| /* Native support code for PPC AIX, for GDB the GNU debugger. |
| |
| Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc. |
| |
| Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "gdb_string.h" |
| #include "gdb_assert.h" |
| #include "osabi.h" |
| #include "regcache.h" |
| #include "regset.h" |
| #include "gdbtypes.h" |
| #include "gdbcore.h" |
| #include "target.h" |
| #include "value.h" |
| #include "infcall.h" |
| #include "objfiles.h" |
| #include "breakpoint.h" |
| #include "rs6000-tdep.h" |
| #include "ppc-tdep.h" |
| |
| /* Hook for determining the TOC address when calling functions in the |
| inferior under AIX. The initialization code in rs6000-nat.c sets |
| this hook to point to find_toc_address. */ |
| |
| CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; |
| |
| /* If the kernel has to deliver a signal, it pushes a sigcontext |
| structure on the stack and then calls the signal handler, passing |
| the address of the sigcontext in an argument register. Usually |
| the signal handler doesn't save this register, so we have to |
| access the sigcontext structure via an offset from the signal handler |
| frame. |
| The following constants were determined by experimentation on AIX 3.2. */ |
| #define SIG_FRAME_PC_OFFSET 96 |
| #define SIG_FRAME_LR_OFFSET 108 |
| #define SIG_FRAME_FP_OFFSET 284 |
| |
| |
| /* Core file support. */ |
| |
| static struct ppc_reg_offsets rs6000_aix32_reg_offsets = |
| { |
| /* General-purpose registers. */ |
| 208, /* r0_offset */ |
| 4, /* gpr_size */ |
| 4, /* xr_size */ |
| 24, /* pc_offset */ |
| 28, /* ps_offset */ |
| 32, /* cr_offset */ |
| 36, /* lr_offset */ |
| 40, /* ctr_offset */ |
| 44, /* xer_offset */ |
| 48, /* mq_offset */ |
| |
| /* Floating-point registers. */ |
| 336, /* f0_offset */ |
| 56, /* fpscr_offset */ |
| 4, /* fpscr_size */ |
| |
| /* AltiVec registers. */ |
| -1, /* vr0_offset */ |
| -1, /* vscr_offset */ |
| -1 /* vrsave_offset */ |
| }; |
| |
| static struct ppc_reg_offsets rs6000_aix64_reg_offsets = |
| { |
| /* General-purpose registers. */ |
| 0, /* r0_offset */ |
| 8, /* gpr_size */ |
| 4, /* xr_size */ |
| 264, /* pc_offset */ |
| 256, /* ps_offset */ |
| 288, /* cr_offset */ |
| 272, /* lr_offset */ |
| 280, /* ctr_offset */ |
| 292, /* xer_offset */ |
| -1, /* mq_offset */ |
| |
| /* Floating-point registers. */ |
| 312, /* f0_offset */ |
| 296, /* fpscr_offset */ |
| 4, /* fpscr_size */ |
| |
| /* AltiVec registers. */ |
| -1, /* vr0_offset */ |
| -1, /* vscr_offset */ |
| -1 /* vrsave_offset */ |
| }; |
| |
| |
| /* Supply register REGNUM in the general-purpose register set REGSET |
| from the buffer specified by GREGS and LEN to register cache |
| REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ |
| |
| static void |
| rs6000_aix_supply_regset (const struct regset *regset, |
| struct regcache *regcache, int regnum, |
| const void *gregs, size_t len) |
| { |
| ppc_supply_gregset (regset, regcache, regnum, gregs, len); |
| ppc_supply_fpregset (regset, regcache, regnum, gregs, len); |
| } |
| |
| /* Collect register REGNUM in the general-purpose register set |
| REGSET. from register cache REGCACHE into the buffer specified by |
| GREGS and LEN. If REGNUM is -1, do this for all registers in |
| REGSET. */ |
| |
| static void |
| rs6000_aix_collect_regset (const struct regset *regset, |
| const struct regcache *regcache, int regnum, |
| void *gregs, size_t len) |
| { |
| ppc_collect_gregset (regset, regcache, regnum, gregs, len); |
| ppc_collect_fpregset (regset, regcache, regnum, gregs, len); |
| } |
| |
| /* AIX register set. */ |
| |
| static struct regset rs6000_aix32_regset = |
| { |
| &rs6000_aix32_reg_offsets, |
| rs6000_aix_supply_regset, |
| rs6000_aix_collect_regset, |
| }; |
| |
| static struct regset rs6000_aix64_regset = |
| { |
| &rs6000_aix64_reg_offsets, |
| rs6000_aix_supply_regset, |
| rs6000_aix_collect_regset, |
| }; |
| |
| /* Return the appropriate register set for the core section identified |
| by SECT_NAME and SECT_SIZE. */ |
| |
| static const struct regset * |
| rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch, |
| const char *sect_name, size_t sect_size) |
| { |
| if (gdbarch_tdep (gdbarch)->wordsize == 4) |
| { |
| if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592) |
| return &rs6000_aix32_regset; |
| } |
| else |
| { |
| if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576) |
| return &rs6000_aix64_regset; |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Pass the arguments in either registers, or in the stack. In RS/6000, |
| the first eight words of the argument list (that might be less than |
| eight parameters if some parameters occupy more than one word) are |
| passed in r3..r10 registers. float and double parameters are |
| passed in fpr's, in addition to that. Rest of the parameters if any |
| are passed in user stack. There might be cases in which half of the |
| parameter is copied into registers, the other half is pushed into |
| stack. |
| |
| Stack must be aligned on 64-bit boundaries when synthesizing |
| function calls. |
| |
| If the function is returning a structure, then the return address is passed |
| in r3, then the first 7 words of the parameters can be passed in registers, |
| starting from r4. */ |
| |
| static CORE_ADDR |
| rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| int struct_return, CORE_ADDR struct_addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int ii; |
| int len = 0; |
| int argno; /* current argument number */ |
| int argbytes; /* current argument byte */ |
| gdb_byte tmp_buffer[50]; |
| int f_argno = 0; /* current floating point argno */ |
| int wordsize = gdbarch_tdep (gdbarch)->wordsize; |
| CORE_ADDR func_addr = find_function_addr (function, NULL); |
| |
| struct value *arg = 0; |
| struct type *type; |
| |
| ULONGEST saved_sp; |
| |
| /* The calling convention this function implements assumes the |
| processor has floating-point registers. We shouldn't be using it |
| on PPC variants that lack them. */ |
| gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
| |
| /* The first eight words of ther arguments are passed in registers. |
| Copy them appropriately. */ |
| ii = 0; |
| |
| /* If the function is returning a `struct', then the first word |
| (which will be passed in r3) is used for struct return address. |
| In that case we should advance one word and start from r4 |
| register to copy parameters. */ |
| if (struct_return) |
| { |
| regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| struct_addr); |
| ii++; |
| } |
| |
| /* |
| effectively indirect call... gcc does... |
| |
| return_val example( float, int); |
| |
| eabi: |
| float in fp0, int in r3 |
| offset of stack on overflow 8/16 |
| for varargs, must go by type. |
| power open: |
| float in r3&r4, int in r5 |
| offset of stack on overflow different |
| both: |
| return in r3 or f0. If no float, must study how gcc emulates floats; |
| pay attention to arg promotion. |
| User may have to cast\args to handle promotion correctly |
| since gdb won't know if prototype supplied or not. |
| */ |
| |
| for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
| { |
| int reg_size = register_size (gdbarch, ii + 3); |
| |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| if (TYPE_CODE (type) == TYPE_CODE_FLT) |
| { |
| |
| /* Floating point arguments are passed in fpr's, as well as gpr's. |
| There are 13 fpr's reserved for passing parameters. At this point |
| there is no way we would run out of them. */ |
| |
| gdb_assert (len <= 8); |
| |
| regcache_cooked_write (regcache, |
| tdep->ppc_fp0_regnum + 1 + f_argno, |
| value_contents (arg)); |
| ++f_argno; |
| } |
| |
| if (len > reg_size) |
| { |
| |
| /* Argument takes more than one register. */ |
| while (argbytes < len) |
| { |
| gdb_byte word[MAX_REGISTER_SIZE]; |
| memset (word, 0, reg_size); |
| memcpy (word, |
| ((char *) value_contents (arg)) + argbytes, |
| (len - argbytes) > reg_size |
| ? reg_size : len - argbytes); |
| regcache_cooked_write (regcache, |
| tdep->ppc_gp0_regnum + 3 + ii, |
| word); |
| ++ii, argbytes += reg_size; |
| |
| if (ii >= 8) |
| goto ran_out_of_registers_for_arguments; |
| } |
| argbytes = 0; |
| --ii; |
| } |
| else |
| { |
| /* Argument can fit in one register. No problem. */ |
| int adj = gdbarch_byte_order (gdbarch) |
| == BFD_ENDIAN_BIG ? reg_size - len : 0; |
| gdb_byte word[MAX_REGISTER_SIZE]; |
| |
| memset (word, 0, reg_size); |
| memcpy (word, value_contents (arg), len); |
| regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word); |
| } |
| ++argno; |
| } |
| |
| ran_out_of_registers_for_arguments: |
| |
| regcache_cooked_read_unsigned (regcache, |
| gdbarch_sp_regnum (gdbarch), |
| &saved_sp); |
| |
| /* Location for 8 parameters are always reserved. */ |
| sp -= wordsize * 8; |
| |
| /* Another six words for back chain, TOC register, link register, etc. */ |
| sp -= wordsize * 6; |
| |
| /* Stack pointer must be quadword aligned. */ |
| sp &= -16; |
| |
| /* If there are more arguments, allocate space for them in |
| the stack, then push them starting from the ninth one. */ |
| |
| if ((argno < nargs) || argbytes) |
| { |
| int space = 0, jj; |
| |
| if (argbytes) |
| { |
| space += ((len - argbytes + 3) & -4); |
| jj = argno + 1; |
| } |
| else |
| jj = argno; |
| |
| for (; jj < nargs; ++jj) |
| { |
| struct value *val = args[jj]; |
| space += ((TYPE_LENGTH (value_type (val))) + 3) & -4; |
| } |
| |
| /* Add location required for the rest of the parameters. */ |
| space = (space + 15) & -16; |
| sp -= space; |
| |
| /* This is another instance we need to be concerned about |
| securing our stack space. If we write anything underneath %sp |
| (r1), we might conflict with the kernel who thinks he is free |
| to use this area. So, update %sp first before doing anything |
| else. */ |
| |
| regcache_raw_write_signed (regcache, |
| gdbarch_sp_regnum (gdbarch), sp); |
| |
| /* If the last argument copied into the registers didn't fit there |
| completely, push the rest of it into stack. */ |
| |
| if (argbytes) |
| { |
| write_memory (sp + 24 + (ii * 4), |
| value_contents (arg) + argbytes, |
| len - argbytes); |
| ++argno; |
| ii += ((len - argbytes + 3) & -4) / 4; |
| } |
| |
| /* Push the rest of the arguments into stack. */ |
| for (; argno < nargs; ++argno) |
| { |
| |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| |
| /* Float types should be passed in fpr's, as well as in the |
| stack. */ |
| if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) |
| { |
| |
| gdb_assert (len <= 8); |
| |
| regcache_cooked_write (regcache, |
| tdep->ppc_fp0_regnum + 1 + f_argno, |
| value_contents (arg)); |
| ++f_argno; |
| } |
| |
| write_memory (sp + 24 + (ii * 4), value_contents (arg), len); |
| ii += ((len + 3) & -4) / 4; |
| } |
| } |
| |
| /* Set the stack pointer. According to the ABI, the SP is meant to |
| be set _before_ the corresponding stack space is used. On AIX, |
| this even applies when the target has been completely stopped! |
| Not doing this can lead to conflicts with the kernel which thinks |
| that it still has control over this not-yet-allocated stack |
| region. */ |
| regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); |
| |
| /* Set back chain properly. */ |
| store_unsigned_integer (tmp_buffer, wordsize, saved_sp); |
| write_memory (sp, tmp_buffer, wordsize); |
| |
| /* Point the inferior function call's return address at the dummy's |
| breakpoint. */ |
| regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); |
| |
| /* Set the TOC register, get the value from the objfile reader |
| which, in turn, gets it from the VMAP table. */ |
| if (rs6000_find_toc_address_hook != NULL) |
| { |
| CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr); |
| regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue); |
| } |
| |
| target_store_registers (regcache, -1); |
| return sp; |
| } |
| |
| static enum return_value_convention |
| rs6000_return_value (struct gdbarch *gdbarch, struct type *func_type, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| gdb_byte buf[8]; |
| |
| /* The calling convention this function implements assumes the |
| processor has floating-point registers. We shouldn't be using it |
| on PowerPC variants that lack them. */ |
| gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
| |
| /* AltiVec extension: Functions that declare a vector data type as a |
| return value place that return value in VR2. */ |
| if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype) |
| && TYPE_LENGTH (valtype) == 16) |
| { |
| if (readbuf) |
| regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); |
| if (writebuf) |
| regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* If the called subprogram returns an aggregate, there exists an |
| implicit first argument, whose value is the address of a caller- |
| allocated buffer into which the callee is assumed to store its |
| return value. All explicit parameters are appropriately |
| relabeled. */ |
| if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT |
| || TYPE_CODE (valtype) == TYPE_CODE_UNION |
| || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| |
| /* Scalar floating-point values are returned in FPR1 for float or |
| double, and in FPR1:FPR2 for quadword precision. Fortran |
| complex*8 and complex*16 are returned in FPR1:FPR2, and |
| complex*32 is returned in FPR1:FPR4. */ |
| if (TYPE_CODE (valtype) == TYPE_CODE_FLT |
| && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) |
| { |
| struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); |
| gdb_byte regval[8]; |
| |
| /* FIXME: kettenis/2007-01-01: Add support for quadword |
| precision and complex. */ |
| |
| if (readbuf) |
| { |
| regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); |
| convert_typed_floating (regval, regtype, readbuf, valtype); |
| } |
| if (writebuf) |
| { |
| convert_typed_floating (writebuf, valtype, regval, regtype); |
| regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* Values of the types int, long, short, pointer, and char (length |
| is less than or equal to four bytes), as well as bit values of |
| lengths less than or equal to 32 bits, must be returned right |
| justified in GPR3 with signed values sign extended and unsigned |
| values zero extended, as necessary. */ |
| if (TYPE_LENGTH (valtype) <= tdep->wordsize) |
| { |
| if (readbuf) |
| { |
| ULONGEST regval; |
| |
| /* For reading we don't have to worry about sign extension. */ |
| regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| ®val); |
| store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); |
| } |
| if (writebuf) |
| { |
| /* For writing, use unpack_long since that should handle any |
| required sign extension. */ |
| regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| unpack_long (valtype, writebuf)); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* Eight-byte non-floating-point scalar values must be returned in |
| GPR3:GPR4. */ |
| |
| if (TYPE_LENGTH (valtype) == 8) |
| { |
| gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT); |
| gdb_assert (tdep->wordsize == 4); |
| |
| if (readbuf) |
| { |
| gdb_byte regval[8]; |
| |
| regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval); |
| regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, |
| regval + 4); |
| memcpy (readbuf, regval, 8); |
| } |
| if (writebuf) |
| { |
| regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); |
| regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, |
| writebuf + 4); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG). |
| |
| Usually a function pointer's representation is simply the address |
| of the function. On the RS/6000 however, a function pointer is |
| represented by a pointer to an OPD entry. This OPD entry contains |
| three words, the first word is the address of the function, the |
| second word is the TOC pointer (r2), and the third word is the |
| static chain value. Throughout GDB it is currently assumed that a |
| function pointer contains the address of the function, which is not |
| easy to fix. In addition, the conversion of a function address to |
| a function pointer would require allocation of an OPD entry in the |
| inferior's memory space, with all its drawbacks. To be able to |
| call C++ virtual methods in the inferior (which are called via |
| function pointers), find_function_addr uses this function to get the |
| function address from a function pointer. */ |
| |
| /* Return real function address if ADDR (a function pointer) is in the data |
| space and is therefore a special function pointer. */ |
| |
| static CORE_ADDR |
| rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch, |
| CORE_ADDR addr, |
| struct target_ops *targ) |
| { |
| struct obj_section *s; |
| |
| s = find_pc_section (addr); |
| |
| /* Normally, functions live inside a section that is executable. |
| So, if ADDR points to a non-executable section, then treat it |
| as a function descriptor and return the target address iff |
| the target address itself points to a section that is executable. */ |
| if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) |
| { |
| CORE_ADDR pc = |
| read_memory_unsigned_integer (addr, gdbarch_tdep (gdbarch)->wordsize); |
| struct obj_section *pc_section = find_pc_section (pc); |
| |
| if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) |
| return pc; |
| } |
| |
| return addr; |
| } |
| |
| |
| /* Calculate the destination of a branch/jump. Return -1 if not a branch. */ |
| |
| static CORE_ADDR |
| branch_dest (struct frame_info *frame, int opcode, int instr, |
| CORE_ADDR pc, CORE_ADDR safety) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
| CORE_ADDR dest; |
| int immediate; |
| int absolute; |
| int ext_op; |
| |
| absolute = (int) ((instr >> 1) & 1); |
| |
| switch (opcode) |
| { |
| case 18: |
| immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ |
| if (absolute) |
| dest = immediate; |
| else |
| dest = pc + immediate; |
| break; |
| |
| case 16: |
| immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ |
| if (absolute) |
| dest = immediate; |
| else |
| dest = pc + immediate; |
| break; |
| |
| case 19: |
| ext_op = (instr >> 1) & 0x3ff; |
| |
| if (ext_op == 16) /* br conditional register */ |
| { |
| dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; |
| |
| /* If we are about to return from a signal handler, dest is |
| something like 0x3c90. The current frame is a signal handler |
| caller frame, upon completion of the sigreturn system call |
| execution will return to the saved PC in the frame. */ |
| if (dest < AIX_TEXT_SEGMENT_BASE) |
| dest = read_memory_unsigned_integer |
| (get_frame_base (frame) + SIG_FRAME_PC_OFFSET, |
| tdep->wordsize); |
| } |
| |
| else if (ext_op == 528) /* br cond to count reg */ |
| { |
| dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3; |
| |
| /* If we are about to execute a system call, dest is something |
| like 0x22fc or 0x3b00. Upon completion the system call |
| will return to the address in the link register. */ |
| if (dest < AIX_TEXT_SEGMENT_BASE) |
| dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3; |
| } |
| else |
| return -1; |
| break; |
| |
| default: |
| return -1; |
| } |
| return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest; |
| } |
| |
| /* AIX does not support PT_STEP. Simulate it. */ |
| |
| static int |
| rs6000_software_single_step (struct frame_info *frame) |
| { |
| int ii, insn; |
| CORE_ADDR loc; |
| CORE_ADDR breaks[2]; |
| int opcode; |
| |
| loc = get_frame_pc (frame); |
| |
| insn = read_memory_integer (loc, 4); |
| |
| if (ppc_deal_with_atomic_sequence (frame)) |
| return 1; |
| |
| breaks[0] = loc + PPC_INSN_SIZE; |
| opcode = insn >> 26; |
| breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]); |
| |
| /* Don't put two breakpoints on the same address. */ |
| if (breaks[1] == breaks[0]) |
| breaks[1] = -1; |
| |
| for (ii = 0; ii < 2; ++ii) |
| { |
| /* ignore invalid breakpoint. */ |
| if (breaks[ii] == -1) |
| continue; |
| insert_single_step_breakpoint (breaks[ii]); |
| } |
| |
| errno = 0; /* FIXME, don't ignore errors! */ |
| /* What errors? {read,write}_memory call error(). */ |
| return 1; |
| } |
| |
| static enum gdb_osabi |
| rs6000_aix_osabi_sniffer (bfd *abfd) |
| { |
| |
| if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour); |
| return GDB_OSABI_AIX; |
| |
| return GDB_OSABI_UNKNOWN; |
| } |
| |
| static void |
| rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| /* RS6000/AIX does not support PT_STEP. Has to be simulated. */ |
| set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step); |
| |
| set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call); |
| set_gdbarch_return_value (gdbarch, rs6000_return_value); |
| set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
| |
| /* Handle RS/6000 function pointers (which are really function |
| descriptors). */ |
| set_gdbarch_convert_from_func_ptr_addr |
| (gdbarch, rs6000_convert_from_func_ptr_addr); |
| |
| /* Core file support. */ |
| set_gdbarch_regset_from_core_section |
| (gdbarch, rs6000_aix_regset_from_core_section); |
| |
| if (tdep->wordsize == 8) |
| tdep->lr_frame_offset = 16; |
| else |
| tdep->lr_frame_offset = 8; |
| |
| if (tdep->wordsize == 4) |
| /* PowerOpen / AIX 32 bit. The saved area or red zone consists of |
| 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes. |
| Problem is, 220 isn't frame (16 byte) aligned. Round it up to |
| 224. */ |
| set_gdbarch_frame_red_zone_size (gdbarch, 224); |
| else |
| set_gdbarch_frame_red_zone_size (gdbarch, 0); |
| } |
| |
| void |
| _initialize_rs6000_aix_tdep (void) |
| { |
| gdbarch_register_osabi_sniffer (bfd_arch_rs6000, |
| bfd_target_xcoff_flavour, |
| rs6000_aix_osabi_sniffer); |
| gdbarch_register_osabi_sniffer (bfd_arch_powerpc, |
| bfd_target_xcoff_flavour, |
| rs6000_aix_osabi_sniffer); |
| |
| gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX, |
| rs6000_aix_init_osabi); |
| gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX, |
| rs6000_aix_init_osabi); |
| } |
| |