is we're doing our own version of comdat-folding here. */ |
| if (*slot != NULL) |
| return 1; |
| |
| /* This does the job that create_all_type_units would have done for |
| this TU. */ |
| entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot); |
| fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit); |
| *slot = entry; |
| |
| /* This does the job that build_type_psymtabs_1 would have done. */ |
| cutu_reader reader (&entry->per_cu, NULL, 0, 0, false); |
| if (!reader.dummy_p) |
| build_type_psymtabs_reader (&reader, reader.info_ptr, |
| reader.comp_unit_die); |
| |
| return 1; |
| } |
| |
| /* Traversal function for process_skeletonless_type_units. */ |
| |
| static int |
| process_dwo_file_for_skeletonless_type_units (void **slot, void *info) |
| { |
| struct dwo_file *dwo_file = (struct dwo_file *) *slot; |
| |
| if (dwo_file->tus != NULL) |
| htab_traverse_noresize (dwo_file->tus.get (), |
| process_skeletonless_type_unit, info); |
| |
| return 1; |
| } |
| |
| /* Scan all TUs of DWO files, verifying we've processed them. |
| This is needed in case a TU was emitted without its skeleton. |
| Note: This can't be done until we know what all the DWO files are. */ |
| |
| static void |
| process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */ |
| if (get_dwp_file (dwarf2_per_objfile) == NULL |
| && dwarf2_per_objfile->dwo_files != NULL) |
| { |
| htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (), |
| process_dwo_file_for_skeletonless_type_units, |
| dwarf2_per_objfile); |
| } |
| } |
| |
| /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */ |
| |
| static void |
| set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| { |
| dwarf2_psymtab *pst = per_cu->v.psymtab; |
| |
| if (pst == NULL) |
| continue; |
| |
| for (int j = 0; j < pst->number_of_dependencies; ++j) |
| { |
| /* Set the 'user' field only if it is not already set. */ |
| if (pst->dependencies[j]->user == NULL) |
| pst->dependencies[j]->user = pst; |
| } |
| } |
| } |
| |
| /* Build the partial symbol table by doing a quick pass through the |
| .debug_info and .debug_abbrev sections. */ |
| |
| static void |
| dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n", |
| objfile_name (objfile)); |
| } |
| |
| dwarf2_per_objfile->reading_partial_symbols = 1; |
| |
| dwarf2_per_objfile->info.read (objfile); |
| |
| /* Any cached compilation units will be linked by the per-objfile |
| read_in_chain. Make sure to free them when we're done. */ |
| free_cached_comp_units freer (dwarf2_per_objfile); |
| |
| build_type_psymtabs (dwarf2_per_objfile); |
| |
| create_all_comp_units (dwarf2_per_objfile); |
| |
| /* Create a temporary address map on a temporary obstack. We later |
| copy this to the final obstack. */ |
| auto_obstack temp_obstack; |
| |
| scoped_restore save_psymtabs_addrmap |
| = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap, |
| addrmap_create_mutable (&temp_obstack)); |
| |
| for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units) |
| process_psymtab_comp_unit (per_cu, 0, language_minimal); |
| |
| /* This has to wait until we read the CUs, we need the list of DWOs. */ |
| process_skeletonless_type_units (dwarf2_per_objfile); |
| |
| /* Now that all TUs have been processed we can fill in the dependencies. */ |
| if (dwarf2_per_objfile->type_unit_groups != NULL) |
| { |
| htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (), |
| build_type_psymtab_dependencies, dwarf2_per_objfile); |
| } |
| |
| if (dwarf_read_debug) |
| print_tu_stats (dwarf2_per_objfile); |
| |
| set_partial_user (dwarf2_per_objfile); |
| |
| objfile->partial_symtabs->psymtabs_addrmap |
| = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap, |
| objfile->partial_symtabs->obstack ()); |
| /* At this point we want to keep the address map. */ |
| save_psymtabs_addrmap.release (); |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n", |
| objfile_name (objfile)); |
| } |
| |
| /* Load the partial DIEs for a secondary CU into memory. |
| This is also used when rereading a primary CU with load_all_dies. */ |
| |
| static void |
| load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu) |
| { |
| cutu_reader reader (this_cu, NULL, 1, 1, false); |
| |
| if (!reader.dummy_p) |
| { |
| prepare_one_comp_unit (reader.cu, reader.comp_unit_die, |
| language_minimal); |
| |
| /* Check if comp unit has_children. |
| If so, read the rest of the partial symbols from this comp unit. |
| If not, there's no more debug_info for this comp unit. */ |
| if (reader.comp_unit_die->has_children) |
| load_partial_dies (&reader, reader.info_ptr, 0); |
| } |
| } |
| |
| static void |
| read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section, |
| unsigned int is_dwz) |
| { |
| const gdb_byte *info_ptr; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n", |
| section->get_name (), |
| section->get_file_name ()); |
| |
| section->read (objfile); |
| |
| info_ptr = section->buffer; |
| |
| while (info_ptr < section->buffer + section->size) |
| { |
| struct dwarf2_per_cu_data *this_cu; |
| |
| sect_offset sect_off = (sect_offset) (info_ptr - section->buffer); |
| |
| comp_unit_head cu_header; |
| read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section, |
| abbrev_section, info_ptr, |
| rcuh_kind::COMPILE); |
| |
| /* Save the compilation unit for later lookup. */ |
| if (cu_header.unit_type != DW_UT_type) |
| { |
| this_cu = XOBNEW (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_data); |
| memset (this_cu, 0, sizeof (*this_cu)); |
| } |
| else |
| { |
| auto sig_type = XOBNEW (&objfile->objfile_obstack, |
| struct signatured_type); |
| memset (sig_type, 0, sizeof (*sig_type)); |
| sig_type->signature = cu_header.signature; |
| sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu; |
| this_cu = &sig_type->per_cu; |
| } |
| this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type); |
| this_cu->sect_off = sect_off; |
| this_cu->length = cu_header.length + cu_header.initial_length_size; |
| this_cu->is_dwz = is_dwz; |
| this_cu->dwarf2_per_objfile = dwarf2_per_objfile; |
| this_cu->section = section; |
| |
| dwarf2_per_objfile->all_comp_units.push_back (this_cu); |
| |
| info_ptr = info_ptr + this_cu->length; |
| } |
| } |
| |
| /* Create a list of all compilation units in OBJFILE. |
| This is only done for -readnow and building partial symtabs. */ |
| |
| static void |
| create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| gdb_assert (dwarf2_per_objfile->all_comp_units.empty ()); |
| read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info, |
| &dwarf2_per_objfile->abbrev, 0); |
| |
| dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| if (dwz != NULL) |
| read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev, |
| 1); |
| } |
| |
| /* Process all loaded DIEs for compilation unit CU, starting at |
| FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation |
| unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or |
| DW_AT_ranges). See the comments of add_partial_subprogram on how |
| SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */ |
| |
| static void |
| scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int set_addrmap, |
| struct dwarf2_cu *cu) |
| { |
| struct partial_die_info *pdi; |
| |
| /* Now, march along the PDI's, descending into ones which have |
| interesting children but skipping the children of the other ones, |
| until we reach the end of the compilation unit. */ |
| |
| pdi = first_die; |
| |
| while (pdi != NULL) |
| { |
| pdi->fixup (cu); |
| |
| /* Anonymous namespaces or modules have no name but have interesting |
| children, so we need to look at them. Ditto for anonymous |
| enums. */ |
| |
| if (pdi->name != NULL || pdi->tag == DW_TAG_namespace |
| || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type |
| || pdi->tag == DW_TAG_imported_unit |
| || pdi->tag == DW_TAG_inlined_subroutine) |
| { |
| switch (pdi->tag) |
| { |
| case DW_TAG_subprogram: |
| case DW_TAG_inlined_subroutine: |
| add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu); |
| break; |
| case DW_TAG_constant: |
| case DW_TAG_variable: |
| case DW_TAG_typedef: |
| case DW_TAG_union_type: |
| if (!pdi->is_declaration) |
| { |
| add_partial_symbol (pdi, cu); |
| } |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| if (!pdi->is_declaration) |
| { |
| add_partial_symbol (pdi, cu); |
| } |
| if ((cu->language == language_rust |
| || cu->language == language_cplus) && pdi->has_children) |
| scan_partial_symbols (pdi->die_child, lowpc, highpc, |
| set_addrmap, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| if (!pdi->is_declaration) |
| add_partial_enumeration (pdi, cu); |
| break; |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| /* File scope base type definitions are added to the partial |
| symbol table. */ |
| add_partial_symbol (pdi, cu); |
| break; |
| case DW_TAG_namespace: |
| add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu); |
| break; |
| case DW_TAG_module: |
| if (!pdi->is_declaration) |
| add_partial_module (pdi, lowpc, highpc, set_addrmap, cu); |
| break; |
| case DW_TAG_imported_unit: |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| /* For now we don't handle imported units in type units. */ |
| if (cu->per_cu->is_debug_types) |
| { |
| error (_("Dwarf Error: DW_TAG_imported_unit is not" |
| " supported in type units [in module %s]"), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| per_cu = dwarf2_find_containing_comp_unit |
| (pdi->d.sect_off, pdi->is_dwz, |
| cu->per_cu->dwarf2_per_objfile); |
| |
| /* Go read the partial unit, if needed. */ |
| if (per_cu->v.psymtab == NULL) |
| process_psymtab_comp_unit (per_cu, 1, cu->language); |
| |
| cu->per_cu->imported_symtabs_push (per_cu); |
| } |
| break; |
| case DW_TAG_imported_declaration: |
| add_partial_symbol (pdi, cu); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* If the die has a sibling, skip to the sibling. */ |
| |
| pdi = pdi->die_sibling; |
| } |
| } |
| |
| /* Functions used to compute the fully scoped name of a partial DIE. |
| |
| Normally, this is simple. For C++, the parent DIE's fully scoped |
| name is concatenated with "::" and the partial DIE's name. |
| Enumerators are an exception; they use the scope of their parent |
| enumeration type, i.e. the name of the enumeration type is not |
| prepended to the enumerator. |
| |
| There are two complexities. One is DW_AT_specification; in this |
| case "parent" means the parent of the target of the specification, |
| instead of the direct parent of the DIE. The other is compilers |
| which do not emit DW_TAG_namespace; in this case we try to guess |
| the fully qualified name of structure types from their members' |
| linkage names. This must be done using the DIE's children rather |
| than the children of any DW_AT_specification target. We only need |
| to do this for structures at the top level, i.e. if the target of |
| any DW_AT_specification (if any; otherwise the DIE itself) does not |
| have a parent. */ |
| |
| /* Compute the scope prefix associated with PDI's parent, in |
| compilation unit CU. The result will be allocated on CU's |
| comp_unit_obstack, or a copy of the already allocated PDI->NAME |
| field. NULL is returned if no prefix is necessary. */ |
| static const char * |
| partial_die_parent_scope (struct partial_die_info *pdi, |
| struct dwarf2_cu *cu) |
| { |
| const char *grandparent_scope; |
| struct partial_die_info *parent, *real_pdi; |
| |
| /* We need to look at our parent DIE; if we have a DW_AT_specification, |
| then this means the parent of the specification DIE. */ |
| |
| real_pdi = pdi; |
| while (real_pdi->has_specification) |
| { |
| auto res = find_partial_die (real_pdi->spec_offset, |
| real_pdi->spec_is_dwz, cu); |
| real_pdi = res.pdi; |
| cu = res.cu; |
| } |
| |
| parent = real_pdi->die_parent; |
| if (parent == NULL) |
| return NULL; |
| |
| if (parent->scope_set) |
| return parent->scope; |
| |
| parent->fixup (cu); |
| |
| grandparent_scope = partial_die_parent_scope (parent, cu); |
| |
| /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus |
| DW_TAG_namespace DIEs with a name of "::" for the global namespace. |
| Work around this problem here. */ |
| if (cu->language == language_cplus |
| && parent->tag == DW_TAG_namespace |
| && strcmp (parent->name, "::") == 0 |
| && grandparent_scope == NULL) |
| { |
| parent->scope = NULL; |
| parent->scope_set = 1; |
| return NULL; |
| } |
| |
| /* Nested subroutines in Fortran get a prefix. */ |
| if (pdi->tag == DW_TAG_enumerator) |
| /* Enumerators should not get the name of the enumeration as a prefix. */ |
| parent->scope = grandparent_scope; |
| else if (parent->tag == DW_TAG_namespace |
| || parent->tag == DW_TAG_module |
| || parent->tag == DW_TAG_structure_type |
| || parent->tag == DW_TAG_class_type |
| || parent->tag == DW_TAG_interface_type |
| || parent->tag == DW_TAG_union_type |
| || parent->tag == DW_TAG_enumeration_type |
| || (cu->language == language_fortran |
| && parent->tag == DW_TAG_subprogram |
| && pdi->tag == DW_TAG_subprogram)) |
| { |
| if (grandparent_scope == NULL) |
| parent->scope = parent->name; |
| else |
| parent->scope = typename_concat (&cu->comp_unit_obstack, |
| grandparent_scope, |
| parent->name, 0, cu); |
| } |
| else |
| { |
| /* FIXME drow/2004-04-01: What should we be doing with |
| function-local names? For partial symbols, we should probably be |
| ignoring them. */ |
| complaint (_("unhandled containing DIE tag %s for DIE at %s"), |
| dwarf_tag_name (parent->tag), |
| sect_offset_str (pdi->sect_off)); |
| parent->scope = grandparent_scope; |
| } |
| |
| parent->scope_set = 1; |
| return parent->scope; |
| } |
| |
| /* Return the fully scoped name associated with PDI, from compilation unit |
| CU. The result will be allocated with malloc. */ |
| |
| static gdb::unique_xmalloc_ptr<char> |
| partial_die_full_name (struct partial_die_info *pdi, |
| struct dwarf2_cu *cu) |
| { |
| const char *parent_scope; |
| |
| /* If this is a template instantiation, we can not work out the |
| template arguments from partial DIEs. So, unfortunately, we have |
| to go through the full DIEs. At least any work we do building |
| types here will be reused if full symbols are loaded later. */ |
| if (pdi->has_template_arguments) |
| { |
| pdi->fixup (cu); |
| |
| if (pdi->name != NULL && strchr (pdi->name, '<') == NULL) |
| { |
| struct die_info *die; |
| struct attribute attr; |
| struct dwarf2_cu *ref_cu = cu; |
| |
| /* DW_FORM_ref_addr is using section offset. */ |
| attr.name = (enum dwarf_attribute) 0; |
| attr.form = DW_FORM_ref_addr; |
| attr.u.unsnd = to_underlying (pdi->sect_off); |
| die = follow_die_ref (NULL, &attr, &ref_cu); |
| |
| return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu)); |
| } |
| } |
| |
| parent_scope = partial_die_parent_scope (pdi, cu); |
| if (parent_scope == NULL) |
| return NULL; |
| else |
| return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope, |
| pdi->name, 0, cu)); |
| } |
| |
| static void |
| add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR addr = 0; |
| const char *actual_name = NULL; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| gdb::unique_xmalloc_ptr<char> built_actual_name |
| = partial_die_full_name (pdi, cu); |
| if (built_actual_name != NULL) |
| actual_name = built_actual_name.get (); |
| |
| if (actual_name == NULL) |
| actual_name = pdi->name; |
| |
| switch (pdi->tag) |
| { |
| case DW_TAG_inlined_subroutine: |
| case DW_TAG_subprogram: |
| addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr) |
| - baseaddr); |
| if (pdi->is_external |
| || cu->language == language_ada |
| || (cu->language == language_fortran |
| && pdi->die_parent != NULL |
| && pdi->die_parent->tag == DW_TAG_subprogram)) |
| { |
| /* Normally, only "external" DIEs are part of the global scope. |
| But in Ada and Fortran, we want to be able to access nested |
| procedures globally. So all Ada and Fortran subprograms are |
| stored in the global scope. */ |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_BLOCK, |
| SECT_OFF_TEXT (objfile), |
| psymbol_placement::GLOBAL, |
| addr, |
| cu->language, objfile); |
| } |
| else |
| { |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_BLOCK, |
| SECT_OFF_TEXT (objfile), |
| psymbol_placement::STATIC, |
| addr, cu->language, objfile); |
| } |
| |
| if (pdi->main_subprogram && actual_name != NULL) |
| set_objfile_main_name (objfile, actual_name, cu->language); |
| break; |
| case DW_TAG_constant: |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC, |
| -1, (pdi->is_external |
| ? psymbol_placement::GLOBAL |
| : psymbol_placement::STATIC), |
| 0, cu->language, objfile); |
| break; |
| case DW_TAG_variable: |
| if (pdi->d.locdesc) |
| addr = decode_locdesc (pdi->d.locdesc, cu); |
| |
| if (pdi->d.locdesc |
| && addr == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* A global or static variable may also have been stripped |
| out by the linker if unused, in which case its address |
| will be nullified; do not add such variables into partial |
| symbol table then. */ |
| } |
| else if (pdi->is_external) |
| { |
| /* Global Variable. |
| Don't enter into the minimal symbol tables as there is |
| a minimal symbol table entry from the ELF symbols already. |
| Enter into partial symbol table if it has a location |
| descriptor or a type. |
| If the location descriptor is missing, new_symbol will create |
| a LOC_UNRESOLVED symbol, the address of the variable will then |
| be determined from the minimal symbol table whenever the variable |
| is referenced. |
| The address for the partial symbol table entry is not |
| used by GDB, but it comes in handy for debugging partial symbol |
| table building. */ |
| |
| if (pdi->d.locdesc || pdi->has_type) |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_STATIC, |
| SECT_OFF_TEXT (objfile), |
| psymbol_placement::GLOBAL, |
| addr, cu->language, objfile); |
| } |
| else |
| { |
| int has_loc = pdi->d.locdesc != NULL; |
| |
| /* Static Variable. Skip symbols whose value we cannot know (those |
| without location descriptors or constant values). */ |
| if (!has_loc && !pdi->has_const_value) |
| return; |
| |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_STATIC, |
| SECT_OFF_TEXT (objfile), |
| psymbol_placement::STATIC, |
| has_loc ? addr : 0, |
| cu->language, objfile); |
| } |
| break; |
| case DW_TAG_typedef: |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_TYPEDEF, -1, |
| psymbol_placement::STATIC, |
| 0, cu->language, objfile); |
| break; |
| case DW_TAG_imported_declaration: |
| case DW_TAG_namespace: |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_TYPEDEF, -1, |
| psymbol_placement::GLOBAL, |
| 0, cu->language, objfile); |
| break; |
| case DW_TAG_module: |
| /* With Fortran 77 there might be a "BLOCK DATA" module |
| available without any name. If so, we skip the module as it |
| doesn't bring any value. */ |
| if (actual_name != nullptr) |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| MODULE_DOMAIN, LOC_TYPEDEF, -1, |
| psymbol_placement::GLOBAL, |
| 0, cu->language, objfile); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| /* Skip external references. The DWARF standard says in the section |
| about "Structure, Union, and Class Type Entries": "An incomplete |
| structure, union or class type is represented by a structure, |
| union or class entry that does not have a byte size attribute |
| and that has a DW_AT_declaration attribute." */ |
| if (!pdi->has_byte_size && pdi->is_declaration) |
| return; |
| |
| /* NOTE: carlton/2003-10-07: See comment in new_symbol about |
| static vs. global. */ |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| STRUCT_DOMAIN, LOC_TYPEDEF, -1, |
| cu->language == language_cplus |
| ? psymbol_placement::GLOBAL |
| : psymbol_placement::STATIC, |
| 0, cu->language, objfile); |
| |
| break; |
| case DW_TAG_enumerator: |
| add_psymbol_to_list (actual_name, |
| built_actual_name != NULL, |
| VAR_DOMAIN, LOC_CONST, -1, |
| cu->language == language_cplus |
| ? psymbol_placement::GLOBAL |
| : psymbol_placement::STATIC, |
| 0, cu->language, objfile); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* Read a partial die corresponding to a namespace; also, add a symbol |
| corresponding to that namespace to the symbol table. NAMESPACE is |
| the name of the enclosing namespace. */ |
| |
| static void |
| add_partial_namespace (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int set_addrmap, struct dwarf2_cu *cu) |
| { |
| /* Add a symbol for the namespace. */ |
| |
| add_partial_symbol (pdi, cu); |
| |
| /* Now scan partial symbols in that namespace. */ |
| |
| if (pdi->has_children) |
| scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu); |
| } |
| |
| /* Read a partial die corresponding to a Fortran module. */ |
| |
| static void |
| add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu) |
| { |
| /* Add a symbol for the namespace. */ |
| |
| add_partial_symbol (pdi, cu); |
| |
| /* Now scan partial symbols in that module. */ |
| |
| if (pdi->has_children) |
| scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu); |
| } |
| |
| /* Read a partial die corresponding to a subprogram or an inlined |
| subprogram and create a partial symbol for that subprogram. |
| When the CU language allows it, this routine also defines a partial |
| symbol for each nested subprogram that this subprogram contains. |
| If SET_ADDRMAP is true, record the covered ranges in the addrmap. |
| Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI. |
| |
| PDI may also be a lexical block, in which case we simply search |
| recursively for subprograms defined inside that lexical block. |
| Again, this is only performed when the CU language allows this |
| type of definitions. */ |
| |
| static void |
| add_partial_subprogram (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int set_addrmap, struct dwarf2_cu *cu) |
| { |
| if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine) |
| { |
| if (pdi->has_pc_info) |
| { |
| if (pdi->lowpc < *lowpc) |
| *lowpc = pdi->lowpc; |
| if (pdi->highpc > *highpc) |
| *highpc = pdi->highpc; |
| if (set_addrmap) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR baseaddr; |
| CORE_ADDR this_highpc; |
| CORE_ADDR this_lowpc; |
| |
| baseaddr = objfile->text_section_offset (); |
| this_lowpc |
| = (gdbarch_adjust_dwarf2_addr (gdbarch, |
| pdi->lowpc + baseaddr) |
| - baseaddr); |
| this_highpc |
| = (gdbarch_adjust_dwarf2_addr (gdbarch, |
| pdi->highpc + baseaddr) |
| - baseaddr); |
| addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap, |
| this_lowpc, this_highpc - 1, |
| cu->per_cu->v.psymtab); |
| } |
| } |
| |
| if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined)) |
| { |
| if (!pdi->is_declaration) |
| /* Ignore subprogram DIEs that do not have a name, they are |
| illegal. Do not emit a complaint at this point, we will |
| do so when we convert this psymtab into a symtab. */ |
| if (pdi->name) |
| add_partial_symbol (pdi, cu); |
| } |
| } |
| |
| if (! pdi->has_children) |
| return; |
| |
| if (cu->language == language_ada || cu->language == language_fortran) |
| { |
| pdi = pdi->die_child; |
| while (pdi != NULL) |
| { |
| pdi->fixup (cu); |
| if (pdi->tag == DW_TAG_subprogram |
| || pdi->tag == DW_TAG_inlined_subroutine |
| || pdi->tag == DW_TAG_lexical_block) |
| add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu); |
| pdi = pdi->die_sibling; |
| } |
| } |
| } |
| |
| /* Read a partial die corresponding to an enumeration type. */ |
| |
| static void |
| add_partial_enumeration (struct partial_die_info *enum_pdi, |
| struct dwarf2_cu *cu) |
| { |
| struct partial_die_info *pdi; |
| |
| if (enum_pdi->name != NULL) |
| add_partial_symbol (enum_pdi, cu); |
| |
| pdi = enum_pdi->die_child; |
| while (pdi) |
| { |
| if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL) |
| complaint (_("malformed enumerator DIE ignored")); |
| else |
| add_partial_symbol (pdi, cu); |
| pdi = pdi->die_sibling; |
| } |
| } |
| |
| /* Return the initial uleb128 in the die at INFO_PTR. */ |
| |
| static unsigned int |
| peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr) |
| { |
| unsigned int bytes_read; |
| |
| return read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| } |
| |
| /* Read the initial uleb128 in the die at INFO_PTR in compilation unit |
| READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation. |
| |
| Return the corresponding abbrev, or NULL if the number is zero (indicating |
| an empty DIE). In either case *BYTES_READ will be set to the length of |
| the initial number. */ |
| |
| static struct abbrev_info * |
| peek_die_abbrev (const die_reader_specs &reader, |
| const gdb_byte *info_ptr, unsigned int *bytes_read) |
| { |
| dwarf2_cu *cu = reader.cu; |
| bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd; |
| unsigned int abbrev_number |
| = read_unsigned_leb128 (abfd, info_ptr, bytes_read); |
| |
| if (abbrev_number == 0) |
| return NULL; |
| |
| abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number); |
| if (!abbrev) |
| { |
| error (_("Dwarf Error: Could not find abbrev number %d in %s" |
| " at offset %s [in module %s]"), |
| abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU", |
| sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd)); |
| } |
| |
| return abbrev; |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| Returns a pointer to the end of a series of DIEs, terminated by an empty |
| DIE. Any children of the skipped DIEs will also be skipped. */ |
| |
| static const gdb_byte * |
| skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr) |
| { |
| while (1) |
| { |
| unsigned int bytes_read; |
| abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read); |
| |
| if (abbrev == NULL) |
| return info_ptr + bytes_read; |
| else |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| } |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| INFO_PTR should point just after the initial uleb128 of a DIE, and the |
| abbrev corresponding to that skipped uleb128 should be passed in |
| ABBREV. Returns a pointer to this DIE's sibling, skipping any |
| children. */ |
| |
| static const gdb_byte * |
| skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr, |
| struct abbrev_info *abbrev) |
| { |
| unsigned int bytes_read; |
| struct attribute attr; |
| bfd *abfd = reader->abfd; |
| struct dwarf2_cu *cu = reader->cu; |
| const gdb_byte *buffer = reader->buffer; |
| const gdb_byte *buffer_end = reader->buffer_end; |
| unsigned int form, i; |
| |
| for (i = 0; i < abbrev->num_attrs; i++) |
| { |
| /* The only abbrev we care about is DW_AT_sibling. */ |
| if (abbrev->attrs[i].name == DW_AT_sibling) |
| { |
| bool ignored; |
| read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr, |
| &ignored); |
| if (attr.form == DW_FORM_ref_addr) |
| complaint (_("ignoring absolute DW_AT_sibling")); |
| else |
| { |
| sect_offset off = dwarf2_get_ref_die_offset (&attr); |
| const gdb_byte *sibling_ptr = buffer + to_underlying (off); |
| |
| if (sibling_ptr < info_ptr) |
| complaint (_("DW_AT_sibling points backwards")); |
| else if (sibling_ptr > reader->buffer_end) |
| dwarf2_section_buffer_overflow_complaint (reader->die_section); |
| else |
| return sibling_ptr; |
| } |
| } |
| |
| /* If it isn't DW_AT_sibling, skip this attribute. */ |
| form = abbrev->attrs[i].form; |
| skip_attribute: |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3 |
| and later it is offset sized. */ |
| if (cu->header.version == 2) |
| info_ptr += cu->header.addr_size; |
| else |
| info_ptr += cu->header.offset_size; |
| break; |
| case DW_FORM_GNU_ref_alt: |
| info_ptr += cu->header.offset_size; |
| break; |
| case DW_FORM_addr: |
| info_ptr += cu->header.addr_size; |
| break; |
| case DW_FORM_data1: |
| case DW_FORM_ref1: |
| case DW_FORM_flag: |
| case DW_FORM_strx1: |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag_present: |
| case DW_FORM_implicit_const: |
| break; |
| case DW_FORM_data2: |
| case DW_FORM_ref2: |
| case DW_FORM_strx2: |
| info_ptr += 2; |
| break; |
| case DW_FORM_strx3: |
| info_ptr += 3; |
| break; |
| case DW_FORM_data4: |
| case DW_FORM_ref4: |
| case DW_FORM_strx4: |
| info_ptr += 4; |
| break; |
| case DW_FORM_data8: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_sig8: |
| info_ptr += 8; |
| break; |
| case DW_FORM_data16: |
| info_ptr += 16; |
| break; |
| case DW_FORM_string: |
| read_direct_string (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_sec_offset: |
| case DW_FORM_strp: |
| case DW_FORM_GNU_strp_alt: |
| info_ptr += cu->header.offset_size; |
| break; |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_block1: |
| info_ptr += 1 + read_1_byte (abfd, info_ptr); |
| break; |
| case DW_FORM_block2: |
| info_ptr += 2 + read_2_bytes (abfd, info_ptr); |
| break; |
| case DW_FORM_block4: |
| info_ptr += 4 + read_4_bytes (abfd, info_ptr); |
| break; |
| case DW_FORM_addrx: |
| case DW_FORM_strx: |
| case DW_FORM_sdata: |
| case DW_FORM_udata: |
| case DW_FORM_ref_udata: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_rnglistx: |
| info_ptr = safe_skip_leb128 (info_ptr, buffer_end); |
| break; |
| case DW_FORM_indirect: |
| form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| /* We need to continue parsing from here, so just go back to |
| the top. */ |
| goto skip_attribute; |
| |
| default: |
| error (_("Dwarf Error: Cannot handle %s " |
| "in DWARF reader [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| } |
| |
| if (abbrev->has_children) |
| return skip_children (reader, info_ptr); |
| else |
| return info_ptr; |
| } |
| |
| /* Locate ORIG_PDI's sibling. |
| INFO_PTR should point to the start of the next DIE after ORIG_PDI. */ |
| |
| static const gdb_byte * |
| locate_pdi_sibling (const struct die_reader_specs *reader, |
| struct partial_die_info *orig_pdi, |
| const gdb_byte *info_ptr) |
| { |
| /* Do we know the sibling already? */ |
| |
| if (orig_pdi->sibling) |
| return orig_pdi->sibling; |
| |
| /* Are there any children to deal with? */ |
| |
| if (!orig_pdi->has_children) |
| return info_ptr; |
| |
| /* Skip the children the long way. */ |
| |
| return skip_children (reader, info_ptr); |
| } |
| |
| /* Expand this partial symbol table into a full symbol table. SELF is |
| not NULL. */ |
| |
| void |
| dwarf2_psymtab::read_symtab (struct objfile *objfile) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = get_dwarf2_per_objfile (objfile); |
| |
| gdb_assert (!readin); |
| /* If this psymtab is constructed from a debug-only objfile, the |
| has_section_at_zero flag will not necessarily be correct. We |
| can get the correct value for this flag by looking at the data |
| associated with the (presumably stripped) associated objfile. */ |
| if (objfile->separate_debug_objfile_backlink) |
| { |
| struct dwarf2_per_objfile *dpo_backlink |
| = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink); |
| |
| dwarf2_per_objfile->has_section_at_zero |
| = dpo_backlink->has_section_at_zero; |
| } |
| |
| dwarf2_per_objfile->reading_partial_symbols = 0; |
| |
| expand_psymtab (objfile); |
| |
| process_cu_includes (dwarf2_per_objfile); |
| } |
| |
| /* Reading in full CUs. */ |
| |
| /* Add PER_CU to the queue. */ |
| |
| static void |
| queue_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| per_cu->queued = 1; |
| per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language); |
| } |
| |
| /* If PER_CU is not yet queued, add it to the queue. |
| If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a |
| dependency. |
| The result is non-zero if PER_CU was queued, otherwise the result is zero |
| meaning either PER_CU is already queued or it is already loaded. |
| |
| N.B. There is an invariant here that if a CU is queued then it is loaded. |
| The caller is required to load PER_CU if we return non-zero. */ |
| |
| static int |
| maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu, |
| struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| /* We may arrive here during partial symbol reading, if we need full |
| DIEs to process an unusual case (e.g. template arguments). Do |
| not queue PER_CU, just tell our caller to load its DIEs. */ |
| if (per_cu->dwarf2_per_objfile->reading_partial_symbols) |
| { |
| if (per_cu->cu == NULL || per_cu->cu->dies == NULL) |
| return 1; |
| return 0; |
| } |
| |
| /* Mark the dependence relation so that we don't flush PER_CU |
| too early. */ |
| if (dependent_cu != NULL) |
| dwarf2_add_dependence (dependent_cu, per_cu); |
| |
| /* If it's already on the queue, we have nothing to do. */ |
| if (per_cu->queued) |
| return 0; |
| |
| /* If the compilation unit is already loaded, just mark it as |
| used. */ |
| if (per_cu->cu != NULL) |
| { |
| per_cu->cu->last_used = 0; |
| return 0; |
| } |
| |
| /* Add it to the queue. */ |
| queue_comp_unit (per_cu, pretend_language); |
| |
| return 1; |
| } |
| |
| /* Process the queue. */ |
| |
| static void |
| process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Expanding one or more symtabs of objfile %s ...\n", |
| objfile_name (dwarf2_per_objfile->objfile)); |
| } |
| |
| /* The queue starts out with one item, but following a DIE reference |
| may load a new CU, adding it to the end of the queue. */ |
| while (!dwarf2_per_objfile->queue.empty ()) |
| { |
| dwarf2_queue_item &item = dwarf2_per_objfile->queue.front (); |
| |
| if ((dwarf2_per_objfile->using_index |
| ? !item.per_cu->v.quick->compunit_symtab |
| : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin)) |
| /* Skip dummy CUs. */ |
| && item.per_cu->cu != NULL) |
| { |
| struct dwarf2_per_cu_data *per_cu = item.per_cu; |
| unsigned int debug_print_threshold; |
| char buf[100]; |
| |
| if (per_cu->is_debug_types) |
| { |
| struct signatured_type *sig_type = |
| (struct signatured_type *) per_cu; |
| |
| sprintf (buf, "TU %s at offset %s", |
| hex_string (sig_type->signature), |
| sect_offset_str (per_cu->sect_off)); |
| /* There can be 100s of TUs. |
| Only print them in verbose mode. */ |
| debug_print_threshold = 2; |
| } |
| else |
| { |
| sprintf (buf, "CU at offset %s", |
| sect_offset_str (per_cu->sect_off)); |
| debug_print_threshold = 1; |
| } |
| |
| if (dwarf_read_debug >= debug_print_threshold) |
| fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf); |
| |
| if (per_cu->is_debug_types) |
| process_full_type_unit (per_cu, item.pretend_language); |
| else |
| process_full_comp_unit (per_cu, item.pretend_language); |
| |
| if (dwarf_read_debug >= debug_print_threshold) |
| fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf); |
| } |
| |
| item.per_cu->queued = 0; |
| dwarf2_per_objfile->queue.pop (); |
| } |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n", |
| objfile_name (dwarf2_per_objfile->objfile)); |
| } |
| } |
| |
| /* Read in full symbols for PST, and anything it depends on. */ |
| |
| void |
| dwarf2_psymtab::expand_psymtab (struct objfile *objfile) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| if (readin) |
| return; |
| |
| read_dependencies (objfile); |
| |
| per_cu = per_cu_data; |
| |
| if (per_cu == NULL) |
| { |
| /* It's an include file, no symbols to read for it. |
| Everything is in the parent symtab. */ |
| readin = true; |
| return; |
| } |
| |
| dw2_do_instantiate_symtab (per_cu, false); |
| } |
| |
| /* Trivial hash function for die_info: the hash value of a DIE |
| is its offset in .debug_info for this objfile. */ |
| |
| static hashval_t |
| die_hash (const void *item) |
| { |
| const struct die_info *die = (const struct die_info *) item; |
| |
| return to_underlying (die->sect_off); |
| } |
| |
| /* Trivial comparison function for die_info structures: two DIEs |
| are equal if they have the same offset. */ |
| |
| static int |
| die_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct die_info *die_lhs = (const struct die_info *) item_lhs; |
| const struct die_info *die_rhs = (const struct die_info *) item_rhs; |
| |
| return die_lhs->sect_off == die_rhs->sect_off; |
| } |
| |
| /* Load the DIEs associated with PER_CU into memory. */ |
| |
| static void |
| load_full_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| bool skip_partial, |
| enum language pretend_language) |
| { |
| gdb_assert (! this_cu->is_debug_types); |
| |
| cutu_reader reader (this_cu, NULL, 1, 1, skip_partial); |
| if (reader.dummy_p) |
| return; |
| |
| struct dwarf2_cu *cu = reader.cu; |
| const gdb_byte *info_ptr = reader.info_ptr; |
| |
| gdb_assert (cu->die_hash == NULL); |
| cu->die_hash = |
| htab_create_alloc_ex (cu->header.length / 12, |
| die_hash, |
| die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| if (reader.comp_unit_die->has_children) |
| reader.comp_unit_die->child |
| = read_die_and_siblings (&reader, reader.info_ptr, |
| &info_ptr, reader.comp_unit_die); |
| cu->dies = reader.comp_unit_die; |
| /* comp_unit_die is not stored in die_hash, no need. */ |
| |
| /* We try not to read any attributes in this function, because not |
| all CUs needed for references have been loaded yet, and symbol |
| table processing isn't initialized. But we have to set the CU language, |
| or we won't be able to build types correctly. |
| Similarly, if we do not read the producer, we can not apply |
| producer-specific interpretation. */ |
| prepare_one_comp_unit (cu, cu->dies, pretend_language); |
| } |
| |
| /* Add a DIE to the delayed physname list. */ |
| |
| static void |
| add_to_method_list (struct type *type, int fnfield_index, int index, |
| const char *name, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct delayed_method_info mi; |
| mi.type = type; |
| mi.fnfield_index = fnfield_index; |
| mi.index = index; |
| mi.name = name; |
| mi.die = die; |
| cu->method_list.push_back (mi); |
| } |
| |
| /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like |
| "const" / "volatile". If so, decrements LEN by the length of the |
| modifier and return true. Otherwise return false. */ |
| |
| template<size_t N> |
| static bool |
| check_modifier (const char *physname, size_t &len, const char (&mod)[N]) |
| { |
| size_t mod_len = sizeof (mod) - 1; |
| if (len > mod_len && startswith (physname + (len - mod_len), mod)) |
| { |
| len -= mod_len; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Compute the physnames of any methods on the CU's method list. |
| |
| The computation of method physnames is delayed in order to avoid the |
| (bad) condition that one of the method's formal parameters is of an as yet |
| incomplete type. */ |
| |
| static void |
| compute_delayed_physnames (struct dwarf2_cu *cu) |
| { |
| /* Only C++ delays computing physnames. */ |
| if (cu->method_list.empty ()) |
| return; |
| gdb_assert (cu->language == language_cplus); |
| |
| for (const delayed_method_info &mi : cu->method_list) |
| { |
| const char *physname; |
| struct fn_fieldlist *fn_flp |
| = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index); |
| physname = dwarf2_physname (mi.name, mi.die, cu); |
| TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index) |
| = physname ? physname : ""; |
| |
| /* Since there's no tag to indicate whether a method is a |
| const/volatile overload, extract that information out of the |
| demangled name. */ |
| if (physname != NULL) |
| { |
| size_t len = strlen (physname); |
| |
| while (1) |
| { |
| if (physname[len] == ')') /* shortcut */ |
| break; |
| else if (check_modifier (physname, len, " const")) |
| TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1; |
| else if (check_modifier (physname, len, " volatile")) |
| TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1; |
| else |
| break; |
| } |
| } |
| } |
| |
| /* The list is no longer needed. */ |
| cu->method_list.clear (); |
| } |
| |
| /* Go objects should be embedded in a DW_TAG_module DIE, |
| and it's not clear if/how imported objects will appear. |
| To keep Go support simple until that's worked out, |
| go back through what we've read and create something usable. |
| We could do this while processing each DIE, and feels kinda cleaner, |
| but that way is more invasive. |
| This is to, for example, allow the user to type "p var" or "b main" |
| without having to specify the package name, and allow lookups |
| of module.object to work in contexts that use the expression |
| parser. */ |
| |
| static void |
| fixup_go_packaging (struct dwarf2_cu *cu) |
| { |
| gdb::unique_xmalloc_ptr<char> package_name; |
| struct pending *list; |
| int i; |
| |
| for (list = *cu->get_builder ()->get_global_symbols (); |
| list != NULL; |
| list = list->next) |
| { |
| for (i = 0; i < list->nsyms; ++i) |
| { |
| struct symbol *sym = list->symbol[i]; |
| |
| if (sym->language () == language_go |
| && SYMBOL_CLASS (sym) == LOC_BLOCK) |
| { |
| gdb::unique_xmalloc_ptr<char> this_package_name |
| (go_symbol_package_name (sym)); |
| |
| if (this_package_name == NULL) |
| continue; |
| if (package_name == NULL) |
| package_name = std::move (this_package_name); |
| else |
| { |
| struct objfile *objfile |
| = cu->per_cu->dwarf2_per_objfile->objfile; |
| if (strcmp (package_name.get (), this_package_name.get ()) != 0) |
| complaint (_("Symtab %s has objects from two different Go packages: %s and %s"), |
| (symbol_symtab (sym) != NULL |
| ? symtab_to_filename_for_display |
| (symbol_symtab (sym)) |
| : objfile_name (objfile)), |
| this_package_name.get (), package_name.get ()); |
| } |
| } |
| } |
| } |
| |
| if (package_name != NULL) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *saved_package_name |
| = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ()); |
| struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0, |
| saved_package_name); |
| struct symbol *sym; |
| |
| sym = allocate_symbol (objfile); |
| sym->set_language (language_go, &objfile->objfile_obstack); |
| sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd); |
| /* This is not VAR_DOMAIN because we want a way to ensure a lookup of, |
| e.g., "main" finds the "main" module and not C's main(). */ |
| SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| SYMBOL_TYPE (sym) = type; |
| |
| add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ()); |
| } |
| } |
| |
| /* Allocate a fully-qualified name consisting of the two parts on the |
| obstack. */ |
| |
| static const char * |
| rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2) |
| { |
| return obconcat (obstack, p1, "::", p2, (char *) NULL); |
| } |
| |
| /* A helper that allocates a struct discriminant_info to attach to a |
| union type. */ |
| |
| static struct discriminant_info * |
| alloc_discriminant_info (struct type *type, int discriminant_index, |
| int default_index) |
| { |
| gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION); |
| gdb_assert (discriminant_index == -1 |
| || (discriminant_index >= 0 |
| && discriminant_index < TYPE_NFIELDS (type))); |
| gdb_assert (default_index == -1 |
| || (default_index >= 0 && default_index < TYPE_NFIELDS (type))); |
| |
| TYPE_FLAG_DISCRIMINATED_UNION (type) = 1; |
| |
| struct discriminant_info *disc |
| = ((struct discriminant_info *) |
| TYPE_ZALLOC (type, |
| offsetof (struct discriminant_info, discriminants) |
| + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0]))); |
| disc->default_index = default_index; |
| disc->discriminant_index = discriminant_index; |
| |
| struct dynamic_prop prop; |
| prop.kind = PROP_UNDEFINED; |
| prop.data.baton = disc; |
| |
| add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type); |
| |
| return disc; |
| } |
| |
| /* Some versions of rustc emitted enums in an unusual way. |
| |
| Ordinary enums were emitted as unions. The first element of each |
| structure in the union was named "RUST$ENUM$DISR". This element |
| held the discriminant. |
| |
| These versions of Rust also implemented the "non-zero" |
| optimization. When the enum had two values, and one is empty and |
| the other holds a pointer that cannot be zero, the pointer is used |
| as the discriminant, with a zero value meaning the empty variant. |
| Here, the union's first member is of the form |
| RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname> |
| where the fieldnos are the indices of the fields that should be |
| traversed in order to find the field (which may be several fields deep) |
| and the variantname is the name of the variant of the case when the |
| field is zero. |
| |
| This function recognizes whether TYPE is of one of these forms, |
| and, if so, smashes it to be a variant type. */ |
| |
| static void |
| quirk_rust_enum (struct type *type, struct objfile *objfile) |
| { |
| gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION); |
| |
| /* We don't need to deal with empty enums. */ |
| if (TYPE_NFIELDS (type) == 0) |
| return; |
| |
| #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$" |
| if (TYPE_NFIELDS (type) == 1 |
| && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX)) |
| { |
| const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX); |
| |
| /* Decode the field name to find the offset of the |
| discriminant. */ |
| ULONGEST bit_offset = 0; |
| struct type *field_type = TYPE_FIELD_TYPE (type, 0); |
| while (name[0] >= '0' && name[0] <= '9') |
| { |
| char *tail; |
| unsigned long index = strtoul (name, &tail, 10); |
| name = tail; |
| if (*name != '$' |
| || index >= TYPE_NFIELDS (field_type) |
| || (TYPE_FIELD_LOC_KIND (field_type, index) |
| != FIELD_LOC_KIND_BITPOS)) |
| { |
| complaint (_("Could not parse Rust enum encoding string \"%s\"" |
| "[in module %s]"), |
| TYPE_FIELD_NAME (type, 0), |
| objfile_name (objfile)); |
| return; |
| } |
| ++name; |
| |
| bit_offset += TYPE_FIELD_BITPOS (field_type, index); |
| field_type = TYPE_FIELD_TYPE (field_type, index); |
| } |
| |
| /* Make a union to hold the variants. */ |
| struct type *union_type = alloc_type (objfile); |
| TYPE_CODE (union_type) = TYPE_CODE_UNION; |
| TYPE_NFIELDS (union_type) = 3; |
| TYPE_FIELDS (union_type) |
| = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)); |
| TYPE_LENGTH (union_type) = TYPE_LENGTH (type); |
| set_type_align (union_type, TYPE_RAW_ALIGN (type)); |
| |
| /* Put the discriminant must at index 0. */ |
| TYPE_FIELD_TYPE (union_type, 0) = field_type; |
| TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1; |
| TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>"; |
| SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset); |
| |
| /* The order of fields doesn't really matter, so put the real |
| field at index 1 and the data-less field at index 2. */ |
| struct discriminant_info *disc |
| = alloc_discriminant_info (union_type, 0, 1); |
| TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0); |
| TYPE_FIELD_NAME (union_type, 1) |
| = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))); |
| TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)) |
| = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type), |
| TYPE_FIELD_NAME (union_type, 1)); |
| |
| const char *dataless_name |
| = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type), |
| name); |
| struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0, |
| dataless_name); |
| TYPE_FIELD_TYPE (union_type, 2) = dataless_type; |
| /* NAME points into the original discriminant name, which |
| already has the correct lifetime. */ |
| TYPE_FIELD_NAME (union_type, 2) = name; |
| SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0); |
| disc->discriminants[2] = 0; |
| |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| TYPE_NFIELDS (type) = 1; |
| TYPE_FIELDS (type) |
| = (struct field *) TYPE_ZALLOC (type, sizeof (struct field)); |
| |
| /* Install the variant part. */ |
| TYPE_FIELD_TYPE (type, 0) = union_type; |
| SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0); |
| TYPE_FIELD_NAME (type, 0) = "<<variants>>"; |
| } |
| /* A union with a single anonymous field is probably an old-style |
| univariant enum. */ |
| else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), "")) |
| { |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| |
| /* Make a union to hold the variants. */ |
| struct type *union_type = alloc_type (objfile); |
| TYPE_CODE (union_type) = TYPE_CODE_UNION; |
| TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type); |
| TYPE_LENGTH (union_type) = TYPE_LENGTH (type); |
| set_type_align (union_type, TYPE_RAW_ALIGN (type)); |
| TYPE_FIELDS (union_type) = TYPE_FIELDS (type); |
| |
| struct type *field_type = TYPE_FIELD_TYPE (union_type, 0); |
| const char *variant_name |
| = rust_last_path_segment (TYPE_NAME (field_type)); |
| TYPE_FIELD_NAME (union_type, 0) = variant_name; |
| TYPE_NAME (field_type) |
| = rust_fully_qualify (&objfile->objfile_obstack, |
| TYPE_NAME (type), variant_name); |
| |
| /* Install the union in the outer struct type. */ |
| TYPE_NFIELDS (type) = 1; |
| TYPE_FIELDS (type) |
| = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field)); |
| TYPE_FIELD_TYPE (type, 0) = union_type; |
| TYPE_FIELD_NAME (type, 0) = "<<variants>>"; |
| SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0); |
| |
| alloc_discriminant_info (union_type, -1, 0); |
| } |
| else |
| { |
| struct type *disr_type = nullptr; |
| for (int i = 0; i < TYPE_NFIELDS (type); ++i) |
| { |
| disr_type = TYPE_FIELD_TYPE (type, i); |
| |
| if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT) |
| { |
| /* All fields of a true enum will be structs. */ |
| return; |
| } |
| else if (TYPE_NFIELDS (disr_type) == 0) |
| { |
| /* Could be data-less variant, so keep going. */ |
| disr_type = nullptr; |
| } |
| else if (strcmp (TYPE_FIELD_NAME (disr_type, 0), |
| "RUST$ENUM$DISR") != 0) |
| { |
| /* Not a Rust enum. */ |
| return; |
| } |
| else |
| { |
| /* Found one. */ |
| break; |
| } |
| } |
| |
| /* If we got here without a discriminant, then it's probably |
| just a union. */ |
| if (disr_type == nullptr) |
| return; |
| |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| |
| /* Make a union to hold the variants. */ |
| struct field *disr_field = &TYPE_FIELD (disr_type, 0); |
| struct type *union_type = alloc_type (objfile); |
| TYPE_CODE (union_type) = TYPE_CODE_UNION; |
| TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type); |
| TYPE_LENGTH (union_type) = TYPE_LENGTH (type); |
| set_type_align (union_type, TYPE_RAW_ALIGN (type)); |
| TYPE_FIELDS (union_type) |
| = (struct field *) TYPE_ZALLOC (union_type, |
| (TYPE_NFIELDS (union_type) |
| * sizeof (struct field))); |
| |
| memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type), |
| TYPE_NFIELDS (type) * sizeof (struct field)); |
| |
| /* Install the discriminant at index 0 in the union. */ |
| TYPE_FIELD (union_type, 0) = *disr_field; |
| TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1; |
| TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>"; |
| |
| /* Install the union in the outer struct type. */ |
| TYPE_FIELD_TYPE (type, 0) = union_type; |
| TYPE_FIELD_NAME (type, 0) = "<<variants>>"; |
| TYPE_NFIELDS (type) = 1; |
| |
| /* Set the size and offset of the union type. */ |
| SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0); |
| |
| /* We need a way to find the correct discriminant given a |
| variant name. For convenience we build a map here. */ |
| struct type *enum_type = FIELD_TYPE (*disr_field); |
| std::unordered_map<std::string, ULONGEST> discriminant_map; |
| for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i) |
| { |
| if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL) |
| { |
| const char *name |
| = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i)); |
| discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i); |
| } |
| } |
| |
| int n_fields = TYPE_NFIELDS (union_type); |
| struct discriminant_info *disc |
| = alloc_discriminant_info (union_type, 0, -1); |
| /* Skip the discriminant here. */ |
| for (int i = 1; i < n_fields; ++i) |
| { |
| /* Find the final word in the name of this variant's type. |
| That name can be used to look up the correct |
| discriminant. */ |
| const char *variant_name |
| = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, |
| i))); |
| |
| auto iter = discriminant_map.find (variant_name); |
| if (iter != discriminant_map.end ()) |
| disc->discriminants[i] = iter->second; |
| |
| /* Remove the discriminant field, if it exists. */ |
| struct type *sub_type = TYPE_FIELD_TYPE (union_type, i); |
| if (TYPE_NFIELDS (sub_type) > 0) |
| { |
| --TYPE_NFIELDS (sub_type); |
| ++TYPE_FIELDS (sub_type); |
| } |
| TYPE_FIELD_NAME (union_type, i) = variant_name; |
| TYPE_NAME (sub_type) |
| = rust_fully_qualify (&objfile->objfile_obstack, |
| TYPE_NAME (type), variant_name); |
| } |
| } |
| } |
| |
| /* Rewrite some Rust unions to be structures with variants parts. */ |
| |
| static void |
| rust_union_quirks (struct dwarf2_cu *cu) |
| { |
| gdb_assert (cu->language == language_rust); |
| for (type *type_ : cu->rust_unions) |
| quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile); |
| /* We don't need this any more. */ |
| cu->rust_unions.clear (); |
| } |
| |
| /* Return the symtab for PER_CU. This works properly regardless of |
| whether we're using the index or psymtabs. */ |
| |
| static struct compunit_symtab * |
| get_compunit_symtab (struct dwarf2_per_cu_data *per_cu) |
| { |
| return (per_cu->dwarf2_per_objfile->using_index |
| ? per_cu->v.quick->compunit_symtab |
| : per_cu->v.psymtab->compunit_symtab); |
| } |
| |
| /* A helper function for computing the list of all symbol tables |
| included by PER_CU. */ |
| |
| static void |
| recursively_compute_inclusions (std::vector<compunit_symtab *> *result, |
| htab_t all_children, htab_t all_type_symtabs, |
| struct dwarf2_per_cu_data *per_cu, |
| struct compunit_symtab *immediate_parent) |
| { |
| void **slot; |
| struct compunit_symtab *cust; |
| |
| slot = htab_find_slot (all_children, per_cu, INSERT); |
| if (*slot != NULL) |
| { |
| /* This inclusion and its children have been processed. */ |
| return; |
| } |
| |
| *slot = per_cu; |
| /* Only add a CU if it has a symbol table. */ |
| cust = get_compunit_symtab (per_cu); |
| if (cust != NULL) |
| { |
| /* If this is a type unit only add its symbol table if we haven't |
| seen it yet (type unit per_cu's can share symtabs). */ |
| if (per_cu->is_debug_types) |
| { |
| slot = htab_find_slot (all_type_symtabs, cust, INSERT); |
| if (*slot == NULL) |
| { |
| *slot = cust; |
| result->push_back (cust); |
| if (cust->user == NULL) |
| cust->user = immediate_parent; |
| } |
| } |
| else |
| { |
| result->push_back (cust); |
| if (cust->user == NULL) |
| cust->user = immediate_parent; |
| } |
| } |
| |
| if (!per_cu->imported_symtabs_empty ()) |
| for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs) |
| { |
| recursively_compute_inclusions (result, all_children, |
| all_type_symtabs, ptr, cust); |
| } |
| } |
| |
| /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of |
| PER_CU. */ |
| |
| static void |
| compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu) |
| { |
| gdb_assert (! per_cu->is_debug_types); |
| |
| if (!per_cu->imported_symtabs_empty ()) |
| { |
| int len; |
| std::vector<compunit_symtab *> result_symtabs; |
| htab_t all_children, all_type_symtabs; |
| struct compunit_symtab *cust = get_compunit_symtab (per_cu); |
| |
| /* If we don't have a symtab, we can just skip this case. */ |
| if (cust == NULL) |
| return; |
| |
| all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| |
| for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs) |
| { |
| recursively_compute_inclusions (&result_symtabs, all_children, |
| all_type_symtabs, ptr, cust); |
| } |
| |
| /* Now we have a transitive closure of all the included symtabs. */ |
| len = result_symtabs.size (); |
| cust->includes |
| = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack, |
| struct compunit_symtab *, len + 1); |
| memcpy (cust->includes, result_symtabs.data (), |
| len * sizeof (compunit_symtab *)); |
| cust->includes[len] = NULL; |
| |
| htab_delete (all_children); |
| htab_delete (all_type_symtabs); |
| } |
| } |
| |
| /* Compute the 'includes' field for the symtabs of all the CUs we just |
| read. */ |
| |
| static void |
| process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus) |
| { |
| if (! iter->is_debug_types) |
| compute_compunit_symtab_includes (iter); |
| } |
| |
| dwarf2_per_objfile->just_read_cus.clear (); |
| } |
| |
| /* Generate full symbol information for PER_CU, whose DIEs have |
| already been loaded into memory. */ |
| |
| static void |
| process_full_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| struct dwarf2_cu *cu = per_cu->cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR lowpc, highpc; |
| struct compunit_symtab *cust; |
| CORE_ADDR baseaddr; |
| struct block *static_block; |
| CORE_ADDR addr; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| /* Clear the list here in case something was left over. */ |
| cu->method_list.clear (); |
| |
| cu->language = pretend_language; |
| cu->language_defn = language_def (cu->language); |
| |
| /* Do line number decoding in read_file_scope () */ |
| process_die (cu->dies, cu); |
| |
| /* For now fudge the Go package. */ |
| if (cu->language == language_go) |
| fixup_go_packaging (cu); |
| |
| /* Now that we have processed all the DIEs in the CU, all the types |
| should be complete, and it should now be safe to compute all of the |
| physnames. */ |
| compute_delayed_physnames (cu); |
| |
| if (cu->language == language_rust) |
| rust_union_quirks (cu); |
| |
| /* Some compilers don't define a DW_AT_high_pc attribute for the |
| compilation unit. If the DW_AT_high_pc is missing, synthesize |
| it, by scanning the DIE's below the compilation unit. */ |
| get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu); |
| |
| addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr); |
| static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1); |
| |
| /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges. |
| Also, DW_AT_ranges may record ranges not belonging to any child DIEs |
| (such as virtual method tables). Record the ranges in STATIC_BLOCK's |
| addrmap to help ensure it has an accurate map of pc values belonging to |
| this comp unit. */ |
| dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu); |
| |
| cust = cu->get_builder ()->end_symtab_from_static_block (static_block, |
| SECT_OFF_TEXT (objfile), |
| 0); |
| |
| if (cust != NULL) |
| { |
| int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer); |
| |
| /* Set symtab language to language from DW_AT_language. If the |
| compilation is from a C file generated by language preprocessors, do |
| not set the language if it was already deduced by start_subfile. */ |
| if (!(cu->language == language_c |
| && COMPUNIT_FILETABS (cust)->language != language_unknown)) |
| COMPUNIT_FILETABS (cust)->language = cu->language; |
| |
| /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can |
| produce DW_AT_location with location lists but it can be possibly |
| invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0 |
| there were bugs in prologue debug info, fixed later in GCC-4.5 |
| by "unwind info for epilogues" patch (which is not directly related). |
| |
| For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not |
| needed, it would be wrong due to missing DW_AT_producer there. |
| |
| Still one can confuse GDB by using non-standard GCC compilation |
| options - this waits on GCC PR other/32998 (-frecord-gcc-switches). |
| */ |
| if (cu->has_loclist && gcc_4_minor >= 5) |
| cust->locations_valid = 1; |
| |
| if (gcc_4_minor >= 5) |
| cust->epilogue_unwind_valid = 1; |
| |
| cust->call_site_htab = cu->call_site_htab; |
| } |
| |
| if (dwarf2_per_objfile->using_index) |
| per_cu->v.quick->compunit_symtab = cust; |
| else |
| { |
| dwarf2_psymtab *pst = per_cu->v.psymtab; |
| pst->compunit_symtab = cust; |
| pst->readin = true; |
| } |
| |
| /* Push it for inclusion processing later. */ |
| dwarf2_per_objfile->just_read_cus.push_back (per_cu); |
| |
| /* Not needed any more. */ |
| cu->reset_builder (); |
| } |
| |
| /* Generate full symbol information for type unit PER_CU, whose DIEs have |
| already been loaded into memory. */ |
| |
| static void |
| process_full_type_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| struct dwarf2_cu *cu = per_cu->cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct compunit_symtab *cust; |
| struct signatured_type *sig_type; |
| |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| /* Clear the list here in case something was left over. */ |
| cu->method_list.clear (); |
| |
| cu->language = pretend_language; |
| cu->language_defn = language_def (cu->language); |
| |
| /* The symbol tables are set up in read_type_unit_scope. */ |
| process_die (cu->dies, cu); |
| |
| /* For now fudge the Go package. */ |
| if (cu->language == language_go) |
| fixup_go_packaging (cu); |
| |
| /* Now that we have processed all the DIEs in the CU, all the types |
| should be complete, and it should now be safe to compute all of the |
| physnames. */ |
| compute_delayed_physnames (cu); |
| |
| if (cu->language == language_rust) |
| rust_union_quirks (cu); |
| |
| /* TUs share symbol tables. |
| If this is the first TU to use this symtab, complete the construction |
| of it with end_expandable_symtab. Otherwise, complete the addition of |
| this TU's symbols to the existing symtab. */ |
| if (sig_type->type_unit_group->compunit_symtab == NULL) |
| { |
| buildsym_compunit *builder = cu->get_builder (); |
| cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile)); |
| sig_type->type_unit_group->compunit_symtab = cust; |
| |
| if (cust != NULL) |
| { |
| /* Set symtab language to language from DW_AT_language. If the |
| compilation is from a C file generated by language preprocessors, |
| do not set the language if it was already deduced by |
| start_subfile. */ |
| if (!(cu->language == language_c |
| && COMPUNIT_FILETABS (cust)->language != language_c)) |
| COMPUNIT_FILETABS (cust)->language = cu->language; |
| } |
| } |
| else |
| { |
| cu->get_builder ()->augment_type_symtab (); |
| cust = sig_type->type_unit_group->compunit_symtab; |
| } |
| |
| if (dwarf2_per_objfile->using_index) |
| per_cu->v.quick->compunit_symtab = cust; |
| else |
| { |
| dwarf2_psymtab *pst = per_cu->v.psymtab; |
| pst->compunit_symtab = cust; |
| pst->readin = true; |
| } |
| |
| /* Not needed any more. */ |
| cu->reset_builder (); |
| } |
| |
| /* Process an imported unit DIE. */ |
| |
| static void |
| process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| /* For now we don't handle imported units in type units. */ |
| if (cu->per_cu->is_debug_types) |
| { |
| error (_("Dwarf Error: DW_TAG_imported_unit is not" |
| " supported in type units [in module %s]"), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (attr != NULL) |
| { |
| sect_offset sect_off = dwarf2_get_ref_die_offset (attr); |
| bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz); |
| dwarf2_per_cu_data *per_cu |
| = dwarf2_find_containing_comp_unit (sect_off, is_dwz, |
| cu->per_cu->dwarf2_per_objfile); |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| if (maybe_queue_comp_unit (cu, per_cu, cu->language)) |
| load_full_comp_unit (per_cu, false, cu->language); |
| |
| cu->per_cu->imported_symtabs_push (per_cu); |
| } |
| } |
| |
| /* RAII object that represents a process_die scope: i.e., |
| starts/finishes processing a DIE. */ |
| class process_die_scope |
| { |
| public: |
| process_die_scope (die_info *die, dwarf2_cu *cu) |
| : m_die (die), m_cu (cu) |
| { |
| /* We should only be processing DIEs not already in process. */ |
| gdb_assert (!m_die->in_process); |
| m_die->in_process = true; |
| } |
| |
| ~process_die_scope () |
| { |
| m_die->in_process = false; |
| |
| /* If we're done processing the DIE for the CU that owns the line |
| header, we don't need the line header anymore. */ |
| if (m_cu->line_header_die_owner == m_die) |
| { |
| delete m_cu->line_header; |
| m_cu->line_header = NULL; |
| m_cu->line_header_die_owner = NULL; |
| } |
| } |
| |
| private: |
| die_info *m_die; |
| dwarf2_cu *m_cu; |
| }; |
| |
| /* Process a die and its children. */ |
| |
| static void |
| process_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| process_die_scope scope (die, cu); |
| |
| switch (die->tag) |
| { |
| case DW_TAG_padding: |
| break; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| read_file_scope (die, cu); |
| break; |
| case DW_TAG_type_unit: |
| read_type_unit_scope (die, cu); |
| break; |
| case DW_TAG_subprogram: |
| /* Nested subprograms in Fortran get a prefix. */ |
| if (cu->language == language_fortran |
| && die->parent != NULL |
| && die->parent->tag == DW_TAG_subprogram) |
| cu->processing_has_namespace_info = true; |
| /* Fall through. */ |
| case DW_TAG_inlined_subroutine: |
| read_func_scope (die, cu); |
| break; |
| case DW_TAG_lexical_block: |
| case DW_TAG_try_block: |
| case DW_TAG_catch_block: |
| read_lexical_block_scope (die, cu); |
| break; |
| case DW_TAG_call_site: |
| case DW_TAG_GNU_call_site: |
| read_call_site_scope (die, cu); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| process_structure_scope (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| process_enumeration_scope (die, cu); |
| break; |
| |
| /* These dies have a type, but processing them does not create |
| a symbol or recurse to process the children. Therefore we can |
| read them on-demand through read_type_die. */ |
| case DW_TAG_subroutine_type: |
| case DW_TAG_set_type: |
| case DW_TAG_array_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_reference_type: |
| case DW_TAG_rvalue_reference_type: |
| case DW_TAG_string_type: |
| break; |
| |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_typedef: |
| /* Add a typedef symbol for the type definition, if it has a |
| DW_AT_name. */ |
| new_symbol (die, read_type_die (die, cu), cu); |
| break; |
| case DW_TAG_common_block: |
| read_common_block (die, cu); |
| break; |
| case DW_TAG_common_inclusion: |
| break; |
| case DW_TAG_namespace: |
| cu->processing_has_namespace_info = true; |
| read_namespace (die, cu); |
| break; |
| case DW_TAG_module: |
| cu->processing_has_namespace_info = true; |
| read_module (die, cu); |
| break; |
| case DW_TAG_imported_declaration: |
| cu->processing_has_namespace_info = true; |
| if (read_namespace_alias (die, cu)) |
| break; |
| /* The declaration is not a global namespace alias. */ |
| /* Fall through. */ |
| case DW_TAG_imported_module: |
| cu->processing_has_namespace_info = true; |
| if (die->child != NULL && (die->tag == DW_TAG_imported_declaration |
| || cu->language != language_fortran)) |
| complaint (_("Tag '%s' has unexpected children"), |
| dwarf_tag_name (die->tag)); |
| read_import_statement (die, cu); |
| break; |
| |
| case DW_TAG_imported_unit: |
| process_imported_unit_die (die, cu); |
| break; |
| |
| case DW_TAG_variable: |
| read_variable (die, cu); |
| break; |
| |
| default: |
| new_symbol (die, NULL, cu); |
| break; |
| } |
| } |
| |
| /* DWARF name computation. */ |
| |
| /* A helper function for dwarf2_compute_name which determines whether DIE |
| needs to have the name of the scope prepended to the name listed in the |
| die. */ |
| |
| static int |
| die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_namespace: |
| case DW_TAG_typedef: |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| case DW_TAG_subprogram: |
| case DW_TAG_inlined_subroutine: |
| case DW_TAG_member: |
| case DW_TAG_imported_declaration: |
| return 1; |
| |
| case DW_TAG_variable: |
| case DW_TAG_constant: |
| /* We only need to prefix "globally" visible variables. These include |
| any variable marked with DW_AT_external or any variable that |
| lives in a namespace. [Variables in anonymous namespaces |
| require prefixing, but they are not DW_AT_external.] */ |
| |
| if (dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| |
| return die_needs_namespace (die_specification (die, &spec_cu), |
| spec_cu); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| if (attr == NULL && die->parent->tag != DW_TAG_namespace |
| && die->parent->tag != DW_TAG_module) |
| return 0; |
| /* A variable in a lexical block of some kind does not need a |
| namespace, even though in C++ such variables may be external |
| and have a mangled name. */ |
| if (die->parent->tag == DW_TAG_lexical_block |
| || die->parent->tag == DW_TAG_try_block |
| || die->parent->tag == DW_TAG_catch_block |
| || die->parent->tag == DW_TAG_subprogram) |
| return 0; |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the DIE's linkage name attribute, either DW_AT_linkage_name |
| or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not |
| defined for the given DIE. */ |
| |
| static struct attribute * |
| dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| return attr; |
| } |
| |
| /* Return the DIE's linkage name as a string, either DW_AT_linkage_name |
| or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not |
| defined for the given DIE. */ |
| |
| static const char * |
| dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *linkage_name; |
| |
| linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu); |
| if (linkage_name == NULL) |
| linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| return linkage_name; |
| } |
| |
| /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero, |
| compute the physname for the object, which include a method's: |
| - formal parameters (C++), |
| - receiver type (Go), |
| |
| The term "physname" is a bit confusing. |
| For C++, for example, it is the demangled name. |
| For Go, for example, it's the mangled name. |
| |
| For Ada, return the DIE's linkage name rather than the fully qualified |
| name. PHYSNAME is ignored.. |
| |
| The result is allocated on the objfile_obstack and canonicalized. */ |
| |
| static const char * |
| dwarf2_compute_name (const char *name, |
| struct die_info *die, struct dwarf2_cu *cu, |
| int physname) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| |
| if (name == NULL) |
| name = dwarf2_name (die, cu); |
| |
| /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present |
| but otherwise compute it by typename_concat inside GDB. |
| FIXME: Actually this is not really true, or at least not always true. |
| It's all very confusing. compute_and_set_names doesn't try to demangle |
| Fortran names because there is no mangling standard. So new_symbol |
| will set the demangled name to the result of dwarf2_full_name, and it is |
| the demangled name that GDB uses if it exists. */ |
| if (cu->language == language_ada |
| || (cu->language == language_fortran && physname)) |
| { |
| /* For Ada unit, we prefer the linkage name over the name, as |
| the former contains the exported name, which the user expects |
| to be able to reference. Ideally, we want the user to be able |
| to reference this entity using either natural or linkage name, |
| but we haven't started looking at this enhancement yet. */ |
| const char *linkage_name = dw2_linkage_name (die, cu); |
| |
| if (linkage_name != NULL) |
| return linkage_name; |
| } |
| |
| /* These are the only languages we know how to qualify names in. */ |
| if (name != NULL |
| && (cu->language == language_cplus |
| || cu->language == language_fortran || cu->language == language_d |
| || cu->language == language_rust)) |
| { |
| if (die_needs_namespace (die, cu)) |
| { |
| const char *prefix; |
| const char *canonical_name = NULL; |
| |
| string_file buf; |
| |
| prefix = determine_prefix (die, cu); |
| if (*prefix != '\0') |
| { |
| gdb::unique_xmalloc_ptr<char> prefixed_name |
| (typename_concat (NULL, prefix, name, physname, cu)); |
| |
| buf.puts (prefixed_name.get ()); |
| } |
| else |
| buf.puts (name); |
| |
| /* Template parameters may be specified in the DIE's DW_AT_name, or |
| as children with DW_TAG_template_type_param or |
| DW_TAG_value_type_param. If the latter, add them to the name |
| here. If the name already has template parameters, then |
| skip this step; some versions of GCC emit both, and |
| it is more efficient to use the pre-computed name. |
| |
| Something to keep in mind about this process: it is very |
| unlikely, or in some cases downright impossible, to produce |
| something that will match the mangled name of a function. |
| If the definition of the function has the same debug info, |
| we should be able to match up with it anyway. But fallbacks |
| using the minimal symbol, for instance to find a method |
| implemented in a stripped copy of libstdc++, will not work. |
| If we do not have debug info for the definition, we will have to |
| match them up some other way. |
| |
| When we do name matching there is a related problem with function |
| templates; two instantiated function templates are allowed to |
| differ only by their return types, which we do not add here. */ |
| |
| if (cu->language == language_cplus && strchr (name, '<') == NULL) |
| { |
| struct attribute *attr; |
| struct die_info *child; |
| int first = 1; |
| |
| die->building_fullname = 1; |
| |
| for (child = die->child; child != NULL; child = child->sibling) |
| { |
| struct type *type; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| struct value *v; |
| |
| if (child->tag != DW_TAG_template_type_param |
| && child->tag != DW_TAG_template_value_param) |
| continue; |
| |
| if (first) |
| { |
| buf.puts ("<"); |
| first = 0; |
| } |
| else |
| buf.puts (", "); |
| |
| attr = dwarf2_attr (child, DW_AT_type, cu); |
| if (attr == NULL) |
| { |
| complaint (_("template parameter missing DW_AT_type")); |
| buf.puts ("UNKNOWN_TYPE"); |
| continue; |
| } |
| type = die_type (child, cu); |
| |
| if (child->tag == DW_TAG_template_type_param) |
| { |
| c_print_type (type, "", &buf, -1, 0, cu->language, |
| &type_print_raw_options); |
| continue; |
| } |
| |
| attr = dwarf2_attr (child, DW_AT_const_value, cu); |
| if (attr == NULL) |
| { |
| complaint (_("template parameter missing " |
| "DW_AT_const_value")); |
| buf.puts ("UNKNOWN_VALUE"); |
| continue; |
| } |
| |
| dwarf2_const_value_attr (attr, type, name, |
| &cu->comp_unit_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (TYPE_NOSIGN (type)) |
| /* GDB prints characters as NUMBER 'CHAR'. If that's |
| changed, this can use value_print instead. */ |
| c_printchar (value, type, &buf); |
| else |
| { |
| struct value_print_options opts; |
| |
| if (baton != NULL) |
| v = dwarf2_evaluate_loc_desc (type, NULL, |
| baton->data, |
| baton->size, |
| baton->per_cu); |
| else if (bytes != NULL) |
| { |
| v = allocate_value (type); |
| memcpy (value_contents_writeable (v), bytes, |
| TYPE_LENGTH (type)); |
| } |
| else |
| v = value_from_longest (type, value); |
| |
| /* Specify decimal so that we do not depend on |
| the radix. */ |
| get_formatted_print_options (&opts, 'd'); |
| opts.raw = 1; |
| value_print (v, &buf, &opts); |
| release_value (v); |
| } |
| } |
| |
| die->building_fullname = 0; |
| |
| if (!first) |
| { |
| /* Close the argument list, with a space if necessary |
| (nested templates). */ |
| if (!buf.empty () && buf.string ().back () == '>') |
| buf.puts (" >"); |
| else |
| buf.puts (">"); |
| } |
| } |
| |
| /* For C++ methods, append formal parameter type |
| information, if PHYSNAME. */ |
| |
| if (physname && die->tag == DW_TAG_subprogram |
| && cu->language == language_cplus) |
| { |
| struct type *type = read_type_die (die, cu); |
| |
| c_type_print_args (type, &buf, 1, cu->language, |
| &type_print_raw_options); |
| |
| if (cu->language == language_cplus) |
| { |
| /* Assume that an artificial first parameter is |
| "this", but do not crash if it is not. RealView |
| marks unnamed (and thus unused) parameters as |
| artificial; there is no way to differentiate |
| the two cases. */ |
| if (TYPE_NFIELDS (type) > 0 |
| && TYPE_FIELD_ARTIFICIAL (type, 0) |
| && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR |
| && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, |
| 0)))) |
| buf.puts (" const"); |
| } |
| } |
| |
| const std::string &intermediate_name = buf.string (); |
| |
| if (cu->language == language_cplus) |
| canonical_name |
| = dwarf2_canonicalize_name (intermediate_name.c_str (), cu, |
| &objfile->per_bfd->storage_obstack); |
| |
| /* If we only computed INTERMEDIATE_NAME, or if |
| INTERMEDIATE_NAME is already canonical, then we need to |
| copy it to the appropriate obstack. */ |
| if (canonical_name == NULL || canonical_name == intermediate_name.c_str ()) |
| name = obstack_strdup (&objfile->per_bfd->storage_obstack, |
| intermediate_name); |
| else |
| name = canonical_name; |
| } |
| } |
| |
| return name; |
| } |
| |
| /* Return the fully qualified name of DIE, based on its DW_AT_name. |
| If scope qualifiers are appropriate they will be added. The result |
| will be allocated on the storage_obstack, or NULL if the DIE does |
| not have a name. NAME may either be from a previous call to |
| dwarf2_name or NULL. |
| |
| The output string will be canonicalized (if C++). */ |
| |
| static const char * |
| dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return dwarf2_compute_name (name, die, cu, 0); |
| } |
| |
| /* Construct a physname for the given DIE in CU. NAME may either be |
| from a previous call to dwarf2_name or NULL. The result will be |
| allocated on the objfile_objstack or NULL if the DIE does not have a |
| name. |
| |
| The output string will be canonicalized (if C++). */ |
| |
| static const char * |
| dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *retval, *mangled = NULL, *canon = NULL; |
| int need_copy = 1; |
| |
| /* In this case dwarf2_compute_name is just a shortcut not building anything |
| on its own. */ |
| if (!die_needs_namespace (die, cu)) |
| return dwarf2_compute_name (name, die, cu, 1); |
| |
| mangled = dw2_linkage_name (die, cu); |
| |
| /* rustc emits invalid values for DW_AT_linkage_name. Ignore these. |
| See https://github.com/rust-lang/rust/issues/32925. */ |
| if (cu->language == language_rust && mangled != NULL |
| && strchr (mangled, '{') != NULL) |
| mangled = NULL; |
| |
| /* DW_AT_linkage_name is missing in some cases - depend on what GDB |
| has computed. */ |
| gdb::unique_xmalloc_ptr<char> demangled; |
| if (mangled != NULL) |
| { |
| |
| if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p) |
| { |
| /* Do nothing (do not demangle the symbol name). */ |
| } |
| else if (cu->language == language_go) |
| { |
| /* This is a lie, but we already lie to the caller new_symbol. |
| new_symbol assumes we return the mangled name. |
| This just undoes that lie until things are cleaned up. */ |
| } |
| else |
| { |
| /* Use DMGL_RET_DROP for C++ template functions to suppress |
| their return type. It is easier for GDB users to search |
| for such functions as `name(params)' than `long name(params)'. |
| In such case the minimal symbol names do not match the full |
| symbol names but for template functions there is never a need |
| to look up their definition from their declaration so |
| the only disadvantage remains the minimal symbol variant |
| `long name(params)' does not have the proper inferior type. */ |
| demangled.reset (gdb_demangle (mangled, |
| (DMGL_PARAMS | DMGL_ANSI |
| | DMGL_RET_DROP))); |
| } |
| if (demangled) |
| canon = demangled.get (); |
| else |
| { |
| canon = mangled; |
| need_copy = 0; |
| } |
| } |
| |
| if (canon == NULL || check_physname) |
| { |
| const char *physname = dwarf2_compute_name (name, die, cu, 1); |
| |
| if (canon != NULL && strcmp (physname, canon) != 0) |
| { |
| /* It may not mean a bug in GDB. The compiler could also |
| compute DW_AT_linkage_name incorrectly. But in such case |
| GDB would need to be bug-to-bug compatible. */ |
| |
| complaint (_("Computed physname <%s> does not match demangled <%s> " |
| "(from linkage <%s>) - DIE at %s [in module %s]"), |
| physname, canon, mangled, sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| |
| /* Prefer DW_AT_linkage_name (in the CANON form) - when it |
| is available here - over computed PHYSNAME. It is safer |
| against both buggy GDB and buggy compilers. */ |
| |
| retval = canon; |
| } |
| else |
| { |
| retval = physname; |
| need_copy = 0; |
| } |
| } |
| else |
| retval = canon; |
| |
| if (need_copy) |
| retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval); |
| |
| return retval; |
| } |
| |
| /* Inspect DIE in CU for a namespace alias. If one exists, record |
| a new symbol for it. |
| |
| Returns 1 if a namespace alias was recorded, 0 otherwise. */ |
| |
| static int |
| read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| /* If the die does not have a name, this is not a namespace |
| alias. */ |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr != NULL) |
| { |
| int num; |
| struct die_info *d = die; |
| struct dwarf2_cu *imported_cu = cu; |
| |
| /* If the compiler has nested DW_AT_imported_declaration DIEs, |
| keep inspecting DIEs until we hit the underlying import. */ |
| #define MAX_NESTED_IMPORTED_DECLARATIONS 100 |
| for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num) |
| { |
| attr = dwarf2_attr (d, DW_AT_import, cu); |
| if (attr == NULL) |
| break; |
| |
| d = follow_die_ref (d, attr, &imported_cu); |
| if (d->tag != DW_TAG_imported_declaration) |
| break; |
| } |
| |
| if (num == MAX_NESTED_IMPORTED_DECLARATIONS) |
| { |
| complaint (_("DIE at %s has too many recursively imported " |
| "declarations"), sect_offset_str (d->sect_off)); |
| return 0; |
| } |
| |
| if (attr != NULL) |
| { |
| struct type *type; |
| sect_offset sect_off = dwarf2_get_ref_die_offset (attr); |
| |
| type = get_die_type_at_offset (sect_off, cu->per_cu); |
| if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE) |
| { |
| /* This declaration is a global namespace alias. Add |
| a symbol for it whose type is the aliased namespace. */ |
| new_symbol (die, type, cu); |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return the using directives repository (global or local?) to use in the |
| current context for CU. |
| |
| For Ada, imported declarations can materialize renamings, which *may* be |
| global. However it is impossible (for now?) in DWARF to distinguish |
| "external" imported declarations and "static" ones. As all imported |
| declarations seem to be static in all other languages, make them all CU-wide |
| global only in Ada. */ |
| |
| static struct using_direct ** |
| using_directives (struct dwarf2_cu *cu) |
| { |
| if (cu->language == language_ada |
| && cu->get_builder ()->outermost_context_p ()) |
| return cu->get_builder ()->get_global_using_directives (); |
| else |
| return cu->get_builder ()->get_local_using_directives (); |
| } |
| |
| /* Read the import statement specified by the given die and record it. */ |
| |
| static void |
| read_import_statement (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct attribute *import_attr; |
| struct die_info *imported_die, *child_die; |
| struct dwarf2_cu *imported_cu; |
| const char *imported_name; |
| const char *imported_name_prefix; |
| const char *canonical_name; |
| const char *import_alias; |
| const char *imported_declaration = NULL; |
| const char *import_prefix; |
| std::vector<const char *> excludes; |
| |
| import_attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (_("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (die->tag)); |
| return; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524 |
| |
| The import in the following code: |
| namespace A |
| { |
| typedef int B; |
| } |
| |
| int main () |
| { |
| using A::B; |
| B b; |
| return b; |
| } |
| |
| ... |
| <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration) |
| <52> DW_AT_decl_file : 1 |
| <53> DW_AT_decl_line : 6 |
| <54> DW_AT_import : <0x75> |
| <2><58>: Abbrev Number: 4 (DW_TAG_typedef) |
| <59> DW_AT_name : B |
| <5b> DW_AT_decl_file : 1 |
| <5c> DW_AT_decl_line : 2 |
| <5d> DW_AT_type : <0x6e> |
| ... |
| <1><75>: Abbrev Number: 7 (DW_TAG_base_type) |
| <76> DW_AT_byte_size : 4 |
| <77> DW_AT_encoding : 5 (signed) |
| |
| imports the wrong die ( 0x75 instead of 0x58 ). |
| This case will be ignored until the gcc bug is fixed. */ |
| return; |
| } |
| |
| /* Figure out the local name after import. */ |
| import_alias = dwarf2_name (die, cu); |
| |
| /* Figure out where the statement is being imported to. */ |
| import_prefix = determine_prefix (die, cu); |
| |
| /* Figure out what the scope of the imported die is and prepend it |
| to the name of the imported die. */ |
| imported_name_prefix = determine_prefix (imported_die, imported_cu); |
| |
| if (imported_die->tag != DW_TAG_namespace |
| && imported_die->tag != DW_TAG_module) |
| { |
| imported_declaration = imported_name; |
| canonical_name = imported_name_prefix; |
| } |
| else if (strlen (imported_name_prefix) > 0) |
| canonical_name = obconcat (&objfile->objfile_obstack, |
| imported_name_prefix, |
| (cu->language == language_d ? "." : "::"), |
| imported_name, (char *) NULL); |
| else |
| canonical_name = imported_name; |
| |
| if (die->tag == DW_TAG_imported_module && cu->language == language_fortran) |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| /* DWARF-4: A Fortran use statement with a “rename list” may be |
| represented by an imported module entry with an import attribute |
| referring to the module and owned entries corresponding to those |
| entities that are renamed as part of being imported. */ |
| |
| if (child_die->tag != DW_TAG_imported_declaration) |
| { |
| complaint (_("child DW_TAG_imported_declaration expected " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| import_attr = dwarf2_attr (child_die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (_("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (child_die->tag)); |
| continue; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (child_die, import_attr, |
| &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| complaint (_("child DW_TAG_imported_declaration has unknown " |
| "imported name - DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| excludes.push_back (imported_name); |
| |
| process_die (child_die, cu); |
| } |
| |
| add_using_directive (using_directives (cu), |
| import_prefix, |
| canonical_name, |
| import_alias, |
| imported_declaration, |
| excludes, |
| 0, |
| &objfile->objfile_obstack); |
| } |
| |
| /* ICC<14 does not output the required DW_AT_declaration on incomplete |
| types, but gives them a size of zero. Starting with version 14, |
| ICC is compatible with GCC. */ |
| |
| static bool |
| producer_is_icc_lt_14 (struct dwarf2_cu *cu) |
| { |
| if (!cu->checked_producer) |
| check_producer (cu); |
| |
| return cu->producer_is_icc_lt_14; |
| } |
| |
| /* ICC generates a DW_AT_type for C void functions. This was observed on |
| ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2) |
| which says that void functions should not have a DW_AT_type. */ |
| |
| static bool |
| producer_is_icc (struct dwarf2_cu *cu) |
| { |
| if (!cu->checked_producer) |
| check_producer (cu); |
| |
| return cu->producer_is_icc; |
| } |
| |
| /* Check for possibly missing DW_AT_comp_dir with relative .debug_line |
| directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed |
| this, it was first present in GCC release 4.3.0. */ |
| |
| static bool |
| producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu) |
| { |
| if (!cu->checked_producer) |
| check_producer (cu); |
| |
| return cu->producer_is_gcc_lt_4_3; |
| } |
| |
| static file_and_directory |
| find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| file_and_directory res; |
| |
| /* Find the filename. Do not use dwarf2_name here, since the filename |
| is not a source language identifier. */ |
| res.name = dwarf2_string_attr (die, DW_AT_name, cu); |
| res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu); |
| |
| if (res.comp_dir == NULL |
| && producer_is_gcc_lt_4_3 (cu) && res.name != NULL |
| && IS_ABSOLUTE_PATH (res.name)) |
| { |
| res.comp_dir_storage = ldirname (res.name); |
| if (!res.comp_dir_storage.empty ()) |
| res.comp_dir = res.comp_dir_storage.c_str (); |
| } |
| if (res.comp_dir != NULL) |
| { |
| /* Irix 6.2 native cc prepends <machine>.: to the compilation |
| directory, get rid of it. */ |
| const char *cp = strchr (res.comp_dir, ':'); |
| |
| if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/') |
| res.comp_dir = cp + 1; |
| } |
| |
| if (res.name == NULL) |
| res.name = "<unknown>"; |
| |
| return res; |
| } |
| |
| /* Handle DW_AT_stmt_list for a compilation unit. |
| DIE is the DW_TAG_compile_unit die for CU. |
| COMP_DIR is the compilation directory. LOWPC is passed to |
| dwarf_decode_lines. See dwarf_decode_lines comments about it. */ |
| |
| static void |
| handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu, |
| const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */ |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct attribute *attr; |
| struct line_header line_header_local; |
| hashval_t line_header_local_hash; |
| void **slot; |
| int decode_mapping; |
| |
| gdb_assert (! cu->per_cu->is_debug_types); |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr == NULL) |
| return; |
| |
| sect_offset line_offset = (sect_offset) DW_UNSND (attr); |
| |
| /* The line header hash table is only created if needed (it exists to |
| prevent redundant reading of the line table for partial_units). |
| If we're given a partial_unit, we'll need it. If we're given a |
| compile_unit, then use the line header hash table if it's already |
| created, but don't create one just yet. */ |
| |
| if (dwarf2_per_objfile->line_header_hash == NULL |
| && die->tag == DW_TAG_partial_unit) |
| { |
| dwarf2_per_objfile->line_header_hash |
| .reset (htab_create_alloc (127, line_header_hash_voidp, |
| line_header_eq_voidp, |
| free_line_header_voidp, |
| xcalloc, xfree)); |
| } |
| |
| line_header_local.sect_off = line_offset; |
| line_header_local.offset_in_dwz = cu->per_cu->is_dwz; |
| line_header_local_hash = line_header_hash (&line_header_local); |
| if (dwarf2_per_objfile->line_header_hash != NULL) |
| { |
| slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (), |
| &line_header_local, |
| line_header_local_hash, NO_INSERT); |
| |
| /* For DW_TAG_compile_unit we need info like symtab::linetable which |
| is not present in *SLOT (since if there is something in *SLOT then |
| it will be for a partial_unit). */ |
| if (die->tag == DW_TAG_partial_unit && slot != NULL) |
| { |
| gdb_assert (*slot != NULL); |
| cu->line_header = (struct line_header *) *slot; |
| return; |
| } |
| } |
| |
| /* dwarf_decode_line_header does not yet provide sufficient information. |
| We always have to call also dwarf_decode_lines for it. */ |
| line_header_up lh = dwarf_decode_line_header (line_offset, cu); |
| if (lh == NULL) |
| return; |
| |
| cu->line_header = lh.release (); |
| cu->line_header_die_owner = die; |
| |
| if (dwarf2_per_objfile->line_header_hash == NULL) |
| slot = NULL; |
| else |
| { |
| slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (), |
| &line_header_local, |
| line_header_local_hash, INSERT); |
| gdb_assert (slot != NULL); |
| } |
| if (slot != NULL && *slot == NULL) |
| { |
| /* This newly decoded line number information unit will be owned |
| by line_header_hash hash table. */ |
| *slot = cu->line_header; |
| cu->line_header_die_owner = NULL; |
| } |
| else |
| { |
| /* We cannot free any current entry in (*slot) as that struct line_header |
| may be already used by multiple CUs. Create only temporary decoded |
| line_header for this CU - it may happen at most once for each line |
| number information unit. And if we're not using line_header_hash |
| then this is what we want as well. */ |
| gdb_assert (die->tag != DW_TAG_partial_unit); |
| } |
| decode_mapping = (die->tag != DW_TAG_partial_unit); |
| dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc, |
| decode_mapping); |
| |
| } |
| |
| /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */ |
| |
| static void |
| read_file_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR lowpc = ((CORE_ADDR) -1); |
| CORE_ADDR highpc = ((CORE_ADDR) 0); |
| struct attribute *attr; |
| struct die_info *child_die; |
| CORE_ADDR baseaddr; |
| |
| prepare_one_comp_unit (cu, die, cu->language); |
| baseaddr = objfile->text_section_offset (); |
| |
| get_scope_pc_bounds (die, &lowpc, &highpc, cu); |
| |
| /* If we didn't find a lowpc, set it to highpc to avoid complaints |
| from finish_block. */ |
| if (lowpc == ((CORE_ADDR) -1)) |
| lowpc = highpc; |
| lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr); |
| |
| file_and_directory fnd = find_file_and_directory (die, cu); |
| |
| /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not |
| standardised yet. As a workaround for the language detection we fall |
| back to the DW_AT_producer string. */ |
| if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL) |
| cu->language = language_opencl; |
| |
| /* Similar hack for Go. */ |
| if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL) |
| set_cu_language (DW_LANG_Go, cu); |
| |
| cu->start_symtab (fnd.name, fnd.comp_dir, lowpc); |
| |
| /* Decode line number information if present. We do this before |
| processing child DIEs, so that the line header table is available |
| for DW_AT_decl_file. */ |
| handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc); |
| |
| /* Process all dies in compilation unit. */ |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| /* Decode macro information, if present. Dwarf 2 macro information |
| refers to information in the line number info statement program |
| header, so we can only read it if we've read the header |
| successfully. */ |
| attr = dwarf2_attr (die, DW_AT_macros, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_GNU_macros, cu); |
| if (attr && cu->line_header) |
| { |
| if (dwarf2_attr (die, DW_AT_macro_info, cu)) |
| complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info")); |
| |
| dwarf_decode_macros (cu, DW_UNSND (attr), 1); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_macro_info, cu); |
| if (attr && cu->line_header) |
| { |
| unsigned int macro_offset = DW_UNSND (attr); |
| |
| dwarf_decode_macros (cu, macro_offset, 0); |
| } |
| } |
| } |
| |
| void |
| dwarf2_cu::setup_type_unit_groups (struct die_info *die) |
| { |
| struct type_unit_group *tu_group; |
| int first_time; |
| struct attribute *attr; |
| unsigned int i; |
| struct signatured_type *sig_type; |
| |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, this); |
| |
| /* If we're using .gdb_index (includes -readnow) then |
| per_cu->type_unit_group may not have been set up yet. */ |
| if (sig_type->type_unit_group == NULL) |
| sig_type->type_unit_group = get_type_unit_group (this, attr); |
| tu_group = sig_type->type_unit_group; |
| |
| /* If we've already processed this stmt_list there's no real need to |
| do it again, we could fake it and just recreate the part we need |
| (file name,index -> symtab mapping). If data shows this optimization |
| is useful we can do it then. */ |
| first_time = tu_group->compunit_symtab == NULL; |
| |
| /* We have to handle the case of both a missing DW_AT_stmt_list or bad |
| debug info. */ |
| line_header_up lh; |
| if (attr != NULL) |
| { |
| sect_offset line_offset = (sect_offset) DW_UNSND (attr); |
| lh = dwarf_decode_line_header (line_offset, this); |
| } |
| if (lh == NULL) |
| { |
| if (first_time) |
| start_symtab ("", NULL, 0); |
| else |
| { |
| gdb_assert (tu_group->symtabs == NULL); |
| gdb_assert (m_builder == nullptr); |
| struct compunit_symtab *cust = tu_group->compunit_symtab; |
| m_builder.reset (new struct buildsym_compunit |
| (COMPUNIT_OBJFILE (cust), "", |
| COMPUNIT_DIRNAME (cust), |
| compunit_language (cust), |
| 0, cust)); |
| } |
| return; |
| } |
| |
| line_header = lh.release (); |
| line_header_die_owner = die; |
| |
| if (first_time) |
| { |
| struct compunit_symtab *cust = start_symtab ("", NULL, 0); |
| |
| /* Note: We don't assign tu_group->compunit_symtab yet because we're |
| still initializing it, and our caller (a few levels up) |
| process_full_type_unit still needs to know if this is the first |
| time. */ |
| |
| tu_group->num_symtabs = line_header->file_names_size (); |
| tu_group->symtabs = XNEWVEC (struct symtab *, |
| line_header->file_names_size ()); |
| |
| auto &file_names = line_header->file_names (); |
| for (i = 0; i < file_names.size (); ++i) |
| { |
| file_entry &fe = file_names[i]; |
| dwarf2_start_subfile (this, fe.name, |
| fe.include_dir (line_header)); |
| buildsym_compunit *b = get_builder (); |
| if (b->get_current_subfile ()->symtab == NULL) |
| { |
| /* NOTE: start_subfile will recognize when it's been |
| passed a file it has already seen. So we can't |
| assume there's a simple mapping from |
| cu->line_header->file_names to subfiles, plus |
| cu->line_header->file_names may contain dups. */ |
| b->get_current_subfile ()->symtab |
| = allocate_symtab (cust, b->get_current_subfile ()->name); |
| } |
| |
| fe.symtab = b->get_current_subfile ()->symtab; |
| tu_group->symtabs[i] = fe.symtab; |
| } |
| } |
| else |
| { |
| gdb_assert (m_builder == nullptr); |
| struct compunit_symtab *cust = tu_group->compunit_symtab; |
| m_builder.reset (new struct buildsym_compunit |
| (COMPUNIT_OBJFILE (cust), "", |
| COMPUNIT_DIRNAME (cust), |
| compunit_language (cust), |
| 0, cust)); |
| |
| auto &file_names = line_header->file_names (); |
| for (i = 0; i < file_names.size (); ++i) |
| { |
| file_entry &fe = file_names[i]; |
| fe.symtab = tu_group->symtabs[i]; |
| } |
| } |
| |
| /* The main symtab is allocated last. Type units don't have DW_AT_name |
| so they don't have a "real" (so to speak) symtab anyway. |
| There is later code that will assign the main symtab to all symbols |
| that don't have one. We need to handle the case of a symbol with a |
| missing symtab (DW_AT_decl_file) anyway. */ |
| } |
| |
| /* Process DW_TAG_type_unit. |
| For TUs we want to skip the first top level sibling if it's not the |
| actual type being defined by this TU. In this case the first top |
| level sibling is there to provide context only. */ |
| |
| static void |
| read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| |
| prepare_one_comp_unit (cu, die, language_minimal); |
| |
| /* Initialize (or reinitialize) the machinery for building symtabs. |
| We do this before processing child DIEs, so that the line header table |
| is available for DW_AT_decl_file. */ |
| cu->setup_type_unit_groups (die); |
| |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| } |
| |
| /* DWO/DWP files. |
| |
| http://gcc.gnu.org/wiki/DebugFission |
| http://gcc.gnu.org/wiki/DebugFissionDWP |
| |
| To simplify handling of both DWO files ("object" files with the DWARF info) |
| and DWP files (a file with the DWOs packaged up into one file), we treat |
| DWP files as having a collection of virtual DWO files. */ |
| |
| static hashval_t |
| hash_dwo_file (const void *item) |
| { |
| const struct dwo_file *dwo_file = (const struct dwo_file *) item; |
| hashval_t hash; |
| |
| hash = htab_hash_string (dwo_file->dwo_name); |
| if (dwo_file->comp_dir != NULL) |
| hash += htab_hash_string (dwo_file->comp_dir); |
| return hash; |
| } |
| |
| static int |
| eq_dwo_file (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwo_file *lhs = (const struct dwo_file *) item_lhs; |
| const struct dwo_file *rhs = (const struct dwo_file *) item_rhs; |
| |
| if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0) |
| return 0; |
| if (lhs->comp_dir == NULL || rhs->comp_dir == NULL) |
| return lhs->comp_dir == rhs->comp_dir; |
| return strcmp (lhs->comp_dir, rhs->comp_dir) == 0; |
| } |
| |
| /* Allocate a hash table for DWO files. */ |
| |
| static htab_up |
| allocate_dwo_file_hash_table (struct objfile *objfile) |
| { |
| auto delete_dwo_file = [] (void *item) |
| { |
| struct dwo_file *dwo_file = (struct dwo_file *) item; |
| |
| delete dwo_file; |
| }; |
| |
| return htab_up (htab_create_alloc_ex (41, |
| hash_dwo_file, |
| eq_dwo_file, |
| delete_dwo_file, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate)); |
| } |
| |
| /* Lookup DWO file DWO_NAME. */ |
| |
| static void ** |
| lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const char *dwo_name, |
| const char *comp_dir) |
| { |
| struct dwo_file find_entry; |
| void **slot; |
| |
| if (dwarf2_per_objfile->dwo_files == NULL) |
| dwarf2_per_objfile->dwo_files |
| = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile); |
| |
| find_entry.dwo_name = dwo_name; |
| find_entry.comp_dir = comp_dir; |
| slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry, |
| INSERT); |
| |
| return slot; |
| } |
| |
| static hashval_t |
| hash_dwo_unit (const void *item) |
| { |
| const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item; |
| |
| /* This drops the top 32 bits of the id, but is ok for a hash. */ |
| return dwo_unit->signature; |
| } |
| |
| static int |
| eq_dwo_unit (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs; |
| const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs; |
| |
| /* The signature is assumed to be unique within the DWO file. |
| So while object file CU dwo_id's always have the value zero, |
| that's OK, assuming each object file DWO file has only one CU, |
| and that's the rule for now. */ |
| return lhs->signature == rhs->signature; |
| } |
| |
| /* Allocate a hash table for DWO CUs,TUs. |
| There is one of these tables for each of CUs,TUs for each DWO file. */ |
| |
| static htab_up |
| allocate_dwo_unit_table (struct objfile *objfile) |
| { |
| /* Start out with a pretty small number. |
| Generally DWO files contain only one CU and maybe some TUs. */ |
| return htab_up (htab_create_alloc (3, |
| hash_dwo_unit, |
| eq_dwo_unit, |
| NULL, xcalloc, xfree)); |
| } |
| |
| /* die_reader_func for create_dwo_cu. */ |
| |
| static void |
| create_dwo_cu_reader (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| struct dwo_file *dwo_file, |
| struct dwo_unit *dwo_unit) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| sect_offset sect_off = cu->per_cu->sect_off; |
| struct dwarf2_section_info *section = cu->per_cu->section; |
| |
| gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die); |
| if (!signature.has_value ()) |
| { |
| complaint (_("Dwarf Error: debug entry at offset %s is missing" |
| " its dwo_id [in module %s]"), |
| sect_offset_str (sect_off), dwo_file->dwo_name); |
| return; |
| } |
| |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = *signature; |
| dwo_unit->section = section; |
| dwo_unit->sect_off = sect_off; |
| dwo_unit->length = cu->per_cu->length; |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n", |
| sect_offset_str (sect_off), |
| hex_string (dwo_unit->signature)); |
| } |
| |
| /* Create the dwo_units for the CUs in a DWO_FILE. |
| Note: This function processes DWO files only, not DWP files. */ |
| |
| static void |
| create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| dwarf2_cu *cu, struct dwo_file &dwo_file, |
| dwarf2_section_info §ion, htab_up &cus_htab) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const gdb_byte *info_ptr, *end_ptr; |
| |
| section.read (objfile); |
| info_ptr = section.buffer; |
| |
| if (info_ptr == NULL) |
| return; |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n", |
| section.get_name (), |
| section.get_file_name ()); |
| } |
| |
| end_ptr = info_ptr + section.size; |
| while (info_ptr < end_ptr) |
| { |
| struct dwarf2_per_cu_data per_cu; |
| struct dwo_unit read_unit {}; |
| struct dwo_unit *dwo_unit; |
| void **slot; |
| sect_offset sect_off = (sect_offset) (info_ptr - section.buffer); |
| |
| memset (&per_cu, 0, sizeof (per_cu)); |
| per_cu.dwarf2_per_objfile = dwarf2_per_objfile; |
| per_cu.is_debug_types = 0; |
| per_cu.sect_off = sect_offset (info_ptr - section.buffer); |
| per_cu.section = §ion; |
| |
| cutu_reader reader (&per_cu, cu, &dwo_file); |
| if (!reader.dummy_p) |
| create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die, |
| &dwo_file, &read_unit); |
| info_ptr += per_cu.length; |
| |
| // If the unit could not be parsed, skip it. |
| if (read_unit.dwo_file == NULL) |
| continue; |
| |
| if (cus_htab == NULL) |
| cus_htab = allocate_dwo_unit_table (objfile); |
| |
| dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit); |
| *dwo_unit = read_unit; |
| slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT); |
| gdb_assert (slot != NULL); |
| if (*slot != NULL) |
| { |
| const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot; |
| sect_offset dup_sect_off = dup_cu->sect_off; |
| |
| complaint (_("debug cu entry at offset %s is duplicate to" |
| " the entry at offset %s, signature %s"), |
| sect_offset_str (sect_off), sect_offset_str (dup_sect_off), |
| hex_string (dwo_unit->signature)); |
| } |
| *slot = (void *)dwo_unit; |
| } |
| } |
| |
| /* DWP file .debug_{cu,tu}_index section format: |
| [ref: http://gcc.gnu.org/wiki/DebugFissionDWP] |
| |
| DWP Version 1: |
| |
| Both index sections have the same format, and serve to map a 64-bit |
| signature to a set of section numbers. Each section begins with a header, |
| followed by a hash table of 64-bit signatures, a parallel table of 32-bit |
| indexes, and a pool of 32-bit section numbers. The index sections will be |
| aligned at 8-byte boundaries in the file. |
| |
| The index section header consists of: |
| |
| V, 32 bit version number |
| -, 32 bits unused |
| N, 32 bit number of compilation units or type units in the index |
| M, 32 bit number of slots in the hash table |
| |
| Numbers are recorded using the byte order of the application binary. |
| |
| The hash table begins at offset 16 in the section, and consists of an array |
| of M 64-bit slots. Each slot contains a 64-bit signature (using the byte |
| order of the application binary). Unused slots in the hash table are 0. |
| (We rely on the extreme unlikeliness of a signature being exactly 0.) |
| |
| The parallel table begins immediately after the hash table |
| (at offset 16 + 8 * M from the beginning of the section), and consists of an |
| array of 32-bit indexes (using the byte order of the application binary), |
| corresponding 1-1 with slots in the hash table. Each entry in the parallel |
| table contains a 32-bit index into the pool of section numbers. For unused |
| hash table slots, the corresponding entry in the parallel table will be 0. |
| |
| The pool of section numbers begins immediately following the hash table |
| (at offset 16 + 12 * M from the beginning of the section). The pool of |
| section numbers consists of an array of 32-bit words (using the byte order |
| of the application binary). Each item in the array is indexed starting |
| from 0. The hash table entry provides the index of the first section |
| number in the set. Additional section numbers in the set follow, and the |
| set is terminated by a 0 entry (section number 0 is not used in ELF). |
| |
| In each set of section numbers, the .debug_info.dwo or .debug_types.dwo |
| section must be the first entry in the set, and the .debug_abbrev.dwo must |
| be the second entry. Other members of the set may follow in any order. |
| |
| --- |
| |
| DWP Version 2: |
| |
| DWP Version 2 combines all the .debug_info, etc. sections into one, |
| and the entries in the index tables are now offsets into these sections. |
| CU offsets begin at 0. TU offsets begin at the size of the .debug_info |
| section. |
| |
| Index Section Contents: |
| Header |
| Hash Table of Signatures dwp_hash_table.hash_table |
| Parallel Table of Indices dwp_hash_table.unit_table |
| Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets} |
| Table of Section Sizes dwp_hash_table.v2.sizes |
| |
| The index section header consists of: |
| |
| V, 32 bit version number |
| L, 32 bit number of columns in the table of section offsets |
| N, 32 bit number of compilation units or type units in the index |
| M, 32 bit number of slots in the hash table |
| |
| Numbers are recorded using the byte order of the application binary. |
| |
| The hash table has the same format as version 1. |
| The parallel table of indices has the same format as version 1, |
| except that the entries are origin-1 indices into the table of sections |
| offsets and the table of section sizes. |
| |
| The table of offsets begins immediately following the parallel table |
| (at offset 16 + 12 * M from the beginning of the section). The table is |
| a two-dimensional array of 32-bit words (using the byte order of the |
| application binary), with L columns and N+1 rows, in row-major order. |
| Each row in the array is indexed starting from 0. The first row provides |
| a key to the remaining rows: each column in this row provides an identifier |
| for a debug section, and the offsets in the same column of subsequent rows |
| refer to that section. The section identifiers are: |
| |
| DW_SECT_INFO 1 .debug_info.dwo |
| DW_SECT_TYPES 2 .debug_types.dwo |
| DW_SECT_ABBREV 3 .debug_abbrev.dwo |
| DW_SECT_LINE 4 .debug_line.dwo |
| DW_SECT_LOC 5 .debug_loc.dwo |
| DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo |
| DW_SECT_MACINFO 7 .debug_macinfo.dwo |
| DW_SECT_MACRO 8 .debug_macro.dwo |
| |
| The offsets provided by the CU and TU index sections are the base offsets |
| for the contributions made by each CU or TU to the corresponding section |
| in the package file. Each CU and TU header contains an abbrev_offset |
| field, used to find the abbreviations table for that CU or TU within the |
| contribution to the .debug_abbrev.dwo section for that CU or TU, and should |
| be interpreted as relative to the base offset given in the index section. |
| Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes |
| should be interpreted as relative to the base offset for .debug_line.dwo, |
| and offsets into other debug sections obtained from DWARF attributes should |
| also be interpreted as relative to the corresponding base offset. |
| |
| The table of sizes begins immediately following the table of offsets. |
| Like the table of offsets, it is a two-dimensional array of 32-bit words, |
| with L columns and N rows, in row-major order. Each row in the array is |
| indexed starting from 1 (row 0 is shared by the two tables). |
| |
| --- |
| |
| Hash table lookup is handled the same in version 1 and 2: |
| |
| We assume that N and M will not exceed 2^32 - 1. |
| The size of the hash table, M, must be 2^k such that 2^k > 3*N/2. |
| |
| Given a 64-bit compilation unit signature or a type signature S, an entry |
| in the hash table is located as follows: |
| |
| 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with |
| the low-order k bits all set to 1. |
| |
| 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1). |
| |
| 3) If the hash table entry at index H matches the signature, use that |
| entry. If the hash table entry at index H is unused (all zeroes), |
| terminate the search: the signature is not present in the table. |
| |
| 4) Let H = (H + H') modulo M. Repeat at Step 3. |
| |
| Because M > N and H' and M are relatively prime, the search is guaranteed |
| to stop at an unused slot or find the match. */ |
| |
| /* Create a hash table to map DWO IDs to their CU/TU entry in |
| .debug_{info,types}.dwo in DWP_FILE. |
| Returns NULL if there isn't one. |
| Note: This function processes DWP files only, not DWO files. */ |
| |
| static struct dwp_hash_table * |
| create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwp_file *dwp_file, int is_debug_types) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const gdb_byte *index_ptr, *index_end; |
| struct dwarf2_section_info *index; |
| uint32_t version, nr_columns, nr_units, nr_slots; |
| struct dwp_hash_table *htab; |
| |
| if (is_debug_types) |
| index = &dwp_file->sections.tu_index; |
| else |
| index = &dwp_file->sections.cu_index; |
| |
| if (index->empty ()) |
| return NULL; |
| index->read (objfile); |
| |
| index_ptr = index->buffer; |
| index_end = index_ptr + index->size; |
| |
| version = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| if (version == 2) |
| nr_columns = read_4_bytes (dbfd, index_ptr); |
| else |
| nr_columns = 0; |
| index_ptr += 4; |
| nr_units = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| nr_slots = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| |
| if (version != 1 && version != 2) |
| { |
| error (_("Dwarf Error: unsupported DWP file version (%s)" |
| " [in module %s]"), |
| pulongest (version), dwp_file->name); |
| } |
| if (nr_slots != (nr_slots & -nr_slots)) |
| { |
| error (_("Dwarf Error: number of slots in DWP hash table (%s)" |
| " is not power of 2 [in module %s]"), |
| pulongest (nr_slots), dwp_file->name); |
| } |
| |
| htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table); |
| htab->version = version; |
| htab->nr_columns = nr_columns; |
| htab->nr_units = nr_units; |
| htab->nr_slots = nr_slots; |
| htab->hash_table = index_ptr; |
| htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots; |
| |
| /* Exit early if the table is empty. */ |
| if (nr_slots == 0 || nr_units == 0 |
| || (version == 2 && nr_columns == 0)) |
| { |
| /* All must be zero. */ |
| if (nr_slots != 0 || nr_units != 0 |
| || (version == 2 && nr_columns != 0)) |
| { |
| complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not" |
| " all zero [in modules %s]"), |
| dwp_file->name); |
| } |
| return htab; |
| } |
| |
| if (version == 1) |
| { |
| htab->section_pool.v1.indices = |
| htab->unit_table + sizeof (uint32_t) * nr_slots; |
| /* It's harder to decide whether the section is too small in v1. |
| V1 is deprecated anyway so we punt. */ |
| } |
| else |
| { |
| const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots; |
| int *ids = htab->section_pool.v2.section_ids; |
| size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids); |
| /* Reverse map for error checking. */ |
| int ids_seen[DW_SECT_MAX + 1]; |
| int i; |
| |
| if (nr_columns < 2) |
| { |
| error (_("Dwarf Error: bad DWP hash table, too few columns" |
| " in section table [in module %s]"), |
| dwp_file->name); |
| } |
| if (nr_columns > MAX_NR_V2_DWO_SECTIONS) |
| { |
| error (_("Dwarf Error: bad DWP hash table, too many columns" |
| " in section table [in module %s]"), |
| dwp_file->name); |
| } |
| memset (ids, 255, sizeof_ids); |
| memset (ids_seen, 255, sizeof (ids_seen)); |
| for (i = 0; i < nr_columns; ++i) |
| { |
| int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t)); |
| |
| if (id < DW_SECT_MIN || id > DW_SECT_MAX) |
| { |
| error (_("Dwarf Error: bad DWP hash table, bad section id %d" |
| " in section table [in module %s]"), |
| id, dwp_file->name); |
| } |
| if (ids_seen[id] != -1) |
| { |
| error (_("Dwarf Error: bad DWP hash table, duplicate section" |
| " id %d in section table [in module %s]"), |
| id, dwp_file->name); |
| } |
| ids_seen[id] = i; |
| ids[i] = id; |
| } |
| /* Must have exactly one info or types section. */ |
| if (((ids_seen[DW_SECT_INFO] != -1) |
| + (ids_seen[DW_SECT_TYPES] != -1)) |
| != 1) |
| { |
| error (_("Dwarf Error: bad DWP hash table, missing/duplicate" |
| " DWO info/types section [in module %s]"), |
| dwp_file->name); |
| } |
| /* Must have an abbrev section. */ |
| if (ids_seen[DW_SECT_ABBREV] == -1) |
| { |
| error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev" |
| " section [in module %s]"), |
| dwp_file->name); |
| } |
| htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns; |
| htab->section_pool.v2.sizes = |
| htab->section_pool.v2.offsets + (sizeof (uint32_t) |
| * nr_units * nr_columns); |
| if ((htab->section_pool.v2.sizes + (sizeof (uint32_t) |
| * nr_units * nr_columns)) |
| > index_end) |
| { |
| error (_("Dwarf Error: DWP index section is corrupt (too small)" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| } |
| |
| return htab; |
| } |
| |
| /* Update SECTIONS with the data from SECTP. |
| |
| This function is like the other "locate" section routines that are |
| passed to bfd_map_over_sections, but in this context the sections to |
| read comes from the DWP V1 hash table, not the full ELF section table. |
| |
| The result is non-zero for success, or zero if an error was found. */ |
| |
| static int |
| locate_v1_virtual_dwo_sections (asection *sectp, |
| struct virtual_v1_dwo_sections *sections) |
| { |
| const struct dwop_section_names *names = &dwop_section_names; |
| |
| if (section_is_p (sectp->name, &names->abbrev_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->abbrev.s.section != NULL) |
| return 0; |
| sections->abbrev.s.section = sectp; |
| sections->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->info_dwo) |
| || section_is_p (sectp->name, &names->types_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->info_or_types.s.section != NULL) |
| return 0; |
| sections->info_or_types.s.section = sectp; |
| sections->info_or_types.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->line_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->line.s.section != NULL) |
| return 0; |
| sections->line.s.section = sectp; |
| sections->line.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->loc_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->loc.s.section != NULL) |
| return 0; |
| sections->loc.s.section = sectp; |
| sections->loc.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macinfo_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->macinfo.s.section != NULL) |
| return 0; |
| sections->macinfo.s.section = sectp; |
| sections->macinfo.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macro_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->macro.s.section != NULL) |
| return 0; |
| sections->macro.s.section = sectp; |
| sections->macro.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_offsets_dwo)) |
| { |
| /* There can be only one. */ |
| if (sections->str_offsets.s.section != NULL) |
| return 0; |
| sections->str_offsets.s.section = sectp; |
| sections->str_offsets.size = bfd_section_size (sectp); |
| } |
| else |
| { |
| /* No other kind of section is valid. */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Create a dwo_unit object for the DWO unit with signature SIGNATURE. |
| UNIT_INDEX is the index of the DWO unit in the DWP hash table. |
| COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. |
| This is for DWP version 1 files. */ |
| |
| static struct dwo_unit * |
| create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwp_file *dwp_file, |
| uint32_t unit_index, |
| const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct dwo_file *dwo_file; |
| struct dwo_unit *dwo_unit; |
| struct virtual_v1_dwo_sections sections; |
| void **dwo_file_slot; |
| int i; |
| |
| gdb_assert (dwp_file->version == 1); |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n", |
| kind, |
| pulongest (unit_index), hex_string (signature), |
| dwp_file->name); |
| } |
| |
| /* Fetch the sections of this DWO unit. |
| Put a limit on the number of sections we look for so that bad data |
| doesn't cause us to loop forever. */ |
| |
| #define MAX_NR_V1_DWO_SECTIONS \ |
| (1 /* .debug_info or .debug_types */ \ |
| + 1 /* .debug_abbrev */ \ |
| + 1 /* .debug_line */ \ |
| + 1 /* .debug_loc */ \ |
| + 1 /* .debug_str_offsets */ \ |
| + 1 /* .debug_macro or .debug_macinfo */ \ |
| + 1 /* trailing zero */) |
| |
| memset (§ions, 0, sizeof (sections)); |
| |
| for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i) |
| { |
| asection *sectp; |
| uint32_t section_nr = |
| read_4_bytes (dbfd, |
| dwp_htab->section_pool.v1.indices |
| + (unit_index + i) * sizeof (uint32_t)); |
| |
| if (section_nr == 0) |
| break; |
| if (section_nr >= dwp_file->num_sections) |
| { |
| error (_("Dwarf Error: bad DWP hash table, section number too large" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| |
| sectp = dwp_file->elf_sections[section_nr]; |
| if (! locate_v1_virtual_dwo_sections (sectp, §ions)) |
| { |
| error (_("Dwarf Error: bad DWP hash table, invalid section found" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| } |
| |
| if (i < 2 |
| || sections.info_or_types.empty () |
| || sections.abbrev.empty ()) |
| { |
| error (_("Dwarf Error: bad DWP hash table, missing DWO sections" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| if (i == MAX_NR_V1_DWO_SECTIONS) |
| { |
| error (_("Dwarf Error: bad DWP hash table, too many DWO sections" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| |
| /* It's easier for the rest of the code if we fake a struct dwo_file and |
| have dwo_unit "live" in that. At least for now. |
| |
| The DWP file can be made up of a random collection of CUs and TUs. |
| However, for each CU + set of TUs that came from the same original DWO |
| file, we can combine them back into a virtual DWO file to save space |
| (fewer struct dwo_file objects to allocate). Remember that for really |
| large apps there can be on the order of 8K CUs and 200K TUs, or more. */ |
| |
| std::string virtual_dwo_name = |
| string_printf ("virtual-dwo/%d-%d-%d-%d", |
| sections.abbrev.get_id (), |
| sections.line.get_id (), |
| sections.loc.get_id (), |
| sections.str_offsets.get_id ()); |
| /* Can we use an existing virtual DWO file? */ |
| dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile, |
| virtual_dwo_name.c_str (), |
| comp_dir); |
| /* Create one if necessary. */ |
| if (*dwo_file_slot == NULL) |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n", |
| virtual_dwo_name.c_str ()); |
| } |
| dwo_file = new struct dwo_file; |
| dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack, |
| virtual_dwo_name); |
| dwo_file->comp_dir = comp_dir; |
| dwo_file->sections.abbrev = sections.abbrev; |
| dwo_file->sections.line = sections.line; |
| dwo_file->sections.loc = sections.loc; |
| dwo_file->sections.macinfo = sections.macinfo; |
| dwo_file->sections.macro = sections.macro; |
| dwo_file->sections.str_offsets = sections.str_offsets; |
| /* The "str" section is global to the entire DWP file. */ |
| dwo_file->sections.str = dwp_file->sections.str; |
| /* The info or types section is assigned below to dwo_unit, |
| there's no need to record it in dwo_file. |
| Also, we can't simply record type sections in dwo_file because |
| we record a pointer into the vector in dwo_unit. As we collect more |
| types we'll grow the vector and eventually have to reallocate space |
| for it, invalidating all copies of pointers into the previous |
| contents. */ |
| *dwo_file_slot = dwo_file; |
| } |
| else |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n", |
| virtual_dwo_name.c_str ()); |
| } |
| dwo_file = (struct dwo_file *) *dwo_file_slot; |
| } |
| |
| dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = signature; |
| dwo_unit->section = |
| XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info); |
| *dwo_unit->section = sections.info_or_types; |
| /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */ |
| |
| return dwo_unit; |
| } |
| |
| /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it. |
| Given a pointer to the containing section SECTION, and OFFSET,SIZE of the |
| piece within that section used by a TU/CU, return a virtual section |
| of just that piece. */ |
| |
| static struct dwarf2_section_info |
| create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwarf2_section_info *section, |
| bfd_size_type offset, bfd_size_type size) |
| { |
| struct dwarf2_section_info result; |
| asection *sectp; |
| |
| gdb_assert (section != NULL); |
| gdb_assert (!section->is_virtual); |
| |
| memset (&result, 0, sizeof (result)); |
| result.s.containing_section = section; |
| result.is_virtual = true; |
| |
| if (size == 0) |
| return result; |
| |
| sectp = section->get_bfd_section (); |
| |
| /* Flag an error if the piece denoted by OFFSET,SIZE is outside the |
| bounds of the real section. This is a pretty-rare event, so just |
| flag an error (easier) instead of a warning and trying to cope. */ |
| if (sectp == NULL |
| || offset + size > bfd_section_size (sectp)) |
| { |
| error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit" |
| " in section %s [in module %s]"), |
| sectp ? bfd_section_name (sectp) : "<unknown>", |
| objfile_name (dwarf2_per_objfile->objfile)); |
| } |
| |
| result.virtual_offset = offset; |
| result.size = size; |
| return result; |
| } |
| |
| /* Create a dwo_unit object for the DWO unit with signature SIGNATURE. |
| UNIT_INDEX is the index of the DWO unit in the DWP hash table. |
| COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. |
| This is for DWP version 2 files. */ |
| |
| static struct dwo_unit * |
| create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwp_file *dwp_file, |
| uint32_t unit_index, |
| const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct dwo_file *dwo_file; |
| struct dwo_unit *dwo_unit; |
| struct virtual_v2_dwo_sections sections; |
| void **dwo_file_slot; |
| int i; |
| |
| gdb_assert (dwp_file->version == 2); |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n", |
| kind, |
| pulongest (unit_index), hex_string (signature), |
| dwp_file->name); |
| } |
| |
| /* Fetch the section offsets of this DWO unit. */ |
| |
| memset (§ions, 0, sizeof (sections)); |
| |
| for (i = 0; i < dwp_htab->nr_columns; ++i) |
| { |
| uint32_t offset = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v2.offsets |
| + (((unit_index - 1) * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| uint32_t size = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v2.sizes |
| + (((unit_index - 1) * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| |
| switch (dwp_htab->section_pool.v2.section_ids[i]) |
| { |
| case DW_SECT_INFO: |
| case DW_SECT_TYPES: |
| sections.info_or_types_offset = offset; |
| sections.info_or_types_size = size; |
| break; |
| case DW_SECT_ABBREV: |
| sections.abbrev_offset = offset; |
| sections.abbrev_size = size; |
| break; |
| case DW_SECT_LINE: |
| sections.line_offset = offset; |
| sections.line_size = size; |
| break; |
| case DW_SECT_LOC: |
| sections.loc_offset = offset; |
| sections.loc_size = size; |
| break; |
| case DW_SECT_STR_OFFSETS: |
| sections.str_offsets_offset = offset; |
| sections.str_offsets_size = size; |
| break; |
| case DW_SECT_MACINFO: |
| sections.macinfo_offset = offset; |
| sections.macinfo_size = size; |
| break; |
| case DW_SECT_MACRO: |
| sections.macro_offset = offset; |
| sections.macro_size = size; |
| break; |
| } |
| } |
| |
| /* It's easier for the rest of the code if we fake a struct dwo_file and |
| have dwo_unit "live" in that. At least for now. |
| |
| The DWP file can be made up of a random collection of CUs and TUs. |
| However, for each CU + set of TUs that came from the same original DWO |
| file, we can combine them back into a virtual DWO file to save space |
| (fewer struct dwo_file objects to allocate). Remember that for really |
| large apps there can be on the order of 8K CUs and 200K TUs, or more. */ |
| |
| std::string virtual_dwo_name = |
| string_printf ("virtual-dwo/%ld-%ld-%ld-%ld", |
| (long) (sections.abbrev_size ? sections.abbrev_offset : 0), |
| (long) (sections.line_size ? sections.line_offset : 0), |
| (long) (sections.loc_size ? sections.loc_offset : 0), |
| (long) (sections.str_offsets_size |
| ? sections.str_offsets_offset : 0)); |
| /* Can we use an existing virtual DWO file? */ |
| dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile, |
| virtual_dwo_name.c_str (), |
| comp_dir); |
| /* Create one if necessary. */ |
| if (*dwo_file_slot == NULL) |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n", |
| virtual_dwo_name.c_str ()); |
| } |
| dwo_file = new struct dwo_file; |
| dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack, |
| virtual_dwo_name); |
| dwo_file->comp_dir = comp_dir; |
| dwo_file->sections.abbrev = |
| create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev, |
| sections.abbrev_offset, sections.abbrev_size); |
| dwo_file->sections.line = |
| create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line, |
| sections.line_offset, sections.line_size); |
| dwo_file->sections.loc = |
| create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc, |
| sections.loc_offset, sections.loc_size); |
| dwo_file->sections.macinfo = |
| create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo, |
| sections.macinfo_offset, sections.macinfo_size); |
| dwo_file->sections.macro = |
| create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro, |
| sections.macro_offset, sections.macro_size); |
| dwo_file->sections.str_offsets = |
| create_dwp_v2_section (dwarf2_per_objfile, |
| &dwp_file->sections.str_offsets, |
| sections.str_offsets_offset, |
| sections.str_offsets_size); |
| /* The "str" section is global to the entire DWP file. */ |
| dwo_file->sections.str = dwp_file->sections.str; |
| /* The info or types section is assigned below to dwo_unit, |
| there's no need to record it in dwo_file. |
| Also, we can't simply record type sections in dwo_file because |
| we record a pointer into the vector in dwo_unit. As we collect more |
| types we'll grow the vector and eventually have to reallocate space |
| for it, invalidating all copies of pointers into the previous |
| contents. */ |
| *dwo_file_slot = dwo_file; |
| } |
| else |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n", |
| virtual_dwo_name.c_str ()); |
| } |
| dwo_file = (struct dwo_file *) *dwo_file_slot; |
| } |
| |
| dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = signature; |
| dwo_unit->section = |
| XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info); |
| *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile, |
| is_debug_types |
| ? &dwp_file->sections.types |
| : &dwp_file->sections.info, |
| sections.info_or_types_offset, |
| sections.info_or_types_size); |
| /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */ |
| |
| return dwo_unit; |
| } |
| |
| /* Lookup the DWO unit with SIGNATURE in DWP_FILE. |
| Returns NULL if the signature isn't found. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| struct dwp_file *dwp_file, const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| uint32_t mask = dwp_htab->nr_slots - 1; |
| uint32_t hash = signature & mask; |
| uint32_t hash2 = ((signature >> 32) & mask) | 1; |
| unsigned int i; |
| void **slot; |
| struct dwo_unit find_dwo_cu; |
| |
| memset (&find_dwo_cu, 0, sizeof (find_dwo_cu)); |
| find_dwo_cu.signature = signature; |
| slot = htab_find_slot (is_debug_types |
| ? dwp_file->loaded_tus |
| : dwp_file->loaded_cus, |
| &find_dwo_cu, INSERT); |
| |
| if (*slot != NULL) |
| return (struct dwo_unit *) *slot; |
| |
| /* Use a for loop so that we don't loop forever on bad debug info. */ |
| for (i = 0; i < dwp_htab->nr_slots; ++i) |
| { |
| ULONGEST signature_in_table; |
| |
| signature_in_table = |
| read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t)); |
| if (signature_in_table == signature) |
| { |
| uint32_t unit_index = |
| read_4_bytes (dbfd, |
| dwp_htab->unit_table + hash * sizeof (uint32_t)); |
| |
| if (dwp_file->version == 1) |
| { |
| *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile, |
| dwp_file, unit_index, |
| comp_dir, signature, |
| is_debug_types); |
| } |
| else |
| { |
| *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile, |
| dwp_file, unit_index, |
| comp_dir, signature, |
| is_debug_types); |
| } |
| return (struct dwo_unit *) *slot; |
| } |
| if (signature_in_table == 0) |
| return NULL; |
| hash = (hash + hash2) & mask; |
| } |
| |
| error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| |
| /* Subroutine of open_dwo_file,open_dwp_file to simplify them. |
| Open the file specified by FILE_NAME and hand it off to BFD for |
| preliminary analysis. Return a newly initialized bfd *, which |
| includes a canonicalized copy of FILE_NAME. |
| If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file. |
| SEARCH_CWD is true if the current directory is to be searched. |
| It will be searched before debug-file-directory. |
| If successful, the file is added to the bfd include table of the |
| objfile's bfd (see gdb_bfd_record_inclusion). |
| If unable to find/open the file, return NULL. |
| NOTE: This function is derived from symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const char *file_name, int is_dwp, int search_cwd) |
| { |
| int desc; |
| /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if |
| FILE_NAME contains a '/'. So we can't use it. Instead prepend "." |
| to debug_file_directory. */ |
| const char *search_path; |
| static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' }; |
| |
| gdb::unique_xmalloc_ptr<char> search_path_holder; |
| if (search_cwd) |
| { |
| if (*debug_file_directory != '\0') |
| { |
| search_path_holder.reset (concat (".", dirname_separator_string, |
| debug_file_directory, |
| (char *) NULL)); |
| search_path = search_path_holder.get (); |
| } |
| else |
| search_path = "."; |
| } |
| else |
| search_path = debug_file_directory; |
| |
| openp_flags flags = OPF_RETURN_REALPATH; |
| if (is_dwp) |
| flags |= OPF_SEARCH_IN_PATH; |
| |
| gdb::unique_xmalloc_ptr<char> absolute_name; |
| desc = openp (search_path, flags, file_name, |
| O_RDONLY | O_BINARY, &absolute_name); |
| if (desc < 0) |
| return NULL; |
| |
| gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (), |
| gnutarget, desc)); |
| if (sym_bfd == NULL) |
| return NULL; |
| bfd_set_cacheable (sym_bfd.get (), 1); |
| |
| if (!bfd_check_format (sym_bfd.get (), bfd_object)) |
| return NULL; |
| |
| /* Success. Record the bfd as having been included by the objfile's bfd. |
| This is important because things like demangled_names_hash lives in the |
| objfile's per_bfd space and may have references to things like symbol |
| names that live in the DWO/DWP file's per_bfd space. PR 16426. */ |
| gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ()); |
| |
| return sym_bfd; |
| } |
| |
| /* Try to open DWO file FILE_NAME. |
| COMP_DIR is the DW_AT_comp_dir attribute. |
| The result is the bfd handle of the file. |
| If there is a problem finding or opening the file, return NULL. |
| Upon success, the canonicalized path of the file is stored in the bfd, |
| same as symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const char *file_name, const char *comp_dir) |
| { |
| if (IS_ABSOLUTE_PATH (file_name)) |
| return try_open_dwop_file (dwarf2_per_objfile, file_name, |
| 0 /*is_dwp*/, 0 /*search_cwd*/); |
| |
| /* Before trying the search path, try DWO_NAME in COMP_DIR. */ |
| |
| if (comp_dir != NULL) |
| { |
| gdb::unique_xmalloc_ptr<char> path_to_try |
| (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL)); |
| |
| /* NOTE: If comp_dir is a relative path, this will also try the |
| search path, which seems useful. */ |
| gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, |
| path_to_try.get (), |
| 0 /*is_dwp*/, |
| 1 /*search_cwd*/)); |
| if (abfd != NULL) |
| return abfd; |
| } |
| |
| /* That didn't work, try debug-file-directory, which, despite its name, |
| is a list of paths. */ |
| |
| if (*debug_file_directory == '\0') |
| return NULL; |
| |
| return try_open_dwop_file (dwarf2_per_objfile, file_name, |
| 0 /*is_dwp*/, 1 /*search_cwd*/); |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWO debugging sections we are interested in. */ |
| |
| static void |
| dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr) |
| { |
| struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr; |
| const struct dwop_section_names *names = &dwop_section_names; |
| |
| if (section_is_p (sectp->name, &names->abbrev_dwo)) |
| { |
| dwo_sections->abbrev.s.section = sectp; |
| dwo_sections->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->info_dwo)) |
| { |
| dwo_sections->info.s.section = sectp; |
| dwo_sections->info.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->line_dwo)) |
| { |
| dwo_sections->line.s.section = sectp; |
| dwo_sections->line.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->loc_dwo)) |
| { |
| dwo_sections->loc.s.section = sectp; |
| dwo_sections->loc.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macinfo_dwo)) |
| { |
| dwo_sections->macinfo.s.section = sectp; |
| dwo_sections->macinfo.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macro_dwo)) |
| { |
| dwo_sections->macro.s.section = sectp; |
| dwo_sections->macro.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_dwo)) |
| { |
| dwo_sections->str.s.section = sectp; |
| dwo_sections->str.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_offsets_dwo)) |
| { |
| dwo_sections->str_offsets.s.section = sectp; |
| dwo_sections->str_offsets.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->types_dwo)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| type_section.s.section = sectp; |
| type_section.size = bfd_section_size (sectp); |
| dwo_sections->types.push_back (type_section); |
| } |
| } |
| |
| /* Initialize the use of the DWO file specified by DWO_NAME and referenced |
| by PER_CU. This is for the non-DWP case. |
| The result is NULL if DWO_NAME can't be found. */ |
| |
| static struct dwo_file * |
| open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu, |
| const char *dwo_name, const char *comp_dir) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| |
| gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir); |
| if (dbfd == NULL) |
| { |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name); |
| return NULL; |
| } |
| |
| dwo_file_up dwo_file (new struct dwo_file); |
| dwo_file->dwo_name = dwo_name; |
| dwo_file->comp_dir = comp_dir; |
| dwo_file->dbfd = std::move (dbfd); |
| |
| bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections, |
| &dwo_file->sections); |
| |
| create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file, |
| dwo_file->sections.info, dwo_file->cus); |
| |
| create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (), |
| dwo_file->sections.types, dwo_file->tus); |
| |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name); |
| |
| return dwo_file.release (); |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWP debugging sections common to version 1 and 2 that |
| we are interested in. */ |
| |
| static void |
| dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp, |
| void *dwp_file_ptr) |
| { |
| struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr; |
| const struct dwop_section_names *names = &dwop_section_names; |
| unsigned int elf_section_nr = elf_section_data (sectp)->this_idx; |
| |
| /* Record the ELF section number for later lookup: this is what the |
| .debug_cu_index,.debug_tu_index tables use in DWP V1. */ |
| gdb_assert (elf_section_nr < dwp_file->num_sections); |
| dwp_file->elf_sections[elf_section_nr] = sectp; |
| |
| /* Look for specific sections that we need. */ |
| if (section_is_p (sectp->name, &names->str_dwo)) |
| { |
| dwp_file->sections.str.s.section = sectp; |
| dwp_file->sections.str.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->cu_index)) |
| { |
| dwp_file->sections.cu_index.s.section = sectp; |
| dwp_file->sections.cu_index.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->tu_index)) |
| { |
| dwp_file->sections.tu_index.s.section = sectp; |
| dwp_file->sections.tu_index.size = bfd_section_size (sectp); |
| } |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWP version 2 debugging sections that we are interested |
| in. This is split into a separate function because we don't know if we |
| have version 1 or 2 until we parse the cu_index/tu_index sections. */ |
| |
| static void |
| dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr) |
| { |
| struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr; |
| const struct dwop_section_names *names = &dwop_section_names; |
| unsigned int elf_section_nr = elf_section_data (sectp)->this_idx; |
| |
| /* Record the ELF section number for later lookup: this is what the |
| .debug_cu_index,.debug_tu_index tables use in DWP V1. */ |
| gdb_assert (elf_section_nr < dwp_file->num_sections); |
| dwp_file->elf_sections[elf_section_nr] = sectp; |
| |
| /* Look for specific sections that we need. */ |
| if (section_is_p (sectp->name, &names->abbrev_dwo)) |
| { |
| dwp_file->sections.abbrev.s.section = sectp; |
| dwp_file->sections.abbrev.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->info_dwo)) |
| { |
| dwp_file->sections.info.s.section = sectp; |
| dwp_file->sections.info.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->line_dwo)) |
| { |
| dwp_file->sections.line.s.section = sectp; |
| dwp_file->sections.line.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->loc_dwo)) |
| { |
| dwp_file->sections.loc.s.section = sectp; |
| dwp_file->sections.loc.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macinfo_dwo)) |
| { |
| dwp_file->sections.macinfo.s.section = sectp; |
| dwp_file->sections.macinfo.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macro_dwo)) |
| { |
| dwp_file->sections.macro.s.section = sectp; |
| dwp_file->sections.macro.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_offsets_dwo)) |
| { |
| dwp_file->sections.str_offsets.s.section = sectp; |
| dwp_file->sections.str_offsets.size = bfd_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->types_dwo)) |
| { |
| dwp_file->sections.types.s.section = sectp; |
| dwp_file->sections.types.size = bfd_section_size (sectp); |
| } |
| } |
| |
| /* Hash function for dwp_file loaded CUs/TUs. */ |
| |
| static hashval_t |
| hash_dwp_loaded_cutus (const void *item) |
| { |
| const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item; |
| |
| /* This drops the top 32 bits of the signature, but is ok for a hash. */ |
| return dwo_unit->signature; |
| } |
| |
| /* Equality function for dwp_file loaded CUs/TUs. */ |
| |
| static int |
| eq_dwp_loaded_cutus (const void *a, const void *b) |
| { |
| const struct dwo_unit *dua = (const struct dwo_unit *) a; |
| const struct dwo_unit *dub = (const struct dwo_unit *) b; |
| |
| return dua->signature == dub->signature; |
| } |
| |
| /* Allocate a hash table for dwp_file loaded CUs/TUs. */ |
| |
| static htab_t |
| allocate_dwp_loaded_cutus_table (struct objfile *objfile) |
| { |
| return htab_create_alloc_ex (3, |
| hash_dwp_loaded_cutus, |
| eq_dwp_loaded_cutus, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| /* Try to open DWP file FILE_NAME. |
| The result is the bfd handle of the file. |
| If there is a problem finding or opening the file, return NULL. |
| Upon success, the canonicalized path of the file is stored in the bfd, |
| same as symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| const char *file_name) |
| { |
| gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name, |
| 1 /*is_dwp*/, |
| 1 /*search_cwd*/)); |
| if (abfd != NULL) |
| return abfd; |
| |
| /* Work around upstream bug 15652. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15652 |
| [Whether that's a "bug" is debatable, but it is getting in our way.] |
| We have no real idea where the dwp file is, because gdb's realpath-ing |
| of the executable's path may have discarded the needed info. |
| [IWBN if the dwp file name was recorded in the executable, akin to |
| .gnu_debuglink, but that doesn't exist yet.] |
| Strip the directory from FILE_NAME and search again. */ |
| if (*debug_file_directory != '\0') |
| { |
| /* Don't implicitly search the current directory here. |
| If the user wants to search "." to handle this case, |
| it must be added to debug-file-directory. */ |
| return try_open_dwop_file (dwarf2_per_objfile, |
| lbasename (file_name), 1 /*is_dwp*/, |
| 0 /*search_cwd*/); |
| } |
| |
| return NULL; |
| } |
| |
| /* Initialize the use of the DWP file for the current objfile. |
| By convention the name of the DWP file is ${objfile}.dwp. |
| The result is NULL if it can't be found. */ |
| |
| static std::unique_ptr<struct dwp_file> |
| open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| /* Try to find first .dwp for the binary file before any symbolic links |
| resolving. */ |
| |
| /* If the objfile is a debug file, find the name of the real binary |
| file and get the name of dwp file from there. */ |
| std::string dwp_name; |
| if (objfile->separate_debug_objfile_backlink != NULL) |
| { |
| struct objfile *backlink = objfile->separate_debug_objfile_backlink; |
| const char *backlink_basename = lbasename (backlink->original_name); |
| |
| dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename; |
| } |
| else |
| dwp_name = objfile->original_name; |
| |
| dwp_name += ".dwp"; |
| |
| gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ())); |
| if (dbfd == NULL |
| && strcmp (objfile->original_name, objfile_name (objfile)) != 0) |
| { |
| /* Try to find .dwp for the binary file after gdb_realpath resolving. */ |
| dwp_name = objfile_name (objfile); |
| dwp_name += ".dwp"; |
| dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()); |
| } |
| |
| if (dbfd == NULL) |
| { |
| if (dwarf_read_debug) |
| fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ()); |
| return std::unique_ptr<dwp_file> (); |
| } |
| |
| const char *name = bfd_get_filename (dbfd.get ()); |
| std::unique_ptr<struct dwp_file> dwp_file |
| (new struct dwp_file (name, std::move (dbfd))); |
| |
| dwp_file->num_sections = elf_numsections (dwp_file->dbfd); |
| dwp_file->elf_sections = |
| OBSTACK_CALLOC (&objfile->objfile_obstack, |
| dwp_file->num_sections, asection *); |
| |
| bfd_map_over_sections (dwp_file->dbfd.get (), |
| dwarf2_locate_common_dwp_sections, |
| dwp_file.get ()); |
| |
| dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (), |
| 0); |
| |
| dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (), |
| 1); |
| |
| /* The DWP file version is stored in the hash table. Oh well. */ |
| if (dwp_file->cus && dwp_file->tus |
| && dwp_file->cus->version != dwp_file->tus->version) |
| { |
| /* Technically speaking, we should try to limp along, but this is |
| pretty bizarre. We use pulongest here because that's the established |
| portability solution (e.g, we cannot use %u for uint32_t). */ |
| error (_("Dwarf Error: DWP file CU version %s doesn't match" |
| " TU version %s [in DWP file %s]"), |
| pulongest (dwp_file->cus->version), |
| pulongest (dwp_file->tus->version), dwp_name.c_str ()); |
| } |
| |
| if (dwp_file->cus) |
| dwp_file->version = dwp_file->cus->version; |
| else if (dwp_file->tus) |
| dwp_file->version = dwp_file->tus->version; |
| else |
| dwp_file->version = 2; |
| |
| if (dwp_file->version == 2) |
| bfd_map_over_sections (dwp_file->dbfd.get (), |
| dwarf2_locate_v2_dwp_sections, |
| dwp_file.get ()); |
| |
| dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile); |
| dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile); |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name); |
| fprintf_unfiltered (gdb_stdlog, |
| " %s CUs, %s TUs\n", |
| pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0), |
| pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0)); |
| } |
| |
| return dwp_file; |
| } |
| |
| /* Wrapper around open_and_init_dwp_file, only open it once. */ |
| |
| static struct dwp_file * |
| get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| if (! dwarf2_per_objfile->dwp_checked) |
| { |
| dwarf2_per_objfile->dwp_file |
| = open_and_init_dwp_file (dwarf2_per_objfile); |
| dwarf2_per_objfile->dwp_checked = 1; |
| } |
| return dwarf2_per_objfile->dwp_file.get (); |
| } |
| |
| /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit. |
| Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME |
| or in the DWP file for the objfile, referenced by THIS_UNIT. |
| If non-NULL, comp_dir is the DW_AT_comp_dir attribute. |
| IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU. |
| |
| This is called, for example, when wanting to read a variable with a |
| complex location. Therefore we don't want to do file i/o for every call. |
| Therefore we don't want to look for a DWO file on every call. |
| Therefore we first see if we've already seen SIGNATURE in a DWP file, |
| then we check if we've already seen DWO_NAME, and only THEN do we check |
| for a DWO file. |
| |
| The result is a pointer to the dwo_unit object or NULL if we didn't find it |
| (dwo_id mismatch or couldn't find the DWO/DWP file). */ |
| |
| static struct dwo_unit * |
| lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit, |
| const char *dwo_name, const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| void **dwo_file_slot; |
| struct dwo_file *dwo_file; |
| struct dwp_file *dwp_file; |
| |
| /* First see if there's a DWP file. |
| If we have a DWP file but didn't find the DWO inside it, don't |
| look for the original DWO file. It makes gdb behave differently |
| depending on whether one is debugging in the build tree. */ |
| |
| dwp_file = get_dwp_file (dwarf2_per_objfile); |
| if (dwp_file != NULL) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| |
| if (dwp_htab != NULL) |
| { |
| struct dwo_unit *dwo_cutu = |
| lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir, |
| signature, is_debug_types); |
| |
| if (dwo_cutu != NULL) |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Virtual DWO %s %s found: @%s\n", |
| kind, hex_string (signature), |
| host_address_to_string (dwo_cutu)); |
| } |
| return dwo_cutu; |
| } |
| } |
| } |
| else |
| { |
| /* No DWP file, look for the DWO file. */ |
| |
| dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile, |
| dwo_name, comp_dir); |
| if (*dwo_file_slot == NULL) |
| { |
| /* Read in the file and build a table of the CUs/TUs it contains. */ |
| *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir); |
| } |
| /* NOTE: This will be NULL if unable to open the file. */ |
| dwo_file = (struct dwo_file *) *dwo_file_slot; |
| |
| if (dwo_file != NULL) |
| { |
| struct dwo_unit *dwo_cutu = NULL; |
| |
| if (is_debug_types && dwo_file->tus) |
| { |
| struct dwo_unit find_dwo_cutu; |
| |
| memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu)); |
| find_dwo_cutu.signature = signature; |
| dwo_cutu |
| = (struct dwo_unit *) htab_find (dwo_file->tus.get (), |
| &find_dwo_cutu); |
| } |
| else if (!is_debug_types && dwo_file->cus) |
| { |
| struct dwo_unit find_dwo_cutu; |
| |
| memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu)); |
| find_dwo_cutu.signature = signature; |
| dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (), |
| &find_dwo_cutu); |
| } |
| |
| if (dwo_cutu != NULL) |
| { |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n", |
| kind, dwo_name, hex_string (signature), |
| host_address_to_string (dwo_cutu)); |
| } |
| return dwo_cutu; |
| } |
| } |
| } |
| |
| /* We didn't find it. This could mean a dwo_id mismatch, or |
| someone deleted the DWO/DWP file, or the search path isn't set up |
| correctly to find the file. */ |
| |
| if (dwarf_read_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n", |
| kind, dwo_name, hex_string (signature)); |
| } |
| |
| /* This is a warning and not a complaint because it can be caused by |
| pilot error (e.g., user accidentally deleting the DWO). */ |
| { |
| /* Print the name of the DWP file if we looked there, helps the user |
| better diagnose the problem. */ |
| std::string dwp_text; |
| |
| if (dwp_file != NULL) |
| dwp_text = string_printf (" [in DWP file %s]", |
| lbasename (dwp_file->name)); |
| |
| warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s" |
| " [in module %s]"), |
| kind, dwo_name, hex_string (signature), |
| dwp_text.c_str (), |
| this_unit->is_debug_types ? "TU" : "CU", |
| sect_offset_str (this_unit->sect_off), objfile_name (objfile)); |
| } |
| return NULL; |
| } |
| |
| /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU. |
| See lookup_dwo_cutu_unit for details. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| const char *dwo_name, const char *comp_dir, |
| ULONGEST signature) |
| { |
| return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0); |
| } |
| |
| /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU. |
| See lookup_dwo_cutu_unit for details. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_type_unit (struct signatured_type *this_tu, |
| const char *dwo_name, const char *comp_dir) |
| { |
| return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1); |
| } |
| |
| /* Traversal function for queue_and_load_all_dwo_tus. */ |
| |
| static int |
| queue_and_load_dwo_tu (void **slot, void *info) |
| { |
| struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot; |
| struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info; |
| ULONGEST signature = dwo_unit->signature; |
| struct signatured_type *sig_type = |
| lookup_dwo_signatured_type (per_cu->cu, signature); |
| |
| if (sig_type != NULL) |
| { |
| struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu; |
| |
| /* We pass NULL for DEPENDENT_CU because we don't yet know if there's |
| a real dependency of PER_CU on SIG_TYPE. That is detected later |
| while processing PER_CU. */ |
| if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language)) |
| load_full_type_unit (sig_cu); |
| per_cu->imported_symtabs_push (sig_cu); |
| } |
| |
| return 1; |
| } |
| |
| /* Queue all TUs contained in the DWO of PER_CU to be read in. |
| The DWO may have the only definition of the type, though it may not be |
| referenced anywhere in PER_CU. Thus we have to load *all* its TUs. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */ |
| |
| static void |
| queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct dwo_unit *dwo_unit; |
| struct dwo_file *dwo_file; |
| |
| gdb_assert (!per_cu->is_debug_types); |
| gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL); |
| gdb_assert (per_cu->cu != NULL); |
| |
| dwo_unit = per_cu->cu->dwo_unit; |
| gdb_assert (dwo_unit != NULL); |
| |
| dwo_file = dwo_unit->dwo_file; |
| if (dwo_file->tus != NULL) |
| htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, |
| per_cu); |
| } |
| |
| /* Read in various DIEs. */ |
| |
| /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes). |
| Inherit only the children of the DW_AT_abstract_origin DIE not being |
| already referenced by DW_AT_abstract_origin from the children of the |
| current DIE. */ |
| |
| static void |
| inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| sect_offset *offsetp; |
| /* Parent of DIE - referenced by DW_AT_abstract_origin. */ |
| struct die_info *origin_die; |
| /* Iterator of the ORIGIN_DIE children. */ |
| struct die_info *origin_child_die; |
| struct attribute *attr; |
| struct dwarf2_cu *origin_cu; |
| struct pending **origin_previous_list_in_scope; |
| |
| attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| if (!attr) |
| return; |
| |
| /* Note that following die references may follow to a die in a |
| different cu. */ |
| |
| origin_cu = cu; |
| origin_die = follow_die_ref (die, attr, &origin_cu); |
| |
| /* We're inheriting ORIGIN's children into the scope we'd put DIE's |
| symbols in. */ |
| origin_previous_list_in_scope = origin_cu->list_in_scope; |
| origin_cu->list_in_scope = cu->list_in_scope; |
| |
| if (die->tag != origin_die->tag |
| && !(die->tag == DW_TAG_inlined_subroutine |
| && origin_die->tag == DW_TAG_subprogram)) |
| complaint (_("DIE %s and its abstract origin %s have different tags"), |
| sect_offset_str (die->sect_off), |
| sect_offset_str (origin_die->sect_off)); |
| |
| std::vector<sect_offset> offsets; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| struct die_info *child_origin_die; |
| struct dwarf2_cu *child_origin_cu; |
| |
| /* We are trying to process concrete instance entries: |
| DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but |
| it's not relevant to our analysis here. i.e. detecting DIEs that are |
| present in the abstract instance but not referenced in the concrete |
| one. */ |
| if (child_die->tag == DW_TAG_call_site |
| || child_die->tag == DW_TAG_GNU_call_site) |
| continue; |
| |
| /* For each CHILD_DIE, find the corresponding child of |
| ORIGIN_DIE. If there is more than one layer of |
| DW_AT_abstract_origin, follow them all; there shouldn't be, |
| but GCC versions at least through 4.4 generate this (GCC PR |
| 40573). */ |
| child_origin_die = child_die; |
| child_origin_cu = cu; |
| while (1) |
| { |
| attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, |
| child_origin_cu); |
| if (attr == NULL) |
| break; |
| child_origin_die = follow_die_ref (child_origin_die, attr, |
| &child_origin_cu); |
| } |
| |
| /* According to DWARF3 3.3.8.2 #3 new entries without their abstract |
| counterpart may exist. */ |
| if (child_origin_die != child_die) |
| { |
| if (child_die->tag != child_origin_die->tag |
| && !(child_die->tag == DW_TAG_inlined_subroutine |
| && child_origin_die->tag == DW_TAG_subprogram)) |
| complaint (_("Child DIE %s and its abstract origin %s have " |
| "different tags"), |
| sect_offset_str (child_die->sect_off), |
| sect_offset_str (child_origin_die->sect_off)); |
| if (child_origin_die->parent != origin_die) |
| complaint (_("Child DIE %s and its abstract origin %s have " |
| "different parents"), |
| sect_offset_str (child_die->sect_off), |
| sect_offset_str (child_origin_die->sect_off)); |
| else |
| offsets.push_back (child_origin_die->sect_off); |
| } |
| } |
| std::sort (offsets.begin (), offsets.end ()); |
| sect_offset *offsets_end = offsets.data () + offsets.size (); |
| for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++) |
| if (offsetp[-1] == *offsetp) |
| complaint (_("Multiple children of DIE %s refer " |
| "to DIE %s as their abstract origin"), |
| sect_offset_str (die->sect_off), sect_offset_str (*offsetp)); |
| |
| offsetp = offsets.data (); |
| origin_child_die = origin_die->child; |
| while (origin_child_die && origin_child_die->tag) |
| { |
| /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */ |
| while (offsetp < offsets_end |
| && *offsetp < origin_child_die->sect_off) |
| offsetp++; |
| if (offsetp >= offsets_end |
| || *offsetp > origin_child_die->sect_off) |
| { |
| /* Found that ORIGIN_CHILD_DIE is really not referenced. |
| Check whether we're already processing ORIGIN_CHILD_DIE. |
| This can happen with mutually referenced abstract_origins. |
| PR 16581. */ |
| if (!origin_child_die->in_process) |
| process_die (origin_child_die, origin_cu); |
| } |
| origin_child_die = sibling_die (origin_child_die); |
| } |
| origin_cu->list_in_scope = origin_previous_list_in_scope; |
| |
| if (cu != origin_cu) |
| compute_delayed_physnames (origin_cu); |
| } |
| |
| static void |
| read_func_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct context_stack *newobj; |
| CORE_ADDR lowpc; |
| CORE_ADDR highpc; |
| struct die_info *child_die; |
| struct attribute *attr, *call_line, *call_file; |
| const char *name; |
| CORE_ADDR baseaddr; |
| struct block *block; |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| std::vector<struct symbol *> template_args; |
| struct template_symbol *templ_func = NULL; |
| |
| if (inlined_func) |
| { |
| /* If we do not have call site information, we can't show the |
| caller of this inlined function. That's too confusing, so |
| only use the scope for local variables. */ |
| call_line = dwarf2_attr (die, DW_AT_call_line, cu); |
| call_file = dwarf2_attr (die, DW_AT_call_file, cu); |
| if (call_line == NULL || call_file == NULL) |
| { |
| read_lexical_block_scope (die, cu); |
| return; |
| } |
| } |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| name = dwarf2_name (die, cu); |
| |
| /* Ignore functions with missing or empty names. These are actually |
| illegal according to the DWARF standard. */ |
| if (name == NULL) |
| { |
| complaint (_("missing name for subprogram DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| return; |
| } |
| |
| /* Ignore functions with missing or invalid low and high pc attributes. */ |
| if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL) |
| <= PC_BOUNDS_INVALID) |
| { |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| if (!attr || !DW_UNSND (attr)) |
| complaint (_("cannot get low and high bounds " |
| "for subprogram DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| return; |
| } |
| |
| lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr); |
| highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr); |
| |
| /* If we have any template arguments, then we must allocate a |
| different sort of symbol. */ |
| for (child_die = die->child; child_die; child_die = sibling_die (child_die)) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| templ_func = allocate_template_symbol (objfile); |
| templ_func->subclass = SYMBOL_TEMPLATE; |
| break; |
| } |
| } |
| |
| newobj = cu->get_builder ()->push_context (0, lowpc); |
| newobj->name = new_symbol (die, read_type_die (die, cu), cu, |
| (struct symbol *) templ_func); |
| |
| if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu)) |
| set_objfile_main_name (objfile, newobj->name->linkage_name (), |
| cu->language); |
| |
| /* If there is a location expression for DW_AT_frame_base, record |
| it. */ |
| attr = dwarf2_attr (die, DW_AT_frame_base, cu); |
| if (attr != nullptr) |
| dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1); |
| |
| /* If there is a location for the static link, record it. */ |
| newobj->static_link = NULL; |
| attr = dwarf2_attr (die, DW_AT_static_link, cu); |
| if (attr != nullptr) |
| { |
| newobj->static_link |
| = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop); |
| attr_to_dynamic_prop (attr, die, cu, newobj->static_link, |
| dwarf2_per_cu_addr_type (cu->per_cu)); |
| } |
| |
| cu->list_in_scope = cu->get_builder ()->get_local_symbols (); |
| |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| template_args.push_back (arg); |
| } |
| else |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| inherit_abstract_dies (die, cu); |
| |
| /* If we have a DW_AT_specification, we might need to import using |
| directives from the context of the specification DIE. See the |
| comment in determine_prefix. */ |
| if (cu->language == language_cplus |
| && dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| struct die_info *spec_die = die_specification (die, &spec_cu); |
| |
| while (spec_die) |
| { |
| child_die = spec_die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_imported_module) |
| process_die (child_die, spec_cu); |
| child_die = sibling_die (child_die); |
| } |
| |
| /* In some cases, GCC generates specification DIEs that |
| themselves contain DW_AT_specification attributes. */ |
| spec_die = die_specification (spec_die, &spec_cu); |
| } |
| } |
| |
| struct context_stack cstk = cu->get_builder ()->pop_context (); |
| /* Make a block for the local symbols within. */ |
| block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks, |
| cstk.static_link, lowpc, highpc); |
| |
| /* For C++, set the block's scope. */ |
| if ((cu->language == language_cplus |
| || cu->language == language_fortran |
| || cu->language == language_d |
| || cu->language == language_rust) |
| && cu->processing_has_namespace_info) |
| block_set_scope (block, determine_prefix (die, cu), |
| &objfile->objfile_obstack); |
| |
| /* If we have address ranges, record them. */ |
| dwarf2_record_block_ranges (die, block, baseaddr, cu); |
| |
| gdbarch_make_symbol_special (gdbarch, cstk.name, objfile); |
| |
| /* Attach template arguments to function. */ |
| if (!template_args.empty ()) |
| { |
| gdb_assert (templ_func != NULL); |
| |
| templ_func->n_template_arguments = template_args.size (); |
| templ_func->template_arguments |
| = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *, |
| templ_func->n_template_arguments); |
| memcpy (templ_func->template_arguments, |
| template_args.data (), |
| (templ_func->n_template_arguments * sizeof (struct symbol *))); |
| |
| /* Make sure that the symtab is set on the new symbols. Even |
| though they don't appear in this symtab directly, other parts |
| of gdb assume that symbols do, and this is reasonably |
| true. */ |
| for (symbol *sym : template_args) |
| symbol_set_symtab (sym, symbol_symtab (templ_func)); |
| } |
| |
| /* In C++, we can have functions nested inside functions (e.g., when |
| a function declares a class that has methods). This means that |
| when we finish processing a function scope, we may need to go |
| back to building a containing block's symbol lists. */ |
| *cu->get_builder ()->get_local_symbols () = cstk.locals; |
| cu->get_builder ()->set_local_using_directives (cstk.local_using_directives); |
| |
| /* If we've finished processing a top-level function, subsequent |
| symbols go in the file symbol list. */ |
| if (cu->get_builder ()->outermost_context_p ()) |
| cu->list_in_scope = cu->get_builder ()->get_file_symbols (); |
| } |
| |
| /* Process all the DIES contained within a lexical block scope. Start |
| a new scope, process the dies, and then close the scope. */ |
| |
| static void |
| read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR lowpc, highpc; |
| struct die_info *child_die; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| /* Ignore blocks with missing or invalid low and high pc attributes. */ |
| /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges |
| as multiple lexical blocks? Handling children in a sane way would |
| be nasty. Might be easier to properly extend generic blocks to |
| describe ranges. */ |
| switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)) |
| { |
| case PC_BOUNDS_NOT_PRESENT: |
| /* DW_TAG_lexical_block has no attributes, process its children as if |
| there was no wrapping by that DW_TAG_lexical_block. |
| GCC does no longer produces such DWARF since GCC r224161. */ |
| for (child_die = die->child; |
| child_die != NULL && child_die->tag; |
| child_die = sibling_die (child_die)) |
| process_die (child_die, cu); |
| return; |
| case PC_BOUNDS_INVALID: |
| return; |
| } |
| lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr); |
| highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr); |
| |
| cu->get_builder ()->push_context (0, lowpc); |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| inherit_abstract_dies (die, cu); |
| struct context_stack cstk = cu->get_builder ()->pop_context (); |
| |
| if (*cu->get_builder ()->get_local_symbols () != NULL |
| || (*cu->get_builder ()->get_local_using_directives ()) != NULL) |
| { |
| struct block *block |
| = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL, |
| cstk.start_addr, highpc); |
| |
| /* Note that recording ranges after traversing children, as we |
| do here, means that recording a parent's ranges entails |
| walking across all its children's ranges as they appear in |
| the address map, which is quadratic behavior. |
| |
| It would be nicer to record the parent's ranges before |
| traversing its children, simply overriding whatever you find |
| there. But since we don't even decide whether to create a |
| block until after we've traversed its children, that's hard |
| to do. */ |
| dwarf2_record_block_ranges (die, block, baseaddr, cu); |
| } |
| *cu->get_builder ()->get_local_symbols () = cstk.locals; |
| cu->get_builder ()->set_local_using_directives (cstk.local_using_directives); |
| } |
| |
| /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */ |
| |
| static void |
| read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR pc, baseaddr; |
| struct attribute *attr; |
| struct call_site *call_site, call_site_local; |
| void **slot; |
| int nparams; |
| struct die_info *child_die; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| attr = dwarf2_attr (die, DW_AT_call_return_pc, cu); |
| if (attr == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias |
| for DW_AT_call_return_pc. */ |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| } |
| if (!attr) |
| { |
| complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| return; |
| } |
| pc = attr->value_as_address () + baseaddr; |
| pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc); |
| |
| if (cu->call_site_htab == NULL) |
| cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq, |
| NULL, &objfile->objfile_obstack, |
| hashtab_obstack_allocate, NULL); |
| call_site_local.pc = pc; |
| slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT); |
| if (*slot != NULL) |
| { |
| complaint (_("Duplicate PC %s for DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| paddress (gdbarch, pc), sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| return; |
| } |
| |
| /* Count parameters at the caller. */ |
| |
| nparams = 0; |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| if (child_die->tag != DW_TAG_call_site_parameter |
| && child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| complaint (_("Tag %d is not DW_TAG_call_site_parameter in " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| child_die->tag, sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| nparams++; |
| } |
| |
| call_site |
| = ((struct call_site *) |
| obstack_alloc (&objfile->objfile_obstack, |
| sizeof (*call_site) |
| + (sizeof (*call_site->parameter) * (nparams - 1)))); |
| *slot = call_site; |
| memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter)); |
| call_site->pc = pc; |
| |
| if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu) |
| || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu)) |
| { |
| struct die_info *func_die; |
| |
| /* Skip also over DW_TAG_inlined_subroutine. */ |
| for (func_die = die->parent; |
| func_die && func_die->tag != DW_TAG_subprogram |
| && func_die->tag != DW_TAG_subroutine_type; |
| func_die = func_die->parent); |
| |
| /* DW_AT_call_all_calls is a superset |
| of DW_AT_call_all_tail_calls. */ |
| if (func_die |
| && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu)) |
| { |
| /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is |
| not complete. But keep CALL_SITE for look ups via call_site_htab, |
| both the initial caller containing the real return address PC and |
| the final callee containing the current PC of a chain of tail |
| calls do not need to have the tail call list complete. But any |
| function candidate for a virtual tail call frame searched via |
| TYPE_TAIL_CALL_LIST must have the tail call list complete to be |
| determined unambiguously. */ |
| } |
| else |
| { |
| struct type *func_type = NULL; |
| |
| if (func_die) |
| func_type = get_die_type (func_die, cu); |
| if (func_type != NULL) |
| { |
| gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC); |
| |
| /* Enlist this call site to the function. */ |
| call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type); |
| TYPE_TAIL_CALL_LIST (func_type) = call_site; |
| } |
| else |
| complaint (_("Cannot find function owning DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_call_target, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_call_origin, cu); |
| if (attr == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */ |
| attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| } |
| SET_FIELD_DWARF_BLOCK (call_site->target, NULL); |
| if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0)) |
| /* Keep NULL DWARF_BLOCK. */; |
| else if (attr->form_is_block ()) |
| { |
| struct dwarf2_locexpr_baton *dlbaton; |
| |
| dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| dlbaton->data = DW_BLOCK (attr)->data; |
| dlbaton->size = DW_BLOCK (attr)->size; |
| dlbaton->per_cu = cu->per_cu; |
| |
| SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die; |
| |
| target_die = follow_die_ref (die, attr, &target_cu); |
| gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile); |
| if (die_is_declaration (target_die, target_cu)) |
| { |
| const char *target_physname; |
| |
| /* Prefer the mangled name; otherwise compute the demangled one. */ |
| target_physname = dw2_linkage_name (target_die, target_cu); |
| if (target_physname == NULL) |
| target_physname = dwarf2_physname (NULL, target_die, target_cu); |
| if (target_physname == NULL) |
| complaint (_("DW_AT_call_target target DIE has invalid " |
| "physname, for referencing DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| else |
| SET_FIELD_PHYSNAME (call_site->target, target_physname); |
| } |
| else |
| { |
| CORE_ADDR lowpc; |
| |
| /* DW_AT_entry_pc should be preferred. */ |
| if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL) |
| <= PC_BOUNDS_INVALID) |
| complaint (_("DW_AT_call_target target DIE has invalid " |
| "low pc, for referencing DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| else |
| { |
| lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr); |
| SET_FIELD_PHYSADDR (call_site->target, lowpc); |
| } |
| } |
| } |
| else |
| complaint (_("DW_TAG_call_site DW_AT_call_target is neither " |
| "block nor reference, for DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| |
| call_site->per_cu = cu->per_cu; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| struct call_site_parameter *parameter; |
| struct attribute *loc, *origin; |
| |
| if (child_die->tag != DW_TAG_call_site_parameter |
| && child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| /* Already printed the complaint above. */ |
| continue; |
| } |
| |
| gdb_assert (call_site->parameter_count < nparams); |
| parameter = &call_site->parameter[call_site->parameter_count]; |
| |
| /* DW_AT_location specifies the register number or DW_AT_abstract_origin |
| specifies DW_TAG_formal_parameter. Value of the data assumed for the |
| register is contained in DW_AT_call_value. */ |
| |
| loc = dwarf2_attr (child_die, DW_AT_location, cu); |
| origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu); |
| if (origin == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias |
| for DW_AT_call_parameter. */ |
| origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu); |
| } |
| if (loc == NULL && origin != NULL && origin->form_is_ref ()) |
| { |
| parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET; |
| |
| sect_offset sect_off |
| = (sect_offset) dwarf2_get_ref_die_offset (origin); |
| if (!offset_in_cu_p (&cu->header, sect_off)) |
| { |
| /* As DW_OP_GNU_parameter_ref uses CU-relative offset this |
| binding can be done only inside one CU. Such referenced DIE |
| therefore cannot be even moved to DW_TAG_partial_unit. */ |
| complaint (_("DW_AT_call_parameter offset is not in CU for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| parameter->u.param_cu_off |
| = (cu_offset) (sect_off - cu->header.sect_off); |
| } |
| else if (loc == NULL || origin != NULL || !loc->form_is_block ()) |
| { |
| complaint (_("No DW_FORM_block* DW_AT_location for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), objfile_name (objfile)); |
| continue; |
| } |
| else |
| { |
| parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg |
| (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]); |
| if (parameter->u.dwarf_reg != -1) |
| parameter->kind = CALL_SITE_PARAMETER_DWARF_REG; |
| else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data, |
| &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size], |
| ¶meter->u.fb_offset)) |
| parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET; |
| else |
| { |
| complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported " |
| "for DW_FORM_block* DW_AT_location is supported for " |
| "DW_TAG_call_site child DIE %s " |
| "[in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| } |
| |
| attr = dwarf2_attr (child_die, DW_AT_call_value, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu); |
| if (attr == NULL || !attr->form_is_block ()) |
| { |
| complaint (_("No DW_FORM_block* DW_AT_call_value for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| parameter->value = DW_BLOCK (attr)->data; |
| parameter->value_size = DW_BLOCK (attr)->size; |
| |
| /* Parameters are not pre-cleared by memset above. */ |
| parameter->data_value = NULL; |
| parameter->data_value_size = 0; |
| call_site->parameter_count++; |
| |
| attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu); |
| if (attr != nullptr) |
| { |
| if (!attr->form_is_block ()) |
| complaint (_("No DW_FORM_block* DW_AT_call_data_value for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| else |
| { |
| parameter->data_value = DW_BLOCK (attr)->data; |
| parameter->data_value_size = DW_BLOCK (attr)->size; |
| } |
| } |
| } |
| } |
| |
| /* Helper function for read_variable. If DIE represents a virtual |
| table, then return the type of the concrete object that is |
| associated with the virtual table. Otherwise, return NULL. */ |
| |
| static struct type * |
| rust_containing_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (attr == NULL) |
| return NULL; |
| |
| /* Find the type DIE. */ |
| struct die_info *type_die = NULL; |
| struct dwarf2_cu *type_cu = cu; |
| |
| if (attr->form_is_ref ()) |
| type_die = follow_die_ref (die, attr, &type_cu); |
| if (type_die == NULL) |
| return NULL; |
| |
| if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL) |
| return NULL; |
| return die_containing_type (type_die, type_cu); |
| } |
| |
| /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */ |
| |
| static void |
| read_variable (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct rust_vtable_symbol *storage = NULL; |
| |
| if (cu->language == language_rust) |
| { |
| struct type *containing_type = rust_containing_type (die, cu); |
| |
| if (containing_type != NULL) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| |
| storage = new (&objfile->objfile_obstack) rust_vtable_symbol (); |
| initialize_objfile_symbol (storage); |
| storage->concrete_type = containing_type; |
| storage->subclass = SYMBOL_RUST_VTABLE; |
| } |
| } |
| |
| struct symbol *res = new_symbol (die, NULL, cu, storage); |
| struct attribute *abstract_origin |
| = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu); |
| if (res == NULL && loc && abstract_origin) |
| { |
| /* We have a variable without a name, but with a location and an abstract |
| origin. This may be a concrete instance of an abstract variable |
| referenced from an DW_OP_GNU_variable_value, so save it to find it back |
| later. */ |
| struct dwarf2_cu *origin_cu = cu; |
| struct die_info *origin_die |
| = follow_die_ref (die, abstract_origin, &origin_cu); |
| dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile; |
| dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off); |
| } |
| } |
| |
| /* Call CALLBACK from DW_AT_ranges attribute value OFFSET |
| reading .debug_rnglists. |
| Callback's type should be: |
| void (CORE_ADDR range_beginning, CORE_ADDR range_end) |
| Return true if the attributes are present and valid, otherwise, |
| return false. */ |
| |
| template <typename Callback> |
| static bool |
| dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu, |
| Callback &&callback) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *obfd = objfile->obfd; |
| /* Base address selection entry. */ |
| CORE_ADDR base; |
| int found_base; |
| const gdb_byte *buffer; |
| CORE_ADDR baseaddr; |
| bool overflow = false; |
| |
| found_base = cu->base_known; |
| base = cu->base_address; |
| |
| dwarf2_per_objfile->rnglists.read (objfile); |
| if (offset >= dwarf2_per_objfile->rnglists.size) |
| { |
| complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return false; |
| } |
| buffer = dwarf2_per_objfile->rnglists.buffer + offset; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| while (1) |
| { |
| /* Initialize it due to a false compiler warning. */ |
| CORE_ADDR range_beginning = 0, range_end = 0; |
| const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer |
| + dwarf2_per_objfile->rnglists.size); |
| unsigned int bytes_read; |
| |
| if (buffer == buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++); |
| switch (rlet) |
| { |
| case DW_RLE_end_of_list: |
| break; |
| case DW_RLE_base_address: |
| if (buffer + cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| base = read_address (obfd, buffer, cu, &bytes_read); |
| found_base = 1; |
| buffer += bytes_read; |
| break; |
| case DW_RLE_start_length: |
| if (buffer + cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_beginning = read_address (obfd, buffer, cu, &bytes_read); |
| buffer += bytes_read; |
| range_end = (range_beginning |
| + read_unsigned_leb128 (obfd, buffer, &bytes_read)); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| break; |
| case DW_RLE_offset_pair: |
| range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| break; |
| case DW_RLE_start_end: |
| if (buffer + 2 * cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_beginning = read_address (obfd, buffer, cu, &bytes_read); |
| buffer += bytes_read; |
| range_end = read_address (obfd, buffer, cu, &bytes_read); |
| buffer += bytes_read; |
| break; |
| default: |
| complaint (_("Invalid .debug_rnglists data (no base address)")); |
| return false; |
| } |
| if (rlet == DW_RLE_end_of_list || overflow) |
| break; |
| if (rlet == DW_RLE_base_address) |
| continue; |
| |
| if (!found_base) |
| { |
| /* We have no valid base address for the ranges |
| data. */ |
| complaint (_("Invalid .debug_rnglists data (no base address)")); |
| return false; |
| } |
| |
| if (range_beginning > range_end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (_("Invalid .debug_rnglists data (inverted range)")); |
| return false; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (range_beginning == range_end) |
| continue; |
| |
| range_beginning += base; |
| range_end += base; |
| |
| /* A not-uncommon case of bad debug info. |
| Don't pollute the addrmap with bad data. */ |
| if (range_beginning + baseaddr == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| complaint (_(".debug_rnglists entry has start address of zero" |
| " [in module %s]"), objfile_name (objfile)); |
| continue; |
| } |
| |
| callback (range_beginning, range_end); |
| } |
| |
| if (overflow) |
| { |
| complaint (_("Offset %d is not terminated " |
| "for DW_AT_ranges attribute"), |
| offset); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges. |
| Callback's type should be: |
| void (CORE_ADDR range_beginning, CORE_ADDR range_end) |
| Return 1 if the attributes are present and valid, otherwise, return 0. */ |
| |
| template <typename Callback> |
| static int |
| dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, |
| Callback &&callback) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| bfd *obfd = objfile->obfd; |
| unsigned int addr_size = cu_header->addr_size; |
| CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); |
| /* Base address selection entry. */ |
| CORE_ADDR base; |
| int found_base; |
| unsigned int dummy; |
| const gdb_byte *buffer; |
| CORE_ADDR baseaddr; |
| |
| if (cu_header->version >= 5) |
| return dwarf2_rnglists_process (offset, cu, callback); |
| |
| found_base = cu->base_known; |
| base = cu->base_address; |
| |
| dwarf2_per_objfile->ranges.read (objfile); |
| if (offset >= dwarf2_per_objfile->ranges.size) |
| { |
| complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return 0; |
| } |
| buffer = dwarf2_per_objfile->ranges.buffer + offset; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| while (1) |
| { |
| CORE_ADDR range_beginning, range_end; |
| |
| range_beginning = read_address (obfd, buffer, cu, &dummy); |
| buffer += addr_size; |
| range_end = read_address (obfd, buffer, cu, &dummy); |
| buffer += addr_size; |
| offset += 2 * addr_size; |
| |
| /* An end of list marker is a pair of zero addresses. */ |
| if (range_beginning == 0 && range_end == 0) |
| /* Found the end of list entry. */ |
| break; |
| |
| /* Each base address selection entry is a pair of 2 values. |
| The first is the largest possible address, the second is |
| the base address. Check for a base address here. */ |
| if ((range_beginning & mask) == mask) |
| { |
| /* If we found the largest possible address, then we already |
| have the base address in range_end. */ |
| base = range_end; |
| found_base = 1; |
| continue; |
| } |
| |
| if (!found_base) |
| { |
| /* We have no valid base address for the ranges |
| data. */ |
| complaint (_("Invalid .debug_ranges data (no base address)")); |
| return 0; |
| } |
| |
| if (range_beginning > range_end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (_("Invalid .debug_ranges data (inverted range)")); |
| return 0; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (range_beginning == range_end) |
| continue; |
| |
| range_beginning += base; |
| range_end += base; |
| |
| /* A not-uncommon case of bad debug info. |
| Don't pollute the addrmap with bad data. */ |
| if (range_beginning + baseaddr == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| complaint (_(".debug_ranges entry has start address of zero" |
| " [in module %s]"), objfile_name (objfile)); |
| continue; |
| } |
| |
| callback (range_beginning, range_end); |
| } |
| |
| return 1; |
| } |
| |
| /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET. |
| Return 1 if the attributes are present and valid, otherwise, return 0. |
| If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */ |
| |
| static int |
| dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return, |
| CORE_ADDR *high_return, struct dwarf2_cu *cu, |
| dwarf2_psymtab *ranges_pst) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| const CORE_ADDR baseaddr = objfile->text_section_offset (); |
| int low_set = 0; |
| CORE_ADDR low = 0; |
| CORE_ADDR high = 0; |
| int retval; |
| |
| retval = dwarf2_ranges_process (offset, cu, |
| [&] (CORE_ADDR range_beginning, CORE_ADDR range_end) |
| { |
| if (ranges_pst != NULL) |
| { |
| CORE_ADDR lowpc; |
| CORE_ADDR highpc; |
| |
| lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch, |
| range_beginning + baseaddr) |
| - baseaddr); |
| highpc = (gdbarch_adjust_dwarf2_addr (gdbarch, |
| range_end + baseaddr) |
| - baseaddr); |
| addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap, |
| lowpc, highpc - 1, ranges_pst); |
| } |
| |
| /* FIXME: This is recording everything as a low-high |
| segment of consecutive addresses. We should have a |
| data structure for discontiguous block ranges |
| instead. */ |
| if (! low_set) |
| { |
| low = range_beginning; |
| high = range_end; |
| low_set = 1; |
| } |
| else |
| { |
| if (range_beginning < low) |
| low = range_beginning; |
| if (range_end > high) |
| high = range_end; |
| } |
| }); |
| if (!retval) |
| return 0; |
| |
| if (! low_set) |
| /* If the first entry is an end-of-list marker, the range |
| describes an empty scope, i.e. no instructions. */ |
| return 0; |
| |
| if (low_return) |
| *low_return = low; |
| if (high_return) |
| *high_return = high; |
| return 1; |
| } |
| |
| /* Get low and high pc attributes from a die. See enum pc_bounds_kind |
| definition for the return value. *LOWPC and *HIGHPC are set iff |
| neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */ |
| |
| static enum pc_bounds_kind |
| dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, struct dwarf2_cu *cu, |
| dwarf2_psymtab *pst) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct attribute *attr; |
| struct attribute *attr_high; |
| CORE_ADDR low = 0; |
| CORE_ADDR high = 0; |
| enum pc_bounds_kind ret; |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| low = attr->value_as_address (); |
| high = attr_high->value_as_address (); |
| if (cu->header.version >= 4 && attr_high->form_is_constant ()) |
| high += low; |
| } |
| else |
| /* Found high w/o low attribute. */ |
| return PC_BOUNDS_INVALID; |
| |
| /* Found consecutive range of addresses. */ |
| ret = PC_BOUNDS_HIGH_LOW; |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != NULL) |
| { |
| /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton. |
| We take advantage of the fact that DW_AT_ranges does not appear |
| in DW_TAG_compile_unit of DWO files. */ |
| int need_ranges_base = die->tag != DW_TAG_compile_unit; |
| unsigned int ranges_offset = (DW_UNSND (attr) |
| + (need_ranges_base |
| ? cu->ranges_base |
| : 0)); |
| |
| /* Value of the DW_AT_ranges attribute is the offset in the |
| .debug_ranges section. */ |
| if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst)) |
| return PC_BOUNDS_INVALID; |
| /* Found discontinuous range of addresses. */ |
| ret = PC_BOUNDS_RANGES; |
| } |
| else |
| return PC_BOUNDS_NOT_PRESENT; |
| } |
| |
| /* partial_die_info::read has also the strict LOW < HIGH requirement. */ |
| if (high <= low) |
| return PC_BOUNDS_INVALID; |
| |
| /* When using the GNU linker, .gnu.linkonce. sections are used to |
| eliminate duplicate copies of functions and vtables and such. |
| The linker will arbitrarily choose one and discard the others. |
| The AT_*_pc values for such functions refer to local labels in |
| these sections. If the section from that file was discarded, the |
| labels are not in the output, so the relocs get a value of 0. |
| If this is a discarded function, mark the pc bounds as invalid, |
| so that GDB will ignore it. */ |
| if (low == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| return PC_BOUNDS_INVALID; |
| |
| *lowpc = low; |
| if (highpc) |
| *highpc = high; |
| return ret; |
| } |
| |
| /* Assuming that DIE represents a subprogram DIE or a lexical block, get |
| its low and high PC addresses. Do nothing if these addresses could not |
| be determined. Otherwise, set LOWPC to the low address if it is smaller, |
| and HIGHPC to the high address if greater than HIGHPC. */ |
| |
| static void |
| dwarf2_get_subprogram_pc_bounds (struct die_info *die, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| struct dwarf2_cu *cu) |
| { |
| CORE_ADDR low, high; |
| struct die_info *child = die->child; |
| |
| if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES) |
| { |
| *lowpc = std::min (*lowpc, low); |
| *highpc = std::max (*highpc, high); |
| } |
| |
| /* If the language does not allow nested subprograms (either inside |
| subprograms or lexical blocks), we're done. */ |
| if (cu->language != language_ada) |
| return; |
| |
| /* Check all the children of the given DIE. If it contains nested |
| subprograms, then check their pc bounds. Likewise, we need to |
| check lexical blocks as well, as they may also contain subprogram |
| definitions. */ |
| while (child && child->tag) |
| { |
| if (child->tag == DW_TAG_subprogram |
| || child->tag == DW_TAG_lexical_block) |
| dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu); |
| child = sibling_die (child); |
| } |
| } |
| |
| /* Get the low and high pc's represented by the scope DIE, and store |
| them in *LOWPC and *HIGHPC. If the correct values can't be |
| determined, set *LOWPC to -1 and *HIGHPC to 0. */ |
| |
| static void |
| get_scope_pc_bounds (struct die_info *die, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| struct dwarf2_cu *cu) |
| { |
| CORE_ADDR best_low = (CORE_ADDR) -1; |
| CORE_ADDR best_high = (CORE_ADDR) 0; |
| CORE_ADDR current_low, current_high; |
| |
| if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL) |
| >= PC_BOUNDS_RANGES) |
| { |
| best_low = current_low; |
| best_high = current_high; |
| } |
| else |
| { |
| struct die_info *child = die->child; |
| |
| while (child && child->tag) |
| { |
| switch (child->tag) { |
| case DW_TAG_subprogram: |
| dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu); |
| break; |
| case DW_TAG_namespace: |
| case DW_TAG_module: |
| /* FIXME: carlton/2004-01-16: Should we do this for |
| DW_TAG_class_type/DW_TAG_structure_type, too? I think |
| that current GCC's always emit the DIEs corresponding |
| to definitions of methods of classes as children of a |
| DW_TAG_compile_unit or DW_TAG_namespace (as opposed to |
| the DIEs giving the declarations, which could be |
| anywhere). But I don't see any reason why the |
| standards says that they have to be there. */ |
| get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu); |
| |
| if (current_low != ((CORE_ADDR) -1)) |
| { |
| best_low = std::min (best_low, current_low); |
| best_high = std::max (best_high, current_high); |
| } |
| break; |
| default: |
| /* Ignore. */ |
| break; |
| } |
| |
| child = sibling_die (child); |
| } |
| } |
| |
| *lowpc = best_low; |
| *highpc = best_high; |
| } |
| |
| /* Record the address ranges for BLOCK, offset by BASEADDR, as given |
| in DIE. */ |
| |
| static void |
| dwarf2_record_block_ranges (struct die_info *die, struct block *block, |
| CORE_ADDR baseaddr, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct attribute *attr; |
| struct attribute *attr_high; |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| CORE_ADDR low = attr->value_as_address (); |
| CORE_ADDR high = attr_high->value_as_address (); |
| |
| if (cu->header.version >= 4 && attr_high->form_is_constant ()) |
| high += low; |
| |
| low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr); |
| high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr); |
| cu->get_builder ()->record_block_range (block, low, high - 1); |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != nullptr) |
| { |
| /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton. |
| We take advantage of the fact that DW_AT_ranges does not appear |
| in DW_TAG_compile_unit of DWO files. */ |
| int need_ranges_base = die->tag != DW_TAG_compile_unit; |
| |
| /* The value of the DW_AT_ranges attribute is the offset of the |
| address range list in the .debug_ranges section. */ |
| unsigned long offset = (DW_UNSND (attr) |
| + (need_ranges_base ? cu->ranges_base : 0)); |
| |
| std::vector<blockrange> blockvec; |
| dwarf2_ranges_process (offset, cu, |
| [&] (CORE_ADDR start, CORE_ADDR end) |
| { |
| start += baseaddr; |
| end += baseaddr; |
| start = gdbarch_adjust_dwarf2_addr (gdbarch, start); |
| end = gdbarch_adjust_dwarf2_addr (gdbarch, end); |
| cu->get_builder ()->record_block_range (block, start, end - 1); |
| blockvec.emplace_back (start, end); |
| }); |
| |
| BLOCK_RANGES(block) = make_blockranges (objfile, blockvec); |
| } |
| } |
| |
| /* Check whether the producer field indicates either of GCC < 4.6, or the |
| Intel C/C++ compiler, and cache the result in CU. */ |
| |
| static void |
| check_producer (struct dwarf2_cu *cu) |
| { |
| int major, minor; |
| |
| if (cu->producer == NULL) |
| { |
| /* For unknown compilers expect their behavior is DWARF version |
| compliant. |
| |
| GCC started to support .debug_types sections by -gdwarf-4 since |
| gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer |
| for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4 |
| combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility |
| interpreted incorrectly by GDB now - GCC PR debug/48229. */ |
| } |
| else if (producer_is_gcc (cu->producer, &major, &minor)) |
| { |
| cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6); |
| cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3); |
| } |
| else if (producer_is_icc (cu->producer, &major, &minor)) |
| { |
| cu->producer_is_icc = true; |
| cu->producer_is_icc_lt_14 = major < 14; |
| } |
| else if (startswith (cu->producer, "CodeWarrior S12/L-ISA")) |
| cu->producer_is_codewarrior = true; |
| else |
| { |
| /* For other non-GCC compilers, expect their behavior is DWARF version |
| compliant. */ |
| } |
| |
| cu->checked_producer = true; |
| } |
| |
| /* Check for GCC PR debug/45124 fix which is not present in any G++ version up |
| to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed |
| during 4.6.0 experimental. */ |
| |
| static bool |
| producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu) |
| { |
| if (!cu->checked_producer) |
| check_producer (cu); |
| |
| return cu->producer_is_gxx_lt_4_6; |
| } |
| |
| |
| /* Codewarrior (at least as of version 5.0.40) generates dwarf line information |
| with incorrect is_stmt attributes. */ |
| |
| static bool |
| producer_is_codewarrior (struct dwarf2_cu *cu) |
| { |
| if (!cu->checked_producer) |
| check_producer (cu); |
| |
| return cu->producer_is_codewarrior; |
| } |
| |
| /* Return the default accessibility type if it is not overridden by |
| DW_AT_accessibility. */ |
| |
| static enum dwarf_access_attribute |
| dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu)) |
| { |
| /* The default DWARF 2 accessibility for members is public, the default |
| accessibility for inheritance is private. */ |
| |
| if (die->tag != DW_TAG_inheritance) |
| return DW_ACCESS_public; |
| else |
| return DW_ACCESS_private; |
| } |
| else |
| { |
| /* DWARF 3+ defines the default accessibility a different way. The same |
| rules apply now for DW_TAG_inheritance as for the members and it only |
| depends on the container kind. */ |
| |
| if (die->parent->tag == DW_TAG_class_type) |
| return DW_ACCESS_private; |
| else |
| return DW_ACCESS_public; |
| } |
| } |
| |
| /* Look for DW_AT_data_member_location. Set *OFFSET to the byte |
| offset. If the attribute was not found return 0, otherwise return |
| 1. If it was found but could not properly be handled, set *OFFSET |
| to 0. */ |
| |
| static int |
| handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu, |
| LONGEST *offset) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_data_member_location, cu); |
| if (attr != NULL) |
| { |
| *offset = 0; |
| |
| /* Note that we do not check for a section offset first here. |
| This is because DW_AT_data_member_location is new in DWARF 4, |
| so if we see it, we can assume that a constant form is really |
| a constant and not a section offset. */ |
| if (attr->form_is_constant ()) |
| *offset = dwarf2_get_attr_constant_value (attr, 0); |
| else if (attr->form_is_section_offset ()) |
| dwarf2_complex_location_expr_complaint (); |
| else if (attr->form_is_block ()) |
| *offset = decode_locdesc (DW_BLOCK (attr), cu); |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Add an aggregate field to the field list. */ |
| |
| static void |
| dwarf2_add_field (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct nextfield *new_field; |
| struct attribute *attr; |
| struct field *fp; |
| const char *fieldname = ""; |
| |
| if (die->tag == DW_TAG_inheritance) |
| { |
| fip->baseclasses.emplace_back (); |
| new_field = &fip->baseclasses.back (); |
| } |
| else |
| { |
| fip->fields.emplace_back (); |
| new_field = &fip->fields.back (); |
| } |
| |
| fip->nfields++; |
| |
| attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr != nullptr) |
| new_field->accessibility = DW_UNSND (attr); |
| else |
| new_field->accessibility = dwarf2_default_access_attribute (die, cu); |
| if (new_field->accessibility != DW_ACCESS_public) |
| fip->non_public_fields = 1; |
| |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr != nullptr) |
| new_field->virtuality = DW_UNSND (attr); |
| else |
| new_field->virtuality = DW_VIRTUALITY_none; |
| |
| fp = &new_field->field; |
| |
| if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu)) |
| { |
| LONGEST offset; |
| |
| /* Data member other than a C++ static data member. */ |
| |
| /* Get type of field. */ |
| fp->type = die_type (die, cu); |
| |
| SET_FIELD_BITPOS (*fp, 0); |
| |
| /* Get bit size of field (zero if none). */ |
| attr = dwarf2_attr (die, DW_AT_bit_size, cu); |
| if (attr != nullptr) |
| { |
| FIELD_BITSIZE (*fp) = DW_UNSND (attr); |
| } |
| else |
| { |
| FIELD_BITSIZE (*fp) = 0; |
| } |
| |
| /* Get bit offset of field. */ |
| if (handle_data_member_location (die, cu, &offset)) |
| SET_FIELD_BITPOS (*fp, offset * bits_per_byte); |
| attr = dwarf2_attr (die, DW_AT_bit_offset, cu); |
| if (attr != nullptr) |
| { |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| { |
| /* For big endian bits, the DW_AT_bit_offset gives the |
| additional bit offset from the MSB of the containing |
| anonymous object to the MSB of the field. We don't |
| have to do anything special since we don't need to |
| know the size of the anonymous object. */ |
| SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr)); |
| } |
| else |
| { |
| /* For little endian bits, compute the bit offset to the |
| MSB of the anonymous object, subtract off the number of |
| bits from the MSB of the field to the MSB of the |
| object, and then subtract off the number of bits of |
| the field itself. The result is the bit offset of |
| the LSB of the field. */ |
| int anonymous_size; |
| int bit_offset = DW_UNSND (attr); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| /* The size of the anonymous object containing |
| the bit field is explicit, so use the |
| indicated size (in bytes). */ |
| anonymous_size = DW_UNSND (attr); |
| } |
| else |
| { |
| /* The size of the anonymous object containing |
| the bit field must be inferred from the type |
| attribute of the data member containing the |
| bit field. */ |
| anonymous_size = TYPE_LENGTH (fp->type); |
| } |
| SET_FIELD_BITPOS (*fp, |
| (FIELD_BITPOS (*fp) |
| + anonymous_size * bits_per_byte |
| - bit_offset - FIELD_BITSIZE (*fp))); |
| } |
| } |
| attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu); |
| if (attr != NULL) |
| SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp) |
| + dwarf2_get_attr_constant_value (attr, 0))); |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| fieldname = ""; |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| fp->name = fieldname; |
| |
| /* Change accessibility for artificial fields (e.g. virtual table |
| pointer or virtual base class pointer) to private. */ |
| if (dwarf2_attr (die, DW_AT_artificial, cu)) |
| { |
| FIELD_ARTIFICIAL (*fp) = 1; |
| new_field->accessibility = DW_ACCESS_private; |
| fip->non_public_fields = 1; |
| } |
| } |
| else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable) |
| { |
| /* C++ static member. */ |
| |
| /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that |
| is a declaration, but all versions of G++ as of this writing |
| (so through at least 3.2.1) incorrectly generate |
| DW_TAG_variable tags. */ |
| |
| const char *physname; |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr |
| /* Only create a symbol if this is an external value. |
| new_symbol checks this and puts the value in the global symbol |
| table, which we want. If it is not external, new_symbol |
| will try to put the value in cu->list_in_scope which is wrong. */ |
| && dwarf2_flag_true_p (die, DW_AT_external, cu)) |
| { |
| /* A static const member, not much different than an enum as far as |
| we're concerned, except that we can support more types. */ |
| new_symbol (die, NULL, cu); |
| } |
| |
| /* Get physical name. */ |
| physname = dwarf2_physname (fieldname, die, cu); |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| SET_FIELD_PHYSNAME (*fp, physname ? physname : ""); |
| FIELD_TYPE (*fp) = die_type (die, cu); |
| FIELD_NAME (*fp) = fieldname; |
| } |
| else if (die->tag == DW_TAG_inheritance) |
| { |
| LONGEST offset; |
| |
| /* C++ base class field. */ |
| if (handle_data_member_location (die, cu, &offset)) |
| SET_FIELD_BITPOS (*fp, offset * bits_per_byte); |
| FIELD_BITSIZE (*fp) = 0; |
| FIELD_TYPE (*fp) = die_type (die, cu); |
| FIELD_NAME (*fp) = TYPE_NAME (fp->type); |
| } |
| else if (die->tag == DW_TAG_variant_part) |
| { |
| /* process_structure_scope will treat this DIE as a union. */ |
| process_structure_scope (die, cu); |
| |
| /* The variant part is relative to the start of the enclosing |
| structure. */ |
| SET_FIELD_BITPOS (*fp, 0); |
| fp->type = get_die_type (die, cu); |
| fp->artificial = 1; |
| fp->name = "<<variant>>"; |
| |
| /* Normally a DW_TAG_variant_part won't have a size, but our |
| representation requires one, so set it to the maximum of the |
| child sizes, being sure to account for the offset at which |
| each child is seen. */ |
| if (TYPE_LENGTH (fp->type) == 0) |
| { |
| unsigned max = 0; |
| for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i) |
| { |
| unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8 |
| + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i))); |
| if (len > max) |
| max = len; |
| } |
| TYPE_LENGTH (fp->type) = max; |
| } |
| } |
| else |
| gdb_assert_not_reached ("missing case in dwarf2_add_field"); |
| } |
| |
| /* Can the type given by DIE define another type? */ |
| |
| static bool |
| type_can_define_types (const struct die_info *die) |
| { |
| switch (die->tag) |
| { |
| case DW_TAG_typedef: |
| case DW_TAG_class_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Add a type definition defined in the scope of the FIP's class. */ |
| |
| static void |
| dwarf2_add_type_defn (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct decl_field fp; |
| memset (&fp, 0, sizeof (fp)); |
| |
| gdb_assert (type_can_define_types (die)); |
| |
| /* Get name of field. NULL is okay here, meaning an anonymous type. */ |
| fp.name = dwarf2_name (die, cu); |
| fp.type = read_type_die (die, cu); |
| |
| /* Save accessibility. */ |
| enum dwarf_access_attribute accessibility; |
| struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr != NULL) |
| accessibility = (enum dwarf_access_attribute) DW_UNSND (attr); |
| else |
| accessibility = dwarf2_default_access_attribute (die, cu); |
| switch (accessibility) |
| { |
| case DW_ACCESS_public: |
| /* The assumed value if neither private nor protected. */ |
| break; |
| case DW_ACCESS_private: |
| fp.is_private = 1; |
| break; |
| case DW_ACCESS_protected: |
| fp.is_protected = 1; |
| break; |
| default: |
| complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility); |
| } |
| |
| if (die->tag == DW_TAG_typedef) |
| fip->typedef_field_list.push_back (fp); |
| else |
| fip->nested_types_list.push_back (fp); |
| } |
| |
| /* Create the vector of fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| int nfields = fip->nfields; |
| |
| /* Record the field count, allocate space for the array of fields, |
| and create blank accessibility bitfields if necessary. */ |
| TYPE_NFIELDS (type) = nfields; |
| TYPE_FIELDS (type) = (struct field *) |
| TYPE_ZALLOC (type, sizeof (struct field) * nfields); |
| |
| if (fip->non_public_fields && cu->language != language_ada) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| |
| TYPE_FIELD_PRIVATE_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields); |
| |
| TYPE_FIELD_PROTECTED_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields); |
| |
| TYPE_FIELD_IGNORE_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields); |
| } |
| |
| /* If the type has baseclasses, allocate and clear a bit vector for |
| TYPE_FIELD_VIRTUAL_BITS. */ |
| if (!fip->baseclasses.empty () && cu->language != language_ada) |
| { |
| int num_bytes = B_BYTES (fip->baseclasses.size ()); |
| unsigned char *pointer; |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes); |
| TYPE_FIELD_VIRTUAL_BITS (type) = pointer; |
| B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ()); |
| TYPE_N_BASECLASSES (type) = fip->baseclasses.size (); |
| } |
| |
| if (TYPE_FLAG_DISCRIMINATED_UNION (type)) |
| { |
| struct discriminant_info *di = alloc_discriminant_info (type, -1, -1); |
| |
| for (int index = 0; index < nfields; ++index) |
| { |
| struct nextfield &field = fip->fields[index]; |
| |
| if (field.variant.is_discriminant) |
| di->discriminant_index = index; |
| else if (field.variant.default_branch) |
| di->default_index = index; |
| else |
| di->discriminants[index] = field.variant.discriminant_value; |
| } |
| } |
| |
| /* Copy the saved-up fields into the field vector. */ |
| for (int i = 0; i < nfields; ++i) |
| { |
| struct nextfield &field |
| = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i] |
| : fip->fields[i - fip->baseclasses.size ()]); |
| |
| TYPE_FIELD (type, i) = field.field; |
| switch (field.accessibility) |
| { |
| case DW_ACCESS_private: |
| if (cu->language != language_ada) |
| SET_TYPE_FIELD_PRIVATE (type, i); |
| break; |
| |
| case DW_ACCESS_protected: |
| if (cu->language != language_ada) |
| SET_TYPE_FIELD_PROTECTED (type, i); |
| break; |
| |
| case DW_ACCESS_public: |
| break; |
| |
| default: |
| /* Unknown accessibility. Complain and treat it as public. */ |
| { |
| complaint (_("unsupported accessibility %d"), |
| field.accessibility); |
| } |
| break; |
| } |
| if (i < fip->baseclasses.size ()) |
| { |
| switch (field.virtuality) |
| { |
| case DW_VIRTUALITY_virtual: |
| case DW_VIRTUALITY_pure_virtual: |
| if (cu->language == language_ada) |
| error (_("unexpected virtuality in component of Ada type")); |
| SET_TYPE_FIELD_VIRTUAL (type, i); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Return true if this member function is a constructor, false |
| otherwise. */ |
| |
| static int |
| dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *fieldname; |
| const char *type_name; |
| int len; |
| |
| if (die->parent == NULL) |
| return 0; |
| |
| if (die->parent->tag != DW_TAG_structure_type |
| && die->parent->tag != DW_TAG_union_type |
| && die->parent->tag != DW_TAG_class_type) |
| return 0; |
| |
| fieldname = dwarf2_name (die, cu); |
| type_name = dwarf2_name (die->parent, cu); |
| if (fieldname == NULL || type_name == NULL) |
| return 0; |
| |
| len = strlen (fieldname); |
| return (strncmp (fieldname, type_name, len) == 0 |
| && (type_name[len] == '\0' || type_name[len] == '<')); |
| } |
| |
| /* Check if the given VALUE is a recognized enum |
| dwarf_defaulted_attribute constant according to DWARF5 spec, |
| Table 7.24. */ |
| |
| static bool |
| is_valid_DW_AT_defaulted (ULONGEST value) |
| { |
| switch (value) |
| { |
| case DW_DEFAULTED_no: |
| case DW_DEFAULTED_in_class: |
| case DW_DEFAULTED_out_of_class: |
| return true; |
| } |
| |
| complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value)); |
| return false; |
| } |
| |
| /* Add a member function to the proper fieldlist. */ |
| |
| static void |
| dwarf2_add_member_fn (struct field_info *fip, struct die_info *die, |
| struct type *type, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct attribute *attr; |
| int i; |
| struct fnfieldlist *flp = nullptr; |
| struct fn_field *fnp; |
| const char *fieldname; |
| struct type *this_type; |
| enum dwarf_access_attribute accessibility; |
| |
| if (cu->language == language_ada) |
| error (_("unexpected member function in Ada type")); |
| |
| /* Get name of member function. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| /* Look up member function name in fieldlist. */ |
| for (i = 0; i < fip->fnfieldlists.size (); i++) |
| { |
| if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0) |
| { |
| flp = &fip->fnfieldlists[i]; |
| break; |
| } |
| } |
| |
| /* Create a new fnfieldlist if necessary. */ |
| if (flp == nullptr) |
| { |
| fip->fnfieldlists.emplace_back (); |
| flp = &fip->fnfieldlists.back (); |
| flp->name = fieldname; |
| i = fip->fnfieldlists.size () - 1; |
| } |
| |
| /* Create a new member function field and add it to the vector of |
| fnfieldlists. */ |
| flp->fnfields.emplace_back (); |
| fnp = &flp->fnfields.back (); |
| |
| /* Delay processing of the physname until later. */ |
| if (cu->language == language_cplus) |
| add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname, |
| die, cu); |
| else |
| { |
| const char *physname = dwarf2_physname (fieldname, die, cu); |
| fnp->physname = physname ? physname : ""; |
| } |
| |
| fnp->type = alloc_type (objfile); |
| this_type = read_type_die (die, cu); |
| if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC) |
| { |
| int nparams = TYPE_NFIELDS (this_type); |
| |
| /* TYPE is the domain of this method, and THIS_TYPE is the type |
| of the method itself (TYPE_CODE_METHOD). */ |
| smash_to_method_type (fnp->type, type, |
| TYPE_TARGET_TYPE (this_type), |
| TYPE_FIELDS (this_type), |
| TYPE_NFIELDS (this_type), |
| TYPE_VARARGS (this_type)); |
| |
| /* Handle static member functions. |
| Dwarf2 has no clean way to discern C++ static and non-static |
| member functions. G++ helps GDB by marking the first |
| parameter for non-static member functions (which is the this |
| pointer) as artificial. We obtain this information from |
| read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */ |
| if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0) |
| fnp->voffset = VOFFSET_STATIC; |
| } |
| else |
| complaint (_("member function type missing for '%s'"), |
| dwarf2_full_name (fieldname, die, cu)); |
| |
| /* Get fcontext from DW_AT_containing_type if present. */ |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| fnp->fcontext = die_containing_type (die, cu); |
| |
| /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and |
| is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */ |
| |
| /* Get accessibility. */ |
| attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr != nullptr) |
| accessibility = (enum dwarf_access_attribute) DW_UNSND (attr); |
| else |
| accessibility = dwarf2_default_access_attribute (die, cu); |
| switch (accessibility) |
| { |
| case DW_ACCESS_private: |
| fnp->is_private = 1; |
| break; |
| case DW_ACCESS_protected: |
| fnp->is_protected = 1; |
| break; |
| } |
| |
| /* Check for artificial methods. */ |
| attr = dwarf2_attr (die, DW_AT_artificial, cu); |
| if (attr && DW_UNSND (attr) != 0) |
| fnp->is_artificial = 1; |
| |
| /* Check for defaulted methods. */ |
| attr = dwarf2_attr (die, DW_AT_defaulted, cu); |
| if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr))) |
| fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr); |
| |
| /* Check for deleted methods. */ |
| attr = dwarf2_attr (die, DW_AT_deleted, cu); |
| if (attr != nullptr && DW_UNSND (attr) != 0) |
| fnp->is_deleted = 1; |
| |
| fnp->is_constructor = dwarf2_is_constructor (die, cu); |
| |
| /* Get index in virtual function table if it is a virtual member |
| function. For older versions of GCC, this is an offset in the |
| appropriate virtual table, as specified by DW_AT_containing_type. |
| For everyone else, it is an expression to be evaluated relative |
| to the object address. */ |
| |
| attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu); |
| if (attr != nullptr) |
| { |
| if (attr->form_is_block () && DW_BLOCK (attr)->size > 0) |
| { |
| if (DW_BLOCK (attr)->data[0] == DW_OP_constu) |
| { |
| /* Old-style GCC. */ |
| fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2; |
| } |
| else if (DW_BLOCK (attr)->data[0] == DW_OP_deref |
| || (DW_BLOCK (attr)->size > 1 |
| && DW_BLOCK (attr)->data[0] == DW_OP_deref_size |
| && DW_BLOCK (attr)->data[1] == cu->header.addr_size)) |
| { |
| fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu); |
| if ((fnp->voffset % cu->header.addr_size) != 0) |
| dwarf2_complex_location_expr_complaint (); |
| else |
| fnp->voffset /= cu->header.addr_size; |
| fnp->voffset += 2; |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| if (!fnp->fcontext) |
| { |
| /* If there is no `this' field and no DW_AT_containing_type, |
| we cannot actually find a base class context for the |
| vtable! */ |
| if (TYPE_NFIELDS (this_type) == 0 |
| || !TYPE_FIELD_ARTIFICIAL (this_type, 0)) |
| { |
| complaint (_("cannot determine context for virtual member " |
| "function \"%s\" (offset %s)"), |
| fieldname, sect_offset_str (die->sect_off)); |
| } |
| else |
| { |
| fnp->fcontext |
| = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0)); |
| } |
| } |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location", |
| fieldname); |
| } |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr && DW_UNSND (attr)) |
| { |
| /* GCC does this, as of 2008-08-25; PR debug/37237. */ |
| complaint (_("Member function \"%s\" (offset %s) is virtual " |
| "but the vtable offset is not specified"), |
| fieldname, sect_offset_str (die->sect_off)); |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_CPLUS_DYNAMIC (type) = 1; |
| } |
| } |
| } |
| |
| /* Create the vector of member function fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| if (cu->language == language_ada) |
| error (_("unexpected member functions in Ada type")); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *) |
| TYPE_ALLOC (type, |
| sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ()); |
| |
| for (int i = 0; i < fip->fnfieldlists.size (); i++) |
| { |
| struct fnfieldlist &nf = fip->fnfieldlists[i]; |
| struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i); |
| |
| TYPE_FN_FIELDLIST_NAME (type, i) = nf.name; |
| TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size (); |
| fn_flp->fn_fields = (struct fn_field *) |
| TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ()); |
| |
| for (int k = 0; k < nf.fnfields.size (); ++k) |
| fn_flp->fn_fields[k] = nf.fnfields[k]; |
| } |
| |
| TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size (); |
| } |
| |
| /* Returns non-zero if NAME is the name of a vtable member in CU's |
| language, zero otherwise. */ |
| static int |
| is_vtable_name (const char *name, struct dwarf2_cu *cu) |
| { |
| static const char vptr[] = "_vptr"; |
| |
| /* Look for the C++ form of the vtable. */ |
| if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1])) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* GCC outputs unnamed structures that are really pointers to member |
| functions, with the ABI-specified layout. If TYPE describes |
| such a structure, smash it into a member function type. |
| |
| GCC shouldn't do this; it should just output pointer to member DIEs. |
| This is GCC PR debug/28767. */ |
| |
| static void |
| quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile) |
| { |
| struct type *pfn_type, *self_type, *new_type; |
| |
| /* Check for a structure with no name and two children. */ |
| if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2) |
| return; |
| |
| /* Check for __pfn and __delta members. */ |
| if (TYPE_FIELD_NAME (type, 0) == NULL |
| || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0 |
| || TYPE_FIELD_NAME (type, 1) == NULL |
| || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0) |
| return; |
| |
| /* Find the type of the method. */ |
| pfn_type = TYPE_FIELD_TYPE (type, 0); |
| if (pfn_type == NULL |
| || TYPE_CODE (pfn_type) != TYPE_CODE_PTR |
| || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC) |
| return; |
| |
| /* Look for the "this" argument. */ |
| pfn_type = TYPE_TARGET_TYPE (pfn_type); |
| if (TYPE_NFIELDS (pfn_type) == 0 |
| /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */ |
| || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR) |
| return; |
| |
| self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0)); |
| new_type = alloc_type (objfile); |
| smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type), |
| TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type), |
| TYPE_VARARGS (pfn_type)); |
| smash_to_methodptr_type (type, new_type); |
| } |
| |
| /* If the DIE has a DW_AT_alignment attribute, return its value, doing |
| appropriate error checking and issuing complaints if there is a |
| problem. */ |
| |
| static ULONGEST |
| get_alignment (struct dwarf2_cu *cu, struct die_info *die) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu); |
| |
| if (attr == nullptr) |
| return 0; |
| |
| if (!attr->form_is_constant ()) |
| { |
| complaint (_("DW_AT_alignment must have constant form" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| return 0; |
| } |
| |
| ULONGEST align; |
| if (attr->form == DW_FORM_sdata) |
| { |
| LONGEST val = DW_SND (attr); |
| if (val < 0) |
| { |
| complaint (_("DW_AT_alignment value must not be negative" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| return 0; |
| } |
| align = val; |
| } |
| else |
| align = DW_UNSND (attr); |
| |
| if (align == 0) |
| { |
| complaint (_("DW_AT_alignment value must not be zero" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| return 0; |
| } |
| if ((align & (align - 1)) != 0) |
| { |
| complaint (_("DW_AT_alignment value must be a power of 2" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| return 0; |
| } |
| |
| return align; |
| } |
| |
| /* If the DIE has a DW_AT_alignment attribute, use its value to set |
| the alignment for TYPE. */ |
| |
| static void |
| maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die, |
| struct type *type) |
| { |
| if (!set_type_align (type, get_alignment (cu, die))) |
| complaint (_("DW_AT_alignment value too large" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| /* Check if the given VALUE is a valid enum dwarf_calling_convention |
| constant for a type, according to DWARF5 spec, Table 5.5. */ |
| |
| static bool |
| is_valid_DW_AT_calling_convention_for_type (ULONGEST value) |
| { |
| switch (value) |
| { |
| case DW_CC_normal: |
| case DW_CC_pass_by_reference: |
| case DW_CC_pass_by_value: |
| return true; |
| |
| default: |
| complaint (_("unrecognized DW_AT_calling_convention value " |
| "(%s) for a type"), pulongest (value)); |
| return false; |
| } |
| } |
| |
| /* Check if the given VALUE is a valid enum dwarf_calling_convention |
| constant for a subroutine, according to DWARF5 spec, Table 3.3, and |
| also according to GNU-specific values (see include/dwarf2.h). */ |
| |
| static bool |
| is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value) |
| { |
| switch (value) |
| { |
| case DW_CC_normal: |
| case DW_CC_program: |
| case DW_CC_nocall: |
| return true; |
| |
| case DW_CC_GNU_renesas_sh: |
| case DW_CC_GNU_borland_fastcall_i386: |
| case DW_CC_GDB_IBM_OpenCL: |
| return true; |
| |
| default: |
| complaint (_("unrecognized DW_AT_calling_convention value " |
| "(%s) for a subroutine"), pulongest (value)); |
| return false; |
| } |
| } |
| |
| /* Called when we find the DIE that starts a structure or union scope |
| (definition) to create a type for the structure or union. Fill in |
| the type's name and general properties; the members will not be |
| processed until process_structure_scope. A symbol table entry for |
| the type will also not be done until process_structure_scope (assuming |
| the type has a name). |
| |
| NOTE: we need to call these functions regardless of whether or not the |
| DIE has a DW_AT_name attribute, since it might be an anonymous |
| structure or union. This gets the type entered into our set of |
| user defined types. */ |
| |
| static struct type * |
| read_structure_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| const char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = dwarf2_attr_no_follow (die, DW_AT_signature); |
| if (attr != nullptr) |
| { |
| type = get_DW_AT_signature_type (die, attr, cu); |
| |
| /* The type's CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = alloc_type (objfile); |
| INIT_CPLUS_SPECIFIC (type); |
| |
| name = dwarf2_name (die, cu); |
| if (name != NULL) |
| { |
| if (cu->language == language_cplus |
| || cu->language == language_d |
| || cu->language == language_rust) |
| { |
| const char *full_name = dwarf2_full_name (name, die, cu); |
| |
| /* dwarf2_full_name might have already finished building the DIE's |
| type. If so, there is no need to continue. */ |
| if (get_die_type (die, cu) != NULL) |
| return get_die_type (die, cu); |
| |
| TYPE_NAME (type) = full_name; |
| } |
| else |
| { |
| /* The name is already allocated along with this objfile, so |
| we don't need to duplicate it for the type. */ |
| TYPE_NAME (type) = name; |
| } |
| } |
| |
| if (die->tag == DW_TAG_structure_type) |
| { |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| } |
| else if (die->tag == DW_TAG_union_type) |
| { |
| TYPE_CODE (type) = TYPE_CODE_UNION; |
| } |
| else if (die->tag == DW_TAG_variant_part) |
| { |
| TYPE_CODE (type) = TYPE_CODE_UNION; |
| TYPE_FLAG_DISCRIMINATED_UNION (type) = 1; |
| } |
| else |
| { |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| } |
| |
| if (cu->language == language_cplus && die->tag == DW_TAG_class_type) |
| TYPE_DECLARED_CLASS (type) = 1; |
| |
| /* Store the calling convention in the type if it's available in |
| the die. Otherwise the calling convention remains set to |
| the default value DW_CC_normal. */ |
| attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| if (attr != nullptr |
| && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr))) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_CPLUS_CALLING_CONVENTION (type) |
| = (enum dwarf_calling_convention) (DW_UNSND (attr)); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| if (attr->form_is_constant ()) |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| else |
| { |
| /* For the moment, dynamic type sizes are not supported |
| by GDB's struct type. The actual size is determined |
| on-demand when resolving the type of a given object, |
| so set the type's length to zero for now. Otherwise, |
| we record an expression as the length, and that expression |
| could lead to a very large value, which could eventually |
| lead to us trying to allocate that much memory when creating |
| a value of that type. */ |
| TYPE_LENGTH (type) = 0; |
| } |
| } |
| else |
| { |
| TYPE_LENGTH (type) = 0; |
| } |
| |
| maybe_set_alignment (cu, die, type); |
| |
| if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0)) |
| { |
| /* ICC<14 does not output the required DW_AT_declaration on |
| incomplete types, but gives them a size of zero. */ |
| TYPE_STUB (type) = 1; |
| } |
| else |
| TYPE_STUB_SUPPORTED (type) = 1; |
| |
| if (die_is_declaration (die, cu)) |
| TYPE_STUB (type) = 1; |
| else if (attr == NULL && die->child == NULL |
| && producer_is_realview (cu->producer)) |
| /* RealView does not output the required DW_AT_declaration |
| on incomplete types. */ |
| TYPE_STUB (type) = 1; |
| |
| /* We need to add the type field to the die immediately so we don't |
| infinitely recurse when dealing with pointers to the structure |
| type within the structure itself. */ |
| set_die_type (die, type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| return type; |
| } |
| |
| /* A helper for process_structure_scope that handles a single member |
| DIE. */ |
| |
| static void |
| handle_struct_member_die (struct die_info *child_die, struct type *type, |
| struct field_info *fi, |
| std::vector<struct symbol *> *template_args, |
| struct dwarf2_cu *cu) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable |
| || child_die->tag == DW_TAG_variant_part) |
| { |
| /* NOTE: carlton/2002-11-05: A C++ static data member |
| should be a DW_TAG_member that is a declaration, but |
| all versions of G++ as of this writing (so through at |
| least 3.2.1) incorrectly generate DW_TAG_variable |
| tags for them instead. */ |
| dwarf2_add_field (fi, child_die, cu); |
| } |
| else if (child_die->tag == DW_TAG_subprogram) |
| { |
| /* Rust doesn't have member functions in the C++ sense. |
| However, it does emit ordinary functions as children |
| of a struct DIE. */ |
| if (cu->language == language_rust) |
| read_func_scope (child_die, cu); |
| else |
| { |
| /* C++ member function. */ |
| dwarf2_add_member_fn (fi, child_die, type, cu); |
| } |
| } |
| else if (child_die->tag == DW_TAG_inheritance) |
| { |
| /* C++ base class field. */ |
| dwarf2_add_field (fi, child_die, cu); |
| } |
| else if (type_can_define_types (child_die)) |
| dwarf2_add_type_defn (fi, child_die, cu); |
| else if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| template_args->push_back (arg); |
| } |
| else if (child_die->tag == DW_TAG_variant) |
| { |
| /* In a variant we want to get the discriminant and also add a |
| field for our sole member child. */ |
| struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu); |
| |
| for (die_info *variant_child = child_die->child; |
| variant_child != NULL; |
| variant_child = sibling_die (variant_child)) |
| { |
| if (variant_child->tag == DW_TAG_member) |
| { |
| handle_struct_member_die (variant_child, type, fi, |
| template_args, cu); |
| /* Only handle the one. */ |
| break; |
| } |
| } |
| |
| /* We don't handle this but we might as well report it if we see |
| it. */ |
| if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr) |
| complaint (_("DW_AT_discr_list is not supported yet" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| |
| /* The first field was just added, so we can stash the |
| discriminant there. */ |
| gdb_assert (!fi->fields.empty ()); |
| if (discr == NULL) |
| fi->fields.back ().variant.default_branch = true; |
| else |
| fi->fields.back ().variant.discriminant_value = DW_UNSND (discr); |
| } |
| } |
| |
| /* Finish creating a structure or union type, including filling in |
| its members and creating a symbol for it. */ |
| |
| static void |
| process_structure_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct die_info *child_die; |
| struct type *type; |
| |
| type = get_die_type (die, cu); |
| if (type == NULL) |
| type = read_structure_type (die, cu); |
| |
| /* When reading a DW_TAG_variant_part, we need to notice when we |
| read the discriminant member, so we can record it later in the |
| discriminant_info. */ |
| bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type); |
| sect_offset discr_offset {}; |
| bool has_template_parameters = false; |
| |
| if (is_variant_part) |
| { |
| struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu); |
| if (discr == NULL) |
| { |
| /* Maybe it's a univariant form, an extension we support. |
| In this case arrange not to check the offset. */ |
| is_variant_part = false; |
| } |
| else if (discr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die = follow_die_ref (die, discr, &target_cu); |
| |
| discr_offset = target_die->sect_off; |
| } |
| else |
| { |
| complaint (_("DW_AT_discr does not have DIE reference form" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| is_variant_part = false; |
| } |
| } |
| |
| if (die->child != NULL && ! die_is_declaration (die, cu)) |
| { |
| struct field_info fi; |
| std::vector<struct symbol *> template_args; |
| |
| child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| handle_struct_member_die (child_die, type, &fi, &template_args, cu); |
| |
| if (is_variant_part && discr_offset == child_die->sect_off) |
| fi.fields.back ().variant.is_discriminant = true; |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Attach template arguments to type. */ |
| if (!template_args.empty ()) |
| { |
| has_template_parameters = true; |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size (); |
| TYPE_TEMPLATE_ARGUMENTS (type) |
| = XOBNEWVEC (&objfile->objfile_obstack, |
| struct symbol *, |
| TYPE_N_TEMPLATE_ARGUMENTS (type)); |
| memcpy (TYPE_TEMPLATE_ARGUMENTS (type), |
| template_args.data (), |
| (TYPE_N_TEMPLATE_ARGUMENTS (type) |
| * sizeof (struct symbol *))); |
| } |
| |
| /* Attach fields and member functions to the type. */ |
| if (fi.nfields) |
| dwarf2_attach_fields_to_type (&fi, type, cu); |
| if (!fi.fnfieldlists.empty ()) |
| { |
| dwarf2_attach_fn_fields_to_type (&fi, type, cu); |
| |
| /* Get the type which refers to the base class (possibly this |
| class itself) which contains the vtable pointer for the current |
| class from the DW_AT_containing_type attribute. This use of |
| DW_AT_containing_type is a GNU extension. */ |
| |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| { |
| struct type *t = die_containing_type (die, cu); |
| |
| set_type_vptr_basetype (type, t); |
| if (type == t) |
| { |
| int i; |
| |
| /* Our own class provides vtbl ptr. */ |
| for (i = TYPE_NFIELDS (t) - 1; |
| i >= TYPE_N_BASECLASSES (t); |
| --i) |
| { |
| const char *fieldname = TYPE_FIELD_NAME (t, i); |
| |
| if (is_vtable_name (fieldname, cu)) |
| { |
| set_type_vptr_fieldno (type, i); |
| break; |
| } |
| } |
| |
| /* Complain if virtual function table field not found. */ |
| if (i < TYPE_N_BASECLASSES (t)) |
| complaint (_("virtual function table pointer " |
| "not found when defining class '%s'"), |
| TYPE_NAME (type) ? TYPE_NAME (type) : ""); |
| } |
| else |
| { |
| set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t)); |
| } |
| } |
| else if (cu->producer |
| && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition")) |
| { |
| /* The IBM XLC compiler does not provide direct indication |
| of the containing type, but the vtable pointer is |
| always named __vfp. */ |
| |
| int i; |
| |
| for (i = TYPE_NFIELDS (type) - 1; |
| i >= TYPE_N_BASECLASSES (type); |
| --i) |
| { |
| if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0) |
| { |
| set_type_vptr_fieldno (type, i); |
| set_type_vptr_basetype (type, type); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Copy fi.typedef_field_list linked list elements content into the |
| allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */ |
| if (!fi.typedef_field_list.empty ()) |
| { |
| int count = fi.typedef_field_list.size (); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_TYPEDEF_FIELD_ARRAY (type) |
| = ((struct decl_field *) |
| TYPE_ALLOC (type, |
| sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count)); |
| TYPE_TYPEDEF_FIELD_COUNT (type) = count; |
| |
| for (int i = 0; i < fi.typedef_field_list.size (); ++i) |
| TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i]; |
| } |
| |
| /* Copy fi.nested_types_list linked list elements content into the |
| allocated array TYPE_NESTED_TYPES_ARRAY (type). */ |
| if (!fi.nested_types_list.empty () && cu->language != language_ada) |
| { |
| int count = fi.nested_types_list.size (); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_NESTED_TYPES_ARRAY (type) |
| = ((struct decl_field *) |
| TYPE_ALLOC (type, sizeof (struct decl_field) * count)); |
| TYPE_NESTED_TYPES_COUNT (type) = count; |
| |
| for (int i = 0; i < fi.nested_types_list.size (); ++i) |
| TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i]; |
| } |
| } |
| |
| quirk_gcc_member_function_pointer (type, objfile); |
| if (cu->language == language_rust && die->tag == DW_TAG_union_type) |
| cu->rust_unions.push_back (type); |
| |
| /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its |
| snapshots) has been known to create a die giving a declaration |
| for a class that has, as a child, a die giving a definition for a |
| nested class. So we have to process our children even if the |
| current die is a declaration. Normally, of course, a declaration |
| won't have any children at all. */ |
| |
| child_die = die->child; |
| |
| while (child_die != NULL && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable |
| || child_die->tag == DW_TAG_inheritance |
| || child_die->tag == DW_TAG_template_value_param |
| || child_die->tag == DW_TAG_template_type_param) |
| { |
| /* Do nothing. */ |
| } |
| else |
| process_die (child_die, cu); |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Do not consider external references. According to the DWARF standard, |
| these DIEs are identified by the fact that they have no byte_size |
| attribute, and a declaration attribute. */ |
| if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL |
| || !die_is_declaration (die, cu)) |
| { |
| struct symbol *sym = new_symbol (die, type, cu); |
| |
| if (has_template_parameters) |
| { |
| struct symtab *symtab; |
| if (sym != nullptr) |
| symtab = symbol_symtab (sym); |
| else if (cu->line_header != nullptr) |
| { |
| /* Any related symtab will do. */ |
| symtab |
| = cu->line_header->file_names ()[0].symtab; |
| } |
| else |
| { |
| symtab = nullptr; |
| complaint (_("could not find suitable " |
| "symtab for template parameter" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| } |
| |
| if (symtab != nullptr) |
| { |
| /* Make sure that the symtab is set on the new symbols. |
| Even though they don't appear in this symtab directly, |
| other parts of gdb assume that symbols do, and this is |
| reasonably true. */ |
| for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i) |
| symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab); |
| } |
| } |
| } |
| } |
| |
| /* Assuming DIE is an enumeration type, and TYPE is its associated type, |
| update TYPE using some information only available in DIE's children. */ |
| |
| static void |
| update_enumeration_type_from_children (struct die_info *die, |
| struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| int unsigned_enum = 1; |
| int flag_enum = 1; |
| ULONGEST mask = 0; |
| |
| auto_obstack obstack; |
| |
| for (child_die = die->child; |
| child_die != NULL && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| struct attribute *attr; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| const char *name; |
| |
| if (child_die->tag != DW_TAG_enumerator) |
| continue; |
| |
| attr = dwarf2_attr (child_die, DW_AT_const_value, cu); |
| if (attr == NULL) |
| continue; |
| |
| name = dwarf2_name (child_die, cu); |
| if (name == NULL) |
| name = "<anonymous enumerator>"; |
| |
| dwarf2_const_value_attr (attr, type, name, &obstack, cu, |
| &value, &bytes, &baton); |
| if (value < 0) |
| { |
| unsigned_enum = 0; |
| flag_enum = 0; |
| } |
| else if ((mask & value) != 0) |
| flag_enum = 0; |
| else |
| mask |= value; |
| |
| /* If we already know that the enum type is neither unsigned, nor |
| a flag type, no need to look at the rest of the enumerates. */ |
| if (!unsigned_enum && !flag_enum) |
| break; |
| } |
| |
| if (unsigned_enum) |
| TYPE_UNSIGNED (type) = 1; |
| if (flag_enum) |
| TYPE_FLAG_ENUM (type) = 1; |
| } |
| |
| /* Given a DW_AT_enumeration_type die, set its type. We do not |
| complete the type's fields yet, or create any symbols. */ |
| |
| static struct type * |
| read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| const char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = dwarf2_attr_no_follow (die, DW_AT_signature); |
| if (attr != nullptr) |
| { |
| type = get_DW_AT_signature_type (die, attr, cu); |
| |
| /* The type's CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = alloc_type (objfile); |
| |
| TYPE_CODE (type) = TYPE_CODE_ENUM; |
| name = dwarf2_full_name (NULL, die, cu); |
| if (name != NULL) |
| TYPE_NAME (type) = name; |
| |
| attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (attr != NULL) |
| { |
| struct type *underlying_type = die_type (die, cu); |
| |
| TYPE_TARGET_TYPE (type) = underlying_type; |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| } |
| else |
| { |
| TYPE_LENGTH (type) = 0; |
| } |
| |
| maybe_set_alignment (cu, die, type); |
| |
| /* The enumeration DIE can be incomplete. In Ada, any type can be |
| declared as private in the package spec, and then defined only |
| inside the package body. Such types are known as Taft Amendment |
| Types. When another package uses such a type, an incomplete DIE |
| may be generated by the compiler. */ |
| if (die_is_declaration (die, cu)) |
| TYPE_STUB (type) = 1; |
| |
| /* Finish the creation of this type by using the enum's children. |
| We must call this even when the underlying type has been provided |
| so that we can determine if we're looking at a "flag" enum. */ |
| update_enumeration_type_from_children (die, type, cu); |
| |
| /* If this type has an underlying type that is not a stub, then we |
| may use its attributes. We always use the "unsigned" attribute |
| in this situation, because ordinarily we guess whether the type |
| is unsigned -- but the guess can be wrong and the underlying type |
| can tell us the reality. However, we defer to a local size |
| attribute if one exists, because this lets the compiler override |
| the underlying type if needed. */ |
| if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type))) |
| { |
| TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type)); |
| if (TYPE_LENGTH (type) == 0) |
| TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type)); |
| if (TYPE_RAW_ALIGN (type) == 0 |
| && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0) |
| set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type))); |
| } |
| |
| TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Given a pointer to a die which begins an enumeration, process all |
| the dies that define the members of the enumeration, and create the |
| symbol for the enumeration type. |
| |
| NOTE: We reverse the order of the element list. */ |
| |
| static void |
| process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type == NULL) |
| this_type = read_enumeration_type (die, cu); |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die; |
| struct symbol *sym; |
| std::vector<struct field> fields; |
| const char *name; |
| |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag != DW_TAG_enumerator) |
| { |
| process_die (child_die, cu); |
| } |
| else |
| { |
| name = dwarf2_name (child_die, cu); |
| if (name) |
| { |
| sym = new_symbol (child_die, this_type, cu); |
| |
| fields.emplace_back (); |
| struct field &field = fields.back (); |
| |
| FIELD_NAME (field) = sym->linkage_name (); |
| FIELD_TYPE (field) = NULL; |
| SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym)); |
| FIELD_BITSIZE (field) = 0; |
| } |
| } |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| if (!fields.empty ()) |
| { |
| TYPE_NFIELDS (this_type) = fields.size (); |
| TYPE_FIELDS (this_type) = (struct field *) |
| TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ()); |
| memcpy (TYPE_FIELDS (this_type), fields.data (), |
| sizeof (struct field) * fields.size ()); |
| } |
| } |
| |
| /* If we are reading an enum from a .debug_types unit, and the enum |
| is a declaration, and the enum is not the signatured type in the |
| unit, then we do not want to add a symbol for it. Adding a |
| symbol would in some cases obscure the true definition of the |
| enum, giving users an incomplete type when the definition is |
| actually available. Note that we do not want to do this for all |
| enums which are just declarations, because C++0x allows forward |
| enum declarations. */ |
| if (cu->per_cu->is_debug_types |
| && die_is_declaration (die, cu)) |
| { |
| struct signatured_type *sig_type; |
| |
| sig_type = (struct signatured_type *) cu->per_cu; |
| gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0); |
| if (sig_type->type_offset_in_section != die->sect_off) |
| return; |
| } |
| |
| new_symbol (die, this_type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_array_type DIE and put it in |
| the DIE's type field. For now, this only handles one dimensional |
| arrays. */ |
| |
| static struct type * |
| read_array_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct die_info *child_die; |
| struct type *type; |
| struct type *element_type, *range_type, *index_type; |
| struct attribute *attr; |
| const char *name; |
| struct dynamic_prop *byte_stride_prop = NULL; |
| unsigned int bit_stride = 0; |
| |
| element_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_stride, cu); |
| if (attr != NULL) |
| { |
| int stride_ok; |
| struct type *prop_type |
| = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| |
| byte_stride_prop |
| = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop)); |
| stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop, |
| prop_type); |
| if (!stride_ok) |
| { |
| complaint (_("unable to read array DW_AT_byte_stride " |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| /* Ignore this attribute. We will likely not be able to print |
| arrays of this type correctly, but there is little we can do |
| to help if we cannot read the attribute's value. */ |
| byte_stride_prop = NULL; |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_bit_stride, cu); |
| if (attr != NULL) |
| bit_stride = DW_UNSND (attr); |
| |
| /* Irix 6.2 native cc creates array types without children for |
| arrays with unspecified length. */ |
| if (die->child == NULL) |
| { |
| index_type = objfile_type (objfile)->builtin_int; |
| range_type = create_static_range_type (NULL, index_type, 0, -1); |
| type = create_array_type_with_stride (NULL, element_type, range_type, |
| byte_stride_prop, bit_stride); |
| return set_die_type (die, type, cu); |
| } |
| |
| std::vector<struct type *> range_types; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_subrange_type) |
| { |
| struct type *child_type = read_type_die (child_die, cu); |
| |
| if (child_type != NULL) |
| { |
| /* The range type was succesfully read. Save it for the |
| array type creation. */ |
| range_types.push_back (child_type); |
| } |
| } |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Dwarf2 dimensions are output from left to right, create the |
| necessary array types in backwards order. */ |
| |
| type = element_type; |
| |
| if (read_array_order (die, cu) == DW_ORD_col_major) |
| { |
| int i = 0; |
| |
| while (i < range_types.size ()) |
| type = create_array_type_with_stride (NULL, type, range_types[i++], |
| byte_stride_prop, bit_stride); |
| } |
| else |
| { |
| size_t ndim = range_types.size (); |
| while (ndim-- > 0) |
| type = create_array_type_with_stride (NULL, type, range_types[ndim], |
| byte_stride_prop, bit_stride); |
| } |
| |
| /* Understand Dwarf2 support for vector types (like they occur on |
| the PowerPC w/ AltiVec). Gcc just adds another attribute to the |
| array type. This is not part of the Dwarf2/3 standard yet, but a |
| custom vendor extension. The main difference between a regular |
| array and the vector variant is that vectors are passed by value |
| to functions. */ |
| attr = dwarf2_attr (die, DW_AT_GNU_vector, cu); |
| if (attr != nullptr) |
| make_vector_type (type); |
| |
| /* The DIE may have DW_AT_byte_size set. For example an OpenCL |
| implementation may choose to implement triple vectors using this |
| attribute. */ |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| if (DW_UNSND (attr) >= TYPE_LENGTH (type)) |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| else |
| complaint (_("DW_AT_byte_size for array type smaller " |
| "than the total size of elements")); |
| } |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| TYPE_NAME (type) = name; |
| |
| maybe_set_alignment (cu, die, type); |
| |
| /* Install the type in the die. */ |
| set_die_type (die, type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| return type; |
| } |
| |
| static enum dwarf_array_dim_ordering |
| read_array_order (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_ordering, cu); |
| |
| if (attr != nullptr) |
| return (enum dwarf_array_dim_ordering) DW_SND (attr); |
| |
| /* GNU F77 is a special case, as at 08/2004 array type info is the |
| opposite order to the dwarf2 specification, but data is still |
| laid out as per normal fortran. |
| |
| FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need |
| version checking. */ |
| |
| if (cu->language == language_fortran |
| && cu->producer && strstr (cu->producer, "GNU F77")) |
| { |
| return DW_ORD_row_major; |
| } |
| |
| switch (cu->language_defn->la_array_ordering) |
| { |
| case array_column_major: |
| return DW_ORD_col_major; |
| case array_row_major: |
| default: |
| return DW_ORD_row_major; |
| }; |
| } |
| |
| /* Extract all information from a DW_TAG_set_type DIE and put it in |
| the DIE's type field. */ |
| |
| static struct type * |
| read_set_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *domain_type, *set_type; |
| struct attribute *attr; |
| |
| domain_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| set_type = get_die_type (die, cu); |
| if (set_type) |
| return set_type; |
| |
| set_type = create_set_type (NULL, domain_type); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| TYPE_LENGTH (set_type) = DW_UNSND (attr); |
| |
| maybe_set_alignment (cu, die, set_type); |
| |
| return set_die_type (die, set_type, cu); |
| } |
| |
| /* A helper for read_common_block that creates a locexpr baton. |
| SYM is the symbol which we are marking as computed. |
| COMMON_DIE is the DIE for the common block. |
| COMMON_LOC is the location expression attribute for the common |
| block itself. |
| MEMBER_LOC is the location expression attribute for the particular |
| member of the common block that we are processing. |
| CU is the CU from which the above come. */ |
| |
| static void |
| mark_common_block_symbol_computed (struct symbol *sym, |
| struct die_info *common_die, |
| struct attribute *common_loc, |
| struct attribute *member_loc, |
| struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_locexpr_baton *baton; |
| gdb_byte *ptr; |
| unsigned int cu_off; |
| enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile)); |
| LONGEST offset = 0; |
| |
| gdb_assert (common_loc && member_loc); |
| gdb_assert (common_loc->form_is_block ()); |
| gdb_assert (member_loc->form_is_block () |
| || member_loc->form_is_constant ()); |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| |
| baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */; |
| |
| if (member_loc->form_is_constant ()) |
| { |
| offset = dwarf2_get_attr_constant_value (member_loc, 0); |
| baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size; |
| } |
| else |
| baton->size += DW_BLOCK (member_loc)->size; |
| |
| ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size); |
| baton->data = ptr; |
| |
| *ptr++ = DW_OP_call4; |
| cu_off = common_die->sect_off - cu->per_cu->sect_off; |
| store_unsigned_integer (ptr, 4, byte_order, cu_off); |
| ptr += 4; |
| |
| if (member_loc->form_is_constant ()) |
| { |
| *ptr++ = DW_OP_addr; |
| store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset); |
| ptr += cu->header.addr_size; |
| } |
| else |
| { |
| /* We have to copy the data here, because DW_OP_call4 will only |
| use a DW_AT_location attribute. */ |
| memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size); |
| ptr += DW_BLOCK (member_loc)->size; |
| } |
| |
| *ptr++ = DW_OP_plus; |
| gdb_assert (ptr - baton->data == baton->size); |
| |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index; |
| } |
| |
| /* Create appropriate locally-scoped variables for all the |
| DW_TAG_common_block entries. Also create a struct common_block |
| listing all such variables for `info common'. COMMON_BLOCK_DOMAIN |
| is used to separate the common blocks name namespace from regular |
| variable names. */ |
| |
| static void |
| read_common_block (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| /* Support the .debug_loc offsets. */ |
| if (attr->form_is_block ()) |
| { |
| /* Ok. */ |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| attr = NULL; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "common block member"); |
| attr = NULL; |
| } |
| } |
| |
| if (die->child != NULL) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct die_info *child_die; |
| size_t n_entries = 0, size; |
| struct common_block *common_block; |
| struct symbol *sym; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| ++n_entries; |
| |
| size = (sizeof (struct common_block) |
| + (n_entries - 1) * sizeof (struct symbol *)); |
| common_block |
| = (struct common_block *) obstack_alloc (&objfile->objfile_obstack, |
| size); |
| memset (common_block->contents, 0, n_entries * sizeof (struct symbol *)); |
| common_block->n_entries = 0; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| /* Create the symbol in the DW_TAG_common_block block in the current |
| symbol scope. */ |
| sym = new_symbol (child_die, NULL, cu); |
| if (sym != NULL) |
| { |
| struct attribute *member_loc; |
| |
| common_block->contents[common_block->n_entries++] = sym; |
| |
| member_loc = dwarf2_attr (child_die, DW_AT_data_member_location, |
| cu); |
| if (member_loc) |
| { |
| /* GDB has handled this for a long time, but it is |
| not specified by DWARF. It seems to have been |
| emitted by gfortran at least as recently as: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */ |
| complaint (_("Variable in common block has " |
| "DW_AT_data_member_location " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| |
| if (member_loc->form_is_section_offset ()) |
| dwarf2_complex_location_expr_complaint (); |
| else if (member_loc->form_is_constant () |
| || member_loc->form_is_block ()) |
| { |
| if (attr != nullptr) |
| mark_common_block_symbol_computed (sym, die, attr, |
| member_loc, cu); |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| } |
| } |
| } |
| |
| sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu); |
| SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block; |
| } |
| } |
| |
| /* Create a type for a C++ namespace. */ |
| |
| static struct type * |
| read_namespace_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *previous_prefix, *name; |
| int is_anonymous; |
| struct type *type; |
| |
| /* For extensions, reuse the type of the original namespace. */ |
| if (dwarf2_attr (die, DW_AT_extension, cu) != NULL) |
| { |
| struct die_info *ext_die; |
| struct dwarf2_cu *ext_cu = cu; |
| |
| ext_die = dwarf2_extension (die, &ext_cu); |
| type = read_type_die (ext_die, ext_cu); |
| |
| /* EXT_CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| name = namespace_name (die, &is_anonymous, cu); |
| |
| /* Now build the name of the current namespace. */ |
| |
| previous_prefix = determine_prefix (die, cu); |
| if (previous_prefix[0] != '\0') |
| name = typename_concat (&objfile->objfile_obstack, |
| previous_prefix, name, 0, cu); |
| |
| /* Create the type. */ |
| type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a namespace scope. */ |
| |
| static void |
| read_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| int is_anonymous; |
| |
| /* Add a symbol associated to this if we haven't seen the namespace |
| before. Also, add a using directive if it's an anonymous |
| namespace. */ |
| |
| if (dwarf2_attr (die, DW_AT_extension, cu) == NULL) |
| { |
| struct type *type; |
| |
| type = read_type_die (die, cu); |
| new_symbol (die, type, cu); |
| |
| namespace_name (die, &is_anonymous, cu); |
| if (is_anonymous) |
| { |
| const char *previous_prefix = determine_prefix (die, cu); |
| |
| std::vector<const char *> excludes; |
| add_using_directive (using_directives (cu), |
| previous_prefix, TYPE_NAME (type), NULL, |
| NULL, excludes, 0, &objfile->objfile_obstack); |
| } |
| } |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| } |
| |
| /* Read a Fortran module as type. This DIE can be only a declaration used for |
| imported module. Still we need that type as local Fortran "use ... only" |
| declaration imports depend on the created type in determine_prefix. */ |
| |
| static struct type * |
| read_module_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *module_name; |
| struct type *type; |
| |
| module_name = dwarf2_name (die, cu); |
| type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a Fortran module. */ |
| |
| static void |
| read_module (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die = die->child; |
| struct type *type; |
| |
| type = read_type_die (die, cu); |
| new_symbol (die, type, cu); |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| /* Return the name of the namespace represented by DIE. Set |
| *IS_ANONYMOUS to tell whether or not the namespace is an anonymous |
| namespace. */ |
| |
| static const char * |
| namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu) |
| { |
| struct die_info *current_die; |
| const char *name = NULL; |
| |
| /* Loop through the extensions until we find a name. */ |
| |
| for (current_die = die; |
| current_die != NULL; |
| current_die = dwarf2_extension (die, &cu)) |
| { |
| /* We don't use dwarf2_name here so that we can detect the absence |
| of a name -> anonymous namespace. */ |
| name = dwarf2_string_attr (die, DW_AT_name, cu); |
| |
| if (name != NULL) |
| break; |
| } |
| |
| /* Is it an anonymous namespace? */ |
| |
| *is_anonymous = (name == NULL); |
| if (*is_anonymous) |
| name = CP_ANONYMOUS_NAMESPACE_STR; |
| |
| return name; |
| } |
| |
| /* Extract all information from a DW_TAG_pointer_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct gdbarch *gdbarch |
| = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile); |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type; |
| struct attribute *attr_byte_size; |
| struct attribute *attr_address_class; |
| int byte_size, addr_class; |
| struct type *target_type; |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_pointer_type (target_type); |
| |
| attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr_byte_size) |
| byte_size = DW_UNSND (attr_byte_size); |
| else |
| byte_size = cu_header->addr_size; |
| |
| attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu); |
| if (attr_address_class) |
| addr_class = DW_UNSND (attr_address_class); |
| else |
| addr_class = DW_ADDR_none; |
| |
| ULONGEST alignment = get_alignment (cu, die); |
| |
| /* If the pointer size, alignment, or address class is different |
| than the default, create a type variant marked as such and set |
| the length accordingly. */ |
| if (TYPE_LENGTH (type) != byte_size |
| || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0 |
| && alignment != TYPE_RAW_ALIGN (type)) |
| || addr_class != DW_ADDR_none) |
| { |
| if (gdbarch_address_class_type_flags_p (gdbarch)) |
| { |
| int type_flags; |
| |
| type_flags = gdbarch_address_class_type_flags |
| (gdbarch, byte_size, addr_class); |
| gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
| == 0); |
| type = make_type_with_address_space (type, type_flags); |
| } |
| else if (TYPE_LENGTH (type) != byte_size) |
| { |
| complaint (_("invalid pointer size %d"), byte_size); |
| } |
| else if (TYPE_RAW_ALIGN (type) != alignment) |
| { |
| complaint (_("Invalid DW_AT_alignment" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| else |
| { |
| /* Should we also complain about unhandled address classes? */ |
| } |
| } |
| |
| TYPE_LENGTH (type) = byte_size; |
| set_type_align (type, alignment); |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| struct type *to_type; |
| struct type *domain; |
| |
| to_type = die_type (die, cu); |
| domain = die_containing_type (die, cu); |
| |
| /* The calls above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD) |
| type = lookup_methodptr_type (to_type); |
| else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC) |
| { |
| struct type *new_type |
| = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile); |
| |
| smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type), |
| TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type), |
| TYPE_VARARGS (to_type)); |
| type = lookup_methodptr_type (new_type); |
| } |
| else |
| type = lookup_memberptr_type (to_type, domain); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu, |
| enum type_code refcode) |
| { |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type, *target_type; |
| struct attribute *attr; |
| |
| gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_reference_type (target_type, refcode); |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| } |
| else |
| { |
| TYPE_LENGTH (type) = cu_header->addr_size; |
| } |
| maybe_set_alignment (cu, die, type); |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Add the given cv-qualifiers to the element type of the array. GCC |
| outputs DWARF type qualifiers that apply to an array, not the |
| element type. But GDB relies on the array element type to carry |
| the cv-qualifiers. This mimics section 6.7.3 of the C99 |
| specification. */ |
| |
| static struct type * |
| add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu, |
| struct type *base_type, int cnst, int voltl) |
| { |
| struct type *el_type, *inner_array; |
| |
| base_type = copy_type (base_type); |
| inner_array = base_type; |
| |
| while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY) |
| { |
| TYPE_TARGET_TYPE (inner_array) = |
| copy_type (TYPE_TARGET_TYPE (inner_array)); |
| inner_array = TYPE_TARGET_TYPE (inner_array); |
| } |
| |
| el_type = TYPE_TARGET_TYPE (inner_array); |
| cnst |= TYPE_CONST (el_type); |
| voltl |= TYPE_VOLATILE (el_type); |
| TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL); |
| |
| return set_die_type (die, base_type, cu); |
| } |
| |
| static struct type * |
| read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| /* In case the const qualifier is applied to an array type, the element type |
| is so qualified, not the array type (section 6.7.3 of C99). */ |
| if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY) |
| return add_array_cv_type (die, cu, base_type, 1, 0); |
| |
| cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| static struct type * |
| read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| /* In case the volatile qualifier is applied to an array type, the |
| element type is so qualified, not the array type (section 6.7.3 |
| of C99). */ |
| if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY) |
| return add_array_cv_type (die, cu, base_type, 0, 1); |
| |
| cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Handle DW_TAG_restrict_type. */ |
| |
| static struct type * |
| read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| cv_type = make_restrict_type (base_type); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Handle DW_TAG_atomic_type. */ |
| |
| static struct type * |
| read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| cv_type = make_atomic_type (base_type); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_string_type DIE and add to |
| the user defined type vector. It isn't really a user defined type, |
| but it behaves like one, with other DIE's using an AT_user_def_type |
| attribute to reference it. */ |
| |
| static struct type * |
| read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct type *type, *range_type, *index_type, *char_type; |
| struct attribute *attr; |
| struct dynamic_prop prop; |
| bool length_is_constant = true; |
| LONGEST length; |
| |
| /* There are a couple of places where bit sizes might be made use of |
| when parsing a DW_TAG_string_type, however, no producer that we know |
| of make use of these. Handling bit sizes that are a multiple of the |
| byte size is easy enough, but what about other bit sizes? Lets deal |
| with that problem when we have to. Warn about these attributes being |
| unsupported, then parse the type and ignore them like we always |
| have. */ |
| if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr |
| || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr) |
| { |
| static bool warning_printed = false; |
| if (!warning_printed) |
| { |
| warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not " |
| "currently supported on DW_TAG_string_type.")); |
| warning_printed = true; |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_string_length, cu); |
| if (attr != nullptr && !attr->form_is_constant ()) |
| { |
| /* The string length describes the location at which the length of |
| the string can be found. The size of the length field can be |
| specified with one of the attributes below. */ |
| struct type *prop_type; |
| struct attribute *len |
| = dwarf2_attr (die, DW_AT_string_length_byte_size, cu); |
| if (len == nullptr) |
| len = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (len != nullptr && len->form_is_constant ()) |
| { |
| /* Pass 0 as the default as we know this attribute is constant |
| and the default value will not be returned. */ |
| LONGEST sz = dwarf2_get_attr_constant_value (len, 0); |
| prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true); |
| } |
| else |
| { |
| /* If the size is not specified then we assume it is the size of |
| an address on this target. */ |
| prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true); |
| } |
| |
| /* Convert the attribute into a dynamic property. */ |
| if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| length = 1; |
| else |
| length_is_constant = false; |
| } |
| else if (attr != nullptr) |
| { |
| /* This DW_AT_string_length just contains the length with no |
| indirection. There's no need to create a dynamic property in this |
| case. Pass 0 for the default value as we know it will not be |
| returned in this case. */ |
| length = dwarf2_get_attr_constant_value (attr, 0); |
| } |
| else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr) |
| { |
| /* We don't currently support non-constant byte sizes for strings. */ |
| length = dwarf2_get_attr_constant_value (attr, 1); |
| } |
| else |
| { |
| /* Use 1 as a fallback length if we have nothing else. */ |
| length = 1; |
| } |
| |
| index_type = objfile_type (objfile)->builtin_int; |
| if (length_is_constant) |
| range_type = create_static_range_type (NULL, index_type, 1, length); |
| else |
| { |
| struct dynamic_prop low_bound; |
| |
| low_bound.kind = PROP_CONST; |
| low_bound.data.const_val = 1; |
| range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0); |
| } |
| char_type = language_string_char_type (cu->language_defn, gdbarch); |
| type = create_string_type (NULL, char_type, range_type); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Assuming that DIE corresponds to a function, returns nonzero |
| if the function is prototyped. */ |
| |
| static int |
| prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_prototyped, cu); |
| if (attr && (DW_UNSND (attr) != 0)) |
| return 1; |
| |
| /* The DWARF standard implies that the DW_AT_prototyped attribute |
| is only meaningful for C, but the concept also extends to other |
| languages that allow unprototyped functions (Eg: Objective C). |
| For all other languages, assume that functions are always |
| prototyped. */ |
| if (cu->language != language_c |
| && cu->language != language_objc |
| && cu->language != language_opencl) |
| return 1; |
| |
| /* RealView does not emit DW_AT_prototyped. We can not distinguish |
| prototyped and unprototyped functions; default to prototyped, |
| since that is more common in modern code (and RealView warns |
| about unprototyped functions). */ |
| if (producer_is_realview (cu->producer)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Handle DIES due to C code like: |
| |
| struct foo |
| { |
| int (*funcp)(int a, long l); |
| int b; |
| }; |
| |
| ('funcp' generates a DW_TAG_subroutine_type DIE). */ |
| |
| static struct type * |
| read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct type *type; /* Type that this function returns. */ |
| struct type *ftype; /* Function that returns above type. */ |
| struct attribute *attr; |
| |
| type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| ftype = get_die_type (die, cu); |
| if (ftype) |
| return ftype; |
| |
| ftype = lookup_function_type (type); |
| |
| if (prototyped_function_p (die, cu)) |
| TYPE_PROTOTYPED (ftype) = 1; |
| |
| /* Store the calling convention in the type if it's available in |
| the subroutine die. Otherwise set the calling convention to |
| the default value DW_CC_normal. */ |
| attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| if (attr != nullptr |
| && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr))) |
| TYPE_CALLING_CONVENTION (ftype) |
| = (enum dwarf_calling_convention) (DW_UNSND (attr)); |
| else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL")) |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL; |
| else |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal; |
| |
| /* Record whether the function returns normally to its caller or not |
| if the DWARF producer set that information. */ |
| attr = dwarf2_attr (die, DW_AT_noreturn, cu); |
| if (attr && (DW_UNSND (attr) != 0)) |
| TYPE_NO_RETURN (ftype) = 1; |
| |
| /* We need to add the subroutine type to the die immediately so |
| we don't infinitely recurse when dealing with parameters |
| declared as the same subroutine type. */ |
| set_die_type (die, ftype, cu); |
| |
| if (die->child != NULL) |
| { |
| struct type *void_type = objfile_type (objfile)->builtin_void; |
| struct die_info *child_die; |
| int nparams, iparams; |
| |
| /* Count the number of parameters. |
| FIXME: GDB currently ignores vararg functions, but knows about |
| vararg member functions. */ |
| nparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| nparams++; |
| else if (child_die->tag == DW_TAG_unspecified_parameters) |
| TYPE_VARARGS (ftype) = 1; |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Allocate storage for parameters and fill them in. */ |
| TYPE_NFIELDS (ftype) = nparams; |
| TYPE_FIELDS (ftype) = (struct field *) |
| TYPE_ZALLOC (ftype, nparams * sizeof (struct field)); |
| |
| /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it |
| even if we error out during the parameters reading below. */ |
| for (iparams = 0; iparams < nparams; iparams++) |
| TYPE_FIELD_TYPE (ftype, iparams) = void_type; |
| |
| iparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| { |
| struct type *arg_type; |
| |
| /* DWARF version 2 has no clean way to discern C++ |
| static and non-static member functions. G++ helps |
| GDB by marking the first parameter for non-static |
| member functions (which is the this pointer) as |
| artificial. We pass this information to |
| dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. |
| |
| DWARF version 3 added DW_AT_object_pointer, which GCC |
| 4.5 does not yet generate. */ |
| attr = dwarf2_attr (child_die, DW_AT_artificial, cu); |
| if (attr != nullptr) |
| TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr); |
| else |
| TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0; |
| arg_type = die_type (child_die, cu); |
| |
| /* RealView does not mark THIS as const, which the testsuite |
| expects. GCC marks THIS as const in method definitions, |
| but not in the class specifications (GCC PR 43053). */ |
| if (cu->language == language_cplus && !TYPE_CONST (arg_type) |
| && TYPE_FIELD_ARTIFICIAL (ftype, iparams)) |
| { |
| int is_this = 0; |
| struct dwarf2_cu *arg_cu = cu; |
| const char *name = dwarf2_name (child_die, cu); |
| |
| attr = dwarf2_attr (die, DW_AT_object_pointer, cu); |
| if (attr != nullptr) |
| { |
| /* If the compiler emits this, use it. */ |
| if (follow_die_ref (die, attr, &arg_cu) == child_die) |
| is_this = 1; |
| } |
| else if (name && strcmp (name, "this") == 0) |
| /* Function definitions will have the argument names. */ |
| is_this = 1; |
| else if (name == NULL && iparams == 0) |
| /* Declarations may not have the names, so like |
| elsewhere in GDB, assume an artificial first |
| argument is "this". */ |
| is_this = 1; |
| |
| if (is_this) |
| arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type), |
| arg_type, 0); |
| } |
| |
| TYPE_FIELD_TYPE (ftype, iparams) = arg_type; |
| iparams++; |
| } |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| return ftype; |
| } |
| |
| static struct type * |
| read_typedef (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *name = NULL; |
| struct type *this_type, *target_type; |
| |
| name = dwarf2_full_name (NULL, die, cu); |
| this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name); |
| TYPE_TARGET_STUB (this_type) = 1; |
| set_die_type (die, this_type, cu); |
| target_type = die_type (die, cu); |
| if (target_type != this_type) |
| TYPE_TARGET_TYPE (this_type) = target_type; |
| else |
| { |
| /* Self-referential typedefs are, it seems, not allowed by the DWARF |
| spec and cause infinite loops in GDB. */ |
| complaint (_("Self-referential DW_TAG_typedef " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| TYPE_TARGET_TYPE (this_type) = NULL; |
| } |
| return this_type; |
| } |
| |
| /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT |
| (which may be different from NAME) to the architecture back-end to allow |
| it to guess the correct format if necessary. */ |
| |
| static struct type * |
| dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name, |
| const char *name_hint, enum bfd_endian byte_order) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| const struct floatformat **format; |
| struct type *type; |
| |
| format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits); |
| if (format) |
| type = init_float_type (objfile, bits, name, format, byte_order); |
| else |
| type = init_type (objfile, TYPE_CODE_ERROR, bits, name); |
| |
| return type; |
| } |
| |
| /* Allocate an integer type of size BITS and name NAME. */ |
| |
| static struct type * |
| dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile, |
| int bits, int unsigned_p, const char *name) |
| { |
| struct type *type; |
| |
| /* Versions of Intel's C Compiler generate an integer type called "void" |
| instead of using DW_TAG_unspecified_type. This has been seen on |
| at least versions 14, 17, and 18. */ |
| if (bits == 0 && producer_is_icc (cu) && name != nullptr |
| && strcmp (name, "void") == 0) |
| type = objfile_type (objfile)->builtin_void; |
| else |
| type = init_integer_type (objfile, bits, unsigned_p, name); |
| |
| return type; |
| } |
| |
| /* Initialise and return a floating point type of size BITS suitable for |
| use as a component of a complex number. The NAME_HINT is passed through |
| when initialising the floating point type and is the name of the complex |
| type. |
| |
| As DWARF doesn't currently provide an explicit name for the components |
| of a complex number, but it can be helpful to have these components |
| named, we try to select a suitable name based on the size of the |
| component. */ |
| static struct type * |
| dwarf2_init_complex_target_type (struct dwarf2_cu *cu, |
| struct objfile *objfile, |
| int bits, const char *name_hint, |
| enum bfd_endian byte_order) |
| { |
| gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct type *tt = nullptr; |
| |
| /* Try to find a suitable floating point builtin type of size BITS. |
| We're going to use the name of this type as the name for the complex |
| target type that we are about to create. */ |
| switch (cu->language) |
| { |
| case language_fortran: |
| switch (bits) |
| { |
| case 32: |
| tt = builtin_f_type (gdbarch)->builtin_real; |
| break; |
| case 64: |
| tt = builtin_f_type (gdbarch)->builtin_real_s8; |
| break; |
| case 96: /* The x86-32 ABI specifies 96-bit long double. */ |
| case 128: |
| tt = builtin_f_type (gdbarch)->builtin_real_s16; |
| break; |
| } |
| break; |
| default: |
| switch (bits) |
| { |
| case 32: |
| tt = builtin_type (gdbarch)->builtin_float; |
| break; |
| case 64: |
| tt = builtin_type (gdbarch)->builtin_double; |
| break; |
| case 96: /* The x86-32 ABI specifies 96-bit long double. */ |
| case 128: |
| tt = builtin_type (gdbarch)->builtin_long_double; |
| break; |
| } |
| break; |
| } |
| |
| /* If the type we found doesn't match the size we were looking for, then |
| pretend we didn't find a type at all, the complex target type we |
| create will then be nameless. */ |
| if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits) |
| tt = nullptr; |
| |
| const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt); |
| return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order); |
| } |
| |
| /* Find a representation of a given base type and install |
| it in the TYPE field of the die. */ |
| |
| static struct type * |
| read_base_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| int encoding = 0, bits = 0; |
| const char *name; |
| gdbarch *arch; |
| |
| attr = dwarf2_attr (die, DW_AT_encoding, cu); |
| if (attr != nullptr) |
| encoding = DW_UNSND (attr); |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| bits = DW_UNSND (attr) * TARGET_CHAR_BIT; |
| name = dwarf2_name (die, cu); |
| if (!name) |
| complaint (_("DW_AT_name missing from DW_TAG_base_type")); |
| |
| arch = get_objfile_arch (objfile); |
| enum bfd_endian byte_order = gdbarch_byte_order (arch); |
| |
| attr = dwarf2_attr (die, DW_AT_endianity, cu); |
| if (attr) |
| { |
| int endianity = DW_UNSND (attr); |
| |
| switch (endianity) |
| { |
| case DW_END_big: |
| byte_order = BFD_ENDIAN_BIG; |
| break; |
| case DW_END_little: |
| byte_order = BFD_ENDIAN_LITTLE; |
| break; |
| default: |
| complaint (_("DW_AT_endianity has unrecognized value %d"), endianity); |
| break; |
| } |
| } |
| |
| switch (encoding) |
| { |
| case DW_ATE_address: |
| /* Turn DW_ATE_address into a void * pointer. */ |
| type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL); |
| type = init_pointer_type (objfile, bits, name, type); |
| break; |
| case DW_ATE_boolean: |
| type = init_boolean_type (objfile, bits, 1, name); |
| break; |
| case DW_ATE_complex_float: |
| type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name, |
| byte_order); |
| type = init_complex_type (objfile, name, type); |
| break; |
| case DW_ATE_decimal_float: |
| type = init_decfloat_type (objfile, bits, name); |
| break; |
| case DW_ATE_float: |
| type = dwarf2_init_float_type (objfile, bits, name, name, byte_order); |
| break; |
| case DW_ATE_signed: |
| type = dwarf2_init_integer_type (cu, objfile, bits, 0, name); |
| break; |
| case DW_ATE_unsigned: |
| if (cu->language == language_fortran |
| && name |
| && startswith (name, "character(")) |
| type = init_character_type (objfile, bits, 1, name); |
| else |
| type = dwarf2_init_integer_type (cu, objfile, bits, 1, name); |
| break; |
| case DW_ATE_signed_char: |
| if (cu->language == language_ada || cu->language == language_m2 |
| || cu->language == language_pascal |
| || cu->language == language_fortran) |
| type = init_character_type (objfile, bits, 0, name); |
| else |
| type = dwarf2_init_integer_type (cu, objfile, bits, 0, name); |
| break; |
| case DW_ATE_unsigned_char: |
| if (cu->language == language_ada || cu->language == language_m2 |
| || cu->language == language_pascal |
| || cu->language == language_fortran |
| || cu->language == language_rust) |
| type = init_character_type (objfile, bits, 1, name); |
| else |
| type = dwarf2_init_integer_type (cu, objfile, bits, 1, name); |
| break; |
| case DW_ATE_UTF: |
| { |
| if (bits == 16) |
| type = builtin_type (arch)->builtin_char16; |
| else if (bits == 32) |
| type = builtin_type (arch)->builtin_char32; |
| else |
| { |
| complaint (_("unsupported DW_ATE_UTF bit size: '%d'"), |
| bits); |
| type = dwarf2_init_integer_type (cu, objfile, bits, 1, name); |
| } |
| return set_die_type (die, type, cu); |
| } |
| break; |
| |
| default: |
| complaint (_("unsupported DW_AT_encoding: '%s'"), |
| dwarf_type_encoding_name (encoding)); |
| type = init_type (objfile, TYPE_CODE_ERROR, bits, name); |
| break; |
| } |
| |
| if (name && strcmp (name, "char") == 0) |
| TYPE_NOSIGN (type) = 1; |
| |
| maybe_set_alignment (cu, die, type); |
| |
| TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order; |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Parse dwarf attribute if it's a block, reference or constant and put the |
| resulting value of the attribute into struct bound_prop. |
| Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */ |
| |
| static int |
| attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die, |
| struct dwarf2_cu *cu, struct dynamic_prop *prop, |
| struct type *default_type) |
| { |
| struct dwarf2_property_baton *baton; |
| struct obstack *obstack |
| = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack; |
| |
| gdb_assert (default_type != NULL); |
| |
| if (attr == NULL || prop == NULL) |
| return 0; |
| |
| if (attr->form_is_block ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = default_type; |
| baton->locexpr.per_cu = cu->per_cu; |
| baton->locexpr.size = DW_BLOCK (attr)->size; |
| baton->locexpr.data = DW_BLOCK (attr)->data; |
| switch (attr->name) |
| { |
| case DW_AT_string_length: |
| baton->locexpr.is_reference = true; |
| break; |
| default: |
| baton->locexpr.is_reference = false; |
| break; |
| } |
| prop->data.baton = baton; |
| prop->kind = PROP_LOCEXPR; |
| gdb_assert (prop->data.baton != NULL); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die; |
| struct attribute *target_attr; |
| |
| target_die = follow_die_ref (die, attr, &target_cu); |
| target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu); |
| if (target_attr == NULL) |
| target_attr = dwarf2_attr (target_die, DW_AT_data_member_location, |
| target_cu); |
| if (target_attr == NULL) |
| return 0; |
| |
| switch (target_attr->name) |
| { |
| case DW_AT_location: |
| if (target_attr->form_is_section_offset ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = die_type (target_die, target_cu); |
| fill_in_loclist_baton (cu, &baton->loclist, target_attr); |
| prop->data.baton = baton; |
| prop->kind = PROP_LOCLIST; |
| gdb_assert (prop->data.baton != NULL); |
| } |
| else if (target_attr->form_is_block ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = die_type (target_die, target_cu); |
| baton->locexpr.per_cu = cu->per_cu; |
| baton->locexpr.size = DW_BLOCK (target_attr)->size; |
| baton->locexpr.data = DW_BLOCK (target_attr)->data; |
| baton->locexpr.is_reference = true; |
| prop->data.baton = baton; |
| prop->kind = PROP_LOCEXPR; |
| gdb_assert (prop->data.baton != NULL); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "dynamic property"); |
| return 0; |
| } |
| break; |
| case DW_AT_data_member_location: |
| { |
| LONGEST offset; |
| |
| if (!handle_data_member_location (target_die, target_cu, |
| &offset)) |
| return 0; |
| |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = read_type_die (target_die->parent, |
| target_cu); |
| baton->offset_info.offset = offset; |
| baton->offset_info.type = die_type (target_die, target_cu); |
| prop->data.baton = baton; |
| prop->kind = PROP_ADDR_OFFSET; |
| break; |
| } |
| } |
| } |
| else if (attr->form_is_constant ()) |
| { |
| prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0); |
| prop->kind = PROP_CONST; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form), |
| dwarf2_name (die, cu)); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Find an integer type SIZE_IN_BYTES bytes in size and return it. |
| UNSIGNED_P controls if the integer is unsigned or not. */ |
| |
| static struct type * |
| dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu, |
| int size_in_bytes, bool unsigned_p) |
| { |
| struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile; |
| struct type *int_type; |
| |
| /* Helper macro to examine the various builtin types. */ |
| #define TRY_TYPE(F) \ |
| int_type = (unsigned_p \ |
| ? objfile_type (objfile)->builtin_unsigned_ ## F \ |
| : objfile_type (objfile)->builtin_ ## F); \ |
| if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \ |
| return int_type |
| |
| TRY_TYPE (char); |
| TRY_TYPE (short); |
| TRY_TYPE (int); |
| TRY_TYPE (long); |
| TRY_TYPE (long_long); |
| |
| #undef TRY_TYPE |
| |
| gdb_assert_not_reached ("unable to find suitable integer type"); |
| } |
| |
| /* Find an integer type the same size as the address size given in the |
| compilation unit header for PER_CU. UNSIGNED_P controls if the integer |
| is unsigned or not. */ |
| |
| static struct type * |
| dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu, |
| bool unsigned_p) |
| { |
| int addr_size = dwarf2_per_cu_addr_size (per_cu); |
| return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p); |
| } |
| |
| /* Read the DW_AT_type attribute for a sub-range. If this attribute is not |
| present (which is valid) then compute the default type based on the |
| compilation units address size. */ |
| |
| static struct type * |
| read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *index_type = die_type (die, cu); |
| |
| /* Dwarf-2 specifications explicitly allows to create subrange types |
| without specifying a base type. |
| In that case, the base type must be set to the type of |
| the lower bound, upper bound or count, in that order, if any of these |
| three attributes references an object that has a type. |
| If no base type is found, the Dwarf-2 specifications say that |
| a signed integer type of size equal to the size of an address should |
| be used. |
| For the following C code: `extern char gdb_int [];' |
| GCC produces an empty range DIE. |
| FIXME: muller/2010-05-28: Possible references to object for low bound, |
| high bound or count are not yet handled by this code. */ |
| if (TYPE_CODE (index_type) == TYPE_CODE_VOID) |
| index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| |
| return index_type; |
| } |
| |
| /* Read the given DW_AT_subrange DIE. */ |
| |
| static struct type * |
| read_subrange_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *orig_base_type; |
| struct type *range_type; |
| struct attribute *attr; |
| struct dynamic_prop low, high; |
| int low_default_is_valid; |
| int high_bound_is_count = 0; |
| const char *name; |
| ULONGEST negative_mask; |
| |
| orig_base_type = read_subrange_index_type (die, cu); |
| |
| /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED, |
| whereas the real type might be. So, we use ORIG_BASE_TYPE when |
| creating the range type, but we use the result of check_typedef |
| when examining properties of the type. */ |
| base_type = check_typedef (orig_base_type); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| range_type = get_die_type (die, cu); |
| if (range_type) |
| return range_type; |
| |
| low.kind = PROP_CONST; |
| high.kind = PROP_CONST; |
| high.data.const_val = 0; |
| |
| /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow |
| omitting DW_AT_lower_bound. */ |
| switch (cu->language) |
| { |
| case language_c: |
| case language_cplus: |
| low.data.const_val = 0; |
| low_default_is_valid = 1; |
| break; |
| case language_fortran: |
| low.data.const_val = 1; |
| low_default_is_valid = 1; |
| break; |
| case language_d: |
| case language_objc: |
| case language_rust: |
| low.data.const_val = 0; |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| case language_ada: |
| case language_m2: |
| case language_pascal: |
| low.data.const_val = 1; |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| default: |
| low.data.const_val = 0; |
| low_default_is_valid = 0; |
| break; |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_lower_bound, cu); |
| if (attr != nullptr) |
| attr_to_dynamic_prop (attr, die, cu, &low, base_type); |
| else if (!low_default_is_valid) |
| complaint (_("Missing DW_AT_lower_bound " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| |
| struct attribute *attr_ub, *attr_count; |
| attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu); |
| if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type)) |
| { |
| attr = attr_count = dwarf2_attr (die, DW_AT_count, cu); |
| if (attr_to_dynamic_prop (attr, die, cu, &high, base_type)) |
| { |
| /* If bounds are constant do the final calculation here. */ |
| if (low.kind == PROP_CONST && high.kind == PROP_CONST) |
| high.data.const_val = low.data.const_val + high.data.const_val - 1; |
| else |
| high_bound_is_count = 1; |
| } |
| else |
| { |
| if (attr_ub != NULL) |
| complaint (_("Unresolved DW_AT_upper_bound " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| if (attr_count != NULL) |
| complaint (_("Unresolved DW_AT_count " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| } |
| |
| LONGEST bias = 0; |
| struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu); |
| if (bias_attr != nullptr && bias_attr->form_is_constant ()) |
| bias = dwarf2_get_attr_constant_value (bias_attr, 0); |
| |
| /* Normally, the DWARF producers are expected to use a signed |
| constant form (Eg. DW_FORM_sdata) to express negative bounds. |
| But this is unfortunately not always the case, as witnessed |
| with GCC, for instance, where the ambiguous DW_FORM_dataN form |
| is used instead. To work around that ambiguity, we treat |
| the bounds as signed, and thus sign-extend their values, when |
| the base type is signed. */ |
| negative_mask = |
| -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1)); |
| if (low.kind == PROP_CONST |
| && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask)) |
| low.data.const_val |= negative_mask; |
| if (high.kind == PROP_CONST |
| && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask)) |
| high.data.const_val |= negative_mask; |
| |
| /* Check for bit and byte strides. */ |
| struct dynamic_prop byte_stride_prop; |
| attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu); |
| if (attr_byte_stride != nullptr) |
| { |
| struct type *prop_type |
| = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop, |
| prop_type); |
| } |
| |
| struct dynamic_prop bit_stride_prop; |
| attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu); |
| if (attr_bit_stride != nullptr) |
| { |
| /* It only makes sense to have either a bit or byte stride. */ |
| if (attr_byte_stride != nullptr) |
| { |
| complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| attr_bit_stride = nullptr; |
| } |
| else |
| { |
| struct type *prop_type |
| = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop, |
| prop_type); |
| } |
| } |
| |
| if (attr_byte_stride != nullptr |
| || attr_bit_stride != nullptr) |
| { |
| bool byte_stride_p = (attr_byte_stride != nullptr); |
| struct dynamic_prop *stride |
| = byte_stride_p ? &byte_stride_prop : &bit_stride_prop; |
| |
| range_type |
| = create_range_type_with_stride (NULL, orig_base_type, &low, |
| &high, bias, stride, byte_stride_p); |
| } |
| else |
| range_type = create_range_type (NULL, orig_base_type, &low, &high, bias); |
| |
| if (high_bound_is_count) |
| TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1; |
| |
| /* Ada expects an empty array on no boundary attributes. */ |
| if (attr == NULL && cu->language != language_ada) |
| TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED; |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| TYPE_NAME (range_type) = name; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| TYPE_LENGTH (range_type) = DW_UNSND (attr); |
| |
| maybe_set_alignment (cu, die, range_type); |
| |
| set_die_type (die, range_type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (range_type, die, cu); |
| |
| return range_type; |
| } |
| |
| static struct type * |
| read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| |
| type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0, |
| NULL); |
| TYPE_NAME (type) = dwarf2_name (die, cu); |
| |
| /* In Ada, an unspecified type is typically used when the description |
| of the type is deferred to a different unit. When encountering |
| such a type, we treat it as a stub, and try to resolve it later on, |
| when needed. */ |
| if (cu->language == language_ada) |
| TYPE_STUB (type) = 1; |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a single die and all its descendents. Set the die's sibling |
| field to NULL; set other fields in the die correctly, and set all |
| of the descendents' fields correctly. Set *NEW_INFO_PTR to the |
| location of the info_ptr after reading all of those dies. PARENT |
| is the parent of the die in question. */ |
| |
| static struct die_info * |
| read_die_and_children (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| const gdb_byte **new_info_ptr, |
| struct die_info *parent) |
| { |
| struct die_info *die; |
| const gdb_byte *cur_ptr; |
| |
| cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0); |
| if (die == NULL) |
| { |
| *new_info_ptr = cur_ptr; |
| return NULL; |
| } |
| store_in_ref_table (die, reader->cu); |
| |
| if (die->has_children) |
| die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die); |
| else |
| { |
| die->child = NULL; |
| *new_info_ptr = cur_ptr; |
| } |
| |
| die->sibling = NULL; |
| die->parent = parent; |
| return die; |
| } |
| |
| /* Read a die, all of its descendents, and all of its siblings; set |
| all of the fields of all of the dies correctly. Arguments are as |
| in read_die_and_children. */ |
| |
| static struct die_info * |
| read_die_and_siblings_1 (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| const gdb_byte **new_info_ptr, |
| struct die_info *parent) |
| { |
| struct die_info *first_die, *last_sibling; |
| const gdb_byte *cur_ptr; |
| |
| cur_ptr = info_ptr; |
| first_die = last_sibling = NULL; |
| |
| while (1) |
| { |
| struct die_info *die |
| = read_die_and_children (reader, cur_ptr, &cur_ptr, parent); |
| |
| if (die == NULL) |
| { |
| *new_info_ptr = cur_ptr; |
| return first_die; |
| } |
| |
| if (!first_die) |
| first_die = die; |
| else |
| last_sibling->sibling = die; |
| |
| last_sibling = die; |
| } |
| } |
| |
| /* Read a die, all of its descendents, and all of its siblings; set |
| all of the fields of all of the dies correctly. Arguments are as |
| in read_die_and_children. |
| This the main entry point for reading a DIE and all its children. */ |
| |
| static struct die_info * |
| read_die_and_siblings (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, |
| const gdb_byte **new_info_ptr, |
| struct die_info *parent) |
| { |
| struct die_info *die = read_die_and_siblings_1 (reader, info_ptr, |
| new_info_ptr, parent); |
| |
| if (dwarf_die_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Read die from %s@0x%x of %s:\n", |
| reader->die_section->get_name (), |
| (unsigned) (info_ptr - reader->die_section->buffer), |
| bfd_get_filename (reader->abfd)); |
| dump_die (die, dwarf_die_debug); |
| } |
| |
| return die; |
| } |
| |
| /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS |
| attributes. |
| The caller is responsible for filling in the extra attributes |
| and updating (*DIEP)->num_attrs. |
| Set DIEP to point to a newly allocated die with its information, |
| except for its child, sibling, and parent fields. */ |
| |
| static const gdb_byte * |
| read_full_die_1 (const struct die_reader_specs *reader, |
| struct die_info **diep, const gdb_byte *info_ptr, |
| int num_extra_attrs) |
| { |
| unsigned int abbrev_number, bytes_read, i; |
| struct abbrev_info *abbrev; |
| struct die_info *die; |
| struct dwarf2_cu *cu = reader->cu; |
| bfd *abfd = reader->abfd; |
| |
| sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer); |
| abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| if (!abbrev_number) |
| { |
| *diep = NULL; |
| return info_ptr; |
| } |
| |
| abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number); |
| if (!abbrev) |
| error (_("Dwarf Error: could not find abbrev number %d [in module %s]"), |
| abbrev_number, |
| bfd_get_filename (abfd)); |
| |
| die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs); |
| die->sect_off = sect_off; |
| die->tag = abbrev->tag; |
| die->abbrev = abbrev_number; |
| die->has_children = abbrev->has_children; |
| |
| /* Make the result usable. |
| The caller needs to update num_attrs after adding the extra |
| attributes. */ |
| die->num_attrs = abbrev->num_attrs; |
| |
| std::vector<int> indexes_that_need_reprocess; |
| for (i = 0; i < abbrev->num_attrs; ++i) |
| { |
| bool need_reprocess; |
| info_ptr = |
| read_attribute (reader, &die->attrs[i], &abbrev->attrs[i], |
| info_ptr, &need_reprocess); |
| if (need_reprocess) |
| indexes_that_need_reprocess.push_back (i); |
| } |
| |
| struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base); |
| if (attr != nullptr) |
| cu->str_offsets_base = DW_UNSND (attr); |
| |
| auto maybe_addr_base = lookup_addr_base(die); |
| if (maybe_addr_base.has_value ()) |
| cu->addr_base = *maybe_addr_base; |
| for (int index : indexes_that_need_reprocess) |
| read_attribute_reprocess (reader, &die->attrs[index]); |
| *diep = die; |
| return info_ptr; |
| } |
| |
| /* Read a die and all its attributes. |
| Set DIEP to point to a newly allocated die with its information, |
| except for its child, sibling, and parent fields. */ |
| |
| static const gdb_byte * |
| read_full_die (const struct die_reader_specs *reader, |
| struct die_info **diep, const gdb_byte *info_ptr) |
| { |
| const gdb_byte *result; |
| |
| result = read_full_die_1 (reader, diep, info_ptr, 0); |
| |
| if (dwarf_die_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Read die from %s@0x%x of %s:\n", |
| reader->die_section->get_name (), |
| (unsigned) (info_ptr - reader->die_section->buffer), |
| bfd_get_filename (reader->abfd)); |
| dump_die (*diep, dwarf_die_debug); |
| } |
| |
| return result; |
| } |
| |
| |
| /* Returns nonzero if TAG represents a type that we might generate a partial |
| symbol for. */ |
| |
| static int |
| is_type_tag_for_partial (int tag) |
| { |
| switch (tag) |
| { |
| #if 0 |
| /* Some types that would be reasonable to generate partial symbols for, |
| that we don't at present. */ |
| case DW_TAG_array_type: |
| case DW_TAG_file_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_set_type: |
| case DW_TAG_string_type: |
| case DW_TAG_subroutine_type: |
| #endif |
| case DW_TAG_base_type: |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_typedef: |
| case DW_TAG_union_type: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Load all DIEs that are interesting for partial symbols into memory. */ |
| |
| static struct partial_die_info * |
| load_partial_dies (const struct die_reader_specs *reader, |
| const gdb_byte *info_ptr, int building_psymtab) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct partial_die_info *parent_die, *last_die, *first_die = NULL; |
| unsigned int bytes_read; |
| unsigned int load_all = 0; |
| int nesting_level = 1; |
| |
| parent_die = NULL; |
| last_die = NULL; |
| |
| gdb_assert (cu->per_cu != NULL); |
| if (cu->per_cu->load_all_dies) |
| load_all = 1; |
| |
| cu->partial_dies |
| = htab_create_alloc_ex (cu->header.length / 12, |
| partial_die_hash, |
| partial_die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| while (1) |
| { |
| abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read); |
| |
| /* A NULL abbrev means the end of a series of children. */ |
| if (abbrev == NULL) |
| { |
| if (--nesting_level == 0) |
| return first_die; |
| |
| info_ptr += bytes_read; |
| last_die = parent_die; |
| parent_die = parent_die->die_parent; |
| continue; |
| } |
| |
| /* Check for template arguments. We never save these; if |
| they're seen, we just mark the parent, and go on our way. */ |
| if (parent_die != NULL |
| && cu->language == language_cplus |
| && (abbrev->tag == DW_TAG_template_type_param |
| || abbrev->tag == DW_TAG_template_value_param)) |
| { |
| parent_die->has_template_arguments = 1; |
| |
| if (!load_all) |
| { |
| /* We don't need a partial DIE for the template argument. */ |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| } |
| |
| /* We only recurse into c++ subprograms looking for template arguments. |
| Skip their other children. */ |
| if (!load_all |
| && cu->language == language_cplus |
| && parent_die != NULL |
| && parent_die->tag == DW_TAG_subprogram) |
| { |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| |
| /* Check whether this DIE is interesting enough to save. Normally |
| we would not be interested in members here, but there may be |
| later variables referencing them via DW_AT_specification (for |
| static members). */ |
| if (!load_all |
| && !is_type_tag_for_partial (abbrev->tag) |
| && abbrev->tag != DW_TAG_constant |
| && abbrev->tag != DW_TAG_enumerator |
| && abbrev->tag != DW_TAG_subprogram |
| && abbrev->tag != DW_TAG_inlined_subroutine |
| && abbrev->tag != DW_TAG_lexical_block |
| && abbrev->tag != DW_TAG_variable |
| && abbrev->tag != DW_TAG_namespace |
| && abbrev->tag != DW_TAG_module |
| && abbrev->tag != DW_TAG_member |
| && abbrev->tag != DW_TAG_imported_unit |
| && abbrev->tag != DW_TAG_imported_declaration) |
| { |
| /* Otherwise we skip to the next sibling, if any. */ |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| |
| struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer), |
| abbrev); |
| |
| info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read); |
| |
| /* This two-pass algorithm for processing partial symbols has a |
| high cost in cache pressure. Thus, handle some simple cases |
| here which cover the majority of C partial symbols. DIEs |
| which neither have specification tags in them, nor could have |
| specification tags elsewhere pointing at them, can simply be |
| processed and discarded. |
| |
| This segment is also optional; scan_partial_symbols and |
| add_partial_symbol will handle these DIEs if we chain |
| them in normally. When compilers which do not emit large |
| quantities of duplicate debug information are more common, |
| this code can probably be removed. */ |
| |
| /* Any complete simple types at the top level (pretty much all |
| of them, for a language without namespaces), can be processed |
| directly. */ |
| if (parent_die == NULL |
| && pdi.has_specification == 0 |
| && pdi.is_declaration == 0 |
| && ((pdi.tag == DW_TAG_typedef && !pdi.has_children) |
| || pdi.tag == DW_TAG_base_type |
| || pdi.tag == DW_TAG_subrange_type)) |
| { |
| if (building_psymtab && pdi.name != NULL) |
| add_psymbol_to_list (pdi.name, false, |
| VAR_DOMAIN, LOC_TYPEDEF, -1, |
| psymbol_placement::STATIC, |
| 0, cu->language, objfile); |
| info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr); |
| continue; |
| } |
| |
| /* The exception for DW_TAG_typedef with has_children above is |
| a workaround of GCC PR debug/47510. In the case of this complaint |
| type_name_or_error will error on such types later. |
| |
| GDB skipped children of DW_TAG_typedef by the shortcut above and then |
| it could not find the child DIEs referenced later, this is checked |
| above. In correct DWARF DW_TAG_typedef should have no children. */ |
| |
| if (pdi.tag == DW_TAG_typedef && pdi.has_children) |
| complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (pdi.sect_off), objfile_name (objfile)); |
| |
| /* If we're at the second level, and we're an enumerator, and |
| our parent has no specification (meaning possibly lives in a |
| namespace elsewhere), then we can add the partial symbol now |
| instead of queueing it. */ |
| if (pdi.tag == DW_TAG_enumerator |
| && parent_die != NULL |
| && parent_die->die_parent == NULL |
| && parent_die->tag == DW_TAG_enumeration_type |
| && parent_die->has_specification == 0) |
| { |
| if (pdi.name == NULL) |
| complaint (_("malformed enumerator DIE ignored")); |
| else if (building_psymtab) |
| add_psymbol_to_list (pdi.name, false, |
| VAR_DOMAIN, LOC_CONST, -1, |
| cu->language == language_cplus |
| ? psymbol_placement::GLOBAL |
| : psymbol_placement::STATIC, |
| 0, cu->language, objfile); |
| |
| info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr); |
| continue; |
| } |
| |
| struct partial_die_info *part_die |
| = new (&cu->comp_unit_obstack) partial_die_info (pdi); |
| |
| /* We'll save this DIE so link it in. */ |
| part_die->die_parent = parent_die; |
| part_die->die_sibling = NULL; |
| part_die->die_child = NULL; |
| |
| if (last_die && last_die == parent_die) |
| last_die->die_child = part_die; |
| else if (last_die) |
| last_die->die_sibling = part_die; |
| |
| last_die = part_die; |
| |
| if (first_die == NULL) |
| first_die = part_die; |
| |
| /* Maybe add the DIE to the hash table. Not all DIEs that we |
| find interesting need to be in the hash table, because we |
| also have the parent/sibling/child chains; only those that we |
| might refer to by offset later during partial symbol reading. |
| |
| For now this means things that might have be the target of a |
| DW_AT_specification, DW_AT_abstract_origin, or |
| DW_AT_extension. DW_AT_extension will refer only to |
| namespaces; DW_AT_abstract_origin refers to functions (and |
| many things under the function DIE, but we do not recurse |
| into function DIEs during partial symbol reading) and |
| possibly variables as well; DW_AT_specification refers to |
| declarations. Declarations ought to have the DW_AT_declaration |
| flag. It happens that GCC forgets to put it in sometimes, but |
| only for functions, not for types. |
| |
| Adding more things than necessary to the hash table is harmless |
| except for the performance cost. Adding too few will result in |
| wasted time in find_partial_die, when we reread the compilation |
| unit with load_all_dies set. */ |
| |
| if (load_all |
| || abbrev->tag == DW_TAG_constant |
| || abbrev->tag == DW_TAG_subprogram |
| || abbrev->tag == DW_TAG_variable |
| || abbrev->tag == DW_TAG_namespace |
| || part_die->is_declaration) |
| { |
| void **slot; |
| |
| slot = htab_find_slot_with_hash (cu->partial_dies, part_die, |
| to_underlying (part_die->sect_off), |
| INSERT); |
| *slot = part_die; |
| } |
| |
| /* For some DIEs we want to follow their children (if any). For C |
| we have no reason to follow the children of structures; for other |
| languages we have to, so that we can get at method physnames |
| to infer fully qualified class names, for DW_AT_specification, |
| and for C++ template arguments. For C++, we also look one level |
| inside functions to find template arguments (if the name of the |
| function does not already contain the template arguments). |
| |
| For Ada and Fortran, we need to scan the children of subprograms |
| and lexical blocks as well because these languages allow the |
| definition of nested entities that could be interesting for the |
| debugger, such as nested subprograms for instance. */ |
| if (last_die->has_children |
| && (load_all |
| || last_die->tag == DW_TAG_namespace |
| || last_die->tag == DW_TAG_module |
| || last_die->tag == DW_TAG_enumeration_type |
| || (cu->language == language_cplus |
| && last_die->tag == DW_TAG_subprogram |
| && (last_die->name == NULL |
| || strchr (last_die->name, '<') == NULL)) |
| || (cu->language != language_c |
| && (last_die->tag == DW_TAG_class_type |
| || last_die->tag == DW_TAG_interface_type |
| || last_die->tag == DW_TAG_structure_type |
| || last_die->tag == DW_TAG_union_type)) |
| || ((cu->language == language_ada |
| || cu->language == language_fortran) |
| && (last_die->tag == DW_TAG_subprogram |
| || last_die->tag == DW_TAG_lexical_block)))) |
| { |
| nesting_level++; |
| parent_die = last_die; |
| continue; |
| } |
| |
| /* Otherwise we skip to the next sibling, if any. */ |
| info_ptr = locate_pdi_sibling (reader, last_die, info_ptr); |
| |
| /* Back to the top, do it again. */ |
| } |
| } |
| |
| partial_die_info::partial_die_info (sect_offset sect_off_, |
| struct abbrev_info *abbrev) |
| : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children) |
| { |
| } |
| |
| /* Read a minimal amount of information into the minimal die structure. |
| INFO_PTR should point just after the initial uleb128 of a DIE. */ |
| |
| const gdb_byte * |
| partial_die_info::read (const struct die_reader_specs *reader, |
| const struct abbrev_info &abbrev, const gdb_byte *info_ptr) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| unsigned int i; |
| int has_low_pc_attr = 0; |
| int has_high_pc_attr = 0; |
| int high_pc_relative = 0; |
| |
| std::vector<struct attribute> attr_vec (abbrev.num_attrs); |
| for (i = 0; i < abbrev.num_attrs; ++i) |
| { |
| bool need_reprocess; |
| info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i], |
| info_ptr, &need_reprocess); |
| /* String and address offsets that need to do the reprocessing have |
| already been read at this point, so there is no need to wait until |
| the loop terminates to do the reprocessing. */ |
| if (need_reprocess) |
| read_attribute_reprocess (reader, &attr_vec[i]); |
| attribute &attr = attr_vec[i]; |
| /* Store the data if it is of an attribute we want to keep in a |
| partial symbol table. */ |
| switch (attr.name) |
| { |
| case DW_AT_name: |
| switch (tag) |
| { |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| case DW_TAG_type_unit: |
| /* Compilation units have a DW_AT_name that is a filename, not |
| a source language identifier. */ |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| /* These tags always have simple identifiers already; no need |
| to canonicalize them. */ |
| name = DW_STRING (&attr); |
| break; |
| default: |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| name |
| = dwarf2_canonicalize_name (DW_STRING (&attr), cu, |
| &objfile->per_bfd->storage_obstack); |
| } |
| break; |
| } |
| break; |
| case DW_AT_linkage_name: |
| case DW_AT_MIPS_linkage_name: |
| /* Note that both forms of linkage name might appear. We |
| assume they will be the same, and we only store the last |
| one we see. */ |
| linkage_name = DW_STRING (&attr); |
| break; |
| case DW_AT_low_pc: |
| has_low_pc_attr = 1; |
| lowpc = attr.value_as_address (); |
| break; |
| case DW_AT_high_pc: |
| has_high_pc_attr = 1; |
| highpc = attr.value_as_address (); |
| if (cu->header.version >= 4 && attr.form_is_constant ()) |
| high_pc_relative = 1; |
| break; |
| case DW_AT_location: |
| /* Support the .debug_loc offsets. */ |
| if (attr.form_is_block ()) |
| { |
| d.locdesc = DW_BLOCK (&attr); |
| } |
| else if (attr.form_is_section_offset ()) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "partial symbol information"); |
| } |
| break; |
| case DW_AT_external: |
| is_external = DW_UNSND (&attr); |
| break; |
| case DW_AT_declaration: |
| is_declaration = DW_UNSND (&attr); |
| break; |
| case DW_AT_type: |
| has_type = 1; |
| break; |
| case DW_AT_abstract_origin: |
| case DW_AT_specification: |
| case DW_AT_extension: |
| has_specification = 1; |
| spec_offset = dwarf2_get_ref_die_offset (&attr); |
| spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt |
| || cu->per_cu->is_dwz); |
| break; |
| case DW_AT_sibling: |
| /* Ignore absolute siblings, they might point outside of |
| the current compile unit. */ |
| if (attr.form == DW_FORM_ref_addr) |
| complaint (_("ignoring absolute DW_AT_sibling")); |
| else |
| { |
| const gdb_byte *buffer = reader->buffer; |
| sect_offset off = dwarf2_get_ref_die_offset (&attr); |
| const gdb_byte *sibling_ptr = buffer + to_underlying (off); |
| |
| if (sibling_ptr < info_ptr) |
| complaint (_("DW_AT_sibling points backwards")); |
| else if (sibling_ptr > reader->buffer_end) |
| dwarf2_section_buffer_overflow_complaint (reader->die_section); |
| else |
| sibling = sibling_ptr; |
| } |
| break; |
| case DW_AT_byte_size: |
| has_byte_size = 1; |
| break; |
| case DW_AT_const_value: |
| has_const_value = 1; |
| break; |
| case DW_AT_calling_convention: |
| /* DWARF doesn't provide a way to identify a program's source-level |
| entry point. DW_AT_calling_convention attributes are only meant |
| to describe functions' calling conventions. |
| |
| However, because it's a necessary piece of information in |
| Fortran, and before DWARF 4 DW_CC_program was the only |
| piece of debugging information whose definition refers to |
| a 'main program' at all, several compilers marked Fortran |
| main programs with DW_CC_program --- even when those |
| functions use the standard calling conventions. |
| |
| Although DWARF now specifies a way to provide this |
| information, we support this practice for backward |
| compatibility. */ |
| if (DW_UNSND (&attr) == DW_CC_program |
| && cu->language == language_fortran) |
| main_subprogram = 1; |
| break; |
| case DW_AT_inline: |
| if (DW_UNSND (&attr) == DW_INL_inlined |
| || DW_UNSND (&attr) == DW_INL_declared_inlined) |
| may_be_inlined = 1; |
| break; |
| |
| case DW_AT_import: |
| if (tag == DW_TAG_imported_unit) |
| { |
| d.sect_off = dwarf2_get_ref_die_offset (&attr); |
| is_dwz = (attr.form == DW_FORM_GNU_ref_alt |
| || cu->per_cu->is_dwz); |
| } |
| break; |
| |
| case DW_AT_main_subprogram: |
| main_subprogram = DW_UNSND (&attr); |
| break; |
| |
| case DW_AT_ranges: |
| { |
| /* It would be nice to reuse dwarf2_get_pc_bounds here, |
| but that requires a full DIE, so instead we just |
| reimplement it. */ |
| int need_ranges_base = tag != DW_TAG_compile_unit; |
| unsigned int ranges_offset = (DW_UNSND (&attr) |
| + (need_ranges_base |
| ? cu->ranges_base |
| : 0)); |
| |
| /* Value of the DW_AT_ranges attribute is the offset in the |
| .debug_ranges section. */ |
| if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu, |
| nullptr)) |
| has_pc_info = 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* For Ada, if both the name and the linkage name appear, we prefer |
| the latter. This lets "catch exception" work better, regardless |
| of the order in which the name and linkage name were emitted. |
| Really, though, this is just a workaround for the fact that gdb |
| doesn't store both the name and the linkage name. */ |
| if (cu->language == language_ada && linkage_name != nullptr) |
| name = linkage_name; |
| |
| if (high_pc_relative) |
| highpc += lowpc; |
| |
| if (has_low_pc_attr && has_high_pc_attr) |
| { |
| /* When using the GNU linker, .gnu.linkonce. sections are used to |
| eliminate duplicate copies of functions and vtables and such. |
| The linker will arbitrarily choose one and discard the others. |
| The AT_*_pc values for such functions refer to local labels in |
| these sections. If the section from that file was discarded, the |
| labels are not in the output, so the relocs get a value of 0. |
| If this is a discarded function, mark the pc bounds as invalid, |
| so that GDB will ignore it. */ |
| if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| complaint (_("DW_AT_low_pc %s is zero " |
| "for DIE at %s [in module %s]"), |
| paddress (gdbarch, lowpc), |
| sect_offset_str (sect_off), |
| objfile_name (objfile)); |
| } |
| /* dwarf2_get_pc_bounds has also the strict low < high requirement. */ |
| else if (lowpc >= highpc) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s " |
| "for DIE at %s [in module %s]"), |
| paddress (gdbarch, lowpc), |
| paddress (gdbarch, highpc), |
| sect_offset_str (sect_off), |
| objfile_name (objfile)); |
| } |
| else |
| has_pc_info = 1; |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Find a cached partial DIE at OFFSET in CU. */ |
| |
| struct partial_die_info * |
| dwarf2_cu::find_partial_die (sect_offset sect_off) |
| { |
| struct partial_die_info *lookup_die = NULL; |
| struct partial_die_info part_die (sect_off); |
| |
| lookup_die = ((struct partial_die_info *) |
| htab_find_with_hash (partial_dies, &part_die, |
| to_underlying (sect_off))); |
| |
| return lookup_die; |
| } |
| |
| /* Find a partial DIE at OFFSET, which may or may not be in CU, |
| except in the case of .debug_types DIEs which do not reference |
| outside their CU (they do however referencing other types via |
| DW_FORM_ref_sig8). */ |
| |
| static const struct cu_partial_die_info |
| find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_per_cu_data *per_cu = NULL; |
| struct partial_die_info *pd = NULL; |
| |
| if (offset_in_dwz == cu->per_cu->is_dwz |
| && offset_in_cu_p (&cu->header, sect_off)) |
| { |
| pd = cu->find_partial_die (sect_off); |
| if (pd != NULL) |
| return { cu, pd }; |
| /* We missed recording what we needed. |
| Load all dies and try again. */ |
| per_cu = cu->per_cu; |
| } |
| else |
| { |
| /* TUs don't reference other CUs/TUs (except via type signatures). */ |
| if (cu->per_cu->is_debug_types) |
| { |
| error (_("Dwarf Error: Type Unit at offset %s contains" |
| " external reference to offset %s [in module %s].\n"), |
| sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off), |
| bfd_get_filename (objfile->obfd)); |
| } |
| per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz, |
| dwarf2_per_objfile); |
| |
| if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL) |
| load_partial_comp_unit (per_cu); |
| |
| per_cu->cu->last_used = 0; |
| pd = per_cu->cu->find_partial_die (sect_off); |
| } |
| |
| /* If we didn't find it, and not all dies have been loaded, |
| load them all and try again. */ |
| |
| if (pd == NULL && per_cu->load_all_dies == 0) |
| { |
| per_cu->load_all_dies = 1; |
| |
| /* This is nasty. When we reread the DIEs, somewhere up the call chain |
| THIS_CU->cu may already be in use. So we can't just free it and |
| replace its DIEs with the ones we read in. Instead, we leave those |
| DIEs alone (which can still be in use, e.g. in scan_partial_symbols), |
| and clobber THIS_CU->cu->partial_dies with the hash table for the new |
| set. */ |
| load_partial_comp_unit (per_cu); |
| |
| pd = per_cu->cu->find_partial_die (sect_off); |
| } |
| |
| if (pd == NULL) |
| internal_error (__FILE__, __LINE__, |
| _("could not find partial DIE %s " |
| "in cache [from module %s]\n"), |
| sect_offset_str (sect_off), bfd_get_filename (objfile->obfd)); |
| return { per_cu->cu, pd }; |
| } |
| |
| /* See if we can figure out if the class lives in a namespace. We do |
| this by looking for a member function; its demangled name will |
| contain namespace info, if there is any. */ |
| |
| static void |
| guess_partial_die_structure_name (struct partial_die_info *struct_pdi, |
| struct dwarf2_cu *cu) |
| { |
| /* NOTE: carlton/2003-10-07: Getting the info this way changes |
| what template types look like, because the demangler |
| frequently doesn't give the same name as the debug info. We |
| could fix this by only using the demangled name to get the |
| prefix (but see comment in read_structure_type). */ |
| |
| struct partial_die_info *real_pdi; |
| struct partial_die_info *child_pdi; |
| |
| /* If this DIE (this DIE's specification, if any) has a parent, then |
| we should not do this. We'll prepend the parent's fully qualified |
| name when we create the partial symbol. */ |
| |
| real_pdi = struct_pdi; |
| while (real_pdi->has_specification) |
| { |
| auto res = find_partial_die (real_pdi->spec_offset, |
| real_pdi->spec_is_dwz, cu); |
| real_pdi = res.pdi; |
| cu = res.cu; |
| } |
| |
| if (real_pdi->die_parent != NULL) |
| return; |
| |
| for (child_pdi = struct_pdi->die_child; |
| child_pdi != NULL; |
| child_pdi = child_pdi->die_sibling) |
| { |
| if (child_pdi->tag == DW_TAG_subprogram |
| && child_pdi->linkage_name != NULL) |
| { |
| gdb::unique_xmalloc_ptr<char> actual_class_name |
| (language_class_name_from_physname (cu->language_defn, |
| child_pdi->linkage_name)); |
| if (actual_class_name != NULL) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct_pdi->name |
| = obstack_strdup (&objfile->per_bfd->storage_obstack, |
| actual_class_name.get ()); |
| } |
| break; |
| } |
| } |
| } |
| |
| void |
| partial_die_info::fixup (struct dwarf2_cu *cu) |
| { |
| /* Once we've fixed up a die, there's no point in doing so again. |
| This also avoids a memory leak if we were to call |
| guess_partial_die_structure_name multiple times. */ |
| if (fixup_called) |
| return; |
| |
| /* If we found a reference attribute and the DIE has no name, try |
| to find a name in the referred to DIE. */ |
| |
| if (name == NULL && has_specification) |
| { |
| struct partial_die_info *spec_die; |
| |
| auto res = find_partial_die (spec_offset, spec_is_dwz, cu); |
| spec_die = res.pdi; |
| cu = res.cu; |
| |
| spec_die->fixup (cu); |
| |
| if (spec_die->name) |
| { |
| name = spec_die->name; |
| |
| /* Copy DW_AT_external attribute if it is set. */ |
| if (spec_die->is_external) |
| is_external = spec_die->is_external; |
| } |
| } |
| |
| /* Set default names for some unnamed DIEs. */ |
| |
| if (name == NULL && tag == DW_TAG_namespace) |
| name = CP_ANONYMOUS_NAMESPACE_STR; |
| |
| /* If there is no parent die to provide a namespace, and there are |
| children, see if we can determine the namespace from their linkage |
| name. */ |
| if (cu->language == language_cplus |
| && !cu->per_cu->dwarf2_per_objfile->types.empty () |
| && die_parent == NULL |
| && has_children |
| && (tag == DW_TAG_class_type |
| || tag == DW_TAG_structure_type |
| || tag == DW_TAG_union_type)) |
| guess_partial_die_structure_name (this, cu); |
| |
| /* GCC might emit a nameless struct or union that has a linkage |
| name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| if (name == NULL |
| && (tag == DW_TAG_class_type |
| || tag == DW_TAG_interface_type |
| || tag == DW_TAG_structure_type |
| || tag == DW_TAG_union_type) |
| && linkage_name != NULL) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled |
| (gdb_demangle (linkage_name, DMGL_TYPES)); |
| if (demangled != nullptr) |
| { |
| const char *base; |
| |
| /* Strip any leading namespaces/classes, keep only the base name. |
| DW_AT_name for named DIEs does not contain the prefixes. */ |
| base = strrchr (demangled.get (), ':'); |
| if (base && base > demangled.get () && base[-1] == ':') |
| base++; |
| else |
| base = demangled.get (); |
| |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| name = obstack_strdup (&objfile->per_bfd->storage_obstack, base); |
| } |
| } |
| |
| fixup_called = 1; |
| } |
| |
| /* Process the attributes that had to be skipped in the first round. These |
| attributes are the ones that need str_offsets_base or addr_base attributes. |
| They could not have been processed in the first round, because at the time |
| the values of str_offsets_base or addr_base may not have been known. */ |
| void read_attribute_reprocess (const struct die_reader_specs *reader, |
| struct attribute *attr) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| switch (attr->form) |
| { |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr)); |
| break; |
| case DW_FORM_strx: |
| case DW_FORM_strx1: |
| case DW_FORM_strx2: |
| case DW_FORM_strx3: |
| case DW_FORM_strx4: |
| case DW_FORM_GNU_str_index: |
| { |
| unsigned int str_index = DW_UNSND (attr); |
| if (reader->dwo_file != NULL) |
| { |
| DW_STRING (attr) = read_dwo_str_index (reader, str_index); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| } |
| else |
| { |
| DW_STRING (attr) = read_stub_str_index (cu, str_index); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| } |
| break; |
| } |
| default: |
| gdb_assert_not_reached (_("Unexpected DWARF form.")); |
| } |
| } |
| |
| /* Read an attribute value described by an attribute form. */ |
| |
| static const gdb_byte * |
| read_attribute_value (const struct die_reader_specs *reader, |
| struct attribute *attr, unsigned form, |
| LONGEST implicit_const, const gdb_byte *info_ptr, |
| bool *need_reprocess) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| bfd *abfd = reader->abfd; |
| struct comp_unit_head *cu_header = &cu->header; |
| unsigned int bytes_read; |
| struct dwarf_block *blk; |
| *need_reprocess = false; |
| |
| attr->form = (enum dwarf_form) form; |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| if (cu->header.version == 2) |
| DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read); |
| else |
| DW_UNSND (attr) = read_offset (abfd, info_ptr, |
| &cu->header, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_GNU_ref_alt: |
| DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_addr: |
| DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read); |
| DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_block2: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_block4: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_4_bytes (abfd, info_ptr); |
| info_ptr += 4; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_data2: |
| DW_UNSND (attr) = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| break; |
| case DW_FORM_data4: |
| DW_UNSND (attr) = read_4_bytes (abfd, info_ptr); |
| info_ptr += 4; |
| break; |
| case DW_FORM_data8: |
| DW_UNSND (attr) = read_8_bytes (abfd, info_ptr); |
| info_ptr += 8; |
| break; |
| case DW_FORM_data16: |
| blk = dwarf_alloc_block (cu); |
| blk->size = 16; |
| blk->data = read_n_bytes (abfd, info_ptr, 16); |
| info_ptr += 16; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_sec_offset: |
| DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_string: |
| DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_strp: |
| if (!cu->per_cu->is_dwz) |
| { |
| DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile, |
| abfd, info_ptr, cu_header, |
| &bytes_read); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| break; |
| } |
| /* FALLTHROUGH */ |
| case DW_FORM_line_strp: |
| if (!cu->per_cu->is_dwz) |
| { |
| DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile, |
| abfd, info_ptr, |
| cu_header, &bytes_read); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| break; |
| } |
| /* FALLTHROUGH */ |
| case DW_FORM_GNU_strp_alt: |
| { |
| struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| LONGEST str_offset = read_offset (abfd, info_ptr, cu_header, |
| &bytes_read); |
| |
| DW_STRING (attr) = read_indirect_string_from_dwz (objfile, |
| dwz, str_offset); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| } |
| break; |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_block1: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_data1: |
| DW_UNSND (attr) = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag: |
| DW_UNSND (attr) = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag_present: |
| DW_UNSND (attr) = 1; |
| break; |
| case DW_FORM_sdata: |
| DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_udata: |
| case DW_FORM_rnglistx: |
| DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_ref1: |
| DW_UNSND (attr) = (to_underlying (cu->header.sect_off) |
| + read_1_byte (abfd, info_ptr)); |
| info_ptr += 1; |
| break; |
| case DW_FORM_ref2: |
| DW_UNSND (attr) = (to_underlying (cu->header.sect_off) |
| + read_2_bytes (abfd, info_ptr)); |
| info_ptr += 2; |
| break; |
| case DW_FORM_ref4: |
| DW_UNSND (attr) = (to_underlying (cu->header.sect_off) |
| + read_4_bytes (abfd, info_ptr)); |
| info_ptr += 4; |
| break; |
| case DW_FORM_ref8: |
| DW_UNSND (attr) = (to_underlying (cu->header.sect_off) |
| + read_8_bytes (abfd, info_ptr)); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_sig8: |
| DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_udata: |
| DW_UNSND (attr) = (to_underlying (cu->header.sect_off) |
| + read_unsigned_leb128 (abfd, info_ptr, &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_indirect: |
| form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| if (form == DW_FORM_implicit_const) |
| { |
| implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| } |
| info_ptr = read_attribute_value (reader, attr, form, implicit_const, |
| info_ptr, need_reprocess); |
| break; |
| case DW_FORM_implicit_const: |
| DW_SND (attr) = implicit_const; |
| break; |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| *need_reprocess = true; |
| DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_strx: |
| case DW_FORM_strx1: |
| case DW_FORM_strx2: |
| case DW_FORM_strx3: |
| case DW_FORM_strx4: |
| case DW_FORM_GNU_str_index: |
| { |
| ULONGEST str_index; |
| if (form == DW_FORM_strx1) |
| { |
| str_index = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| } |
| else if (form == DW_FORM_strx2) |
| { |
| str_index = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| } |
| else if (form == DW_FORM_strx3) |
| { |
| str_index = read_3_bytes (abfd, info_ptr); |
| info_ptr += 3; |
| } |
| else if (form == DW_FORM_strx4) |
| { |
| str_index = read_4_bytes (abfd, info_ptr); |
| info_ptr += 4; |
| } |
| else |
| { |
| str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| } |
| *need_reprocess = true; |
| DW_UNSND (attr) = str_index; |
| } |
| break; |
| default: |
| error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| |
| /* Super hack. */ |
| if (cu->per_cu->is_dwz && attr->form_is_ref ()) |
| attr->form = DW_FORM_GNU_ref_alt; |
| |
| /* We have seen instances where the compiler tried to emit a byte |
| size attribute of -1 which ended up being encoded as an unsigned |
| 0xffffffff. Although 0xffffffff is technically a valid size value, |
| an object of this size seems pretty unlikely so we can relatively |
| safely treat these cases as if the size attribute was invalid and |
| treat them as zero by default. */ |
| if (attr->name == DW_AT_byte_size |
| && form == DW_FORM_data4 |
| && DW_UNSND (attr) >= 0xffffffff) |
| { |
| complaint |
| (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"), |
| hex_string (DW_UNSND (attr))); |
| DW_UNSND (attr) = 0; |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Read an attribute described by an abbreviated attribute. */ |
| |
| static const gdb_byte * |
| read_attribute (const struct die_reader_specs *reader, |
| struct attribute *attr, struct attr_abbrev *abbrev, |
| const gdb_byte *info_ptr, bool *need_reprocess) |
| { |
| attr->name = abbrev->name; |
| return read_attribute_value (reader, attr, abbrev->form, |
| abbrev->implicit_const, info_ptr, |
| need_reprocess); |
| } |
| |
| static CORE_ADDR |
| read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu, |
| unsigned int *bytes_read) |
| { |
| struct comp_unit_head *cu_header = &cu->header; |
| CORE_ADDR retval = 0; |
| |
| if (cu_header->signed_addr_p) |
| { |
| switch (cu_header->addr_size) |
| { |
| case 2: |
| retval = bfd_get_signed_16 (abfd, buf); |
| break; |
| case 4: |
| retval = bfd_get_signed_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_signed_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_address: bad switch, signed [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| } |
| else |
| { |
| switch (cu_header->addr_size) |
| { |
| case 2: |
| retval = bfd_get_16 (abfd, buf); |
| break; |
| case 4: |
| retval = bfd_get_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_address: bad switch, " |
| "unsigned [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| } |
| |
| *bytes_read = cu_header->addr_size; |
| return retval; |
| } |
| |
| /* Read the initial length from a section. The (draft) DWARF 3 |
| specification allows the initial length to take up either 4 bytes |
| or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8 |
| bytes describe the length and all offsets will be 8 bytes in length |
| instead of 4. |
| |
| An older, non-standard 64-bit format is also handled by this |
| function. The older format in question stores the initial length |
| as an 8-byte quantity without an escape value. Lengths greater |
| than 2^32 aren't very common which means that the initial 4 bytes |
| is almost always zero. Since a length value of zero doesn't make |
| sense for the 32-bit format, this initial zero can be considered to |
| be an escape value which indicates the presence of the older 64-bit |
| format. As written, the code can't detect (old format) lengths |
| greater than 4GB. If it becomes necessary to handle lengths |
| somewhat larger than 4GB, we could allow other small values (such |
| as the non-sensical values of 1, 2, and 3) to also be used as |
| escape values indicating the presence of the old format. |
| |
| The value returned via bytes_read should be used to increment the |
| relevant pointer after calling read_initial_length(). |
| |
| [ Note: read_initial_length() and read_offset() are based on the |
| document entitled "DWARF Debugging Information Format", revision |
| 3, draft 8, dated November 19, 2001. This document was obtained |
| from: |
| |
| http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf |
| |
| This document is only a draft and is subject to change. (So beware.) |
| |
| Details regarding the older, non-standard 64-bit format were |
| determined empirically by examining 64-bit ELF files produced by |
| the SGI toolchain on an IRIX 6.5 machine. |
| |
| - Kevin, July 16, 2002 |
| ] */ |
| |
| static LONGEST |
| read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read) |
| { |
| LONGEST length = bfd_get_32 (abfd, buf); |
| |
| if (length == 0xffffffff) |
| { |
| length = bfd_get_64 (abfd, buf + 4); |
| *bytes_read = 12; |
| } |
| else if (length == 0) |
| { |
| /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */ |
| length = bfd_get_64 (abfd, buf); |
| *bytes_read = 8; |
| } |
| else |
| { |
| *bytes_read = 4; |
| } |
| |
| return length; |
| } |
| |
| /* Cover function for read_initial_length. |
| Returns the length of the object at BUF, and stores the size of the |
| initial length in *BYTES_READ and stores the size that offsets will be in |
| *OFFSET_SIZE. |
| If the initial length size is not equivalent to that specified in |
| CU_HEADER then issue a complaint. |
| This is useful when reading non-comp-unit headers. */ |
| |
| static LONGEST |
| read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read, |
| unsigned int *offset_size) |
| { |
| LONGEST length = read_initial_length (abfd, buf, bytes_read); |
| |
| gdb_assert (cu_header->initial_length_size == 4 |
| || cu_header->initial_length_size == 8 |
| || cu_header->initial_length_size == 12); |
| |
| if (cu_header->initial_length_size != *bytes_read) |
| complaint (_("intermixed 32-bit and 64-bit DWARF sections")); |
| |
| *offset_size = (*bytes_read == 4) ? 4 : 8; |
| return length; |
| } |
| |
| /* Read an offset from the data stream. The size of the offset is |
| given by cu_header->offset_size. */ |
| |
| static LONGEST |
| read_offset (bfd *abfd, const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read) |
| { |
| LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size); |
| |
| *bytes_read = cu_header->offset_size; |
| return offset; |
| } |
| |
| /* Read an offset from the data stream. */ |
| |
| static LONGEST |
| read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size) |
| { |
| LONGEST retval = 0; |
| |
| switch (offset_size) |
| { |
| case 4: |
| retval = bfd_get_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_offset_1: bad switch [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| |
| return retval; |
| } |
| |
| static const gdb_byte * |
| read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size) |
| { |
| /* If the size of a host char is 8 bits, we can return a pointer |
| to the buffer, otherwise we have to copy the data to a buffer |
| allocated on the temporary obstack. */ |
| gdb_assert (HOST_CHAR_BIT == 8); |
| return buf; |
| } |
| |
| static const char * |
| read_direct_string (bfd *abfd, const gdb_byte *buf, |
| unsigned int *bytes_read_ptr) |
| { |
| /* If the size of a host char is 8 bits, we can return a pointer |
| to the string, otherwise we have to copy the string to a buffer |
| allocated on the temporary obstack. */ |
| gdb_assert (HOST_CHAR_BIT == 8); |
| if (*buf == '\0') |
| { |
| *bytes_read_ptr = 1; |
| return NULL; |
| } |
| *bytes_read_ptr = strlen ((const char *) buf) + 1; |
| return (const char *) buf; |
| } |
| |
| /* Return pointer to string at section SECT offset STR_OFFSET with error |
| reporting strings FORM_NAME and SECT_NAME. */ |
| |
| static const char * |
| read_indirect_string_at_offset_from (struct objfile *objfile, |
| bfd *abfd, LONGEST str_offset, |
| struct dwarf2_section_info *sect, |
| const char *form_name, |
| const char *sect_name) |
| { |
| sect->read (objfile); |
| if (sect->buffer == NULL) |
| error (_("%s used without %s section [in module %s]"), |
| form_name, sect_name, bfd_get_filename (abfd)); |
| if (str_offset >= sect->size) |
| error (_("%s pointing outside of %s section [in module %s]"), |
| form_name, sect_name, bfd_get_filename (abfd)); |
| gdb_assert (HOST_CHAR_BIT == 8); |
| if (sect->buffer[str_offset] == '\0') |
| return NULL; |
| return (const char *) (sect->buffer + str_offset); |
| } |
| |
| /* Return pointer to string at .debug_str offset STR_OFFSET. */ |
| |
| static const char * |
| read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| bfd *abfd, LONGEST str_offset) |
| { |
| return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile, |
| abfd, str_offset, |
| &dwarf2_per_objfile->str, |
| "DW_FORM_strp", ".debug_str"); |
| } |
| |
| /* Return pointer to string at .debug_line_str offset STR_OFFSET. */ |
| |
| static const char * |
| read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| bfd *abfd, LONGEST str_offset) |
| { |
| return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile, |
| abfd, str_offset, |
| &dwarf2_per_objfile->line_str, |
| "DW_FORM_line_strp", |
| ".debug_line_str"); |
| } |
| |
| /* Read a string at offset STR_OFFSET in the .debug_str section from |
| the .dwz file DWZ. Throw an error if the offset is too large. If |
| the string consists of a single NUL byte, return NULL; otherwise |
| return a pointer to the string. */ |
| |
| static const char * |
| read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz, |
| LONGEST str_offset) |
| { |
| dwz->str.read (objfile); |
| |
| if (dwz->str.buffer == NULL) |
| error (_("DW_FORM_GNU_strp_alt used without .debug_str " |
| "section [in module %s]"), |
| bfd_get_filename (dwz->dwz_bfd.get ())); |
| if (str_offset >= dwz->str.size) |
| error (_("DW_FORM_GNU_strp_alt pointing outside of " |
| ".debug_str section [in module %s]"), |
| bfd_get_filename (dwz->dwz_bfd.get ())); |
| gdb_assert (HOST_CHAR_BIT == 8); |
| if (dwz->str.buffer[str_offset] == '\0') |
| return NULL; |
| return (const char *) (dwz->str.buffer + str_offset); |
| } |
| |
| /* Return pointer to string at .debug_str offset as read from BUF. |
| BUF is assumed to be in a compilation unit described by CU_HEADER. |
| Return *BYTES_READ_PTR count of bytes read from BUF. */ |
| |
| static const char * |
| read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd, |
| const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read_ptr) |
| { |
| LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr); |
| |
| return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset); |
| } |
| |
| /* Return pointer to string at .debug_line_str offset as read from BUF. |
| BUF is assumed to be in a compilation unit described by CU_HEADER. |
| Return *BYTES_READ_PTR count of bytes read from BUF. */ |
| |
| static const char * |
| read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| bfd *abfd, const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read_ptr) |
| { |
| LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr); |
| |
| return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd, |
| str_offset); |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. |
| ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero. |
| ADDR_SIZE is the size of addresses from the CU header. */ |
| |
| static CORE_ADDR |
| read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| unsigned int addr_index, gdb::optional<ULONGEST> addr_base, |
| int addr_size) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *abfd = objfile->obfd; |
| const gdb_byte *info_ptr; |
| ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0; |
| |
| dwarf2_per_objfile->addr.read (objfile); |
| if (dwarf2_per_objfile->addr.buffer == NULL) |
| error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"), |
| objfile_name (objfile)); |
| if (addr_base_or_zero + addr_index * addr_size |
| >= dwarf2_per_objfile->addr.size) |
| error (_("DW_FORM_addr_index pointing outside of " |
| ".debug_addr section [in module %s]"), |
| objfile_name (objfile)); |
| info_ptr = (dwarf2_per_objfile->addr.buffer |
| + addr_base_or_zero + addr_index * addr_size); |
| if (addr_size == 4) |
| return bfd_get_32 (abfd, info_ptr); |
| else |
| return bfd_get_64 (abfd, info_ptr); |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. */ |
| |
| static CORE_ADDR |
| read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index) |
| { |
| return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index, |
| cu->addr_base, cu->header.addr_size); |
| } |
| |
| /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */ |
| |
| static CORE_ADDR |
| read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr, |
| unsigned int *bytes_read) |
| { |
| bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd; |
| unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read); |
| |
| return read_addr_index (cu, addr_index); |
| } |
| |
| /* Given an index in .debug_addr, fetch the value. |
| NOTE: This can be called during dwarf expression evaluation, |
| long after the debug information has been read, and thus per_cu->cu |
| may no longer exist. */ |
| |
| CORE_ADDR |
| dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu, |
| unsigned int addr_index) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| struct dwarf2_cu *cu = per_cu->cu; |
| gdb::optional<ULONGEST> addr_base; |
| int addr_size; |
| |
| /* We need addr_base and addr_size. |
| If we don't have PER_CU->cu, we have to get it. |
| Nasty, but the alternative is storing the needed info in PER_CU, |
| which at this point doesn't seem justified: it's not clear how frequently |
| it would get used and it would increase the size of every PER_CU. |
| Entry points like dwarf2_per_cu_addr_size do a similar thing |
| so we're not in uncharted territory here. |
| Alas we need to be a bit more complicated as addr_base is contained |
| in the DIE. |
| |
| We don't need to read the entire CU(/TU). |
| We just need the header and top level die. |
| |
| IWBN to use the aging mechanism to let us lazily later discard the CU. |
| For now we skip this optimization. */ |
| |
| if (cu != NULL) |
| { |
| addr_base = cu->addr_base; |
| addr_size = cu->header.addr_size; |
| } |
| else |
| { |
| cutu_reader reader (per_cu, NULL, 0, 0, false); |
| addr_base = reader.cu->addr_base; |
| addr_size = reader.cu->header.addr_size; |
| } |
| |
| return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base, |
| addr_size); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string. |
| STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a |
| DWO file. */ |
| |
| static const char * |
| read_str_index (struct dwarf2_cu *cu, |
| struct dwarf2_section_info *str_section, |
| struct dwarf2_section_info *str_offsets_section, |
| ULONGEST str_offsets_base, ULONGEST str_index) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const char *objf_name = objfile_name (objfile); |
| bfd *abfd = objfile->obfd; |
| const gdb_byte *info_ptr; |
| ULONGEST str_offset; |
| static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx"; |
| |
| str_section->read (objfile); |
| str_offsets_section->read (objfile); |
| if (str_section->buffer == NULL) |
| error (_("%s used without %s section" |
| " in CU at offset %s [in module %s]"), |
| form_name, str_section->get_name (), |
| sect_offset_str (cu->header.sect_off), objf_name); |
| if (str_offsets_section->buffer == NULL) |
| error (_("%s used without %s section" |
| " in CU at offset %s [in module %s]"), |
| form_name, str_section->get_name (), |
| sect_offset_str (cu->header.sect_off), objf_name); |
| info_ptr = (str_offsets_section->buffer |
| + str_offsets_base |
| + str_index * cu->header.offset_size); |
| if (cu->header.offset_size == 4) |
| str_offset = bfd_get_32 (abfd, info_ptr); |
| else |
| str_offset = bfd_get_64 (abfd, info_ptr); |
| if (str_offset >= str_section->size) |
| error (_("Offset from %s pointing outside of" |
| " .debug_str.dwo section in CU at offset %s [in module %s]"), |
| form_name, sect_offset_str (cu->header.sect_off), objf_name); |
| return (const char *) (str_section->buffer + str_offset); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */ |
| |
| static const char * |
| read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index) |
| { |
| ULONGEST str_offsets_base = reader->cu->header.version >= 5 |
| ? reader->cu->header.addr_size : 0; |
| return read_str_index (reader->cu, |
| &reader->dwo_file->sections.str, |
| &reader->dwo_file->sections.str_offsets, |
| str_offsets_base, str_index); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */ |
| |
| static const char * |
| read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const char *objf_name = objfile_name (objfile); |
| static const char form_name[] = "DW_FORM_GNU_str_index"; |
| static const char str_offsets_attr_name[] = "DW_AT_str_offsets"; |
| |
| if (!cu->str_offsets_base.has_value ()) |
| error (_("%s used in Fission stub without %s" |
| " in CU at offset 0x%lx [in module %s]"), |
| form_name, str_offsets_attr_name, |
| (long) cu->header.offset_size, objf_name); |
| |
| return read_str_index (cu, |
| &cu->per_cu->dwarf2_per_objfile->str, |
| &cu->per_cu->dwarf2_per_objfile->str_offsets, |
| *cu->str_offsets_base, str_index); |
| } |
| |
| /* Return the length of an LEB128 number in BUF. */ |
| |
| static int |
| leb128_size (const gdb_byte *buf) |
| { |
| const gdb_byte *begin = buf; |
| gdb_byte byte; |
| |
| while (1) |
| { |
| byte = *buf++; |
| if ((byte & 128) == 0) |
| return buf - begin; |
| } |
| } |
| |
| static void |
| set_cu_language (unsigned int lang, struct dwarf2_cu *cu) |
| { |
| switch (lang) |
| { |
| case DW_LANG_C89: |
| case DW_LANG_C99: |
| case DW_LANG_C11: |
| case DW_LANG_C: |
| case DW_LANG_UPC: |
| cu->language = language_c; |
| break; |
| case DW_LANG_Java: |
| case DW_LANG_C_plus_plus: |
| case DW_LANG_C_plus_plus_11: |
| case DW_LANG_C_plus_plus_14: |
| cu->language = language_cplus; |
| break; |
| case DW_LANG_D: |
| cu->language = language_d; |
| break; |
| case DW_LANG_Fortran77: |
| case DW_LANG_Fortran90: |
| case DW_LANG_Fortran95: |
| case DW_LANG_Fortran03: |
| case DW_LANG_Fortran08: |
| cu->language = language_fortran; |
| break; |
| case DW_LANG_Go: |
| cu->language = language_go; |
| break; |
| case DW_LANG_Mips_Assembler: |
| cu->language = language_asm; |
| break; |
| case DW_LANG_Ada83: |
| case DW_LANG_Ada95: |
| cu->language = language_ada; |
| break; |
| case DW_LANG_Modula2: |
| cu->language = language_m2; |
| break; |
| case DW_LANG_Pascal83: |
| cu->language = language_pascal; |
| break; |
| case DW_LANG_ObjC: |
| cu->language = language_objc; |
| break; |
| case DW_LANG_Rust: |
| case DW_LANG_Rust_old: |
| cu->language = language_rust; |
| break; |
| case DW_LANG_Cobol74: |
| case DW_LANG_Cobol85: |
| default: |
| cu->language = language_minimal; |
| break; |
| } |
| cu->language_defn = language_def (cu->language); |
| } |
| |
| /* Return the named attribute or NULL if not there. */ |
| |
| static struct attribute * |
| dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) |
| { |
| for (;;) |
| { |
| unsigned int i; |
| struct attribute *spec = NULL; |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| { |
| if (die->attrs[i].name == name) |
| return &die->attrs[i]; |
| if (die->attrs[i].name == DW_AT_specification |
| || die->attrs[i].name == DW_AT_abstract_origin) |
| spec = &die->attrs[i]; |
| } |
| |
| if (!spec) |
| break; |
| |
| die = follow_die_ref (die, spec, &cu); |
| } |
| |
| return NULL; |
| } |
| |
| /* Return the named attribute or NULL if not there, |
| but do not follow DW_AT_specification, etc. |
| This is for use in contexts where we're reading .debug_types dies. |
| Following DW_AT_specification, DW_AT_abstract_origin will take us |
| back up the chain, and we want to go down. */ |
| |
| static struct attribute * |
| dwarf2_attr_no_follow (struct die_info *die, unsigned int name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| if (die->attrs[i].name == name) |
| return &die->attrs[i]; |
| |
| return NULL; |
| } |
| |
| /* Return the string associated with a string-typed attribute, or NULL if it |
| is either not found or is of an incorrect type. */ |
| |
| static const char * |
| dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| const char *str = NULL; |
| |
| attr = dwarf2_attr (die, name, cu); |
| |
| if (attr != NULL) |
| { |
| if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp |
| || attr->form == DW_FORM_string |
| || attr->form == DW_FORM_strx |
| || attr->form == DW_FORM_strx1 |
| || attr->form == DW_FORM_strx2 |
| || attr->form == DW_FORM_strx3 |
| || attr->form == DW_FORM_strx4 |
| || attr->form == DW_FORM_GNU_str_index |
| || attr->form == DW_FORM_GNU_strp_alt) |
| str = DW_STRING (attr); |
| else |
| complaint (_("string type expected for attribute %s for " |
| "DIE at %s in module %s"), |
| dwarf_attr_name (name), sect_offset_str (die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| return str; |
| } |
| |
| /* Return the dwo name or NULL if not present. If present, it is in either |
| DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */ |
| static const char * |
| dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu); |
| if (dwo_name == nullptr) |
| dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu); |
| return dwo_name; |
| } |
| |
| /* Return non-zero iff the attribute NAME is defined for the given DIE, |
| and holds a non-zero value. This function should only be used for |
| DW_FORM_flag or DW_FORM_flag_present attributes. */ |
| |
| static int |
| dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, name, cu); |
| |
| return (attr && DW_UNSND (attr)); |
| } |
| |
| static int |
| die_is_declaration (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| /* A DIE is a declaration if it has a DW_AT_declaration attribute |
| which value is non-zero. However, we have to be careful with |
| DIEs having a DW_AT_specification attribute, because dwarf2_attr() |
| (via dwarf2_flag_true_p) follows this attribute. So we may |
| end up accidently finding a declaration attribute that belongs |
| to a different DIE referenced by the specification attribute, |
| even though the given DIE does not have a declaration attribute. */ |
| return (dwarf2_flag_true_p (die, DW_AT_declaration, cu) |
| && dwarf2_attr (die, DW_AT_specification, cu) == NULL); |
| } |
| |
| /* Return the die giving the specification for DIE, if there is |
| one. *SPEC_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. If there is no |
| specification, but there is an abstract origin, that is |
| returned. */ |
| |
| static struct die_info * |
| die_specification (struct die_info *die, struct dwarf2_cu **spec_cu) |
| { |
| struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, |
| *spec_cu); |
| |
| if (spec_attr == NULL) |
| spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu); |
| |
| if (spec_attr == NULL) |
| return NULL; |
| else |
| return follow_die_ref (die, spec_attr, spec_cu); |
| } |
| |
| /* Stub for free_line_header to match void * callback types. */ |
| |
| static void |
| free_line_header_voidp (void *arg) |
| { |
| struct line_header *lh = (struct line_header *) arg; |
| |
| delete lh; |
| } |
| |
| void |
| line_header::add_include_dir (const char *include_dir) |
| { |
| if (dwarf_line_debug >= 2) |
| { |
| size_t new_size; |
| if (version >= 5) |
| new_size = m_include_dirs.size (); |
| else |
| new_size = m_include_dirs.size () + 1; |
| fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n", |
| new_size, include_dir); |
| } |
| m_include_dirs.push_back (include_dir); |
| } |
| |
| void |
| line_header::add_file_name (const char *name, |
| dir_index d_index, |
| unsigned int mod_time, |
| unsigned int length) |
| { |
| if (dwarf_line_debug >= 2) |
| { |
| size_t new_size; |
| if (version >= 5) |
| new_size = file_names_size (); |
| else |
| new_size = file_names_size () + 1; |
| fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n", |
| new_size, name); |
| } |
| m_file_names.emplace_back (name, d_index, mod_time, length); |
| } |
| |
| /* A convenience function to find the proper .debug_line section for a CU. */ |
| |
| static struct dwarf2_section_info * |
| get_debug_line_section (struct dwarf2_cu *cu) |
| { |
| struct dwarf2_section_info *section; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| section = &cu->dwo_unit->dwo_file->sections.line; |
| else if (cu->per_cu->is_dwz) |
| { |
| struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| |
| section = &dwz->line; |
| } |
| else |
| section = &dwarf2_per_objfile->line; |
| |
| return section; |
| } |
| |
| /* Read directory or file name entry format, starting with byte of |
| format count entries, ULEB128 pairs of entry formats, ULEB128 of |
| entries count and the entries themselves in the described entry |
| format. */ |
| |
| static void |
| read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile, |
| bfd *abfd, const gdb_byte **bufp, |
| struct line_header *lh, |
| const struct comp_unit_head *cu_header, |
| void (*callback) (struct line_header *lh, |
| const char *name, |
| dir_index d_index, |
| unsigned int mod_time, |
| unsigned int length)) |
| { |
| gdb_byte format_count, formati; |
| ULONGEST data_count, datai; |
| const gdb_byte *buf = *bufp; |
| const gdb_byte *format_header_data; |
| unsigned int bytes_read; |
| |
| format_count = read_1_byte (abfd, buf); |
| buf += 1; |
| format_header_data = buf; |
| for (formati = 0; formati < format_count; formati++) |
| { |
| read_unsigned_leb128 (abfd, buf, &bytes_read); |
| buf += bytes_read; |
| read_unsigned_leb128 (abfd, buf, &bytes_read); |
| buf += bytes_read; |
| } |
| |
| data_count = read_unsigned_leb128 (abfd, buf, &bytes_read); |
| buf += bytes_read; |
| for (datai = 0; datai < data_count; datai++) |
| { |
| const gdb_byte *format = format_header_data; |
| struct file_entry fe; |
| |
| for (formati = 0; formati < format_count; formati++) |
| { |
| ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read); |
| format += bytes_read; |
| |
| ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read); |
| format += bytes_read; |
| |
| gdb::optional<const char *> string; |
| gdb::optional<unsigned int> uint; |
| |
| switch (form) |
| { |
| case DW_FORM_string: |
| string.emplace (read_direct_string (abfd, buf, &bytes_read)); |
| buf += bytes_read; |
| break; |
| |
| case DW_FORM_line_strp: |
| string.emplace (read_indirect_line_string (dwarf2_per_objfile, |
| abfd, buf, |
| cu_header, |
| &bytes_read)); |
| buf += bytes_read; |
| break; |
| |
| case DW_FORM_data1: |
| uint.emplace (read_1_byte (abfd, buf)); |
| buf += 1; |
| break; |
| |
| case DW_FORM_data2: |
| uint.emplace (read_2_bytes (abfd, buf)); |
| buf += 2; |
| break; |
| |
| case DW_FORM_data4: |
| uint.emplace (read_4_bytes (abfd, buf)); |
| buf += 4; |
| break; |
| |
| case DW_FORM_data8: |
| uint.emplace (read_8_bytes (abfd, buf)); |
| buf += 8; |
| break; |
| |
| case DW_FORM_data16: |
| /* This is used for MD5, but file_entry does not record MD5s. */ |
| buf += 16; |
| break; |
| |
| case DW_FORM_udata: |
| uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read)); |
| buf += bytes_read; |
| break; |
| |
| case DW_FORM_block: |
| /* It is valid only for DW_LNCT_timestamp which is ignored by |
| current GDB. */ |
| break; |
| } |
| |
| switch (content_type) |
| { |
| case DW_LNCT_path: |
| if (string.has_value ()) |
| fe.name = *string; |
| break; |
| case DW_LNCT_directory_index: |
| if (uint.has_value ()) |
| fe.d_index = (dir_index) *uint; |
| break; |
| case DW_LNCT_timestamp: |
| if (uint.has_value ()) |
| fe.mod_time = *uint; |
| break; |
| case DW_LNCT_size: |
| if (uint.has_value ()) |
| fe.length = *uint; |
| break; |
| case DW_LNCT_MD5: |
| break; |
| default: |
| complaint (_("Unknown format content type %s"), |
| pulongest (content_type)); |
| } |
| } |
| |
| callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length); |
| } |
| |
| *bufp = buf; |
| } |
| |
| /* Read the statement program header starting at OFFSET in |
| .debug_line, or .debug_line.dwo. Return a pointer |
| to a struct line_header, allocated using xmalloc. |
| Returns NULL if there is a problem reading the header, e.g., if it |
| has a version we don't understand. |
| |
| NOTE: the strings in the include directory and file name tables of |
| the returned object point into the dwarf line section buffer, |
| and must not be freed. */ |
| |
| static line_header_up |
| dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu) |
| { |
| const gdb_byte *line_ptr; |
| unsigned int bytes_read, offset_size; |
| int i; |
| const char *cur_dir, *cur_file; |
| struct dwarf2_section_info *section; |
| bfd *abfd; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| section = get_debug_line_section (cu); |
| section->read (dwarf2_per_objfile->objfile); |
| if (section->buffer == NULL) |
| { |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| complaint (_("missing .debug_line.dwo section")); |
| else |
| complaint (_("missing .debug_line section")); |
| return 0; |
| } |
| |
| /* We can't do this until we know the section is non-empty. |
| Only then do we know we have such a section. */ |
| abfd = section->get_bfd_owner (); |
| |
| /* Make sure that at least there's room for the total_length field. |
| That could be 12 bytes long, but we're just going to fudge that. */ |
| if (to_underlying (sect_off) + 4 >= section->size) |
| { |
| dwarf2_statement_list_fits_in_line_number_section_complaint (); |
| return 0; |
| } |
| |
| line_header_up lh (new line_header ()); |
| |
| lh->sect_off = sect_off; |
| lh->offset_in_dwz = cu->per_cu->is_dwz; |
| |
| line_ptr = section->buffer + to_underlying (sect_off); |
| |
| /* Read in the header. */ |
| lh->total_length = |
| read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header, |
| &bytes_read, &offset_size); |
| line_ptr += bytes_read; |
| |
| const gdb_byte *start_here = line_ptr; |
| |
| if (line_ptr + lh->total_length > (section->buffer + section->size)) |
| { |
| dwarf2_statement_list_fits_in_line_number_section_complaint (); |
| return 0; |
| } |
| lh->statement_program_end = start_here + lh->total_length; |
| lh->version = read_2_bytes (abfd, line_ptr); |
| line_ptr += 2; |
| if (lh->version > 5) |
| { |
| /* This is a version we don't understand. The format could have |
| changed in ways we don't handle properly so just punt. */ |
| complaint (_("unsupported version in .debug_line section")); |
| return NULL; |
| } |
| if (lh->version >= 5) |
| { |
| gdb_byte segment_selector_size; |
| |
| /* Skip address size. */ |
| read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| |
| segment_selector_size = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| if (segment_selector_size != 0) |
| { |
| complaint (_("unsupported segment selector size %u " |
| "in .debug_line section"), |
| segment_selector_size); |
| return NULL; |
| } |
| } |
| lh->header_length = read_offset_1 (abfd, line_ptr, offset_size); |
| line_ptr += offset_size; |
| lh->statement_program_start = line_ptr + lh->header_length; |
| lh->minimum_instruction_length = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| if (lh->version >= 4) |
| { |
| lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| } |
| else |
| lh->maximum_ops_per_instruction = 1; |
| |
| if (lh->maximum_ops_per_instruction == 0) |
| { |
| lh->maximum_ops_per_instruction = 1; |
| complaint (_("invalid maximum_ops_per_instruction " |
| "in `.debug_line' section")); |
| } |
| |
| lh->default_is_stmt = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->line_base = read_1_signed_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->line_range = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->opcode_base = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]); |
| |
| lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */ |
| for (i = 1; i < lh->opcode_base; ++i) |
| { |
| lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| } |
| |
| if (lh->version >= 5) |
| { |
| /* Read directory table. */ |
| read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (), |
| &cu->header, |
| [] (struct line_header *header, const char *name, |
| dir_index d_index, unsigned int mod_time, |
| unsigned int length) |
| { |
| header->add_include_dir (name); |
| }); |
| |
| /* Read file name table. */ |
| read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (), |
| &cu->header, |
| [] (struct line_header *header, const char *name, |
| dir_index d_index, unsigned int mod_time, |
| unsigned int length) |
| { |
| header->add_file_name (name, d_index, mod_time, length); |
| }); |
| } |
| else |
| { |
| /* Read directory table. */ |
| while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL) |
| { |
| line_ptr += bytes_read; |
| lh->add_include_dir (cur_dir); |
| } |
| line_ptr += bytes_read; |
| |
| /* Read file name table. */ |
| while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL) |
| { |
| unsigned int mod_time, length; |
| dir_index d_index; |
| |
| line_ptr += bytes_read; |
| d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| lh->add_file_name (cur_file, d_index, mod_time, length); |
| } |
| line_ptr += bytes_read; |
| } |
| |
| if (line_ptr > (section->buffer + section->size)) |
| complaint (_("line number info header doesn't " |
| "fit in `.debug_line' section")); |
| |
| return lh; |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Return the file name of the psymtab for the given file_entry. |
| COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown. |
| If space for the result is malloc'd, *NAME_HOLDER will be set. |
| Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */ |
| |
| static const char * |
| psymtab_include_file_name (const struct line_header *lh, const file_entry &fe, |
| const dwarf2_psymtab *pst, |
| const char *comp_dir, |
| gdb::unique_xmalloc_ptr<char> *name_holder) |
| { |
| const char *include_name = fe.name; |
| const char *include_name_to_compare = include_name; |
| const char *pst_filename; |
| int file_is_pst; |
| |
| const char *dir_name = fe.include_dir (lh); |
| |
| gdb::unique_xmalloc_ptr<char> hold_compare; |
| if (!IS_ABSOLUTE_PATH (include_name) |
| && (dir_name != NULL || comp_dir != NULL)) |
| { |
| /* Avoid creating a duplicate psymtab for PST. |
| We do this by comparing INCLUDE_NAME and PST_FILENAME. |
| Before we do the comparison, however, we need to account |
| for DIR_NAME and COMP_DIR. |
| First prepend dir_name (if non-NULL). If we still don't |
| have an absolute path prepend comp_dir (if non-NULL). |
| However, the directory we record in the include-file's |
| psymtab does not contain COMP_DIR (to match the |
| corresponding symtab(s)). |
| |
| Example: |
| |
| bash$ cd /tmp |
| bash$ gcc -g ./hello.c |
| include_name = "hello.c" |
| dir_name = "." |
| DW_AT_comp_dir = comp_dir = "/tmp" |
| DW_AT_name = "./hello.c" |
| |
| */ |
| |
| if (dir_name != NULL) |
| { |
| name_holder->reset (concat (dir_name, SLASH_STRING, |
| include_name, (char *) NULL)); |
| include_name = name_holder->get (); |
| include_name_to_compare = include_name; |
| } |
| if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL) |
| { |
| hold_compare.reset (concat (comp_dir, SLASH_STRING, |
| include_name, (char *) NULL)); |
| include_name_to_compare = hold_compare.get (); |
| } |
| } |
| |
| pst_filename = pst->filename; |
| gdb::unique_xmalloc_ptr<char> copied_name; |
| if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL) |
| { |
| copied_name.reset (concat (pst->dirname, SLASH_STRING, |
| pst_filename, (char *) NULL)); |
| pst_filename = copied_name.get (); |
| } |
| |
| file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0; |
| |
| if (file_is_pst) |
| return NULL; |
| return include_name; |
| } |
| |
| /* State machine to track the state of the line number program. */ |
| |
| class lnp_state_machine |
| { |
| public: |
| /* Initialize a machine state for the start of a line number |
| program. */ |
| lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh, |
| bool record_lines_p); |
| |
| file_entry *current_file () |
| { |
| /* lh->file_names is 0-based, but the file name numbers in the |
| statement program are 1-based. */ |
| return m_line_header->file_name_at (m_file); |
| } |
| |
| /* Record the line in the state machine. END_SEQUENCE is true if |
| we're processing the end of a sequence. */ |
| void record_line (bool end_sequence); |
| |
| /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true |
| nop-out rest of the lines in this sequence. */ |
| void check_line_address (struct dwarf2_cu *cu, |
| const gdb_byte *line_ptr, |
| CORE_ADDR unrelocated_lowpc, CORE_ADDR address); |
| |
| void handle_set_discriminator (unsigned int discriminator) |
| { |
| m_discriminator = discriminator; |
| m_line_has_non_zero_discriminator |= discriminator != 0; |
| } |
| |
| /* Handle DW_LNE_set_address. */ |
| void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address) |
| { |
| m_op_index = 0; |
| address += baseaddr; |
| m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false); |
| } |
| |
| /* Handle DW_LNS_advance_pc. */ |
| void handle_advance_pc (CORE_ADDR adjust); |
| |
| /* Handle a special opcode. */ |
| void handle_special_opcode (unsigned char op_code); |
| |
| /* Handle DW_LNS_advance_line. */ |
| void handle_advance_line (int line_delta) |
| { |
| advance_line (line_delta); |
| } |
| |
| /* Handle DW_LNS_set_file. */ |
| void handle_set_file (file_name_index file); |
| |
| /* Handle DW_LNS_negate_stmt. */ |
| void handle_negate_stmt () |
| { |
| m_is_stmt = !m_is_stmt; |
| } |
| |
| /* Handle DW_LNS_const_add_pc. */ |
| void handle_const_add_pc (); |
| |
| /* Handle DW_LNS_fixed_advance_pc. */ |
| void handle_fixed_advance_pc (CORE_ADDR addr_adj) |
| { |
| m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_op_index = 0; |
| } |
| |
| /* Handle DW_LNS_copy. */ |
| void handle_copy () |
| { |
| record_line (false); |
| m_discriminator = 0; |
| } |
| |
| /* Handle DW_LNE_end_sequence. */ |
| void handle_end_sequence () |
| { |
| m_currently_recording_lines = true; |
| } |
| |
| private: |
| /* Advance the line by LINE_DELTA. */ |
| void advance_line (int line_delta) |
| { |
| m_line += line_delta; |
| |
| if (line_delta != 0) |
| m_line_has_non_zero_discriminator = m_discriminator != 0; |
| } |
| |
| struct dwarf2_cu *m_cu; |
| |
| gdbarch *m_gdbarch; |
| |
| /* True if we're recording lines. |
| Otherwise we're building partial symtabs and are just interested in |
| finding include files mentioned by the line number program. */ |
| bool m_record_lines_p; |
| |
| /* The line number header. */ |
| line_header *m_line_header; |
| |
| /* These are part of the standard DWARF line number state machine, |
| and initialized according to the DWARF spec. */ |
| |
| unsigned char m_op_index = 0; |
| /* The line table index of the current file. */ |
| file_name_index m_file = 1; |
| unsigned int m_line = 1; |
| |
| /* These are initialized in the constructor. */ |
| |
| CORE_ADDR m_address; |
| bool m_is_stmt; |
| unsigned int m_discriminator; |
| |
| /* Additional bits of state we need to track. */ |
| |
| /* The last file that we called dwarf2_start_subfile for. |
| This is only used for TLLs. */ |
| unsigned int m_last_file = 0; |
| /* The last file a line number was recorded for. */ |
| struct subfile *m_last_subfile = NULL; |
| |
| /* When true, record the lines we decode. */ |
| bool m_currently_recording_lines = false; |
| |
| /* The last line number that was recorded, used to coalesce |
| consecutive entries for the same line. This can happen, for |
| example, when discriminators are present. PR 17276. */ |
| unsigned int m_last_line = 0; |
| bool m_line_has_non_zero_discriminator = false; |
| }; |
| |
| void |
| lnp_state_machine::handle_advance_pc (CORE_ADDR adjust) |
| { |
| CORE_ADDR addr_adj = (((m_op_index + adjust) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_op_index = ((m_op_index + adjust) |
| % m_line_header->maximum_ops_per_instruction); |
| } |
| |
| void |
| lnp_state_machine::handle_special_opcode (unsigned char op_code) |
| { |
| unsigned char adj_opcode = op_code - m_line_header->opcode_base; |
| CORE_ADDR addr_adj = (((m_op_index |
| + (adj_opcode / m_line_header->line_range)) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range)) |
| % m_line_header->maximum_ops_per_instruction); |
| |
| int line_delta = (m_line_header->line_base |
| + (adj_opcode % m_line_header->line_range)); |
| advance_line (line_delta); |
| record_line (false); |
| m_discriminator = 0; |
| } |
| |
| void |
| lnp_state_machine::handle_set_file (file_name_index file) |
| { |
| m_file = file; |
| |
| const file_entry *fe = current_file (); |
| if (fe == NULL) |
| dwarf2_debug_line_missing_file_complaint (); |
| else if (m_record_lines_p) |
| { |
| const char *dir = fe->include_dir (m_line_header); |
| |
| m_last_subfile = m_cu->get_builder ()->get_current_subfile (); |
| m_line_has_non_zero_discriminator = m_discriminator != 0; |
| dwarf2_start_subfile (m_cu, fe->name, dir); |
| } |
| } |
| |
| void |
| lnp_state_machine::handle_const_add_pc () |
| { |
| CORE_ADDR adjust |
| = (255 - m_line_header->opcode_base) / m_line_header->line_range; |
| |
| CORE_ADDR addr_adj |
| = (((m_op_index + adjust) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| |
| m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_op_index = ((m_op_index + adjust) |
| % m_line_header->maximum_ops_per_instruction); |
| } |
| |
| /* Return non-zero if we should add LINE to the line number table. |
| LINE is the line to add, LAST_LINE is the last line that was added, |
| LAST_SUBFILE is the subfile for LAST_LINE. |
| LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever |
| had a non-zero discriminator. |
| |
| We have to be careful in the presence of discriminators. |
| E.g., for this line: |
| |
| for (i = 0; i < 100000; i++); |
| |
| clang can emit four line number entries for that one line, |
| each with a different discriminator. |
| See gdb.dwarf2/dw2-single-line-discriminators.exp for an example. |
| |
| However, we want gdb to coalesce all four entries into one. |
| Otherwise the user could stepi into the middle of the line and |
| gdb would get confused about whether the pc really was in the |
| middle of the line. |
| |
| Things are further complicated by the fact that two consecutive |
| line number entries for the same line is a heuristic used by gcc |
| to denote the end of the prologue. So we can't just discard duplicate |
| entries, we have to be selective about it. The heuristic we use is |
| that we only collapse consecutive entries for the same line if at least |
| one of those entries has a non-zero discriminator. PR 17276. |
| |
| Note: Addresses in the line number state machine can never go backwards |
| within one sequence, thus this coalescing is ok. */ |
| |
| static int |
| dwarf_record_line_p (struct dwarf2_cu *cu, |
| unsigned int line, unsigned int last_line, |
| int line_has_non_zero_discriminator, |
| struct subfile *last_subfile) |
| { |
| if (cu->get_builder ()->get_current_subfile () != last_subfile) |
| return 1; |
| if (line != last_line) |
| return 1; |
| /* Same line for the same file that we've seen already. |
| As a last check, for pr 17276, only record the line if the line |
| has never had a non-zero discriminator. */ |
| if (!line_has_non_zero_discriminator) |
| return 1; |
| return 0; |
| } |
| |
| /* Use the CU's builder to record line number LINE beginning at |
| address ADDRESS in the line table of subfile SUBFILE. */ |
| |
| static void |
| dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile, |
| unsigned int line, CORE_ADDR address, |
| struct dwarf2_cu *cu) |
| { |
| CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address); |
| |
| if (dwarf_line_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Recording line %u, file %s, address %s\n", |
| line, lbasename (subfile->name), |
| paddress (gdbarch, address)); |
| } |
| |
| if (cu != nullptr) |
| cu->get_builder ()->record_line (subfile, line, addr); |
| } |
| |
| /* Subroutine of dwarf_decode_lines_1 to simplify it. |
| Mark the end of a set of line number records. |
| The arguments are the same as for dwarf_record_line_1. |
| If SUBFILE is NULL the request is ignored. */ |
| |
| static void |
| dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile, |
| CORE_ADDR address, struct dwarf2_cu *cu) |
| { |
| if (subfile == NULL) |
| return; |
| |
| if (dwarf_line_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Finishing current line, file %s, address %s\n", |
| lbasename (subfile->name), |
| paddress (gdbarch, address)); |
| } |
| |
| dwarf_record_line_1 (gdbarch, subfile, 0, address, cu); |
| } |
| |
| void |
| lnp_state_machine::record_line (bool end_sequence) |
| { |
| if (dwarf_line_debug) |
| { |
| fprintf_unfiltered (gdb_stdlog, |
| "Processing actual line %u: file %u," |
| " address %s, is_stmt %u, discrim %u%s\n", |
| m_line, m_file, |
| paddress (m_gdbarch, m_address), |
| m_is_stmt, m_discriminator, |
| (end_sequence ? "\t(end sequence)" : "")); |
| } |
| |
| file_entry *fe = current_file (); |
| |
| if (fe == NULL) |
| dwarf2_debug_line_missing_file_complaint (); |
| /* For now we ignore lines not starting on an instruction boundary. |
| But not when processing end_sequence for compatibility with the |
| previous version of the code. */ |
| else if (m_op_index == 0 || end_sequence) |
| { |
| fe->included_p = 1; |
| if (m_record_lines_p |
| && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence)) |
| { |
| if (m_last_subfile != m_cu->get_builder ()->get_current_subfile () |
| || end_sequence) |
| { |
| dwarf_finish_line (m_gdbarch, m_last_subfile, m_address, |
| m_currently_recording_lines ? m_cu : nullptr); |
| } |
| |
| if (!end_sequence) |
| { |
| if (dwarf_record_line_p (m_cu, m_line, m_last_line, |
| m_line_has_non_zero_discriminator, |
| m_last_subfile)) |
| { |
| buildsym_compunit *builder = m_cu->get_builder (); |
| dwarf_record_line_1 (m_gdbarch, |
| builder->get_current_subfile (), |
| m_line, m_address, |
| m_currently_recording_lines ? m_cu : nullptr); |
| } |
| m_last_subfile = m_cu->get_builder ()->get_current_subfile (); |
| m_last_line = m_line; |
| } |
| } |
| } |
| } |
| |
| lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, |
| line_header *lh, bool record_lines_p) |
| { |
| m_cu = cu; |
| m_gdbarch = arch; |
| m_record_lines_p = record_lines_p; |
| m_line_header = lh; |
| |
| m_currently_recording_lines = true; |
| |
| /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there |
| was a line entry for it so that the backend has a chance to adjust it |
| and also record it in case it needs it. This is currently used by MIPS |
| code, cf. `mips_adjust_dwarf2_line'. */ |
| m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0); |
| m_is_stmt = lh->default_is_stmt; |
| m_discriminator = 0; |
| } |
| |
| void |
| lnp_state_machine::check_line_address (struct dwarf2_cu *cu, |
| const gdb_byte *line_ptr, |
| CORE_ADDR unrelocated_lowpc, CORE_ADDR address) |
| { |
| /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside |
| the pc range of the CU. However, we restrict the test to only ADDRESS |
| values of zero to preserve GDB's previous behaviour which is to handle |
| the specific case of a function being GC'd by the linker. */ |
| |
| if (address == 0 && address < unrelocated_lowpc) |
| { |
| /* This line table is for a function which has been |
| GCd by the linker. Ignore it. PR gdb/12528 */ |
| |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| long line_offset = line_ptr - get_debug_line_section (cu)->buffer; |
| |
| complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"), |
| line_offset, objfile_name (objfile)); |
| m_currently_recording_lines = false; |
| /* Note: m_currently_recording_lines is left as false until we see |
| DW_LNE_end_sequence. */ |
| } |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Process the line number information in LH. |
| If DECODE_FOR_PST_P is non-zero, all we do is process the line number |
| program in order to set included_p for every referenced header. */ |
| |
| static void |
| dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu, |
| const int decode_for_pst_p, CORE_ADDR lowpc) |
| { |
| const gdb_byte *line_ptr, *extended_end; |
| const gdb_byte *line_end; |
| unsigned int bytes_read, extended_len; |
| unsigned char op_code, extended_op; |
| CORE_ADDR baseaddr; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| bfd *abfd = objfile->obfd; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| /* True if we're recording line info (as opposed to building partial |
| symtabs and just interested in finding include files mentioned by |
| the line number program). */ |
| bool record_lines_p = !decode_for_pst_p; |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| line_ptr = lh->statement_program_start; |
| line_end = lh->statement_program_end; |
| |
| /* Read the statement sequences until there's nothing left. */ |
| while (line_ptr < line_end) |
| { |
| /* The DWARF line number program state machine. Reset the state |
| machine at the start of each sequence. */ |
| lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p); |
| bool end_sequence = false; |
| |
| if (record_lines_p) |
| { |
| /* Start a subfile for the current file of the state |
| machine. */ |
| const file_entry *fe = state_machine.current_file (); |
| |
| if (fe != NULL) |
| dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh)); |
| } |
| |
| /* Decode the table. */ |
| while (line_ptr < line_end && !end_sequence) |
| { |
| op_code = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| |
| if (op_code >= lh->opcode_base) |
| { |
| /* Special opcode. */ |
| state_machine.handle_special_opcode (op_code); |
| } |
| else switch (op_code) |
| { |
| case DW_LNS_extended_op: |
| extended_len = read_unsigned_leb128 (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| extended_end = line_ptr + extended_len; |
| extended_op = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| switch (extended_op) |
| { |
| case DW_LNE_end_sequence: |
| state_machine.handle_end_sequence (); |
| end_sequence = true; |
| break; |
| case DW_LNE_set_address: |
| { |
| CORE_ADDR address |
| = read_address (abfd, line_ptr, cu, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.check_line_address (cu, line_ptr, |
| lowpc - baseaddr, address); |
| state_machine.handle_set_address (baseaddr, address); |
| } |
| break; |
| case DW_LNE_define_file: |
| { |
| const char *cur_file; |
| unsigned int mod_time, length; |
| dir_index dindex; |
| |
| cur_file = read_direct_string (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| dindex = (dir_index) |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| mod_time = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| length = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| lh->add_file_name (cur_file, dindex, mod_time, length); |
| } |
| break; |
| case DW_LNE_set_discriminator: |
| { |
| /* The discriminator is not interesting to the |
| debugger; just ignore it. We still need to |
| check its value though: |
| if there are consecutive entries for the same |
| (non-prologue) line we want to coalesce them. |
| PR 17276. */ |
| unsigned int discr |
| = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_set_discriminator (discr); |
| } |
| break; |
| default: |
| complaint (_("mangled .debug_line section")); |
| return; |
| } |
| /* Make sure that we parsed the extended op correctly. If e.g. |
| we expected a different address size than the producer used, |
| we may have read the wrong number of bytes. */ |
| if (line_ptr != extended_end) |
| { |
| complaint (_("mangled .debug_line section")); |
| return; |
| } |
| break; |
| case DW_LNS_copy: |
| state_machine.handle_copy (); |
| break; |
| case DW_LNS_advance_pc: |
| { |
| CORE_ADDR adjust |
| = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_advance_pc (adjust); |
| } |
| break; |
| case DW_LNS_advance_line: |
| { |
| int line_delta |
| = read_signed_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_advance_line (line_delta); |
| } |
| break; |
| case DW_LNS_set_file: |
| { |
| file_name_index file |
| = (file_name_index) read_unsigned_leb128 (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_set_file (file); |
| } |
| break; |
| case DW_LNS_set_column: |
| (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| break; |
| case DW_LNS_negate_stmt: |
| state_machine.handle_negate_stmt (); |
| break; |
| case DW_LNS_set_basic_block: |
| break; |
| /* Add to the address register of the state machine the |
| address increment value corresponding to special opcode |
| 255. I.e., this value is scaled by the minimum |
| instruction length since special opcode 255 would have |
| scaled the increment. */ |
| case DW_LNS_const_add_pc: |
| state_machine.handle_const_add_pc (); |
| break; |
| case DW_LNS_fixed_advance_pc: |
| { |
| CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr); |
| line_ptr += 2; |
| |
| state_machine.handle_fixed_advance_pc (addr_adj); |
| } |
| break; |
| default: |
| { |
| /* Unknown standard opcode, ignore it. */ |
| int i; |
| |
| for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++) |
| { |
| (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| } |
| } |
| } |
| } |
| |
| if (!end_sequence) |
| dwarf2_debug_line_missing_end_sequence_complaint (); |
| |
| /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer, |
| in which case we still finish recording the last line). */ |
| state_machine.record_line (true); |
| } |
| } |
| |
| /* Decode the Line Number Program (LNP) for the given line_header |
| structure and CU. The actual information extracted and the type |
| of structures created from the LNP depends on the value of PST. |
| |
| 1. If PST is NULL, then this procedure uses the data from the program |
| to create all necessary symbol tables, and their linetables. |
| |
| 2. If PST is not NULL, this procedure reads the program to determine |
| the list of files included by the unit represented by PST, and |
| builds all the associated partial symbol tables. |
| |
| COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown. |
| It is used for relative paths in the line table. |
| NOTE: When processing partial symtabs (pst != NULL), |
| comp_dir == pst->dirname. |
| |
| NOTE: It is important that psymtabs have the same file name (via strcmp) |
| as the corresponding symtab. Since COMP_DIR is not used in the name of the |
| symtab we don't use it in the name of the psymtabs we create. |
| E.g. expand_line_sal requires this when finding psymtabs to expand. |
| A good testcase for this is mb-inline.exp. |
| |
| LOWPC is the lowest address in CU (or 0 if not known). |
| |
| Boolean DECODE_MAPPING specifies we need to fully decode .debug_line |
| for its PC<->lines mapping information. Otherwise only the filename |
| table is read in. */ |
| |
| static void |
| dwarf_decode_lines (struct line_header *lh, const char *comp_dir, |
| struct dwarf2_cu *cu, dwarf2_psymtab *pst, |
| CORE_ADDR lowpc, int decode_mapping) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| const int decode_for_pst_p = (pst != NULL); |
| |
| if (decode_mapping) |
| dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc); |
| |
| if (decode_for_pst_p) |
| { |
| /* Now that we're done scanning the Line Header Program, we can |
| create the psymtab of each included file. */ |
| for (auto &file_entry : lh->file_names ()) |
| if (file_entry.included_p == 1) |
| { |
| gdb::unique_xmalloc_ptr<char> name_holder; |
| const char *include_name = |
| psymtab_include_file_name (lh, file_entry, pst, |
| comp_dir, &name_holder); |
| if (include_name != NULL) |
| dwarf2_create_include_psymtab (include_name, pst, objfile); |
| } |
| } |
| else |
| { |
| /* Make sure a symtab is created for every file, even files |
| which contain only variables (i.e. no code with associated |
| line numbers). */ |
| buildsym_compunit *builder = cu->get_builder (); |
| struct compunit_symtab *cust = builder->get_compunit_symtab (); |
| |
| for (auto &fe : lh->file_names ()) |
| { |
| dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh)); |
| if (builder->get_current_subfile ()->symtab == NULL) |
| { |
| builder->get_current_subfile ()->symtab |
| = allocate_symtab (cust, |
| builder->get_current_subfile ()->name); |
| } |
| fe.symtab = builder->get_current_subfile ()->symtab; |
| } |
| } |
| } |
| |
| /* Start a subfile for DWARF. FILENAME is the name of the file and |
| DIRNAME the name of the source directory which contains FILENAME |
| or NULL if not known. |
| This routine tries to keep line numbers from identical absolute and |
| relative file names in a common subfile. |
| |
| Using the `list' example from the GDB testsuite, which resides in |
| /srcdir and compiling it with Irix6.2 cc in /compdir using a filename |
| of /srcdir/list0.c yields the following debugging information for list0.c: |
| |
| DW_AT_name: /srcdir/list0.c |
| DW_AT_comp_dir: /compdir |
| files.files[0].name: list0.h |
| files.files[0].dir: /srcdir |
| files.files[1].name: list0.c |
| files.files[1].dir: /srcdir |
| |
| The line number information for list0.c has to end up in a single |
| subfile, so that `break /srcdir/list0.c:1' works as expected. |
| start_subfile will ensure that this happens provided that we pass the |
| concatenation of files.files[1].dir and files.files[1].name as the |
| subfile's name. */ |
| |
| static void |
| dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename, |
| const char *dirname) |
| { |
| gdb::unique_xmalloc_ptr<char> copy; |
| |
| /* In order not to lose the line information directory, |
| we concatenate it to the filename when it makes sense. |
| Note that the Dwarf3 standard says (speaking of filenames in line |
| information): ``The directory index is ignored for file names |
| that represent full path names''. Thus ignoring dirname in the |
| `else' branch below isn't an issue. */ |
| |
| if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL) |
| { |
| copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL)); |
| filename = copy.get (); |
| } |
| |
| cu->get_builder ()->start_subfile (filename); |
| } |
| |
| /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the |
| buildsym_compunit constructor. */ |
| |
| struct compunit_symtab * |
| dwarf2_cu::start_symtab (const char *name, const char *comp_dir, |
| CORE_ADDR low_pc) |
| { |
| gdb_assert (m_builder == nullptr); |
| |
| m_builder.reset (new struct buildsym_compunit |
| (per_cu->dwarf2_per_objfile->objfile, |
| name, comp_dir, language, low_pc)); |
| |
| list_in_scope = get_builder ()->get_file_symbols (); |
| |
| get_builder ()->record_debugformat ("DWARF 2"); |
| get_builder ()->record_producer (producer); |
| |
| processing_has_namespace_info = false; |
| |
| return get_builder ()->get_compunit_symtab (); |
| } |
| |
| static void |
| var_decode_location (struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| |
| /* NOTE drow/2003-01-30: There used to be a comment and some special |
| code here to turn a symbol with DW_AT_external and a |
| SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was |
| necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux |
| with some versions of binutils) where shared libraries could have |
| relocations against symbols in their debug information - the |
| minimal symbol would have the right address, but the debug info |
| would not. It's no longer necessary, because we will explicitly |
| apply relocations when we read in the debug information now. */ |
| |
| /* A DW_AT_location attribute with no contents indicates that a |
| variable has been optimized away. */ |
| if (attr->form_is_block () && DW_BLOCK (attr)->size == 0) |
| { |
| SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT; |
| return; |
| } |
| |
| /* Handle one degenerate form of location expression specially, to |
| preserve GDB's previous behavior when section offsets are |
| specified. If this is just a DW_OP_addr, DW_OP_addrx, or |
| DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */ |
| |
| if (attr->form_is_block () |
| && ((DW_BLOCK (attr)->data[0] == DW_OP_addr |
| && DW_BLOCK (attr)->size == 1 + cu_header->addr_size) |
| || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index |
| || DW_BLOCK (attr)->data[0] == DW_OP_addrx) |
| && (DW_BLOCK (attr)->size |
| == 1 + leb128_size (&DW_BLOCK (attr)->data[1]))))) |
| { |
| unsigned int dummy; |
| |
| if (DW_BLOCK (attr)->data[0] == DW_OP_addr) |
| SET_SYMBOL_VALUE_ADDRESS (sym, |
| read_address (objfile->obfd, |
| DW_BLOCK (attr)->data + 1, |
| cu, &dummy)); |
| else |
| SET_SYMBOL_VALUE_ADDRESS |
| (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, |
| &dummy)); |
| SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC; |
| fixup_symbol_section (sym, objfile); |
| SET_SYMBOL_VALUE_ADDRESS |
| (sym, |
| SYMBOL_VALUE_ADDRESS (sym) |
| + objfile->section_offsets[SYMBOL_SECTION (sym)]); |
| return; |
| } |
| |
| /* NOTE drow/2002-01-30: It might be worthwhile to have a static |
| expression evaluator, and use LOC_COMPUTED only when necessary |
| (i.e. when the value of a register or memory location is |
| referenced, or a thread-local block, etc.). Then again, it might |
| not be worthwhile. I'm assuming that it isn't unless performance |
| or memory numbers show me otherwise. */ |
| |
| dwarf2_symbol_mark_computed (attr, sym, cu, 0); |
| |
| if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist) |
| cu->has_loclist = true; |
| } |
| |
| /* Given a pointer to a DWARF information entry, figure out if we need |
| to make a symbol table entry for it, and if so, create a new entry |
| and return a pointer to it. |
| If TYPE is NULL, determine symbol type from the die, otherwise |
| used the passed type. |
| If SPACE is not NULL, use it to hold the new symbol. If it is |
| NULL, allocate a new symbol on the objfile's obstack. */ |
| |
| static struct symbol * |
| new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu, |
| struct symbol *space) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct symbol *sym = NULL; |
| const char *name; |
| struct attribute *attr = NULL; |
| struct attribute *attr2 = NULL; |
| CORE_ADDR baseaddr; |
| struct pending **list_to_add = NULL; |
| |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| |
| baseaddr = objfile->text_section_offset (); |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| { |
| const char *linkagename; |
| int suppress_add = 0; |
| |
| if (space) |
| sym = space; |
| else |
| sym = allocate_symbol (objfile); |
| OBJSTAT (objfile, n_syms++); |
| |
| /* Cache this symbol's name and the name's demangled form (if any). */ |
| sym->set_language (cu->language, &objfile->objfile_obstack); |
| linkagename = dwarf2_physname (name, die, cu); |
| sym->compute_and_set_names (linkagename, false, objfile->per_bfd); |
| |
| /* Fortran does not have mangling standard and the mangling does differ |
| between gfortran, iFort etc. */ |
| if (cu->language == language_fortran |
| && symbol_get_demangled_name (sym) == NULL) |
| symbol_set_demangled_name (sym, |
| dwarf2_full_name (name, die, cu), |
| NULL); |
| |
| /* Default assumptions. |
| Use the passed type or decode it from the die. */ |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT; |
| if (type != NULL) |
| SYMBOL_TYPE (sym) = type; |
| else |
| SYMBOL_TYPE (sym) = die_type (die, cu); |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_line : DW_AT_decl_line, |
| cu); |
| if (attr != nullptr) |
| { |
| SYMBOL_LINE (sym) = DW_UNSND (attr); |
| } |
| |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_file : DW_AT_decl_file, |
| cu); |
| if (attr != nullptr) |
| { |
| file_name_index file_index = (file_name_index) DW_UNSND (attr); |
| struct file_entry *fe; |
| |
| if (cu->line_header != NULL) |
| fe = cu->line_header->file_name_at (file_index); |
| else |
| fe = NULL; |
| |
| if (fe == NULL) |
| complaint (_("file index out of range")); |
| else |
| symbol_set_symtab (sym, fe->symtab); |
| } |
| |
| switch (die->tag) |
| { |
| case DW_TAG_label: |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| CORE_ADDR addr; |
| |
| addr = attr->value_as_address (); |
| addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr); |
| SET_SYMBOL_VALUE_ADDRESS (sym, addr); |
| } |
| SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr; |
| SYMBOL_DOMAIN (sym) = LABEL_DOMAIN; |
| SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL; |
| add_symbol_to_list (sym, cu->list_in_scope); |
| break; |
| case DW_TAG_subprogram: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK; |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if ((attr2 && (DW_UNSND (attr2) != 0)) |
| || cu->language == language_ada |
| || cu->language == language_fortran) |
| { |
| /* Subprograms marked external are stored as a global symbol. |
| Ada and Fortran subprograms, whether marked external or |
| not, are always stored as a global symbol, because we want |
| to be able to access them globally. For instance, we want |
| to be able to break on a nested subprogram without having |
| to specify the context. */ |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| } |
| else |
| { |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| case DW_TAG_inlined_subroutine: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK; |
| SYMBOL_INLINED (sym) = 1; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_template_value_param: |
| suppress_add = 1; |
| /* Fall through. */ |
| case DW_TAG_constant: |
| case DW_TAG_variable: |
| case DW_TAG_member: |
| /* Compilation with minimal debug info may result in |
| variables with missing type entries. Change the |
| misleading `void' type to something sensible. */ |
| if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID) |
| SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int; |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| /* In the case of DW_TAG_member, we should only be called for |
| static const members. */ |
| if (die->tag == DW_TAG_member) |
| { |
| /* dwarf2_add_field uses die_is_declaration, |
| so we do the same. */ |
| gdb_assert (die_is_declaration (die, cu)); |
| gdb_assert (attr); |
| } |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if (!suppress_add) |
| { |
| if (attr2 && (DW_UNSND (attr2) != 0)) |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| else |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| } |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| var_decode_location (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| |
| /* Fortran explicitly imports any global symbols to the local |
| scope by DW_TAG_common_block. */ |
| if (cu->language == language_fortran && die->parent |
| && die->parent->tag == DW_TAG_common_block) |
| attr2 = NULL; |
| |
| if (SYMBOL_CLASS (sym) == LOC_STATIC |
| && SYMBOL_VALUE_ADDRESS (sym) == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* When a static variable is eliminated by the linker, |
| the corresponding debug information is not stripped |
| out, but the variable address is set to null; |
| do not add such variables into symbol table. */ |
| } |
| else if (attr2 && (DW_UNSND (attr2) != 0)) |
| { |
| if (SYMBOL_CLASS (sym) == LOC_STATIC |
| && (objfile->flags & OBJF_MAINLINE) == 0 |
| && dwarf2_per_objfile->can_copy) |
| { |
| /* A global static variable might be subject to |
| copy relocation. We first check for a local |
| minsym, though, because maybe the symbol was |
| marked hidden, in which case this would not |
| apply. */ |
| bound_minimal_symbol found |
| = (lookup_minimal_symbol_linkage |
| (sym->linkage_name (), objfile)); |
| if (found.minsym != nullptr) |
| sym->maybe_copied = 1; |
| } |
| |
| /* A variable with DW_AT_external is never static, |
| but it may be block-scoped. */ |
| list_to_add |
| = ((cu->list_in_scope |
| == cu->get_builder ()->get_file_symbols ()) |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| } |
| else |
| list_to_add = cu->list_in_scope; |
| } |
| else |
| { |
| /* We do not know the address of this symbol. |
| If it is an external symbol and we have type information |
| for it, enter the symbol as a LOC_UNRESOLVED symbol. |
| The address of the variable will then be determined from |
| the minimal symbol table whenever the variable is |
| referenced. */ |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| |
| /* Fortran explicitly imports any global symbols to the local |
| scope by DW_TAG_common_block. */ |
| if (cu->language == language_fortran && die->parent |
| && die->parent->tag == DW_TAG_common_block) |
| { |
| /* SYMBOL_CLASS doesn't matter here because |
| read_common_block is going to reset it. */ |
| if (!suppress_add) |
| list_to_add = cu->list_in_scope; |
| } |
| else if (attr2 && (DW_UNSND (attr2) != 0) |
| && dwarf2_attr (die, DW_AT_type, cu) != NULL) |
| { |
| /* A variable with DW_AT_external is never static, but it |
| may be block-scoped. */ |
| list_to_add |
| = ((cu->list_in_scope |
| == cu->get_builder ()->get_file_symbols ()) |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| |
| SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED; |
| } |
| else if (!die_is_declaration (die, cu)) |
| { |
| /* Use the default LOC_OPTIMIZED_OUT class. */ |
| gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT); |
| if (!suppress_add) |
| list_to_add = cu->list_in_scope; |
| } |
| } |
| break; |
| case DW_TAG_formal_parameter: |
| { |
| /* If we are inside a function, mark this as an argument. If |
| not, we might be looking at an argument to an inlined function |
| when we do not have enough information to show inlined frames; |
| pretend it's a local variable in that case so that the user can |
| still see it. */ |
| struct context_stack *curr |
| = cu->get_builder ()->get_current_context_stack (); |
| if (curr != nullptr && curr->name != nullptr) |
| SYMBOL_IS_ARGUMENT (sym) = 1; |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| var_decode_location (attr, sym, cu); |
| } |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| case DW_TAG_unspecified_parameters: |
| /* From varargs functions; gdb doesn't seem to have any |
| interest in this information, so just ignore it for now. |
| (FIXME?) */ |
| break; |
| case DW_TAG_template_type_param: |
| suppress_add = 1; |
| /* Fall through. */ |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_set_type: |
| case DW_TAG_enumeration_type: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
| |
| { |
| /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't |
| really ever be static objects: otherwise, if you try |
| to, say, break of a class's method and you're in a file |
| which doesn't mention that class, it won't work unless |
| the check for all static symbols in lookup_symbol_aux |
| saves you. See the OtherFileClass tests in |
| gdb.c++/namespace.exp. */ |
| |
| if (!suppress_add) |
| { |
| buildsym_compunit *builder = cu->get_builder (); |
| list_to_add |
| = (cu->list_in_scope == builder->get_file_symbols () |
| && cu->language == language_cplus |
| ? builder->get_global_symbols () |
| : cu->list_in_scope); |
| |
| /* The semantics of C++ state that "struct foo { |
| ... }" also defines a typedef for "foo". */ |
| if (cu->language == language_cplus |
| || cu->language == language_ada |
| || cu->language == language_d |
| || cu->language == language_rust) |
| { |
| /* The symbol's name is already allocated along |
| with this objfile, so we don't need to |
| duplicate it for the type. */ |
| if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0) |
| TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name (); |
| } |
| } |
| } |
| break; |
| case DW_TAG_typedef: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_enumerator: |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| { |
| /* NOTE: carlton/2003-11-10: See comment above in the |
| DW_TAG_class_type, etc. block. */ |
| |
| list_to_add |
| = (cu->list_in_scope == cu->get_builder ()->get_file_symbols () |
| && cu->language == language_cplus |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| } |
| break; |
| case DW_TAG_imported_declaration: |
| case DW_TAG_namespace: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| break; |
| case DW_TAG_module: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = MODULE_DOMAIN; |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| break; |
| case DW_TAG_common_block: |
| SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK; |
| SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN; |
| add_symbol_to_list (sym, cu->list_in_scope); |
| break; |
| default: |
| /* Not a tag we recognize. Hopefully we aren't processing |
| trash data, but since we must specifically ignore things |
| we don't recognize, there is nothing else we should do at |
| this point. */ |
| complaint (_("unsupported tag: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| if (suppress_add) |
| { |
| sym->hash_next = objfile->template_symbols; |
| objfile->template_symbols = sym; |
| list_to_add = NULL; |
| } |
| |
| if (list_to_add != NULL) |
| add_symbol_to_list (sym, list_to_add); |
| |
| /* For the benefit of old versions of GCC, check for anonymous |
| namespaces based on the demangled name. */ |
| if (!cu->processing_has_namespace_info |
| && cu->language == language_cplus) |
| cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile); |
| } |
| return (sym); |
| } |
| |
| /* Given an attr with a DW_FORM_dataN value in host byte order, |
| zero-extend it as appropriate for the symbol's type. The DWARF |
| standard (v4) is not entirely clear about the meaning of using |
| DW_FORM_dataN for a constant with a signed type, where the type is |
| wider than the data. The conclusion of a discussion on the DWARF |
| list was that this is unspecified. We choose to always zero-extend |
| because that is the interpretation long in use by GCC. */ |
| |
| static gdb_byte * |
| dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, int bits) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; |
| LONGEST l = DW_UNSND (attr); |
| |
| if (bits < sizeof (*value) * 8) |
| { |
| l &= ((LONGEST) 1 << bits) - 1; |
| *value = l; |
| } |
| else if (bits == sizeof (*value) * 8) |
| *value = l; |
| else |
| { |
| gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8); |
| store_unsigned_integer (bytes, bits / 8, byte_order, l); |
| return bytes; |
| } |
| |
| return NULL; |
| } |
| |
| /* Read a constant value from an attribute. Either set *VALUE, or if |
| the value does not fit in *VALUE, set *BYTES - either already |
| allocated on the objfile obstack, or newly allocated on OBSTACK, |
| or, set *BATON, if we translated the constant to a location |
| expression. */ |
| |
| static void |
| dwarf2_const_value_attr (const struct attribute *attr, struct type *type, |
| const char *name, struct obstack *obstack, |
| struct dwarf2_cu *cu, |
| LONGEST *value, const gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| struct dwarf_block *blk; |
| enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); |
| |
| *value = 0; |
| *bytes = NULL; |
| *baton = NULL; |
| |
| switch (attr->form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| { |
| gdb_byte *data; |
| |
| if (TYPE_LENGTH (type) != cu_header->addr_size) |
| dwarf2_const_value_length_mismatch_complaint (name, |
| cu_header->addr_size, |
| TYPE_LENGTH (type)); |
| /* Symbols of this form are reasonably rare, so we just |
| piggyback on the existing location code rather than writing |
| a new implementation of symbol_computed_ops. */ |
| *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton); |
| (*baton)->per_cu = cu->per_cu; |
| gdb_assert ((*baton)->per_cu); |
| |
| (*baton)->size = 2 + cu_header->addr_size; |
| data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size); |
| (*baton)->data = data; |
| |
| data[0] = DW_OP_addr; |
| store_unsigned_integer (&data[1], cu_header->addr_size, |
| byte_order, DW_ADDR (attr)); |
| data[cu_header->addr_size + 1] = DW_OP_stack_value; |
| } |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_strp_alt: |
| /* DW_STRING is already allocated on the objfile obstack, point |
| directly to it. */ |
| *bytes = (const gdb_byte *) DW_STRING (attr); |
| break; |
| case DW_FORM_block1: |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_exprloc: |
| case DW_FORM_data16: |
| blk = DW_BLOCK (attr); |
| if (TYPE_LENGTH (type) != blk->size) |
| dwarf2_const_value_length_mismatch_complaint (name, blk->size, |
| TYPE_LENGTH (type)); |
| *bytes = blk->data; |
| break; |
| |
| /* The DW_AT_const_value attributes are supposed to carry the |
| symbol's value "represented as it would be on the target |
| architecture." By the time we get here, it's already been |
| converted to host endianness, so we just need to sign- or |
| zero-extend it as appropriate. */ |
| case DW_FORM_data1: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8); |
| break; |
| case DW_FORM_data2: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16); |
| break; |
| case DW_FORM_data4: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32); |
| break; |
| case DW_FORM_data8: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64); |
| break; |
| |
| case DW_FORM_sdata: |
| case DW_FORM_implicit_const: |
| *value = DW_SND (attr); |
| break; |
| |
| case DW_FORM_udata: |
| *value = DW_UNSND (attr); |
| break; |
| |
| default: |
| complaint (_("unsupported const value attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| *value = 0; |
| break; |
| } |
| } |
| |
| |
| /* Copy constant value from an attribute to a symbol. */ |
| |
| static void |
| dwarf2_const_value (const struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| |
| dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym), |
| sym->print_name (), |
| &objfile->objfile_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (baton != NULL) |
| { |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index; |
| } |
| else if (bytes != NULL) |
| { |
| SYMBOL_VALUE_BYTES (sym) = bytes; |
| SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES; |
| } |
| else |
| { |
| SYMBOL_VALUE (sym) = value; |
| SYMBOL_ACLASS_INDEX (sym) = LOC_CONST; |
| } |
| } |
| |
| /* Return the type of the die in question using its DW_AT_type attribute. */ |
| |
| static struct type * |
| die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (!type_attr) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| /* A missing DW_AT_type represents a void type. */ |
| return objfile_type (objfile)->builtin_void; |
| } |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* True iff CU's producer generates GNAT Ada auxiliary information |
| that allows to find parallel types through that information instead |
| of having to do expensive parallel lookups by type name. */ |
| |
| static int |
| need_gnat_info (struct dwarf2_cu *cu) |
| { |
| /* Assume that the Ada compiler was GNAT, which always produces |
| the auxiliary information. */ |
| return (cu->language == language_ada); |
| } |
| |
| /* Return the auxiliary type of the die in question using its |
| DW_AT_GNAT_descriptive_type attribute. Returns NULL if the |
| attribute is not present. */ |
| |
| static struct type * |
| die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu); |
| if (!type_attr) |
| return NULL; |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* If DIE has a descriptive_type attribute, then set the TYPE's |
| descriptive type accordingly. */ |
| |
| static void |
| set_descriptive_type (struct type *type, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct type *descriptive_type = die_descriptive_type (die, cu); |
| |
| if (descriptive_type) |
| { |
| ALLOCATE_GNAT_AUX_TYPE (type); |
| TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type; |
| } |
| } |
| |
| /* Return the containing type of the die in question using its |
| DW_AT_containing_type attribute. */ |
| |
| static struct type * |
| die_containing_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| |
| type_attr = dwarf2_attr (die, DW_AT_containing_type, cu); |
| if (!type_attr) |
| error (_("Dwarf Error: Problem turning containing type into gdb type " |
| "[in module %s]"), objfile_name (objfile)); |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* Return an error marker type to use for the ill formed type in DIE/CU. */ |
| |
| static struct type * |
| build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| char *saved; |
| |
| std::string message |
| = string_printf (_("<unknown type in %s, CU %s, DIE %s>"), |
| objfile_name (objfile), |
| sect_offset_str (cu->header.sect_off), |
| sect_offset_str (die->sect_off)); |
| saved = obstack_strdup (&objfile->objfile_obstack, message); |
| |
| return init_type (objfile, TYPE_CODE_ERROR, 0, saved); |
| } |
| |
| /* Look up the type of DIE in CU using its type attribute ATTR. |
| ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type, |
| DW_AT_containing_type. |
| If there is no type substitute an error marker. */ |
| |
| static struct type * |
| lookup_die_type (struct die_info *die, const struct attribute *attr, |
| struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct type *this_type; |
| |
| gdb_assert (attr->name == DW_AT_type |
| || attr->name == DW_AT_GNAT_descriptive_type |
| || attr->name == DW_AT_containing_type); |
| |
| /* First see if we have it cached. */ |
| |
| if (attr->form == DW_FORM_GNU_ref_alt) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| sect_offset sect_off = dwarf2_get_ref_die_offset (attr); |
| |
| per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, |
| dwarf2_per_objfile); |
| this_type = get_die_type_at_offset (sect_off, per_cu); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| sect_offset sect_off = dwarf2_get_ref_die_offset (attr); |
| |
| this_type = get_die_type_at_offset (sect_off, cu->per_cu); |
| } |
| else if (attr->form == DW_FORM_ref_sig8) |
| { |
| ULONGEST signature = DW_SIGNATURE (attr); |
| |
| return get_signatured_type (die, signature, cu); |
| } |
| else |
| { |
| complaint (_("Dwarf Error: Bad type attribute %s in DIE" |
| " at %s [in module %s]"), |
| dwarf_attr_name (attr->name), sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| |
| /* If not cached we need to read it in. */ |
| |
| if (this_type == NULL) |
| { |
| struct die_info *type_die = NULL; |
| struct dwarf2_cu *type_cu = cu; |
| |
| if (attr->form_is_ref ()) |
| type_die = follow_die_ref (die, attr, &type_cu); |
| if (type_die == NULL) |
| return build_error_marker_type (cu, die); |
| /* If we find the type now, it's probably because the type came |
| from an inter-CU reference and the type's CU got expanded before |
| ours. */ |
| this_type = read_type_die (type_die, type_cu); |
| } |
| |
| /* If we still don't have a type use an error marker. */ |
| |
| if (this_type == NULL) |
| return build_error_marker_type (cu, die); |
| |
| return this_type; |
| } |
| |
| /* Return the type in DIE, CU. |
| Returns NULL for invalid types. |
| |
| This first does a lookup in die_type_hash, |
| and only reads the die in if necessary. |
| |
| NOTE: This can be called when reading in partial or full symbols. */ |
| |
| static struct type * |
| read_type_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type) |
| return this_type; |
| |
| return read_type_die_1 (die, cu); |
| } |
| |
| /* Read the type in DIE, CU. |
| Returns NULL for invalid types. */ |
| |
| static struct type * |
| read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type = NULL; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| this_type = read_structure_type (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| this_type = read_enumeration_type (die, cu); |
| break; |
| case DW_TAG_subprogram: |
| case DW_TAG_subroutine_type: |
| case DW_TAG_inlined_subroutine: |
| this_type = read_subroutine_type (die, cu); |
| break; |
| case DW_TAG_array_type: |
| this_type = read_array_type (die, cu); |
| break; |
| case DW_TAG_set_type: |
| this_type = read_set_type (die, cu); |
| break; |
| case DW_TAG_pointer_type: |
| this_type = read_tag_pointer_type (die, cu); |
| break; |
| case DW_TAG_ptr_to_member_type: |
| this_type = read_tag_ptr_to_member_type (die, cu); |
| break; |
| case DW_TAG_reference_type: |
| this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF); |
| break; |
| case DW_TAG_rvalue_reference_type: |
| this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF); |
| break; |
| case DW_TAG_const_type: |
| this_type = read_tag_const_type (die, cu); |
| break; |
| case DW_TAG_volatile_type: |
| this_type = read_tag_volatile_type (die, cu); |
| break; |
| case DW_TAG_restrict_type: |
| this_type = read_tag_restrict_type (die, cu); |
| break; |
| case DW_TAG_string_type: |
| this_type = read_tag_string_type (die, cu); |
| break; |
| case DW_TAG_typedef: |
| this_type = read_typedef (die, cu); |
| break; |
| case DW_TAG_subrange_type: |
| this_type = read_subrange_type (die, cu); |
| break; |
| case DW_TAG_base_type: |
| this_type = read_base_type (die, cu); |
| break; |
| case DW_TAG_unspecified_type: |
| this_type = read_unspecified_type (die, cu); |
| break; |
| case DW_TAG_namespace: |
| this_type = read_namespace_type (die, cu); |
| break; |
| case DW_TAG_module: |
| this_type = read_module_type (die, cu); |
| break; |
| case DW_TAG_atomic_type: |
| this_type = read_tag_atomic_type (die, cu); |
| break; |
| default: |
| complaint (_("unexpected tag in read_type_die: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| return this_type; |
| } |
| |
| /* See if we can figure out if the class lives in a namespace. We do |
| this by looking for a member function; its demangled name will |
| contain namespace info, if there is any. |
| Return the computed name or NULL. |
| Space for the result is allocated on the objfile's obstack. |
| This is the full-die version of guess_partial_die_structure_name. |
| In this case we know DIE has no useful parent. */ |
| |
| static const char * |
| guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct die_info *child; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die != NULL) |
| { |
| die = spec_die; |
| cu = spec_cu; |
| } |
| |
| for (child = die->child; |
| child != NULL; |
| child = child->sibling) |
| { |
| if (child->tag == DW_TAG_subprogram) |
| { |
| const char *linkage_name = dw2_linkage_name (child, cu); |
| |
| if (linkage_name != NULL) |
| { |
| gdb::unique_xmalloc_ptr<char> actual_name |
| (language_class_name_from_physname (cu->language_defn, |
| linkage_name)); |
| const char *name = NULL; |
| |
| if (actual_name != NULL) |
| { |
| const char *die_name = dwarf2_name (die, cu); |
| |
| if (die_name != NULL |
| && strcmp (die_name, actual_name.get ()) != 0) |
| { |
| /* Strip off the class name from the full name. |
| We want the prefix. */ |
| int die_name_len = strlen (die_name); |
| int actual_name_len = strlen (actual_name.get ()); |
| const char *ptr = actual_name.get (); |
| |
| /* Test for '::' as a sanity check. */ |
| if (actual_name_len > die_name_len + 2 |
| && ptr[actual_name_len - die_name_len - 1] == ':') |
| name = obstack_strndup ( |
| &objfile->per_bfd->storage_obstack, |
| ptr, actual_name_len - die_name_len - 2); |
| } |
| } |
| return name; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* GCC might emit a nameless typedef that has a linkage name. Determine the |
| prefix part in such case. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| |
| static const char * |
| anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| const char *base; |
| |
| if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type) |
| return NULL; |
| |
| if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL) |
| return NULL; |
| |
| attr = dw2_linkage_name_attr (die, cu); |
| if (attr == NULL || DW_STRING (attr) == NULL) |
| return NULL; |
| |
| /* dwarf2_name had to be already called. */ |
| gdb_assert (DW_STRING_IS_CANONICAL (attr)); |
| |
| /* Strip the base name, keep any leading namespaces/classes. */ |
| base = strrchr (DW_STRING (attr), ':'); |
| if (base == NULL || base == DW_STRING (attr) || base[-1] != ':') |
| return ""; |
| |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| return obstack_strndup (&objfile->per_bfd->storage_obstack, |
| DW_STRING (attr), |
| &base[-1] - DW_STRING (attr)); |
| } |
| |
| /* Return the name of the namespace/class that DIE is defined within, |
| or "" if we can't tell. The caller should not xfree the result. |
| |
| For example, if we're within the method foo() in the following |
| code: |
| |
| namespace N { |
| class C { |
| void foo () { |
| } |
| }; |
| } |
| |
| then determine_prefix on foo's die will return "N::C". */ |
| |
| static const char * |
| determine_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct die_info *parent, *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct type *parent_type; |
| const char *retval; |
| |
| if (cu->language != language_cplus |
| && cu->language != language_fortran && cu->language != language_d |
| && cu->language != language_rust) |
| return ""; |
| |
| retval = anonymous_struct_prefix (die, cu); |
| if (retval) |
| return retval; |
| |
| /* We have to be careful in the presence of DW_AT_specification. |
| For example, with GCC 3.4, given the code |
| |
| namespace N { |
| void foo() { |
| // Definition of N::foo. |
| } |
| } |
| |
| then we'll have a tree of DIEs like this: |
| |
| 1: DW_TAG_compile_unit |
| 2: DW_TAG_namespace // N |
| 3: DW_TAG_subprogram // declaration of N::foo |
| 4: DW_TAG_subprogram // definition of N::foo |
| DW_AT_specification // refers to die #3 |
| |
| Thus, when processing die #4, we have to pretend that we're in |
| the context of its DW_AT_specification, namely the contex of die |
| #3. */ |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die == NULL) |
| parent = die->parent; |
| else |
| { |
| parent = spec_die->parent; |
| cu = spec_cu; |
| } |
| |
| if (parent == NULL) |
| return ""; |
| else if (parent->building_fullname) |
| { |
| const char *name; |
| const char *parent_name; |
| |
| /* It has been seen on RealView 2.2 built binaries, |
| DW_TAG_template_type_param types actually _defined_ as |
| children of the parent class: |
| |
| enum E {}; |
| template class <class Enum> Class{}; |
| Class<enum E> class_e; |
| |
| 1: DW_TAG_class_type (Class) |
| 2: DW_TAG_enumeration_type (E) |
| 3: DW_TAG_enumerator (enum1:0) |
| 3: DW_TAG_enumerator (enum2:1) |
| ... |
| 2: DW_TAG_template_type_param |
| DW_AT_type DW_FORM_ref_udata (E) |
| |
| Besides being broken debug info, it can put GDB into an |
| infinite loop. Consider: |
| |
| When we're building the full name for Class<E>, we'll start |
| at Class, and go look over its template type parameters, |
| finding E. We'll then try to build the full name of E, and |
| reach here. We're now trying to build the full name of E, |
| and look over the parent DIE for containing scope. In the |
| broken case, if we followed the parent DIE of E, we'd again |
| find Class, and once again go look at its template type |
| arguments, etc., etc. Simply don't consider such parent die |
| as source-level parent of this die (it can't be, the language |
| doesn't allow it), and break the loop here. */ |
| name = dwarf2_name (die, cu); |
| parent_name = dwarf2_name (parent, cu); |
| complaint (_("template param type '%s' defined within parent '%s'"), |
| name ? name : "<unknown>", |
| parent_name ? parent_name : "<unknown>"); |
| return ""; |
| } |
| else |
| switch (parent->tag) |
| { |
| case DW_TAG_namespace: |
| parent_type = read_type_die (parent, cu); |
| /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus |
| DW_TAG_namespace DIEs with a name of "::" for the global namespace. |
| Work around this problem here. */ |
| if (cu->language == language_cplus |
| && strcmp (TYPE_NAME (parent_type), "::") == 0) |
| return ""; |
| /* We give a name to even anonymous namespaces. */ |
| return TYPE_NAME (parent_type); |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_module: |
| parent_type = read_type_die (parent, cu); |
| if (TYPE_NAME (parent_type) != NULL) |
| return TYPE_NAME (parent_type); |
| else |
| /* An anonymous structure is only allowed non-static data |
| members; no typedefs, no member functions, et cetera. |
| So it does not need a prefix. */ |
| return ""; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */ |
| if (cu->language == language_cplus |
| && !dwarf2_per_objfile->types.empty () |
| && die->child != NULL |
| && (die->tag == DW_TAG_class_type |
| || die->tag == DW_TAG_structure_type |
| || die->tag == DW_TAG_union_type)) |
| { |
| const char *name = guess_full_die_structure_name (die, cu); |
| if (name != NULL) |
| return name; |
| } |
| return ""; |
| case DW_TAG_subprogram: |
| /* Nested subroutines in Fortran get a prefix with the name |
| of the parent's subroutine. */ |
| if (cu->language == language_fortran) |
| { |
| if ((die->tag == DW_TAG_subprogram) |
| && (dwarf2_name (parent, cu) != NULL)) |
| return dwarf2_name (parent, cu); |
| } |
| return determine_prefix (parent, cu); |
| case DW_TAG_enumeration_type: |
| parent_type = read_type_die (parent, cu); |
| if (TYPE_DECLARED_CLASS (parent_type)) |
| { |
| if (TYPE_NAME (parent_type) != NULL) |
| return TYPE_NAME (parent_type); |
| return ""; |
| } |
| /* Fall through. */ |
| default: |
| return determine_prefix (parent, cu); |
| } |
| } |
| |
| /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX |
| with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then |
| simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform |
| an obconcat, otherwise allocate storage for the result. The CU argument is |
| used to determine the language and hence, the appropriate separator. */ |
| |
| #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */ |
| |
| static char * |
| typename_concat (struct obstack *obs, const char *prefix, const char *suffix, |
| int physname, struct dwarf2_cu *cu) |
| { |
| const char *lead = ""; |
| const char *sep; |
| |
| if (suffix == NULL || suffix[0] == '\0' |
| || prefix == NULL || prefix[0] == '\0') |
| sep = ""; |
| else if (cu->language == language_d) |
| { |
| /* For D, the 'main' function could be defined in any module, but it |
| should never be prefixed. */ |
| if (strcmp (suffix, "D main") == 0) |
| { |
| prefix = ""; |
| sep = ""; |
| } |
| else |
| sep = "."; |
| } |
| else if (cu->language == language_fortran && physname) |
| { |
| /* This is gfortran specific mangling. Normally DW_AT_linkage_name or |
| DW_AT_MIPS_linkage_name is preferred and used instead. */ |
| |
| lead = "__"; |
| sep = "_MOD_"; |
| } |
| else |
| sep = "::"; |
| |
| if (prefix == NULL) |
| prefix = ""; |
| if (suffix == NULL) |
| suffix = ""; |
| |
| if (obs == NULL) |
| { |
| char *retval |
| = ((char *) |
| xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1)); |
| |
| strcpy (retval, lead); |
| strcat (retval, prefix); |
| strcat (retval, sep); |
| strcat (retval, suffix); |
| return retval; |
| } |
| else |
| { |
| /* We have an obstack. */ |
| return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL); |
| } |
| } |
| |
| /* Return sibling of die, NULL if no sibling. */ |
| |
| static struct die_info * |
| sibling_die (struct die_info *die) |
| { |
| return die->sibling; |
| } |
| |
| /* Get name of a die, return NULL if not found. */ |
| |
| static const char * |
| dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu, |
| struct obstack *obstack) |
| { |
| if (name && cu->language == language_cplus) |
| { |
| std::string canon_name = cp_canonicalize_string (name); |
| |
| if (!canon_name.empty ()) |
| { |
| if (canon_name != name) |
| name = obstack_strdup (obstack, canon_name); |
| } |
| } |
| |
| return name; |
| } |
| |
| /* Get name of a die, return NULL if not found. |
| Anonymous namespaces are converted to their magic string. */ |
| |
| static const char * |
| dwarf2_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if ((!attr || !DW_STRING (attr)) |
| && die->tag != DW_TAG_namespace |
| && die->tag != DW_TAG_class_type |
| && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type |
| && die->tag != DW_TAG_union_type) |
| return NULL; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* Compilation units have a DW_AT_name that is a filename, not |
| a source language identifier. */ |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| /* These tags always have simple identifiers already; no need |
| to canonicalize them. */ |
| return DW_STRING (attr); |
| |
| case DW_TAG_namespace: |
| if (attr != NULL && DW_STRING (attr) != NULL) |
| return DW_STRING (attr); |
| return CP_ANONYMOUS_NAMESPACE_STR; |
| |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| /* Some GCC versions emit spurious DW_AT_name attributes for unnamed |
| structures or unions. These were of the form "._%d" in GCC 4.1, |
| or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3 |
| and GCC 4.4. We work around this problem by ignoring these. */ |
| if (attr && DW_STRING (attr) |
| && (startswith (DW_STRING (attr), "._") |
| || startswith (DW_STRING (attr), "<anonymous"))) |
| return NULL; |
| |
| /* GCC might emit a nameless typedef that has a linkage name. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| if (!attr || DW_STRING (attr) == NULL) |
| { |
| attr = dw2_linkage_name_attr (die, cu); |
| if (attr == NULL || DW_STRING (attr) == NULL) |
| return NULL; |
| |
| /* Avoid demangling DW_STRING (attr) the second time on a second |
| call for the same DIE. */ |
| if (!DW_STRING_IS_CANONICAL (attr)) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled |
| (gdb_demangle (DW_STRING (attr), DMGL_TYPES)); |
| |
| const char *base; |
| |
| /* FIXME: we already did this for the partial symbol... */ |
| DW_STRING (attr) |
| = obstack_strdup (&objfile->per_bfd->storage_obstack, |
| demangled.get ()); |
| DW_STRING_IS_CANONICAL (attr) = 1; |
| |
| /* Strip any leading namespaces/classes, keep only the base name. |
| DW_AT_name for named DIEs does not contain the prefixes. */ |
| base = strrchr (DW_STRING (attr), ':'); |
| if (base && base > DW_STRING (attr) && base[-1] == ':') |
| return &base[1]; |
| else |
| return DW_STRING (attr); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (!DW_STRING_IS_CANONICAL (attr)) |
| { |
| DW_STRING (attr) |
| = dwarf2_canonicalize_name (DW_STRING (attr), cu, |
| &objfile->per_bfd->storage_obstack); |
| DW_STRING_IS_CANONICAL (attr) = 1; |
| } |
| return DW_STRING (attr); |
| } |
| |
| /* Return the die that this die in an extension of, or NULL if there |
| is none. *EXT_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. */ |
| |
| static struct die_info * |
| dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_extension, *ext_cu); |
| if (attr == NULL) |
| return NULL; |
| |
| return follow_die_ref (die, attr, ext_cu); |
| } |
| |
| /* A convenience function that returns an "unknown" DWARF name, |
| including the value of V. STR is the name of the entity being |
| printed, e.g., "TAG". */ |
| |
| static const char * |
| dwarf_unknown (const char *str, unsigned v) |
| { |
| char *cell = get_print_cell (); |
| xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v); |
| return cell; |
| } |
| |
| /* Convert a DIE tag into its string name. */ |
| |
| static const char * |
| dwarf_tag_name (unsigned tag) |
| { |
| const char *name = get_DW_TAG_name (tag); |
| |
| if (name == NULL) |
| return dwarf_unknown ("TAG", tag); |
| |
| return name; |
| } |
| |
| /* Convert a DWARF attribute code into its string name. */ |
| |
| static const char * |
| dwarf_attr_name (unsigned attr) |
| { |
| const char *name; |
| |
| #ifdef MIPS /* collides with DW_AT_HP_block_index */ |
| if (attr == DW_AT_MIPS_fde) |
| return "DW_AT_MIPS_fde"; |
| #else |
| if (attr == DW_AT_HP_block_index) |
| return "DW_AT_HP_block_index"; |
| #endif |
| |
| name = get_DW_AT_name (attr); |
| |
| if (name == NULL) |
| return dwarf_unknown ("AT", attr); |
| |
| return name; |
| } |
| |
| /* Convert a unit type to corresponding DW_UT name. */ |
| |
| static const char * |
| dwarf_unit_type_name (int unit_type) { |
| switch (unit_type) |
| { |
| case 0x01: |
| return "DW_UT_compile (0x01)"; |
| case 0x02: |
| return "DW_UT_type (0x02)"; |
| case 0x03: |
| return "DW_UT_partial (0x03)"; |
| case 0x04: |
| return "DW_UT_skeleton (0x04)"; |
| case 0x05: |
| return "DW_UT_split_compile (0x05)"; |
| case 0x06: |
| return "DW_UT_split_type (0x06)"; |
| case 0x80: |
| return "DW_UT_lo_user (0x80)"; |
| case 0xff: |
| return "DW_UT_hi_user (0xff)"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| /* Convert a DWARF value form code into its string name. */ |
| |
| static const char * |
| dwarf_form_name (unsigned form) |
| { |
| const char *name = get_DW_FORM_name (form); |
| |
| if (name == NULL) |
| return dwarf_unknown ("FORM", form); |
| |
| return name; |
| } |
| |
| static const char * |
| dwarf_bool_name (unsigned mybool) |
| { |
| if (mybool) |
| return "TRUE"; |
| else |
| return "FALSE"; |
| } |
| |
| /* Convert a DWARF type code into its string name. */ |
| |
| static const char * |
| dwarf_type_encoding_name (unsigned enc) |
| { |
| const char *name = get_DW_ATE_name (enc); |
| |
| if (name == NULL) |
| return dwarf_unknown ("ATE", enc); |
| |
| return name; |
| } |
| |
| static void |
| dump_die_shallow (struct ui_file *f, int indent, struct die_info *die) |
| { |
| unsigned int i; |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n", |
| dwarf_tag_name (die->tag), die->abbrev, |
| sect_offset_str (die->sect_off)); |
| |
| if (die->parent != NULL) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " parent at offset: %s\n", |
| sect_offset_str (die->parent->sect_off)); |
| } |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " has children: %s\n", |
| dwarf_bool_name (die->child != NULL)); |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " attributes:\n"); |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " %s (%s) ", |
| dwarf_attr_name (die->attrs[i].name), |
| dwarf_form_name (die->attrs[i].form)); |
| |
| switch (die->attrs[i].form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| fprintf_unfiltered (f, "address: "); |
| fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f); |
| break; |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_block1: |
| fprintf_unfiltered (f, "block: size %s", |
| pulongest (DW_BLOCK (&die->attrs[i])->size)); |
| break; |
| case DW_FORM_exprloc: |
| fprintf_unfiltered (f, "expression: size %s", |
| pulongest (DW_BLOCK (&die->attrs[i])->size)); |
| break; |
| case DW_FORM_data16: |
| fprintf_unfiltered (f, "constant of 16 bytes"); |
| break; |
| case DW_FORM_ref_addr: |
| fprintf_unfiltered (f, "ref address: "); |
| fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f); |
| break; |
| case DW_FORM_GNU_ref_alt: |
| fprintf_unfiltered (f, "alt ref address: "); |
| fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f); |
| break; |
| case DW_FORM_ref1: |
| case DW_FORM_ref2: |
| case DW_FORM_ref4: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_udata: |
| fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)", |
| (long) (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_data1: |
| case DW_FORM_data2: |
| case DW_FORM_data4: |
| case DW_FORM_data8: |
| case DW_FORM_udata: |
| case DW_FORM_sdata: |
| fprintf_unfiltered (f, "constant: %s", |
| pulongest (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_sec_offset: |
| fprintf_unfiltered (f, "section offset: %s", |
| pulongest (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_ref_sig8: |
| fprintf_unfiltered (f, "signature: %s", |
| hex_string (DW_SIGNATURE (&die->attrs[i]))); |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_line_strp: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_strp_alt: |
| fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)", |
| DW_STRING (&die->attrs[i]) |
| ? DW_STRING (&die->attrs[i]) : "", |
| DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not"); |
| break; |
| case DW_FORM_flag: |
| if (DW_UNSND (&die->attrs[i])) |
| fprintf_unfiltered (f, "flag: TRUE"); |
| else |
| fprintf_unfiltered (f, "flag: FALSE"); |
| break; |
| case DW_FORM_flag_present: |
| fprintf_unfiltered (f, "flag: TRUE"); |
| break; |
| case DW_FORM_indirect: |
| /* The reader will have reduced the indirect form to |
| the "base form" so this form should not occur. */ |
| fprintf_unfiltered (f, |
| "unexpected attribute form: DW_FORM_indirect"); |
| break; |
| case DW_FORM_implicit_const: |
| fprintf_unfiltered (f, "constant: %s", |
| plongest (DW_SND (&die->attrs[i]))); |
| break; |
| default: |
| fprintf_unfiltered (f, "unsupported attribute form: %d.", |
| die->attrs[i].form); |
| break; |
| } |
| fprintf_unfiltered (f, "\n"); |
| } |
| } |
| |
| static void |
| dump_die_for_error (struct die_info *die) |
| { |
| dump_die_shallow (gdb_stderr, 0, die); |
| } |
| |
| static void |
| dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die) |
| { |
| int indent = level * 4; |
| |
| gdb_assert (die != NULL); |
| |
| if (level >= max_level) |
| return; |
| |
| dump_die_shallow (f, indent, die); |
| |
| if (die->child != NULL) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " Children:"); |
| if (level + 1 < max_level) |
| { |
| fprintf_unfiltered (f, "\n"); |
| dump_die_1 (f, level + 1, max_level, die->child); |
| } |
| else |
| { |
| fprintf_unfiltered (f, |
| " [not printed, max nesting level reached]\n"); |
| } |
| } |
| |
| if (die->sibling != NULL && level > 0) |
| { |
| dump_die_1 (f, level, max_level, die->sibling); |
| } |
| } |
| |
| /* This is called from the pdie macro in gdbinit.in. |
| It's not static so gcc will keep a copy callable from gdb. */ |
| |
| void |
| dump_die (struct die_info *die, int max_level) |
| { |
| dump_die_1 (gdb_stdlog, 0, max_level, die); |
| } |
| |
| static void |
| store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| void **slot; |
| |
| slot = htab_find_slot_with_hash (cu->die_hash, die, |
| to_underlying (die->sect_off), |
| INSERT); |
| |
| *slot = die; |
| } |
| |
| /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the |
| required kind. */ |
| |
| static sect_offset |
| dwarf2_get_ref_die_offset (const struct attribute *attr) |
| { |
| if (attr->form_is_ref ()) |
| return (sect_offset) DW_UNSND (attr); |
| |
| complaint (_("unsupported die ref attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| return {}; |
| } |
| |
| /* Return the constant value held by ATTR. Return DEFAULT_VALUE if |
| * the value held by the attribute is not constant. */ |
| |
| static LONGEST |
| dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value) |
| { |
| if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const) |
| return DW_SND (attr); |
| else if (attr->form == DW_FORM_udata |
| || attr->form == DW_FORM_data1 |
| || attr->form == DW_FORM_data2 |
| || attr->form == DW_FORM_data4 |
| || attr->form == DW_FORM_data8) |
| return DW_UNSND (attr); |
| else |
| { |
| /* For DW_FORM_data16 see attribute::form_is_constant. */ |
| complaint (_("Attribute value is not a constant (%s)"), |
| dwarf_form_name (attr->form)); |
| return default_value; |
| } |
| } |
| |
| /* Follow reference or signature attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct die_info *die; |
| |
| if (attr->form_is_ref ()) |
| die = follow_die_ref (src_die, attr, ref_cu); |
| else if (attr->form == DW_FORM_ref_sig8) |
| die = follow_die_sig (src_die, attr, ref_cu); |
| else |
| { |
| dump_die_for_error (src_die); |
| error (_("Dwarf Error: Expected reference attribute [in module %s]"), |
| objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| return die; |
| } |
| |
| /* Follow reference OFFSET. |
| On entry *REF_CU is the CU of the source die referencing OFFSET. |
| On exit *REF_CU is the CU of the result. |
| Returns NULL if OFFSET is invalid. */ |
| |
| static struct die_info * |
| follow_die_offset (sect_offset sect_off, int offset_in_dwz, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct die_info temp_die; |
| struct dwarf2_cu *target_cu, *cu = *ref_cu; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| gdb_assert (cu->per_cu != NULL); |
| |
| target_cu = cu; |
| |
| if (cu->per_cu->is_debug_types) |
| { |
| /* .debug_types CUs cannot reference anything outside their CU. |
| If they need to, they have to reference a signatured type via |
| DW_FORM_ref_sig8. */ |
| if (!offset_in_cu_p (&cu->header, sect_off)) |
| return NULL; |
| } |
| else if (offset_in_dwz != cu->per_cu->is_dwz |
| || !offset_in_cu_p (&cu->header, sect_off)) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz, |
| dwarf2_per_objfile); |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| if (maybe_queue_comp_unit (cu, per_cu, cu->language)) |
| load_full_comp_unit (per_cu, false, cu->language); |
| |
| target_cu = per_cu->cu; |
| } |
| else if (cu->dies == NULL) |
| { |
| /* We're loading full DIEs during partial symbol reading. */ |
| gdb_assert (dwarf2_per_objfile->reading_partial_symbols); |
| load_full_comp_unit (cu->per_cu, false, language_minimal); |
| } |
| |
| *ref_cu = target_cu; |
| temp_die.sect_off = sect_off; |
| |
| if (target_cu != cu) |
| target_cu->ancestor = cu; |
| |
| return (struct die_info *) htab_find_with_hash (target_cu->die_hash, |
| &temp_die, |
| to_underlying (sect_off)); |
| } |
| |
| /* Follow reference attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| sect_offset sect_off = dwarf2_get_ref_die_offset (attr); |
| struct dwarf2_cu *cu = *ref_cu; |
| struct die_info *die; |
| |
| die = follow_die_offset (sect_off, |
| (attr->form == DW_FORM_GNU_ref_alt |
| || cu->per_cu->is_dwz), |
| ref_cu); |
| if (!die) |
| error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE " |
| "at %s [in module %s]"), |
| sect_offset_str (sect_off), sect_offset_str (src_die->sect_off), |
| objfile_name (cu->per_cu->dwarf2_per_objfile->objfile)); |
| |
| return die; |
| } |
| |
| /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU. |
| Returned value is intended for DW_OP_call*. Returned |
| dwarf2_locexpr_baton->data has lifetime of |
| PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */ |
| |
| struct dwarf2_locexpr_baton |
| dwarf2_fetch_die_loc_sect_off (sect_offset sect_off, |
| struct dwarf2_per_cu_data *per_cu, |
| CORE_ADDR (*get_frame_pc) (void *baton), |
| void *baton, bool resolve_abstract_p) |
| { |
| struct dwarf2_cu *cu; |
| struct die_info *die; |
| struct attribute *attr; |
| struct dwarf2_locexpr_baton retval; |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| if (per_cu->cu == NULL) |
| load_cu (per_cu, false); |
| cu = per_cu->cu; |
| if (cu == NULL) |
| { |
| /* We shouldn't get here for a dummy CU, but don't crash on the user. |
| Instead just throw an error, not much else we can do. */ |
| error (_("Dwarf Error: Dummy CU at %s referenced in module %s"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| } |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (!attr && resolve_abstract_p |
| && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off) |
| != dwarf2_per_objfile->abstract_to_concrete.end ())) |
| { |
| CORE_ADDR pc = (*get_frame_pc) (baton); |
| CORE_ADDR baseaddr = objfile->text_section_offset (); |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| for (const auto &cand_off |
| : dwarf2_per_objfile->abstract_to_concrete[die->sect_off]) |
| { |
| struct dwarf2_cu *cand_cu = cu; |
| struct die_info *cand |
| = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu); |
| if (!cand |
| || !cand->parent |
| || cand->parent->tag != DW_TAG_subprogram) |
| continue; |
| |
| CORE_ADDR pc_low, pc_high; |
| get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu); |
| if (pc_low == ((CORE_ADDR) -1)) |
| continue; |
| pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr); |
| pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr); |
| if (!(pc_low <= pc && pc < pc_high)) |
| continue; |
| |
| die = cand; |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| break; |
| } |
| } |
| |
| if (!attr) |
| { |
| /* DWARF: "If there is no such attribute, then there is no effect.". |
| DATA is ignored if SIZE is 0. */ |
| |
| retval.data = NULL; |
| retval.size = 0; |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| struct dwarf2_loclist_baton loclist_baton; |
| CORE_ADDR pc = (*get_frame_pc) (baton); |
| size_t size; |
| |
| fill_in_loclist_baton (cu, &loclist_baton, attr); |
| |
| retval.data = dwarf2_find_location_expression (&loclist_baton, |
| &size, pc); |
| retval.size = size; |
| } |
| else |
| { |
| if (!attr->form_is_block ()) |
| error (_("Dwarf Error: DIE at %s referenced in module %s " |
| "is neither DW_FORM_block* nor DW_FORM_exprloc"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| retval.data = DW_BLOCK (attr)->data; |
| retval.size = DW_BLOCK (attr)->size; |
| } |
| retval.per_cu = cu->per_cu; |
| |
| age_cached_comp_units (dwarf2_per_objfile); |
| |
| return retval; |
| } |
| |
| /* Like dwarf2_fetch_die_loc_sect_off, but take a CU |
| offset. */ |
| |
| struct dwarf2_locexpr_baton |
| dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu, |
| struct dwarf2_per_cu_data *per_cu, |
| CORE_ADDR (*get_frame_pc) (void *baton), |
| void *baton) |
| { |
| sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu); |
| |
| return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton); |
| } |
| |
| /* Write a constant of a given type as target-ordered bytes into |
| OBSTACK. */ |
| |
| static const gdb_byte * |
| write_constant_as_bytes (struct obstack *obstack, |
| enum bfd_endian byte_order, |
| struct type *type, |
| ULONGEST value, |
| LONGEST *len) |
| { |
| gdb_byte *result; |
| |
| *len = TYPE_LENGTH (type); |
| result = (gdb_byte *) obstack_alloc (obstack, *len); |
| store_unsigned_integer (result, *len, byte_order, value); |
| |
| return result; |
| } |
| |
| /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a |
| pointer to the constant bytes and set LEN to the length of the |
| data. If memory is needed, allocate it on OBSTACK. If the DIE |
| does not have a DW_AT_const_value, return NULL. */ |
| |
| const gdb_byte * |
| dwarf2_fetch_constant_bytes (sect_offset sect_off, |
| struct dwarf2_per_cu_data *per_cu, |
| struct obstack *obstack, |
| LONGEST *len) |
| { |
| struct dwarf2_cu *cu; |
| struct die_info *die; |
| struct attribute *attr; |
| const gdb_byte *result = NULL; |
| struct type *type; |
| LONGEST value; |
| enum bfd_endian byte_order; |
| struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile; |
| |
| if (per_cu->cu == NULL) |
| load_cu (per_cu, false); |
| cu = per_cu->cu; |
| if (cu == NULL) |
| { |
| /* We shouldn't get here for a dummy CU, but don't crash on the user. |
| Instead just throw an error, not much else we can do. */ |
| error (_("Dwarf Error: Dummy CU at %s referenced in module %s"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| } |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr == NULL) |
| return NULL; |
| |
| byte_order = (bfd_big_endian (objfile->obfd) |
| ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); |
| |
| switch (attr->form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| { |
| gdb_byte *tem; |
| |
| *len = cu->header.addr_size; |
| tem = (gdb_byte *) obstack_alloc (obstack, *len); |
| store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr)); |
| result = tem; |
| } |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_strp_alt: |
| /* DW_STRING is already allocated on the objfile obstack, point |
| directly to it. */ |
| result = (const gdb_byte *) DW_STRING (attr); |
| *len = strlen (DW_STRING (attr)); |
| break; |
| case DW_FORM_block1: |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_exprloc: |
| case DW_FORM_data16: |
| result = DW_BLOCK (attr)->data; |
| *len = DW_BLOCK (attr)->size; |
| break; |
| |
| /* The DW_AT_const_value attributes are supposed to carry the |
| symbol's value "represented as it would be on the target |
| architecture." By the time we get here, it's already been |
| converted to host endianness, so we just need to sign- or |
| zero-extend it as appropriate. */ |
| case DW_FORM_data1: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 8); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data2: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 16); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data4: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 32); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data8: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 64); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| |
| case DW_FORM_sdata: |
| case DW_FORM_implicit_const: |
| type = die_type (die, cu); |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, DW_SND (attr), len); |
| break; |
| |
| case DW_FORM_udata: |
| type = die_type (die, cu); |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, DW_UNSND (attr), len); |
| break; |
| |
| default: |
| complaint (_("unsupported const value attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| break; |
| } |
| |
| return result; |
| } |
| |
| /* Return the type of the die at OFFSET in PER_CU. Return NULL if no |
| valid type for this die is found. */ |
| |
| struct type * |
| dwarf2_fetch_die_type_sect_off (sect_offset sect_off, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct dwarf2_cu *cu; |
| struct die_info *die; |
| |
| if (per_cu->cu == NULL) |
| load_cu (per_cu, false); |
| cu = per_cu->cu; |
| if (!cu) |
| return NULL; |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| return NULL; |
| |
| return die_type (die, cu); |
| } |
| |
| /* Return the type of the DIE at DIE_OFFSET in the CU named by |
| PER_CU. */ |
| |
| struct type * |
| dwarf2_get_die_type (cu_offset die_offset, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset); |
| return get_die_type_at_offset (die_offset_sect, per_cu); |
| } |
| |
| /* Follow type unit SIG_TYPE referenced by SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. |
| Returns NULL if the referenced DIE isn't found. */ |
| |
| static struct die_info * |
| follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct die_info temp_die; |
| struct dwarf2_cu *sig_cu, *cu = *ref_cu; |
| struct die_info *die; |
| |
| /* While it might be nice to assert sig_type->type == NULL here, |
| we can get here for DW_AT_imported_declaration where we need |
| the DIE not the type. */ |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| |
| if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal)) |
| read_signatured_type (sig_type); |
| |
| sig_cu = sig_type->per_cu.cu; |
| gdb_assert (sig_cu != NULL); |
| gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0); |
| temp_die.sect_off = sig_type->type_offset_in_section; |
| die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die, |
| to_underlying (temp_die.sect_off)); |
| if (die) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = (*ref_cu)->per_cu->dwarf2_per_objfile; |
| |
| /* For .gdb_index version 7 keep track of included TUs. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */ |
| if (dwarf2_per_objfile->index_table != NULL |
| && dwarf2_per_objfile->index_table->version <= 7) |
| { |
| (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu); |
| } |
| |
| *ref_cu = sig_cu; |
| if (sig_cu != cu) |
| sig_cu->ancestor = cu; |
| |
| return die; |
| } |
| |
| return NULL; |
| } |
| |
| /* Follow signatured type referenced by ATTR in SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. |
| The result is the DIE of the type. |
| If the referenced type cannot be found an error is thrown. */ |
| |
| static struct die_info * |
| follow_die_sig (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| ULONGEST signature = DW_SIGNATURE (attr); |
| struct signatured_type *sig_type; |
| struct die_info *die; |
| |
| gdb_assert (attr->form == DW_FORM_ref_sig8); |
| |
| sig_type = lookup_signatured_type (*ref_cu, signature); |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| { |
| error (_("Dwarf Error: Cannot find signatured DIE %s referenced" |
| " from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (src_die->sect_off), |
| objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| die = follow_die_sig_1 (src_die, sig_type, ref_cu); |
| if (die == NULL) |
| { |
| dump_die_for_error (src_die); |
| error (_("Dwarf Error: Problem reading signatured DIE %s referenced" |
| " from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (src_die->sect_off), |
| objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile)); |
| } |
| |
| return die; |
| } |
| |
| /* Get the type specified by SIGNATURE referenced in DIE/CU, |
| reading in and processing the type unit if necessary. */ |
| |
| static struct type * |
| get_signatured_type (struct die_info *die, ULONGEST signature, |
| struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct signatured_type *sig_type; |
| struct dwarf2_cu *type_cu; |
| struct die_info *type_die; |
| struct type *type; |
| |
| sig_type = lookup_signatured_type (cu, signature); |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| { |
| complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced" |
| " from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| |
| /* If we already know the type we're done. */ |
| if (sig_type->type != NULL) |
| return sig_type->type; |
| |
| type_cu = cu; |
| type_die = follow_die_sig_1 (die, sig_type, &type_cu); |
| if (type_die != NULL) |
| { |
| /* N.B. We need to call get_die_type to ensure only one type for this DIE |
| is created. This is important, for example, because for c++ classes |
| we need TYPE_NAME set which is only done by new_symbol. Blech. */ |
| type = read_type_die (type_die, type_cu); |
| if (type == NULL) |
| { |
| complaint (_("Dwarf Error: Cannot build signatured type %s" |
| " referenced from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| type = build_error_marker_type (cu, die); |
| } |
| } |
| else |
| { |
| complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced" |
| " from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| type = build_error_marker_type (cu, die); |
| } |
| sig_type->type = type; |
| |
| return type; |
| } |
| |
| /* Get the type specified by the DW_AT_signature ATTR in DIE/CU, |
| reading in and processing the type unit if necessary. */ |
| |
| static struct type * |
| get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr, |
| struct dwarf2_cu *cu) /* ARI: editCase function */ |
| { |
| /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */ |
| if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *type_cu = cu; |
| struct die_info *type_die = follow_die_ref (die, attr, &type_cu); |
| |
| return read_type_die (type_die, type_cu); |
| } |
| else if (attr->form == DW_FORM_ref_sig8) |
| { |
| return get_signatured_type (die, DW_SIGNATURE (attr), cu); |
| } |
| else |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE" |
| " at %s [in module %s]"), |
| dwarf_form_name (attr->form), sect_offset_str (die->sect_off), |
| objfile_name (dwarf2_per_objfile->objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| } |
| |
| /* Load the DIEs associated with type unit PER_CU into memory. */ |
| |
| static void |
| load_full_type_unit (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct signatured_type *sig_type; |
| |
| /* Caller is responsible for ensuring type_unit_groups don't get here. */ |
| gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu)); |
| |
| /* We have the per_cu, but we need the signatured_type. |
| Fortunately this is an easy translation. */ |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| gdb_assert (per_cu->cu == NULL); |
| |
| read_signatured_type (sig_type); |
| |
| gdb_assert (per_cu->cu != NULL); |
| } |
| |
| /* Read in a signatured type and build its CU and DIEs. |
| If the type is a stub for the real type in a DWO file, |
| read in the real type from the DWO file as well. */ |
| |
| static void |
| read_signatured_type (struct signatured_type *sig_type) |
| { |
| struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu; |
| |
| gdb_assert (per_cu->is_debug_types); |
| gdb_assert (per_cu->cu == NULL); |
| |
| cutu_reader reader (per_cu, NULL, 0, 1, false); |
| |
| if (!reader.dummy_p) |
| { |
| struct dwarf2_cu *cu = reader.cu; |
| const gdb_byte *info_ptr = reader.info_ptr; |
| |
| gdb_assert (cu->die_hash == NULL); |
| cu->die_hash = |
| htab_create_alloc_ex (cu->header.length / 12, |
| die_hash, |
| die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| if (reader.comp_unit_die->has_children) |
| reader.comp_unit_die->child |
| = read_die_and_siblings (&reader, info_ptr, &info_ptr, |
| reader.comp_unit_die); |
| cu->dies = reader.comp_unit_die; |
| /* comp_unit_die is not stored in die_hash, no need. */ |
| |
| /* We try not to read any attributes in this function, because |
| not all CUs needed for references have been loaded yet, and |
| symbol table processing isn't initialized. But we have to |
| set the CU language, or we won't be able to build types |
| correctly. Similarly, if we do not read the producer, we can |
| not apply producer-specific interpretation. */ |
| prepare_one_comp_unit (cu, cu->dies, language_minimal); |
| } |
| |
| sig_type->per_cu.tu_read = 1; |
| } |
| |
| /* Decode simple location descriptions. |
| Given a pointer to a dwarf block that defines a location, compute |
| the location and return the value. |
| |
| NOTE drow/2003-11-18: This function is called in two situations |
| now: for the address of static or global variables (partial symbols |
| only) and for offsets into structures which are expected to be |
| (more or less) constant. The partial symbol case should go away, |
| and only the constant case should remain. That will let this |
| function complain more accurately. A few special modes are allowed |
| without complaint for global variables (for instance, global |
| register values and thread-local values). |
| |
| A location description containing no operations indicates that the |
| object is optimized out. The return value is 0 for that case. |
| FIXME drow/2003-11-16: No callers check for this case any more; soon all |
| callers will only want a very basic result and this can become a |
| complaint. |
| |
| Note that stack[0] is unused except as a default error return. */ |
| |
| static CORE_ADDR |
| decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile; |
| size_t i; |
| size_t size = blk->size; |
| const gdb_byte *data = blk->data; |
| CORE_ADDR stack[64]; |
| int stacki; |
| unsigned int bytes_read, unsnd; |
| gdb_byte op; |
| |
| i = 0; |
| stacki = 0; |
| stack[stacki] = 0; |
| stack[++stacki] = 0; |
| |
| while (i < size) |
| { |
| op = data[i++]; |
| switch (op) |
| { |
| case DW_OP_lit0: |
| case DW_OP_lit1: |
| case DW_OP_lit2: |
| case DW_OP_lit3: |
| case DW_OP_lit4: |
| case DW_OP_lit5: |
| case DW_OP_lit6: |
| case DW_OP_lit7: |
| case DW_OP_lit8: |
| case DW_OP_lit9: |
| case DW_OP_lit10: |
| case DW_OP_lit11: |
| case DW_OP_lit12: |
| case DW_OP_lit13: |
| case DW_OP_lit14: |
| case DW_OP_lit15: |
| case DW_OP_lit16: |
| case DW_OP_lit17: |
| case DW_OP_lit18: |
| case DW_OP_lit19: |
| case DW_OP_lit20: |
| case DW_OP_lit21: |
| case DW_OP_lit22: |
| case DW_OP_lit23: |
| case DW_OP_lit24: |
| case DW_OP_lit25: |
| case DW_OP_lit26: |
| case DW_OP_lit27: |
| case DW_OP_lit28: |
| case DW_OP_lit29: |
| case DW_OP_lit30: |
| case DW_OP_lit31: |
| stack[++stacki] = op - DW_OP_lit0; |
| break; |
| |
| case DW_OP_reg0: |
| case DW_OP_reg1: |
| case DW_OP_reg2: |
| case DW_OP_reg3: |
| case DW_OP_reg4: |
| case DW_OP_reg5: |
| case DW_OP_reg6: |
| case DW_OP_reg7: |
| case DW_OP_reg8: |
| case DW_OP_reg9: |
| case DW_OP_reg10: |
| case DW_OP_reg11: |
| case DW_OP_reg12: |
| case DW_OP_reg13: |
| case DW_OP_reg14: |
| case DW_OP_reg15: |
| case DW_OP_reg16: |
| case DW_OP_reg17: |
| case DW_OP_reg18: |
| case DW_OP_reg19: |
| case DW_OP_reg20: |
| case DW_OP_reg21: |
| case DW_OP_reg22: |
| case DW_OP_reg23: |
| case DW_OP_reg24: |
| case DW_OP_reg25: |
| case DW_OP_reg26: |
| case DW_OP_reg27: |
| case DW_OP_reg28: |
| case DW_OP_reg29: |
| case DW_OP_reg30: |
| case DW_OP_reg31: |
| stack[++stacki] = op - DW_OP_reg0; |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_regx: |
| unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read); |
| i += bytes_read; |
| stack[++stacki] = unsnd; |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_addr: |
| stack[++stacki] = read_address (objfile->obfd, &data[i], |
| cu, &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_const1u: |
| stack[++stacki] = read_1_byte (objfile->obfd, &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const1s: |
| stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const2u: |
| stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const2s: |
| stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const4u: |
| stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const4s: |
| stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const8u: |
| stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]); |
| i += 8; |
| break; |
| |
| case DW_OP_constu: |
| stack[++stacki] = read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_consts: |
| stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_dup: |
| stack[stacki + 1] = stack[stacki]; |
| stacki++; |
| break; |
| |
| case DW_OP_plus: |
| stack[stacki - 1] += stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_plus_uconst: |
| stack[stacki] += read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_minus: |
| stack[stacki - 1] -= stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_deref: |
| /* If we're not the last op, then we definitely can't encode |
| this using GDB's address_class enum. This is valid for partial |
| global symbols, although the variable's address will be bogus |
| in the psymtab. */ |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_GNU_push_tls_address: |
| case DW_OP_form_tls_address: |
| /* The top of the stack has the offset from the beginning |
| of the thread control block at which the variable is located. */ |
| /* Nothing should follow this operator, so the top of stack would |
| be returned. */ |
| /* This is valid for partial global symbols, but the variable's |
| address will be bogus in the psymtab. Make it always at least |
| non-zero to not look as a variable garbage collected by linker |
| which have DW_OP_addr 0. */ |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| stack[stacki]++; |
| break; |
| |
| case DW_OP_GNU_uninit: |
| break; |
| |
| case DW_OP_addrx: |
| case DW_OP_GNU_addr_index: |
| case DW_OP_GNU_const_index: |
| stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i], |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| default: |
| { |
| const char *name = get_DW_OP_name (op); |
| |
| if (name) |
| complaint (_("unsupported stack op: '%s'"), |
| name); |
| else |
| complaint (_("unsupported stack op: '%02x'"), |
| op); |
| } |
| |
| return (stack[stacki]); |
| } |
| |
| /* Enforce maximum stack depth of SIZE-1 to avoid writing |
| outside of the allocated space. Also enforce minimum>0. */ |
| if (stacki >= ARRAY_SIZE (stack) - 1) |
| { |
| complaint (_("location description stack overflow")); |
| return 0; |
| } |
| |
| if (stacki <= 0) |
| { |
| complaint (_("location description stack underflow")); |
| return 0; |
| } |
| } |
| return (stack[stacki]); |
| } |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block * |
| dwarf_alloc_block (struct dwarf2_cu *cu) |
| { |
| return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block); |
| } |
| |
| static struct die_info * |
| dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs) |
| { |
| struct die_info *die; |
| size_t size = sizeof (struct die_info); |
| |
| if (num_attrs > 1) |
| size += (num_attrs - 1) * sizeof (struct attribute); |
| |
| die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size); |
| memset (die, 0, sizeof (struct die_info)); |
| return (die); |
| } |
| |
| |
| /* Macro support. */ |
| |
| /* Return file name relative to the compilation directory of file number I in |
| *LH's file name table. The result is allocated using xmalloc; the caller is |
| responsible for freeing it. */ |
| |
| static char * |
| file_file_name (int file, struct line_header *lh) |
| { |
| /* Is the file number a valid index into the line header's file name |
| table? Remember that file numbers start with one, not zero. */ |
| if (lh->is_valid_file_index (file)) |
| { |
| const file_entry *fe = lh->file_name_at (file); |
| |
| if (!IS_ABSOLUTE_PATH (fe->name)) |
| { |
| const char *dir = fe->include_dir (lh); |
| if (dir != NULL) |
| return concat (dir, SLASH_STRING, fe->name, (char *) NULL); |
| } |
| return xstrdup (fe->name); |
| } |
| else |
| { |
| /* The compiler produced a bogus file number. We can at least |
| record the macro definitions made in the file, even if we |
| won't be able to find the file by name. */ |
| char fake_name[80]; |
| |
| xsnprintf (fake_name, sizeof (fake_name), |
| "<bad macro file number %d>", file); |
| |
| complaint (_("bad file number in macro information (%d)"), |
| file); |
| |
| return xstrdup (fake_name); |
| } |
| } |
| |
| /* Return the full name of file number I in *LH's file name table. |
| Use COMP_DIR as the name of the current directory of the |
| compilation. The result is allocated using xmalloc; the caller is |
| responsible for freeing it. */ |
| static char * |
| file_full_name (int file, struct line_header *lh, const char *comp_dir) |
| { |
| /* Is the file number a valid index into the line header's file name |
| table? Remember that file numbers start with one, not zero. */ |
| if (lh->is_valid_file_index (file)) |
| { |
| char *relative = file_file_name (file, lh); |
| |
| if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL) |
| return relative; |
| return reconcat (relative, comp_dir, SLASH_STRING, |
| relative, (char *) NULL); |
| } |
| else |
| return file_file_name (file, lh); |
| } |
| |
| |
| static struct macro_source_file * |
| macro_start_file (struct dwarf2_cu *cu, |
| int file, int line, |
| struct macro_source_file *current_file, |
| struct line_header *lh) |
| { |
| /* File name relative to the compilation directory of this source file. */ |
| char *file_name = file_file_name (file, lh); |
| |
| if (! current_file) |
| { |
| /* Note: We don't create a macro table for this compilation unit |
| at all until we actually get a filename. */ |
| struct macro_table *macro_table = cu->get_builder ()->get_macro_table (); |
| |
| /* If we have no current file, then this must be the start_file |
| directive for the compilation unit's main source file. */ |
| current_file = macro_set_main (macro_table, file_name); |
| macro_define_special (macro_table); |
| } |
| else |
| current_file = macro_include (current_file, line, file_name); |
| |
| xfree (file_name); |
| |
| return current_file; |
| } |
| |
| static const char * |
| consume_improper_spaces (const char *p, const char *body) |
| { |
| if (*p == ' ') |
| { |
| complaint (_("macro definition contains spaces " |
| "in formal argument list:\n`%s'"), |
| body); |
| |
| while (*p == ' ') |
| p++; |
| } |
| |
| return p; |
| } |
| |
| |
| static void |
| parse_macro_definition (struct macro_source_file *file, int line, |
| const char *body) |
| { |
| const char *p; |
| |
| /* The body string takes one of two forms. For object-like macro |
| definitions, it should be: |
| |
| <macro name> " " <definition> |
| |
| For function-like macro definitions, it should be: |
| |
| <macro name> "() " <definition> |
| or |
| <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition> |
| |
| Spaces may appear only where explicitly indicated, and in the |
| <definition>. |
| |
| The Dwarf 2 spec says that an object-like macro's name is always |
| followed by a space, but versions of GCC around March 2002 omit |
| the space when the macro's definition is the empty string. |
| |
| The Dwarf 2 spec says that there should be no spaces between the |
| formal arguments in a function-like macro's formal argument list, |
| but versions of GCC around March 2002 include spaces after the |
| commas. */ |
| |
| |
| /* Find the extent of the macro name. The macro name is terminated |
| by either a space or null character (for an object-like macro) or |
| an opening paren (for a function-like macro). */ |
| for (p = body; *p; p++) |
| if (*p == ' ' || *p == '(') |
| break; |
| |
| if (*p == ' ' || *p == '\0') |
| { |
| /* It's an object-like macro. */ |
| int name_len = p - body; |
| std::string name (body, name_len); |
| const char *replacement; |
| |
| if (*p == ' ') |
| replacement = body + name_len + 1; |
| else |
| { |
| dwarf2_macro_malformed_definition_complaint (body); |
| replacement = body + name_len; |
| } |
| |
| macro_define_object (file, line, name.c_str (), replacement); |
| } |
| else if (*p == '(') |
| { |
| /* It's a function-like macro. */ |
| std::string name (body, p - body); |
| int argc = 0; |
| int argv_size = 1; |
| char **argv = XNEWVEC (char *, argv_size); |
| |
| p++; |
| |
| p = consume_improper_spaces (p, body); |
| |
| /* Parse the formal argument list. */ |
| while (*p && *p != ')') |
| { |
| /* Find the extent of the current argument name. */ |
| const char *arg_start = p; |
| |
| while (*p && *p != ',' && *p != ')' && *p != ' ') |
| p++; |
| |
| if (! *p || p == arg_start) |
| dwarf2_macro_malformed_definition_complaint (body); |
| else |
| { |
| /* Make sure argv has room for the new argument. */ |
| if (argc >= argv_size) |
| { |
| argv_size *= 2; |
| argv = XRESIZEVEC (char *, argv, argv_size); |
| } |
| |
| argv[argc++] = savestring (arg_start, p - arg_start); |
| } |
| |
| p = consume_improper_spaces (p, body); |
| |
| /* Consume the comma, if present. */ |
| if (*p == ',') |
| { |
| p++; |
| |
| p = consume_improper_spaces (p, body); |
| } |
| } |
| |
| if (*p == ')') |
| { |
| p++; |
| |
| if (*p == ' ') |
| /* Perfectly formed definition, no complaints. */ |
| macro_define_function (file, line, name.c_str (), |
| argc, (const char **) argv, |
| p + 1); |
| else if (*p == '\0') |
| { |
| /* Complain, but do define it. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| macro_define_function (file, line, name.c_str (), |
| argc, (const char **) argv, |
| p); |
| } |
| else |
| /* Just complain. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| } |
| else |
| /* Just complain. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| |
| { |
| int i; |
| |
| for (i = 0; i < argc; i++) |
| xfree (argv[i]); |
| } |
| xfree (argv); |
| } |
| else |
| dwarf2_macro_malformed_definition_complaint (body); |
| } |
| |
| /* Skip some bytes from BYTES according to the form given in FORM. |
| Returns the new pointer. */ |
| |
| static const gdb_byte * |
| skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end, |
| enum dwarf_form form, |
| unsigned int offset_size, |
| struct dwarf2_section_info *section) |
| { |
| unsigned int bytes_read; |
| |
| switch (form) |
| { |
| case DW_FORM_data1: |
| case DW_FORM_flag: |
| ++bytes; |
| break; |
| |
| case DW_FORM_data2: |
| bytes += 2; |
| break; |
| |
| case DW_FORM_data4: |
| bytes += 4; |
| break; |
| |
| case DW_FORM_data8: |
| bytes += 8; |
| break; |
| |
| case DW_FORM_data16: |
| bytes += 16; |
| break; |
| |
| case DW_FORM_string: |
| read_direct_string (abfd, bytes, &bytes_read); |
| bytes += bytes_read; |
| break; |
| |
| case DW_FORM_sec_offset: |
| case DW_FORM_strp: |
| case DW_FORM_GNU_strp_alt: |
| bytes += offset_size; |
| break; |
| |
| case DW_FORM_block: |
| bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read); |
| bytes += bytes_read; |
| break; |
| |
| case DW_FORM_block1: |
| bytes += 1 + read_1_byte (abfd, bytes); |
| break; |
| case DW_FORM_block2: |
| bytes += 2 + read_2_bytes (abfd, bytes); |
| break; |
| case DW_FORM_block4: |
| bytes += 4 + read_4_bytes (abfd, bytes); |
| break; |
| |
| case DW_FORM_addrx: |
| case DW_FORM_sdata: |
| case DW_FORM_strx: |
| case DW_FORM_udata: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_GNU_str_index: |
| bytes = gdb_skip_leb128 (bytes, buffer_end); |
| if (bytes == NULL) |
| { |
| dwarf2_section_buffer_overflow_complaint (section); |
| return NULL; |
| } |
| break; |
| |
| case DW_FORM_implicit_const: |
| break; |
| |
| default: |
| { |
| complaint (_("invalid form 0x%x in `%s'"), |
| form, section->get_name ()); |
| return NULL; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| /* A helper for dwarf_decode_macros that handles skipping an unknown |
| opcode. Returns an updated pointer to the macro data buffer; or, |
| on error, issues a complaint and returns NULL. */ |
| |
| static const gdb_byte * |
| skip_unknown_opcode (unsigned int opcode, |
| const gdb_byte **opcode_definitions, |
| const gdb_byte *mac_ptr, const gdb_byte *mac_end, |
| bfd *abfd, |
| unsigned int offset_size, |
| struct dwarf2_section_info *section) |
| { |
| unsigned int bytes_read, i; |
| unsigned long arg; |
| const gdb_byte *defn; |
| |
| if (opcode_definitions[opcode] == NULL) |
| { |
| complaint (_("unrecognized DW_MACFINO opcode 0x%x"), |
| opcode); |
| return NULL; |
| } |
| |
| defn = opcode_definitions[opcode]; |
| arg = read_unsigned_leb128 (abfd, defn, &bytes_read); |
| defn += bytes_read; |
| |
| for (i = 0; i < arg; ++i) |
| { |
| mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, |
| (enum dwarf_form) defn[i], offset_size, |
| section); |
| if (mac_ptr == NULL) |
| { |
| /* skip_form_bytes already issued the complaint. */ |
| return NULL; |
| } |
| } |
| |
| return mac_ptr; |
| } |
| |
| /* A helper function which parses the header of a macro section. |
| If the macro section is the extended (for now called "GNU") type, |
| then this updates *OFFSET_SIZE. Returns a pointer to just after |
| the header, or issues a complaint and returns NULL on error. */ |
| |
| static const gdb_byte * |
| dwarf_parse_macro_header (const gdb_byte **opcode_definitions, |
| bfd *abfd, |
| const gdb_byte *mac_ptr, |
| unsigned int *offset_size, |
| int section_is_gnu) |
| { |
| memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *)); |
| |
| if (section_is_gnu) |
| { |
| unsigned int version, flags; |
| |
| version = read_2_bytes (abfd, mac_ptr); |
| if (version != 4 && version != 5) |
| { |
| complaint (_("unrecognized version `%d' in .debug_macro section"), |
| version); |
| return NULL; |
| } |
| mac_ptr += 2; |
| |
| flags = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| *offset_size = (flags & 1) ? 8 : 4; |
| |
| if ((flags & 2) != 0) |
| /* We don't need the line table offset. */ |
| mac_ptr += *offset_size; |
| |
| /* Vendor opcode descriptions. */ |
| if ((flags & 4) != 0) |
| { |
| unsigned int i, count; |
| |
| count = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| for (i = 0; i < count; ++i) |
| { |
| unsigned int opcode, bytes_read; |
| unsigned long arg; |
| |
| opcode = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| opcode_definitions[opcode] = mac_ptr; |
| arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| mac_ptr += arg; |
| } |
| } |
| } |
| |
| return mac_ptr; |
| } |
| |
| /* A helper for dwarf_decode_macros that handles the GNU extensions, |
| including DW_MACRO_import. */ |
| |
| static void |
| dwarf_decode_macro_bytes (struct dwarf2_cu *cu, |
| bfd *abfd, |
| const gdb_byte *mac_ptr, const gdb_byte *mac_end, |
| struct macro_source_file *current_file, |
| struct line_header *lh, |
| struct dwarf2_section_info *section, |
| int section_is_gnu, int section_is_dwz, |
| unsigned int offset_size, |
| htab_t include_hash) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| enum dwarf_macro_record_type macinfo_type; |
| int at_commandline; |
| const gdb_byte *opcode_definitions[256]; |
| |
| mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr, |
| &offset_size, section_is_gnu); |
| if (mac_ptr == NULL) |
| { |
| /* We already issued a complaint. */ |
| return; |
| } |
| |
| /* Determines if GDB is still before first DW_MACINFO_start_file. If true |
| GDB is still reading the definitions from command line. First |
| DW_MACINFO_start_file will need to be ignored as it was already executed |
| to create CURRENT_FILE for the main source holding also the command line |
| definitions. On first met DW_MACINFO_start_file this flag is reset to |
| normally execute all the remaining DW_MACINFO_start_file macinfos. */ |
| |
| at_commandline = 1; |
| |
| do |
| { |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| dwarf2_section_buffer_overflow_complaint (section); |
| break; |
| } |
| |
| macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr); |
| mac_ptr++; |
| |
| /* Note that we rely on the fact that the corresponding GNU and |
| DWARF constants are the same. */ |
| DIAGNOSTIC_PUSH |
| DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES |
| switch (macinfo_type) |
| { |
| /* A zero macinfo type indicates the end of the macro |
| information. */ |
| case 0: |
| break; |
| |
| case DW_MACRO_define: |
| case DW_MACRO_undef: |
| case DW_MACRO_define_strp: |
| case DW_MACRO_undef_strp: |
| case DW_MACRO_define_sup: |
| case DW_MACRO_undef_sup: |
| { |
| unsigned int bytes_read; |
| int line; |
| const char *body; |
| int is_define; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| if (macinfo_type == DW_MACRO_define |
| || macinfo_type == DW_MACRO_undef) |
| { |
| body = read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| else |
| { |
| LONGEST str_offset; |
| |
| str_offset = read_offset_1 (abfd, mac_ptr, offset_size); |
| mac_ptr += offset_size; |
| |
| if (macinfo_type == DW_MACRO_define_sup |
| || macinfo_type == DW_MACRO_undef_sup |
| || section_is_dwz) |
| { |
| struct dwz_file *dwz |
| = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| |
| body = read_indirect_string_from_dwz (objfile, |
| dwz, str_offset); |
| } |
| else |
| body = read_indirect_string_at_offset (dwarf2_per_objfile, |
| abfd, str_offset); |
| } |
| |
| is_define = (macinfo_type == DW_MACRO_define |
| || macinfo_type == DW_MACRO_define_strp |
| || macinfo_type == DW_MACRO_define_sup); |
| if (! current_file) |
| { |
| /* DWARF violation as no main source is present. */ |
| complaint (_("debug info with no main source gives macro %s " |
| "on line %d: %s"), |
| is_define ? _("definition") : _("undefinition"), |
| line, body); |
| break; |
| } |
| if ((line == 0 && !at_commandline) |
| || (line != 0 && at_commandline)) |
| complaint (_("debug info gives %s macro %s with %s line %d: %s"), |
| at_commandline ? _("command-line") : _("in-file"), |
| is_define ? _("definition") : _("undefinition"), |
| line == 0 ? _("zero") : _("non-zero"), line, body); |
| |
| if (body == NULL) |
| { |
| /* Fedora's rpm-build's "debugedit" binary |
| corrupted .debug_macro sections. |
| |
| For more info, see |
| https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */ |
| complaint (_("debug info gives %s invalid macro %s " |
| "without body (corrupted?) at line %d " |
| "on file %s"), |
| at_commandline ? _("command-line") : _("in-file"), |
| is_define ? _("definition") : _("undefinition"), |
| line, current_file->filename); |
| } |
| else if (is_define) |
| parse_macro_definition (current_file, line, body); |
| else |
| { |
| gdb_assert (macinfo_type == DW_MACRO_undef |
| || macinfo_type == DW_MACRO_undef_strp |
| || macinfo_type == DW_MACRO_undef_sup); |
| macro_undef (current_file, line, body); |
| } |
| } |
| break; |
| |
| case DW_MACRO_start_file: |
| { |
| unsigned int bytes_read; |
| int line, file; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| if ((line == 0 && !at_commandline) |
| || (line != 0 && at_commandline)) |
| complaint (_("debug info gives source %d included " |
| "from %s at %s line %d"), |
| file, at_commandline ? _("command-line") : _("file"), |
| line == 0 ? _("zero") : _("non-zero"), line); |
| |
| if (at_commandline) |
| { |
| /* This DW_MACRO_start_file was executed in the |
| pass one. */ |
| at_commandline = 0; |
| } |
| else |
| current_file = macro_start_file (cu, file, line, current_file, |
| lh); |
| } |
| break; |
| |
| case DW_MACRO_end_file: |
| if (! current_file) |
| complaint (_("macro debug info has an unmatched " |
| "`close_file' directive")); |
| else |
| { |
| current_file = current_file->included_by; |
| if (! current_file) |
| { |
| enum dwarf_macro_record_type next_type; |
| |
| /* GCC circa March 2002 doesn't produce the zero |
| type byte marking the end of the compilation |
| unit. Complain if it's not there, but exit no |
| matter what. */ |
| |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| dwarf2_section_buffer_overflow_complaint (section); |
| return; |
| } |
| |
| /* We don't increment mac_ptr here, so this is just |
| a look-ahead. */ |
| next_type |
| = (enum dwarf_macro_record_type) read_1_byte (abfd, |
| mac_ptr); |
| if (next_type != 0) |
| complaint (_("no terminating 0-type entry for " |
| "macros in `.debug_macinfo' section")); |
| |
| return; |
| } |
| } |
| break; |
| |
| case DW_MACRO_import: |
| case DW_MACRO_import_sup: |
| { |
| LONGEST offset; |
| void **slot; |
| bfd *include_bfd = abfd; |
| struct dwarf2_section_info *include_section = section; |
| const gdb_byte *include_mac_end = mac_end; |
| int is_dwz = section_is_dwz; |
| const gdb_byte *new_mac_ptr; |
| |
| offset = read_offset_1 (abfd, mac_ptr, offset_size); |
| mac_ptr += offset_size; |
| |
| if (macinfo_type == DW_MACRO_import_sup) |
| { |
| struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile); |
| |
| dwz->macro.read (objfile); |
| |
| include_section = &dwz->macro; |
| include_bfd = include_section->get_bfd_owner (); |
| include_mac_end = dwz->macro.buffer + dwz->macro.size; |
| is_dwz = 1; |
| } |
| |
| new_mac_ptr = include_section->buffer + offset; |
| slot = htab_find_slot (include_hash, new_mac_ptr, INSERT); |
| |
| if (*slot != NULL) |
| { |
| /* This has actually happened; see |
| http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */ |
| complaint (_("recursive DW_MACRO_import in " |
| ".debug_macro section")); |
| } |
| else |
| { |
| *slot = (void *) new_mac_ptr; |
| |
| dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr, |
| include_mac_end, current_file, lh, |
| section, section_is_gnu, is_dwz, |
| offset_size, include_hash); |
| |
| htab_remove_elt (include_hash, (void *) new_mac_ptr); |
| } |
| } |
| break; |
| |
| case DW_MACINFO_vendor_ext: |
| if (!section_is_gnu) |
| { |
| unsigned int bytes_read; |
| |
| /* This reads the constant, but since we don't recognize |
| any vendor extensions, we ignore it. */ |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| /* We don't recognize any vendor extensions. */ |
| break; |
| } |
| /* FALLTHROUGH */ |
| |
| default: |
| mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions, |
| mac_ptr, mac_end, abfd, offset_size, |
| section); |
| if (mac_ptr == NULL) |
| return; |
| break; |
| } |
| DIAGNOSTIC_POP |
| } while (macinfo_type != 0); |
| } |
| |
| static void |
| dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset, |
| int section_is_gnu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct line_header *lh = cu->line_header; |
| bfd *abfd; |
| const gdb_byte *mac_ptr, *mac_end; |
| struct macro_source_file *current_file = 0; |
| enum dwarf_macro_record_type macinfo_type; |
| unsigned int offset_size = cu->header.offset_size; |
| const gdb_byte *opcode_definitions[256]; |
| void **slot; |
| struct dwarf2_section_info *section; |
| const char *section_name; |
| |
| if (cu->dwo_unit != NULL) |
| { |
| if (section_is_gnu) |
| { |
| section = &cu->dwo_unit->dwo_file->sections.macro; |
| section_name = ".debug_macro.dwo"; |
| } |
| else |
| { |
| section = &cu->dwo_unit->dwo_file->sections.macinfo; |
| section_name = ".debug_macinfo.dwo"; |
| } |
| } |
| else |
| { |
| if (section_is_gnu) |
| { |
| section = &dwarf2_per_objfile->macro; |
| section_name = ".debug_macro"; |
| } |
| else |
| { |
| section = &dwarf2_per_objfile->macinfo; |
| section_name = ".debug_macinfo"; |
| } |
| } |
| |
| section->read (objfile); |
| if (section->buffer == NULL) |
| { |
| complaint (_("missing %s section"), section_name); |
| return; |
| } |
| abfd = section->get_bfd_owner (); |
| |
| /* First pass: Find the name of the base filename. |
| This filename is needed in order to process all macros whose definition |
| (or undefinition) comes from the command line. These macros are defined |
| before the first DW_MACINFO_start_file entry, and yet still need to be |
| associated to the base file. |
| |
| To determine the base file name, we scan the macro definitions until we |
| reach the first DW_MACINFO_start_file entry. We then initialize |
| CURRENT_FILE accordingly so that any macro definition found before the |
| first DW_MACINFO_start_file can still be associated to the base file. */ |
| |
| mac_ptr = section->buffer + offset; |
| mac_end = section->buffer + section->size; |
| |
| mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr, |
| &offset_size, section_is_gnu); |
| if (mac_ptr == NULL) |
| { |
| /* We already issued a complaint. */ |
| return; |
| } |
| |
| do |
| { |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| /* Complaint is printed during the second pass as GDB will probably |
| stop the first pass earlier upon finding |
| DW_MACINFO_start_file. */ |
| break; |
| } |
| |
| macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr); |
| mac_ptr++; |
| |
| /* Note that we rely on the fact that the corresponding GNU and |
| DWARF constants are the same. */ |
| DIAGNOSTIC_PUSH |
| DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES |
| switch (macinfo_type) |
| { |
| /* A zero macinfo type indicates the end of the macro |
| information. */ |
| case 0: |
| break; |
| |
| case DW_MACRO_define: |
| case DW_MACRO_undef: |
| /* Only skip the data by MAC_PTR. */ |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| break; |
| |
| case DW_MACRO_start_file: |
| { |
| unsigned int bytes_read; |
| int line, file; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| current_file = macro_start_file (cu, file, line, current_file, lh); |
| } |
| break; |
| |
| case DW_MACRO_end_file: |
| /* No data to skip by MAC_PTR. */ |
| break; |
| |
| case DW_MACRO_define_strp: |
| case DW_MACRO_undef_strp: |
| case DW_MACRO_define_sup: |
| case DW_MACRO_undef_sup: |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| mac_ptr += offset_size; |
| } |
| break; |
| |
| case DW_MACRO_import: |
| case DW_MACRO_import_sup: |
| /* Note that, according to the spec, a transparent include |
| chain cannot call DW_MACRO_start_file. So, we can just |
| skip this opcode. */ |
| mac_ptr += offset_size; |
| break; |
| |
| case DW_MACINFO_vendor_ext: |
| /* Only skip the data by MAC_PTR. */ |
| if (!section_is_gnu) |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| /* FALLTHROUGH */ |
| |
| default: |
| mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions, |
| mac_ptr, mac_end, abfd, offset_size, |
| section); |
| if (mac_ptr == NULL) |
| return; |
| break; |
| } |
| DIAGNOSTIC_POP |
| } while (macinfo_type != 0 && current_file == NULL); |
| |
| /* Second pass: Process all entries. |
| |
| Use the AT_COMMAND_LINE flag to determine whether we are still processing |
| command-line macro definitions/undefinitions. This flag is unset when we |
| reach the first DW_MACINFO_start_file entry. */ |
| |
| htab_up include_hash (htab_create_alloc (1, htab_hash_pointer, |
| htab_eq_pointer, |
| NULL, xcalloc, xfree)); |
| mac_ptr = section->buffer + offset; |
| slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT); |
| *slot = (void *) mac_ptr; |
| dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end, |
| current_file, lh, section, |
| section_is_gnu, 0, offset_size, |
| include_hash.get ()); |
| } |
| |
| /* Return the .debug_loc section to use for CU. |
| For DWO files use .debug_loc.dwo. */ |
| |
| static struct dwarf2_section_info * |
| cu_debug_loc_section (struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| |
| if (cu->dwo_unit) |
| { |
| struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections; |
| |
| return cu->header.version >= 5 ? §ions->loclists : §ions->loc; |
| } |
| return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists |
| : &dwarf2_per_objfile->loc); |
| } |
| |
| /* A helper function that fills in a dwarf2_loclist_baton. */ |
| |
| static void |
| fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| const struct attribute *attr) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| section->read (dwarf2_per_objfile->objfile); |
| |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| /* We don't know how long the location list is, but make sure we |
| don't run off the edge of the section. */ |
| baton->size = section->size - DW_UNSND (attr); |
| baton->data = section->buffer + DW_UNSND (attr); |
| baton->base_address = cu->base_address; |
| baton->from_dwo = cu->dwo_unit != NULL; |
| } |
| |
| static void |
| dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu, int is_block) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| if (attr->form_is_section_offset () |
| /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside |
| the section. If so, fall through to the complaint in the |
| other branch. */ |
| && DW_UNSND (attr) < dwarf2_section_size (objfile, section)) |
| { |
| struct dwarf2_loclist_baton *baton; |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton); |
| |
| fill_in_loclist_baton (cu, baton, attr); |
| |
| if (cu->base_known == 0) |
| complaint (_("Location list used without " |
| "specifying the CU base address.")); |
| |
| SYMBOL_ACLASS_INDEX (sym) = (is_block |
| ? dwarf2_loclist_block_index |
| : dwarf2_loclist_index); |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| else |
| { |
| struct dwarf2_locexpr_baton *baton; |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| |
| if (attr->form_is_block ()) |
| { |
| /* Note that we're just copying the block's data pointer |
| here, not the actual data. We're still pointing into the |
| info_buffer for SYM's objfile; right now we never release |
| that buffer, but when we do clean up properly this may |
| need to change. */ |
| baton->size = DW_BLOCK (attr)->size; |
| baton->data = DW_BLOCK (attr)->data; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("location description", |
| sym->natural_name ()); |
| baton->size = 0; |
| } |
| |
| SYMBOL_ACLASS_INDEX (sym) = (is_block |
| ? dwarf2_locexpr_block_index |
| : dwarf2_locexpr_index); |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| } |
| |
| /* Return the OBJFILE associated with the compilation unit CU. If CU |
| came from a separate debuginfo file, then the master objfile is |
| returned. */ |
| |
| struct objfile * |
| dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile; |
| |
| /* Return the master objfile, so that we can report and look up the |
| correct file containing this variable. */ |
| if (objfile->separate_debug_objfile_backlink) |
| objfile = objfile->separate_debug_objfile_backlink; |
| |
| return objfile; |
| } |
| |
| /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU |
| (CU_HEADERP is unused in such case) or prepare a temporary copy at |
| CU_HEADERP first. */ |
| |
| static const struct comp_unit_head * |
| per_cu_header_read_in (struct comp_unit_head *cu_headerp, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| const gdb_byte *info_ptr; |
| |
| if (per_cu->cu) |
| return &per_cu->cu->header; |
| |
| info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off); |
| |
| memset (cu_headerp, 0, sizeof (*cu_headerp)); |
| read_comp_unit_head (cu_headerp, info_ptr, per_cu->section, |
| rcuh_kind::COMPILE); |
| |
| return cu_headerp; |
| } |
| |
| /* Return the address size given in the compilation unit header for CU. */ |
| |
| int |
| dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| return cu_headerp->addr_size; |
| } |
| |
| /* Return the offset size given in the compilation unit header for CU. */ |
| |
| int |
| dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| return cu_headerp->offset_size; |
| } |
| |
| /* See its dwarf2loc.h declaration. */ |
| |
| int |
| dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| if (cu_headerp->version == 2) |
| return cu_headerp->addr_size; |
| else |
| return cu_headerp->offset_size; |
| } |
| |
| /* Return the text offset of the CU. The returned offset comes from |
| this CU's objfile. If this objfile came from a separate debuginfo |
| file, then the offset may be different from the corresponding |
| offset in the parent objfile. */ |
| |
| CORE_ADDR |
| dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu) |
| { |
| return per_cu->dwarf2_per_objfile->objfile->text_section_offset (); |
| } |
| |
| /* Return a type that is a generic pointer type, the size of which matches |
| the address size given in the compilation unit header for PER_CU. */ |
| static struct type * |
| dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile; |
| struct type *void_type = objfile_type (objfile)->builtin_void; |
| struct type *addr_type = lookup_pointer_type (void_type); |
| int addr_size = dwarf2_per_cu_addr_size (per_cu); |
| |
| if (TYPE_LENGTH (addr_type) == addr_size) |
| return addr_type; |
| |
| addr_type |
| = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type)); |
| return addr_type; |
| } |
| |
| /* Return DWARF version number of PER_CU. */ |
| |
| short |
| dwarf2_version (struct dwarf2_per_cu_data *per_cu) |
| { |
| return per_cu->dwarf_version; |
| } |
| |
| /* Locate the .debug_info compilation unit from CU's objfile which contains |
| the DIE at OFFSET. Raises an error on failure. */ |
| |
| static struct dwarf2_per_cu_data * |
| dwarf2_find_containing_comp_unit (sect_offset sect_off, |
| unsigned int offset_in_dwz, |
| struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct dwarf2_per_cu_data *this_cu; |
| int low, high; |
| |
| low = 0; |
| high = dwarf2_per_objfile->all_comp_units.size () - 1; |
| while (high > low) |
| { |
| struct dwarf2_per_cu_data *mid_cu; |
| int mid = low + (high - low) / 2; |
| |
| mid_cu = dwarf2_per_objfile->all_comp_units[mid]; |
| if (mid_cu->is_dwz > offset_in_dwz |
| || (mid_cu->is_dwz == offset_in_dwz |
| && mid_cu->sect_off + mid_cu->length >= sect_off)) |
| high = mid; |
| else |
| low = mid + 1; |
| } |
| gdb_assert (low == high); |
| this_cu = dwarf2_per_objfile->all_comp_units[low]; |
| if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off) |
| { |
| if (low == 0 || this_cu->is_dwz != offset_in_dwz) |
| error (_("Dwarf Error: could not find partial DIE containing " |
| "offset %s [in module %s]"), |
| sect_offset_str (sect_off), |
| bfd_get_filename (dwarf2_per_objfile->objfile->obfd)); |
| |
| gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off |
| <= sect_off); |
| return dwarf2_per_objfile->all_comp_units[low-1]; |
| } |
| else |
| { |
| if (low == dwarf2_per_objfile->all_comp_units.size () - 1 |
| && sect_off >= this_cu->sect_off + this_cu->length) |
| error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off)); |
| gdb_assert (sect_off < this_cu->sect_off + this_cu->length); |
| return this_cu; |
| } |
| } |
| |
| /* Initialize dwarf2_cu CU, owned by PER_CU. */ |
| |
| dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_) |
| : per_cu (per_cu_), |
| mark (false), |
| has_loclist (false), |
| checked_producer (false), |
| producer_is_gxx_lt_4_6 (false), |
| producer_is_gcc_lt_4_3 (false), |
| producer_is_icc (false), |
| producer_is_icc_lt_14 (false), |
| producer_is_codewarrior (false), |
| processing_has_namespace_info (false) |
| { |
| per_cu->cu = this; |
| } |
| |
| /* Destroy a dwarf2_cu. */ |
| |
| dwarf2_cu::~dwarf2_cu () |
| { |
| per_cu->cu = NULL; |
| } |
| |
| /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */ |
| |
| static void |
| prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die, |
| enum language pretend_language) |
| { |
| struct attribute *attr; |
| |
| /* Set the language we're debugging. */ |
| attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu); |
| if (attr != nullptr) |
| set_cu_language (DW_UNSND (attr), cu); |
| else |
| { |
| cu->language = pretend_language; |
| cu->language_defn = language_def (cu->language); |
| } |
| |
| cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu); |
| } |
| |
| /* Increase the age counter on each cached compilation unit, and free |
| any that are too old. */ |
| |
| static void |
| age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile) |
| { |
| struct dwarf2_per_cu_data *per_cu, **last_chain; |
| |
| dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain); |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| per_cu->cu->last_used ++; |
| if (per_cu->cu->last_used <= dwarf_max_cache_age) |
| dwarf2_mark (per_cu->cu); |
| per_cu = per_cu->cu->read_in_chain; |
| } |
| |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| last_chain = &dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| struct dwarf2_per_cu_data *next_cu; |
| |
| next_cu = per_cu->cu->read_in_chain; |
| |
| if (!per_cu->cu->mark) |
| { |
| delete per_cu->cu; |
| *last_chain = next_cu; |
| } |
| else |
| last_chain = &per_cu->cu->read_in_chain; |
| |
| per_cu = next_cu; |
| } |
| } |
| |
| /* Remove a single compilation unit from the cache. */ |
| |
| static void |
| free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu) |
| { |
| struct dwarf2_per_cu_data *per_cu, **last_chain; |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = target_per_cu->dwarf2_per_objfile; |
| |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| last_chain = &dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| struct dwarf2_per_cu_data *next_cu; |
| |
| next_cu = per_cu->cu->read_in_chain; |
| |
| if (per_cu == target_per_cu) |
| { |
| delete per_cu->cu; |
| per_cu->cu = NULL; |
| *last_chain = next_cu; |
| break; |
| } |
| else |
| last_chain = &per_cu->cu->read_in_chain; |
| |
| per_cu = next_cu; |
| } |
| } |
| |
| /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer. |
| We store these in a hash table separate from the DIEs, and preserve them |
| when the DIEs are flushed out of cache. |
| |
| The CU "per_cu" pointer is needed because offset alone is not enough to |
| uniquely identify the type. A file may have multiple .debug_types sections, |
| or the type may come from a DWO file. Furthermore, while it's more logical |
| to use per_cu->section+offset, with Fission the section with the data is in |
| the DWO file but we don't know that section at the point we need it. |
| We have to use something in dwarf2_per_cu_data (or the pointer to it) |
| because we can enter the lookup routine, get_die_type_at_offset, from |
| outside this file, and thus won't necessarily have PER_CU->cu. |
| Fortunately, PER_CU is stable for the life of the objfile. */ |
| |
| struct dwarf2_per_cu_offset_and_type |
| { |
| const struct dwarf2_per_cu_data *per_cu; |
| sect_offset sect_off; |
| struct type *type; |
| }; |
| |
| /* Hash function for a dwarf2_per_cu_offset_and_type. */ |
| |
| static hashval_t |
| per_cu_offset_and_type_hash (const void *item) |
| { |
| const struct dwarf2_per_cu_offset_and_type *ofs |
| = (const struct dwarf2_per_cu_offset_and_type *) item; |
| |
| return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off); |
| } |
| |
| /* Equality function for a dwarf2_per_cu_offset_and_type. */ |
| |
| static int |
| per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwarf2_per_cu_offset_and_type *ofs_lhs |
| = (const struct dwarf2_per_cu_offset_and_type *) item_lhs; |
| const struct dwarf2_per_cu_offset_and_type *ofs_rhs |
| = (const struct dwarf2_per_cu_offset_and_type *) item_rhs; |
| |
| return (ofs_lhs->per_cu == ofs_rhs->per_cu |
| && ofs_lhs->sect_off == ofs_rhs->sect_off); |
| } |
| |
| /* Set the type associated with DIE to TYPE. Save it in CU's hash |
| table if necessary. For convenience, return TYPE. |
| |
| The DIEs reading must have careful ordering to: |
| * Not cause infinite loops trying to read in DIEs as a prerequisite for |
| reading current DIE. |
| * Not trying to dereference contents of still incompletely read in types |
| while reading in other DIEs. |
| * Enable referencing still incompletely read in types just by a pointer to |
| the type without accessing its fields. |
| |
| Therefore caller should follow these rules: |
| * Try to fetch any prerequisite types we may need to build this DIE type |
| before building the type and calling set_die_type. |
| * After building type call set_die_type for current DIE as soon as |
| possible before fetching more types to complete the current type. |
| * Make the type as complete as possible before fetching more types. */ |
| |
| static struct type * |
| set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile |
| = cu->per_cu->dwarf2_per_objfile; |
| struct dwarf2_per_cu_offset_and_type **slot, ofs; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct attribute *attr; |
| struct dynamic_prop prop; |
| |
| /* For Ada types, make sure that the gnat-specific data is always |
| initialized (if not already set). There are a few types where |
| we should not be doing so, because the type-specific area is |
| already used to hold some other piece of info (eg: TYPE_CODE_FLT |
| where the type-specific area is used to store the floatformat). |
| But this is not a problem, because the gnat-specific information |
| is actually not needed for these types. */ |
| if (need_gnat_info (cu) |
| && TYPE_CODE (type) != TYPE_CODE_FUNC |
| && TYPE_CODE (type) != TYPE_CODE_FLT |
| && TYPE_CODE (type) != TYPE_CODE_METHODPTR |
| && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR |
| && TYPE_CODE (type) != TYPE_CODE_METHOD |
| && !HAVE_GNAT_AUX_INFO (type)) |
| INIT_GNAT_SPECIFIC (type); |
| |
| /* Read DW_AT_allocated and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_allocated, cu); |
| if (attr != NULL && attr->form_is_block ()) |
| { |
| struct type *prop_type |
| = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| add_dyn_prop (DYN_PROP_ALLOCATED, prop, type); |
| } |
| else if (attr != NULL) |
| { |
| complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"), |
| (attr != NULL ? dwarf_form_name (attr->form) : "n/a"), |
| sect_offset_str (die->sect_off)); |
| } |
| |
| /* Read DW_AT_associated and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_associated, cu); |
| if (attr != NULL && attr->form_is_block ()) |
| { |
| struct type *prop_type |
| = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type); |
| } |
| else if (attr != NULL) |
| { |
| complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"), |
| (attr != NULL ? dwarf_form_name (attr->form) : "n/a"), |
| sect_offset_str (die->sect_off)); |
| } |
| |
| /* Read DW_AT_data_location and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_data_location, cu); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, |
| dwarf2_per_cu_addr_type (cu->per_cu))) |
| add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type); |
| |
| if (dwarf2_per_objfile->die_type_hash == NULL) |
| { |
| dwarf2_per_objfile->die_type_hash = |
| htab_create_alloc_ex (127, |
| per_cu_offset_and_type_hash, |
| per_cu_offset_and_type_eq, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| ofs.per_cu = cu->per_cu; |
| ofs.sect_off = die->sect_off; |
| ofs.type = type; |
| slot = (struct dwarf2_per_cu_offset_and_type **) |
| htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT); |
| if (*slot) |
| complaint (_("A problem internal to GDB: DIE %s has type already set"), |
| sect_offset_str (die->sect_off)); |
| *slot = XOBNEW (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_offset_and_type); |
| **slot = ofs; |
| return type; |
| } |
| |
| /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash, |
| or return NULL if the die does not have a saved type. */ |
| |
| static struct type * |
| get_die_type_at_offset (sect_offset sect_off, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct dwarf2_per_cu_offset_and_type *slot, ofs; |
| struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile; |
| |
| if (dwarf2_per_objfile->die_type_hash == NULL) |
| return NULL; |
| |
| ofs.per_cu = per_cu; |
| ofs.sect_off = sect_off; |
| slot = ((struct dwarf2_per_cu_offset_and_type *) |
| htab_find (dwarf2_per_objfile->die_type_hash, &ofs)); |
| if (slot) |
| return slot->type; |
| else |
| return NULL; |
| } |
| |
| /* Look up the type for DIE in CU in die_type_hash, |
| or return NULL if DIE does not have a saved type. */ |
| |
| static struct type * |
| get_die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return get_die_type_at_offset (die->sect_off, cu->per_cu); |
| } |
| |
| /* Add a dependence relationship from CU to REF_PER_CU. */ |
| |
| static void |
| dwarf2_add_dependence (struct dwarf2_cu *cu, |
| struct dwarf2_per_cu_data *ref_per_cu) |
| { |
| void **slot; |
| |
| if (cu->dependencies == NULL) |
| cu->dependencies |
| = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer, |
| NULL, &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT); |
| if (*slot == NULL) |
| *slot = ref_per_cu; |
| } |
| |
| /* Subroutine of dwarf2_mark to pass to htab_traverse. |
| Set the mark field in every compilation unit in the |
| cache that we must keep because we are keeping CU. */ |
| |
| static int |
| dwarf2_mark_helper (void **slot, void *data) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = (struct dwarf2_per_cu_data *) *slot; |
| |
| /* cu->dependencies references may not yet have been ever read if QUIT aborts |
| reading of the chain. As such dependencies remain valid it is not much |
| useful to track and undo them during QUIT cleanups. */ |
| if (per_cu->cu == NULL) |
| return 1; |
| |
| if (per_cu->cu->mark) |
| return 1; |
| per_cu->cu->mark = true; |
| |
| if (per_cu->cu->dependencies != NULL) |
| htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL); |
| |
| return 1; |
| } |
| |
| /* Set the mark field in CU and in every other compilation unit in the |
| cache that we must keep because we are keeping CU. */ |
| |
| static void |
| dwarf2_mark (struct dwarf2_cu *cu) |
| { |
| if (cu->mark) |
| return; |
| cu->mark = true; |
| if (cu->dependencies != NULL) |
| htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL); |
| } |
| |
| static void |
| dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu) |
| { |
| while (per_cu) |
| { |
| per_cu->cu->mark = false; |
| per_cu = per_cu->cu->read_in_chain; |
| } |
| } |
| |
| /* Trivial hash function for partial_die_info: the hash value of a DIE |
| is its offset in .debug_info for this objfile. */ |
| |
| static hashval_t |
| partial_die_hash (const void *item) |
| { |
| const struct partial_die_info *part_die |
| = (const struct partial_die_info *) item; |
| |
| return to_underlying (part_die->sect_off); |
| } |
| |
| /* Trivial comparison function for partial_die_info structures: two DIEs |
| are equal if they have the same offset. */ |
| |
| static int |
| partial_die_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct partial_die_info *part_die_lhs |
| = (const struct partial_die_info *) item_lhs; |
| const struct partial_die_info *part_die_rhs |
| = (const struct partial_die_info *) item_rhs; |
| |
| return part_die_lhs->sect_off == part_die_rhs->sect_off; |
| } |
| |
| struct cmd_list_element *set_dwarf_cmdlist; |
| struct cmd_list_element *show_dwarf_cmdlist; |
| |
| static void |
| set_dwarf_cmd (const char *args, int from_tty) |
| { |
| help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands, |
| gdb_stdout); |
| } |
| |
| static void |
| show_dwarf_cmd (const char *args, int from_tty) |
| { |
| cmd_show_list (show_dwarf_cmdlist, from_tty, ""); |
| } |
| |
| bool dwarf_always_disassemble; |
| |
| static void |
| show_dwarf_always_disassemble (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Whether to always disassemble " |
| "DWARF expressions is %s.\n"), |
| value); |
| } |
| |
| static void |
| show_check_physname (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Whether to check \"physname\" is %s.\n"), |
| value); |
| } |
| |
| void _initialize_dwarf2_read (); |
| void |
| _initialize_dwarf2_read () |
| { |
| add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\ |
| Set DWARF specific variables.\n\ |
| Configure DWARF variables such as the cache size."), |
| &set_dwarf_cmdlist, "maintenance set dwarf ", |
| 0/*allow-unknown*/, &maintenance_set_cmdlist); |
| |
| add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\ |
| Show DWARF specific variables.\n\ |
| Show DWARF variables such as the cache size."), |
| &show_dwarf_cmdlist, "maintenance show dwarf ", |
| 0/*allow-unknown*/, &maintenance_show_cmdlist); |
| |
| add_setshow_zinteger_cmd ("max-cache-age", class_obscure, |
| &dwarf_max_cache_age, _("\ |
| Set the upper bound on the age of cached DWARF compilation units."), _("\ |
| Show the upper bound on the age of cached DWARF compilation units."), _("\ |
| A higher limit means that cached compilation units will be stored\n\ |
| in memory longer, and more total memory will be used. Zero disables\n\ |
| caching, which can slow down startup."), |
| NULL, |
| show_dwarf_max_cache_age, |
| &set_dwarf_cmdlist, |
| &show_dwarf_cmdlist); |
| |
| add_setshow_boolean_cmd ("always-disassemble", class_obscure, |
| &dwarf_always_disassemble, _("\ |
| Set whether `info address' always disassembles DWARF expressions."), _("\ |
| Show whether `info address' always disassembles DWARF expressions."), _("\ |
| When enabled, DWARF expressions are always printed in an assembly-like\n\ |
| syntax. When disabled, expressions will be printed in a more\n\ |
| conversational style, when possible."), |
| NULL, |
| show_dwarf_always_disassemble, |
| &set_dwarf_cmdlist, |
| &show_dwarf_cmdlist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\ |
| Set debugging of the DWARF reader."), _("\ |
| Show debugging of the DWARF reader."), _("\ |
| When enabled (non-zero), debugging messages are printed during DWARF\n\ |
| reading and symtab expansion. A value of 1 (one) provides basic\n\ |
| information. A value greater than 1 provides more verbose information."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\ |
| Set debugging of the DWARF DIE reader."), _("\ |
| Show debugging of the DWARF DIE reader."), _("\ |
| When enabled (non-zero), DIEs are dumped after they are read in.\n\ |
| The value is the maximum depth to print."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\ |
| Set debugging of the dwarf line reader."), _("\ |
| Show debugging of the dwarf line reader."), _("\ |
| When enabled (non-zero), line number entries are dumped as they are read in.\n\ |
| A value of 1 (one) provides basic information.\n\ |
| A value greater than 1 provides more verbose information."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\ |
| Set cross-checking of \"physname\" code against demangler."), _("\ |
| Show cross-checking of \"physname\" code against demangler."), _("\ |
| When enabled, GDB's internal \"physname\" code is checked against\n\ |
| the demangler."), |
| NULL, show_check_physname, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_boolean_cmd ("use-deprecated-index-sections", |
| no_class, &use_deprecated_index_sections, _("\ |
| Set whether to use deprecated gdb_index sections."), _("\ |
| Show whether to use deprecated gdb_index sections."), _("\ |
| When enabled, deprecated .gdb_index sections are used anyway.\n\ |
| Normally they are ignored either because of a missing feature or\n\ |
| performance issue.\n\ |
| Warning: This option must be enabled before gdb reads the file."), |
| NULL, |
| NULL, |
| &setlist, &showlist); |
| |
| dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED, |
| &dwarf2_locexpr_funcs); |
| dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED, |
| &dwarf2_loclist_funcs); |
| |
| dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK, |
| &dwarf2_block_frame_base_locexpr_funcs); |
| dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK, |
| &dwarf2_block_frame_base_loclist_funcs); |
| |
| #if GDB_SELF_TEST |
| selftests::register_test ("dw2_expand_symtabs_matching", |
| selftests::dw2_expand_symtabs_matching::run_test); |
| #endif |
| } |