| // object.cc -- support for an object file for linking in gold | 
 |  | 
 | // Copyright (C) 2006-2024 Free Software Foundation, Inc. | 
 | // Written by Ian Lance Taylor <iant@google.com>. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | #include "gold.h" | 
 |  | 
 | #include <cerrno> | 
 | #include <cstring> | 
 | #include <cstdarg> | 
 | #include "demangle.h" | 
 | #include "libiberty.h" | 
 |  | 
 | #include "gc.h" | 
 | #include "target-select.h" | 
 | #include "dwarf_reader.h" | 
 | #include "layout.h" | 
 | #include "output.h" | 
 | #include "symtab.h" | 
 | #include "cref.h" | 
 | #include "reloc.h" | 
 | #include "object.h" | 
 | #include "dynobj.h" | 
 | #include "plugin.h" | 
 | #include "compressed_output.h" | 
 | #include "incremental.h" | 
 | #include "merge.h" | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // Struct Read_symbols_data. | 
 |  | 
 | // Destroy any remaining File_view objects and buffers of decompressed | 
 | // sections. | 
 |  | 
 | Read_symbols_data::~Read_symbols_data() | 
 | { | 
 |   if (this->section_headers != NULL) | 
 |     delete this->section_headers; | 
 |   if (this->section_names != NULL) | 
 |     delete this->section_names; | 
 |   if (this->symbols != NULL) | 
 |     delete this->symbols; | 
 |   if (this->symbol_names != NULL) | 
 |     delete this->symbol_names; | 
 |   if (this->versym != NULL) | 
 |     delete this->versym; | 
 |   if (this->verdef != NULL) | 
 |     delete this->verdef; | 
 |   if (this->verneed != NULL) | 
 |     delete this->verneed; | 
 | } | 
 |  | 
 | // Class Xindex. | 
 |  | 
 | // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX | 
 | // section and read it in.  SYMTAB_SHNDX is the index of the symbol | 
 | // table we care about. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx) | 
 | { | 
 |   if (!this->symtab_xindex_.empty()) | 
 |     return; | 
 |  | 
 |   gold_assert(symtab_shndx != 0); | 
 |  | 
 |   // Look through the sections in reverse order, on the theory that it | 
 |   // is more likely to be near the end than the beginning. | 
 |   unsigned int i = object->shnum(); | 
 |   while (i > 0) | 
 |     { | 
 |       --i; | 
 |       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX | 
 | 	  && this->adjust_shndx(object->section_link(i)) == symtab_shndx) | 
 | 	{ | 
 | 	  this->read_symtab_xindex<size, big_endian>(object, i, NULL); | 
 | 	  return; | 
 | 	} | 
 |     } | 
 |  | 
 |   object->error(_("missing SHT_SYMTAB_SHNDX section")); | 
 | } | 
 |  | 
 | // Read in the symtab_xindex_ array, given the section index of the | 
 | // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the | 
 | // section headers. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx, | 
 | 			   const unsigned char* pshdrs) | 
 | { | 
 |   section_size_type bytecount; | 
 |   const unsigned char* contents; | 
 |   if (pshdrs == NULL) | 
 |     contents = object->section_contents(xindex_shndx, &bytecount, false); | 
 |   else | 
 |     { | 
 |       const unsigned char* p = (pshdrs | 
 | 				+ (xindex_shndx | 
 | 				   * elfcpp::Elf_sizes<size>::shdr_size)); | 
 |       typename elfcpp::Shdr<size, big_endian> shdr(p); | 
 |       bytecount = convert_to_section_size_type(shdr.get_sh_size()); | 
 |       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false); | 
 |     } | 
 |  | 
 |   gold_assert(this->symtab_xindex_.empty()); | 
 |   this->symtab_xindex_.reserve(bytecount / 4); | 
 |   for (section_size_type i = 0; i < bytecount; i += 4) | 
 |     { | 
 |       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i); | 
 |       // We preadjust the section indexes we save. | 
 |       this->symtab_xindex_.push_back(this->adjust_shndx(shndx)); | 
 |     } | 
 | } | 
 |  | 
 | // Symbol symndx has a section of SHN_XINDEX; return the real section | 
 | // index. | 
 |  | 
 | unsigned int | 
 | Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx) | 
 | { | 
 |   if (symndx >= this->symtab_xindex_.size()) | 
 |     { | 
 |       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"), | 
 | 		    symndx); | 
 |       return elfcpp::SHN_UNDEF; | 
 |     } | 
 |   unsigned int shndx = this->symtab_xindex_[symndx]; | 
 |   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum()) | 
 |     { | 
 |       object->error(_("extended index for symbol %u out of range: %u"), | 
 | 		    symndx, shndx); | 
 |       return elfcpp::SHN_UNDEF; | 
 |     } | 
 |   return shndx; | 
 | } | 
 |  | 
 | // Class Object. | 
 |  | 
 | // Report an error for this object file.  This is used by the | 
 | // elfcpp::Elf_file interface, and also called by the Object code | 
 | // itself. | 
 |  | 
 | void | 
 | Object::error(const char* format, ...) const | 
 | { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   char* buf = NULL; | 
 |   if (vasprintf(&buf, format, args) < 0) | 
 |     gold_nomem(); | 
 |   va_end(args); | 
 |   gold_error(_("%s: %s"), this->name().c_str(), buf); | 
 |   free(buf); | 
 | } | 
 |  | 
 | // Return a view of the contents of a section. | 
 |  | 
 | const unsigned char* | 
 | Object::section_contents(unsigned int shndx, section_size_type* plen, | 
 | 			 bool cache) | 
 | { return this->do_section_contents(shndx, plen, cache); } | 
 |  | 
 | // Read the section data into SD.  This is code common to Sized_relobj_file | 
 | // and Sized_dynobj, so we put it into Object. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file, | 
 | 			  Read_symbols_data* sd) | 
 | { | 
 |   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; | 
 |  | 
 |   // Read the section headers. | 
 |   const off_t shoff = elf_file->shoff(); | 
 |   const unsigned int shnum = this->shnum(); | 
 |   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size, | 
 | 					       true, true); | 
 |  | 
 |   // Read the section names. | 
 |   const unsigned char* pshdrs = sd->section_headers->data(); | 
 |   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size; | 
 |   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames); | 
 |  | 
 |   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB) | 
 |     this->error(_("section name section has wrong type: %u"), | 
 | 		static_cast<unsigned int>(shdrnames.get_sh_type())); | 
 |  | 
 |   sd->section_names_size = | 
 |     convert_to_section_size_type(shdrnames.get_sh_size()); | 
 |   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(), | 
 | 					     sd->section_names_size, false, | 
 | 					     false); | 
 | } | 
 |  | 
 | // If NAME is the name of a special .gnu.warning section, arrange for | 
 | // the warning to be issued.  SHNDX is the section index.  Return | 
 | // whether it is a warning section. | 
 |  | 
 | bool | 
 | Object::handle_gnu_warning_section(const char* name, unsigned int shndx, | 
 | 				   Symbol_table* symtab) | 
 | { | 
 |   const char warn_prefix[] = ".gnu.warning."; | 
 |   const int warn_prefix_len = sizeof warn_prefix - 1; | 
 |   if (strncmp(name, warn_prefix, warn_prefix_len) == 0) | 
 |     { | 
 |       // Read the section contents to get the warning text.  It would | 
 |       // be nicer if we only did this if we have to actually issue a | 
 |       // warning.  Unfortunately, warnings are issued as we relocate | 
 |       // sections.  That means that we can not lock the object then, | 
 |       // as we might try to issue the same warning multiple times | 
 |       // simultaneously. | 
 |       section_size_type len; | 
 |       const unsigned char* contents = this->section_contents(shndx, &len, | 
 | 							     false); | 
 |       if (len == 0) | 
 | 	{ | 
 | 	  const char* warning = name + warn_prefix_len; | 
 | 	  contents = reinterpret_cast<const unsigned char*>(warning); | 
 | 	  len = strlen(warning); | 
 | 	} | 
 |       std::string warning(reinterpret_cast<const char*>(contents), len); | 
 |       symtab->add_warning(name + warn_prefix_len, this, warning); | 
 |       return true; | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // If NAME is the name of the special section which indicates that | 
 | // this object was compiled with -fsplit-stack, mark it accordingly. | 
 |  | 
 | bool | 
 | Object::handle_split_stack_section(const char* name) | 
 | { | 
 |   if (strcmp(name, ".note.GNU-split-stack") == 0) | 
 |     { | 
 |       this->uses_split_stack_ = true; | 
 |       return true; | 
 |     } | 
 |   if (strcmp(name, ".note.GNU-no-split-stack") == 0) | 
 |     { | 
 |       this->has_no_split_stack_ = true; | 
 |       return true; | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Class Relobj | 
 |  | 
 | template<int size> | 
 | void | 
 | Relobj::initialize_input_to_output_map(unsigned int shndx, | 
 | 	  typename elfcpp::Elf_types<size>::Elf_Addr starting_address, | 
 | 	  Unordered_map<section_offset_type, | 
 | 	  typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const { | 
 |   Object_merge_map *map = this->object_merge_map_; | 
 |   map->initialize_input_to_output_map<size>(shndx, starting_address, | 
 | 					    output_addresses); | 
 | } | 
 |  | 
 | void | 
 | Relobj::add_merge_mapping(Output_section_data *output_data, | 
 |                           unsigned int shndx, section_offset_type offset, | 
 |                           section_size_type length, | 
 |                           section_offset_type output_offset) { | 
 |   Object_merge_map* object_merge_map = this->get_or_create_merge_map(); | 
 |   object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset); | 
 | } | 
 |  | 
 | bool | 
 | Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset, | 
 |                             section_offset_type *poutput) const { | 
 |   Object_merge_map* object_merge_map = this->object_merge_map_; | 
 |   if (object_merge_map == NULL) | 
 |     return false; | 
 |   return object_merge_map->get_output_offset(shndx, offset, poutput); | 
 | } | 
 |  | 
 | const Output_section_data* | 
 | Relobj::find_merge_section(unsigned int shndx) const { | 
 |   Object_merge_map* object_merge_map = this->object_merge_map_; | 
 |   if (object_merge_map == NULL) | 
 |     return NULL; | 
 |   return object_merge_map->find_merge_section(shndx); | 
 | } | 
 |  | 
 | // To copy the symbols data read from the file to a local data structure. | 
 | // This function is called from do_layout only while doing garbage | 
 | // collection. | 
 |  | 
 | void | 
 | Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, | 
 | 			  unsigned int section_header_size) | 
 | { | 
 |   gc_sd->section_headers_data = | 
 | 	 new unsigned char[(section_header_size)]; | 
 |   memcpy(gc_sd->section_headers_data, sd->section_headers->data(), | 
 | 	 section_header_size); | 
 |   gc_sd->section_names_data = | 
 | 	 new unsigned char[sd->section_names_size]; | 
 |   memcpy(gc_sd->section_names_data, sd->section_names->data(), | 
 | 	 sd->section_names_size); | 
 |   gc_sd->section_names_size = sd->section_names_size; | 
 |   if (sd->symbols != NULL) | 
 |     { | 
 |       gc_sd->symbols_data = | 
 | 	     new unsigned char[sd->symbols_size]; | 
 |       memcpy(gc_sd->symbols_data, sd->symbols->data(), | 
 | 	    sd->symbols_size); | 
 |     } | 
 |   else | 
 |     { | 
 |       gc_sd->symbols_data = NULL; | 
 |     } | 
 |   gc_sd->symbols_size = sd->symbols_size; | 
 |   gc_sd->external_symbols_offset = sd->external_symbols_offset; | 
 |   if (sd->symbol_names != NULL) | 
 |     { | 
 |       gc_sd->symbol_names_data = | 
 | 	     new unsigned char[sd->symbol_names_size]; | 
 |       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(), | 
 | 	    sd->symbol_names_size); | 
 |     } | 
 |   else | 
 |     { | 
 |       gc_sd->symbol_names_data = NULL; | 
 |     } | 
 |   gc_sd->symbol_names_size = sd->symbol_names_size; | 
 | } | 
 |  | 
 | // This function determines if a particular section name must be included | 
 | // in the link.  This is used during garbage collection to determine the | 
 | // roots of the worklist. | 
 |  | 
 | bool | 
 | Relobj::is_section_name_included(const char* name) | 
 | { | 
 |   if (is_prefix_of(".ctors", name) | 
 |       || is_prefix_of(".dtors", name) | 
 |       || is_prefix_of(".note", name) | 
 |       || is_prefix_of(".init", name) | 
 |       || is_prefix_of(".fini", name) | 
 |       || is_prefix_of(".gcc_except_table", name) | 
 |       || is_prefix_of(".jcr", name) | 
 |       || is_prefix_of(".preinit_array", name) | 
 |       || (is_prefix_of(".text", name) | 
 | 	  && strstr(name, "personality")) | 
 |       || (is_prefix_of(".data", name) | 
 | 	  && strstr(name, "personality")) | 
 |       || (is_prefix_of(".sdata", name) | 
 | 	  && strstr(name, "personality")) | 
 |       || (is_prefix_of(".gnu.linkonce.d", name) | 
 | 	  && strstr(name, "personality")) | 
 |       || (is_prefix_of(".rodata", name) | 
 | 	  && strstr(name, "nptl_version"))) | 
 |     { | 
 |       return true; | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Finalize the incremental relocation information.  Allocates a block | 
 | // of relocation entries for each symbol, and sets the reloc_bases_ | 
 | // array to point to the first entry in each block.  If CLEAR_COUNTS | 
 | // is TRUE, also clear the per-symbol relocation counters. | 
 |  | 
 | void | 
 | Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts) | 
 | { | 
 |   unsigned int nsyms = this->get_global_symbols()->size(); | 
 |   this->reloc_bases_ = new unsigned int[nsyms]; | 
 |  | 
 |   gold_assert(this->reloc_bases_ != NULL); | 
 |   gold_assert(layout->incremental_inputs() != NULL); | 
 |  | 
 |   unsigned int rindex = layout->incremental_inputs()->get_reloc_count(); | 
 |   for (unsigned int i = 0; i < nsyms; ++i) | 
 |     { | 
 |       this->reloc_bases_[i] = rindex; | 
 |       rindex += this->reloc_counts_[i]; | 
 |       if (clear_counts) | 
 | 	this->reloc_counts_[i] = 0; | 
 |     } | 
 |   layout->incremental_inputs()->set_reloc_count(rindex); | 
 | } | 
 |  | 
 | Object_merge_map* | 
 | Relobj::get_or_create_merge_map() | 
 | { | 
 |   if (!this->object_merge_map_) | 
 |     this->object_merge_map_ = new Object_merge_map(); | 
 |   return this->object_merge_map_; | 
 | } | 
 |  | 
 | // Class Sized_relobj. | 
 |  | 
 | // Iterate over local symbols, calling a visitor class V for each GOT offset | 
 | // associated with a local symbol. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj<size, big_endian>::do_for_all_local_got_entries( | 
 |     Got_offset_list::Visitor* v) const | 
 | { | 
 |   unsigned int nsyms = this->local_symbol_count(); | 
 |   for (unsigned int i = 0; i < nsyms; i++) | 
 |     { | 
 |       Local_got_entry_key key(i); | 
 |       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key); | 
 |       if (p != this->local_got_offsets_.end()) | 
 | 	{ | 
 | 	  const Got_offset_list* got_offsets = p->second; | 
 | 	  got_offsets->for_all_got_offsets(v); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Get the address of an output section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | uint64_t | 
 | Sized_relobj<size, big_endian>::do_output_section_address( | 
 |     unsigned int shndx) | 
 | { | 
 |   // If the input file is linked as --just-symbols, the output | 
 |   // section address is the input section address. | 
 |   if (this->just_symbols()) | 
 |     return this->section_address(shndx); | 
 |  | 
 |   const Output_section* os = this->do_output_section(shndx); | 
 |   gold_assert(os != NULL); | 
 |   return os->address(); | 
 | } | 
 |  | 
 | // Class Sized_relobj_file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Sized_relobj_file<size, big_endian>::Sized_relobj_file( | 
 |     const std::string& name, | 
 |     Input_file* input_file, | 
 |     off_t offset, | 
 |     const elfcpp::Ehdr<size, big_endian>& ehdr) | 
 |   : Sized_relobj<size, big_endian>(name, input_file, offset), | 
 |     elf_file_(this, ehdr), | 
 |     osabi_(ehdr.get_ei_osabi()), | 
 |     e_type_(ehdr.get_e_type()), | 
 |     symtab_shndx_(-1U), | 
 |     local_symbol_count_(0), | 
 |     output_local_symbol_count_(0), | 
 |     output_local_dynsym_count_(0), | 
 |     symbols_(), | 
 |     defined_count_(0), | 
 |     local_symbol_offset_(0), | 
 |     local_dynsym_offset_(0), | 
 |     local_values_(), | 
 |     local_plt_offsets_(), | 
 |     kept_comdat_sections_(), | 
 |     has_eh_frame_(false), | 
 |     is_deferred_layout_(false), | 
 |     deferred_layout_(), | 
 |     deferred_layout_relocs_(), | 
 |     output_views_(NULL) | 
 | { | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | Sized_relobj_file<size, big_endian>::~Sized_relobj_file() | 
 | { | 
 | } | 
 |  | 
 | // Set up an object file based on the file header.  This sets up the | 
 | // section information. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_setup() | 
 | { | 
 |   const unsigned int shnum = this->elf_file_.shnum(); | 
 |   this->set_shnum(shnum); | 
 | } | 
 |  | 
 | // Find the SHT_SYMTAB section, given the section headers.  The ELF | 
 | // standard says that maybe in the future there can be more than one | 
 | // SHT_SYMTAB section.  Until somebody figures out how that could | 
 | // work, we assume there is only one. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs) | 
 | { | 
 |   const unsigned int shnum = this->shnum(); | 
 |   this->symtab_shndx_ = 0; | 
 |   if (shnum > 0) | 
 |     { | 
 |       // Look through the sections in reverse order, since gas tends | 
 |       // to put the symbol table at the end. | 
 |       const unsigned char* p = pshdrs + shnum * This::shdr_size; | 
 |       unsigned int i = shnum; | 
 |       unsigned int xindex_shndx = 0; | 
 |       unsigned int xindex_link = 0; | 
 |       while (i > 0) | 
 | 	{ | 
 | 	  --i; | 
 | 	  p -= This::shdr_size; | 
 | 	  typename This::Shdr shdr(p); | 
 | 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) | 
 | 	    { | 
 | 	      this->symtab_shndx_ = i; | 
 | 	      if (xindex_shndx > 0 && xindex_link == i) | 
 | 		{ | 
 | 		  Xindex* xindex = | 
 | 		    new Xindex(this->elf_file_.large_shndx_offset()); | 
 | 		  xindex->read_symtab_xindex<size, big_endian>(this, | 
 | 							       xindex_shndx, | 
 | 							       pshdrs); | 
 | 		  this->set_xindex(xindex); | 
 | 		} | 
 | 	      break; | 
 | 	    } | 
 |  | 
 | 	  // Try to pick up the SHT_SYMTAB_SHNDX section, if there is | 
 | 	  // one.  This will work if it follows the SHT_SYMTAB | 
 | 	  // section. | 
 | 	  if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX) | 
 | 	    { | 
 | 	      xindex_shndx = i; | 
 | 	      xindex_link = this->adjust_shndx(shdr.get_sh_link()); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Return the Xindex structure to use for object with lots of | 
 | // sections. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Xindex* | 
 | Sized_relobj_file<size, big_endian>::do_initialize_xindex() | 
 | { | 
 |   gold_assert(this->symtab_shndx_ != -1U); | 
 |   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset()); | 
 |   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_); | 
 |   return xindex; | 
 | } | 
 |  | 
 | // Return whether SHDR has the right type and flags to be a GNU | 
 | // .eh_frame section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::check_eh_frame_flags( | 
 |     const elfcpp::Shdr<size, big_endian>* shdr) const | 
 | { | 
 |   elfcpp::Elf_Word sh_type = shdr->get_sh_type(); | 
 |   return ((sh_type == elfcpp::SHT_PROGBITS | 
 | 	   || sh_type == parameters->target().unwind_section_type()) | 
 | 	  && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0); | 
 | } | 
 |  | 
 | // Find the section header with the given name. | 
 |  | 
 | template<int size, bool big_endian> | 
 | const unsigned char* | 
 | Object::find_shdr( | 
 |     const unsigned char* pshdrs, | 
 |     const char* name, | 
 |     const char* names, | 
 |     section_size_type names_size, | 
 |     const unsigned char* hdr) const | 
 | { | 
 |   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; | 
 |   const unsigned int shnum = this->shnum(); | 
 |   const unsigned char* hdr_end = pshdrs + shdr_size * shnum; | 
 |   size_t sh_name = 0; | 
 |  | 
 |   while (1) | 
 |     { | 
 |       if (hdr) | 
 | 	{ | 
 | 	  // We found HDR last time we were called, continue looking. | 
 | 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr); | 
 | 	  sh_name = shdr.get_sh_name(); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // Look for the next occurrence of NAME in NAMES. | 
 | 	  // The fact that .shstrtab produced by current GNU tools is | 
 | 	  // string merged means we shouldn't have both .not.foo and | 
 | 	  // .foo in .shstrtab, and multiple .foo sections should all | 
 | 	  // have the same sh_name.  However, this is not guaranteed | 
 | 	  // by the ELF spec and not all ELF object file producers may | 
 | 	  // be so clever. | 
 | 	  size_t len = strlen(name) + 1; | 
 | 	  const char *p = sh_name ? names + sh_name + len : names; | 
 | 	  p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names), | 
 | 						   name, len)); | 
 | 	  if (p == NULL) | 
 | 	    return NULL; | 
 | 	  sh_name = p - names; | 
 | 	  hdr = pshdrs; | 
 | 	  if (sh_name == 0) | 
 | 	    return hdr; | 
 | 	} | 
 |  | 
 |       hdr += shdr_size; | 
 |       while (hdr < hdr_end) | 
 | 	{ | 
 | 	  typename elfcpp::Shdr<size, big_endian> shdr(hdr); | 
 | 	  if (shdr.get_sh_name() == sh_name) | 
 | 	    return hdr; | 
 | 	  hdr += shdr_size; | 
 | 	} | 
 |       hdr = NULL; | 
 |       if (sh_name == 0) | 
 | 	return hdr; | 
 |     } | 
 | } | 
 |  | 
 | // Return whether there is a GNU .eh_frame section, given the section | 
 | // headers and the section names. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::find_eh_frame( | 
 |     const unsigned char* pshdrs, | 
 |     const char* names, | 
 |     section_size_type names_size) const | 
 | { | 
 |   const unsigned char* s = NULL; | 
 |  | 
 |   while (1) | 
 |     { | 
 |       s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame", | 
 | 						     names, names_size, s); | 
 |       if (s == NULL) | 
 | 	return false; | 
 |  | 
 |       typename This::Shdr shdr(s); | 
 |       if (this->check_eh_frame_flags(&shdr)) | 
 | 	return true; | 
 |     } | 
 | } | 
 |  | 
 | // Return TRUE if this is a section whose contents will be needed in the | 
 | // Add_symbols task.  This function is only called for sections that have | 
 | // already passed the test in is_compressed_debug_section() and the debug | 
 | // section name prefix, ".debug"/".zdebug", has been skipped. | 
 |  | 
 | static bool | 
 | need_decompressed_section(const char* name) | 
 | { | 
 |   if (*name++ != '_') | 
 |     return false; | 
 |  | 
 | #ifdef ENABLE_THREADS | 
 |   // Decompressing these sections now will help only if we're | 
 |   // multithreaded. | 
 |   if (parameters->options().threads()) | 
 |     { | 
 |       // We will need .zdebug_str if this is not an incremental link | 
 |       // (i.e., we are processing string merge sections) or if we need | 
 |       // to build a gdb index. | 
 |       if ((!parameters->incremental() || parameters->options().gdb_index()) | 
 | 	  && strcmp(name, "str") == 0) | 
 | 	return true; | 
 |  | 
 |       // We will need these other sections when building a gdb index. | 
 |       if (parameters->options().gdb_index() | 
 | 	  && (strcmp(name, "info") == 0 | 
 | 	      || strcmp(name, "types") == 0 | 
 | 	      || strcmp(name, "pubnames") == 0 | 
 | 	      || strcmp(name, "pubtypes") == 0 | 
 | 	      || strcmp(name, "ranges") == 0 | 
 | 	      || strcmp(name, "abbrev") == 0)) | 
 | 	return true; | 
 |     } | 
 | #endif | 
 |  | 
 |   // Even when single-threaded, we will need .zdebug_str if this is | 
 |   // not an incremental link and we are building a gdb index. | 
 |   // Otherwise, we would decompress the section twice: once for | 
 |   // string merge processing, and once for building the gdb index. | 
 |   if (!parameters->incremental() | 
 |       && parameters->options().gdb_index() | 
 |       && strcmp(name, "str") == 0) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Build a table for any compressed debug sections, mapping each section index | 
 | // to the uncompressed size and (if needed) the decompressed contents. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Compressed_section_map* | 
 | build_compressed_section_map( | 
 |     const unsigned char* pshdrs, | 
 |     unsigned int shnum, | 
 |     const char* names, | 
 |     section_size_type names_size, | 
 |     Object* obj, | 
 |     bool decompress_if_needed) | 
 | { | 
 |   Compressed_section_map* uncompressed_map = new Compressed_section_map(); | 
 |   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; | 
 |   const unsigned char* p = pshdrs + shdr_size; | 
 |  | 
 |   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) | 
 |     { | 
 |       typename elfcpp::Shdr<size, big_endian> shdr(p); | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS | 
 | 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) | 
 | 	{ | 
 | 	  if (shdr.get_sh_name() >= names_size) | 
 | 	    { | 
 | 	      obj->error(_("bad section name offset for section %u: %lu"), | 
 | 			 i, static_cast<unsigned long>(shdr.get_sh_name())); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  const char* name = names + shdr.get_sh_name(); | 
 | 	  bool is_compressed = ((shdr.get_sh_flags() | 
 | 				 & elfcpp::SHF_COMPRESSED) != 0); | 
 | 	  bool is_zcompressed = (!is_compressed | 
 | 				 && is_compressed_debug_section(name)); | 
 |  | 
 | 	  if (is_zcompressed || is_compressed) | 
 | 	    { | 
 | 	      section_size_type len; | 
 | 	      const unsigned char* contents = | 
 | 		  obj->section_contents(i, &len, false); | 
 | 	      uint64_t uncompressed_size; | 
 | 	      Compressed_section_info info; | 
 | 	      if (is_zcompressed) | 
 | 		{ | 
 | 		  // Skip over the ".zdebug" prefix. | 
 | 		  name += 7; | 
 | 		  uncompressed_size = get_uncompressed_size(contents, len); | 
 | 		  info.addralign = shdr.get_sh_addralign(); | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  // Skip over the ".debug" prefix. | 
 | 		  name += 6; | 
 | 		  elfcpp::Chdr<size, big_endian> chdr(contents); | 
 | 		  uncompressed_size = chdr.get_ch_size(); | 
 | 		  info.addralign = chdr.get_ch_addralign(); | 
 | 		} | 
 | 	      info.size = convert_to_section_size_type(uncompressed_size); | 
 | 	      info.flag = shdr.get_sh_flags(); | 
 | 	      info.contents = NULL; | 
 | 	      if (uncompressed_size != -1ULL) | 
 | 		{ | 
 | 		  unsigned char* uncompressed_data = NULL; | 
 | 		  if (decompress_if_needed && need_decompressed_section(name)) | 
 | 		    { | 
 | 		      uncompressed_data = new unsigned char[uncompressed_size]; | 
 | 		      if (decompress_input_section(contents, len, | 
 | 						   uncompressed_data, | 
 | 						   uncompressed_size, | 
 | 						   size, big_endian, | 
 | 						   shdr.get_sh_flags())) | 
 | 			info.contents = uncompressed_data; | 
 | 		      else | 
 | 			delete[] uncompressed_data; | 
 | 		    } | 
 | 		  (*uncompressed_map)[i] = info; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   return uncompressed_map; | 
 | } | 
 |  | 
 | // Stash away info for a number of special sections. | 
 | // Return true if any of the sections found require local symbols to be read. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::do_find_special_sections( | 
 |     Read_symbols_data* sd) | 
 | { | 
 |   const unsigned char* const pshdrs = sd->section_headers->data(); | 
 |   const unsigned char* namesu = sd->section_names->data(); | 
 |   const char* names = reinterpret_cast<const char*>(namesu); | 
 |  | 
 |   if (this->find_eh_frame(pshdrs, names, sd->section_names_size)) | 
 |     this->has_eh_frame_ = true; | 
 |  | 
 |   Compressed_section_map* compressed_sections = | 
 |     build_compressed_section_map<size, big_endian>( | 
 |       pshdrs, this->shnum(), names, sd->section_names_size, this, true); | 
 |   if (compressed_sections != NULL) | 
 |     this->set_compressed_sections(compressed_sections); | 
 |  | 
 |   return (this->has_eh_frame_ | 
 | 	  || (!parameters->options().relocatable() | 
 | 	      && parameters->options().gdb_index() | 
 | 	      && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL | 
 | 		  || memmem(names, sd->section_names_size, | 
 | 			    "debug_types", 12) != NULL))); | 
 | } | 
 |  | 
 | // Read the sections and symbols from an object file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   this->base_read_symbols(sd); | 
 | } | 
 |  | 
 | // Read the sections and symbols from an object file.  This is common | 
 | // code for all target-specific overrides of do_read_symbols(). | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   this->read_section_data(&this->elf_file_, sd); | 
 |  | 
 |   const unsigned char* const pshdrs = sd->section_headers->data(); | 
 |  | 
 |   this->find_symtab(pshdrs); | 
 |  | 
 |   bool need_local_symbols = this->do_find_special_sections(sd); | 
 |  | 
 |   sd->symbols = NULL; | 
 |   sd->symbols_size = 0; | 
 |   sd->external_symbols_offset = 0; | 
 |   sd->symbol_names = NULL; | 
 |   sd->symbol_names_size = 0; | 
 |  | 
 |   if (this->symtab_shndx_ == 0) | 
 |     { | 
 |       // No symbol table.  Weird but legal. | 
 |       return; | 
 |     } | 
 |  | 
 |   // Get the symbol table section header. | 
 |   typename This::Shdr symtabshdr(pshdrs | 
 | 				 + this->symtab_shndx_ * This::shdr_size); | 
 |   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |  | 
 |   // If this object has a .eh_frame section, or if building a .gdb_index | 
 |   // section and there is debug info, we need all the symbols. | 
 |   // Otherwise we only need the external symbols.  While it would be | 
 |   // simpler to just always read all the symbols, I've seen object | 
 |   // files with well over 2000 local symbols, which for a 64-bit | 
 |   // object file format is over 5 pages that we don't need to read | 
 |   // now. | 
 |  | 
 |   const int sym_size = This::sym_size; | 
 |   const unsigned int loccount = symtabshdr.get_sh_info(); | 
 |   this->local_symbol_count_ = loccount; | 
 |   this->local_values_.resize(loccount); | 
 |   section_offset_type locsize = loccount * sym_size; | 
 |   off_t dataoff = symtabshdr.get_sh_offset(); | 
 |   section_size_type datasize = | 
 |     convert_to_section_size_type(symtabshdr.get_sh_size()); | 
 |   off_t extoff = dataoff + locsize; | 
 |   section_size_type extsize = datasize - locsize; | 
 |  | 
 |   off_t readoff = need_local_symbols ? dataoff : extoff; | 
 |   section_size_type readsize = need_local_symbols ? datasize : extsize; | 
 |  | 
 |   if (readsize == 0) | 
 |     { | 
 |       // No external symbols.  Also weird but also legal. | 
 |       return; | 
 |     } | 
 |  | 
 |   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false); | 
 |  | 
 |   // Read the section header for the symbol names. | 
 |   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); | 
 |   if (strtab_shndx >= this->shnum()) | 
 |     { | 
 |       this->error(_("invalid symbol table name index: %u"), strtab_shndx); | 
 |       return; | 
 |     } | 
 |   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size); | 
 |   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) | 
 |     { | 
 |       this->error(_("symbol table name section has wrong type: %u"), | 
 | 		  static_cast<unsigned int>(strtabshdr.get_sh_type())); | 
 |       return; | 
 |     } | 
 |  | 
 |   // Read the symbol names. | 
 |   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(), | 
 | 					       strtabshdr.get_sh_size(), | 
 | 					       false, true); | 
 |  | 
 |   sd->symbols = fvsymtab; | 
 |   sd->symbols_size = readsize; | 
 |   sd->external_symbols_offset = need_local_symbols ? locsize : 0; | 
 |   sd->symbol_names = fvstrtab; | 
 |   sd->symbol_names_size = | 
 |     convert_to_section_size_type(strtabshdr.get_sh_size()); | 
 | } | 
 |  | 
 | // Return the section index of symbol SYM.  Set *VALUE to its value in | 
 | // the object file.  Set *IS_ORDINARY if this is an ordinary section | 
 | // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE. | 
 | // Note that for a symbol which is not defined in this object file, | 
 | // this will set *VALUE to 0 and return SHN_UNDEF; it will not return | 
 | // the final value of the symbol in the link. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned int | 
 | Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym, | 
 | 							      Address* value, | 
 | 							      bool* is_ordinary) | 
 | { | 
 |   section_size_type symbols_size; | 
 |   const unsigned char* symbols = this->section_contents(this->symtab_shndx_, | 
 | 							&symbols_size, | 
 | 							false); | 
 |  | 
 |   const size_t count = symbols_size / This::sym_size; | 
 |   gold_assert(sym < count); | 
 |  | 
 |   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size); | 
 |   *value = elfsym.get_st_value(); | 
 |  | 
 |   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary); | 
 | } | 
 |  | 
 | // Return whether to include a section group in the link.  LAYOUT is | 
 | // used to keep track of which section groups we have already seen. | 
 | // INDEX is the index of the section group and SHDR is the section | 
 | // header.  If we do not want to include this group, we set bits in | 
 | // OMIT for each section which should be discarded. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::include_section_group( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     unsigned int index, | 
 |     const char* name, | 
 |     const unsigned char* shdrs, | 
 |     const char* section_names, | 
 |     section_size_type section_names_size, | 
 |     std::vector<bool>* omit) | 
 | { | 
 |   // Read the section contents. | 
 |   typename This::Shdr shdr(shdrs + index * This::shdr_size); | 
 |   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(), | 
 | 					     shdr.get_sh_size(), true, false); | 
 |   const elfcpp::Elf_Word* pword = | 
 |     reinterpret_cast<const elfcpp::Elf_Word*>(pcon); | 
 |  | 
 |   // The first word contains flags.  We only care about COMDAT section | 
 |   // groups.  Other section groups are always included in the link | 
 |   // just like ordinary sections. | 
 |   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword); | 
 |  | 
 |   // Look up the group signature, which is the name of a symbol.  ELF | 
 |   // uses a symbol name because some group signatures are long, and | 
 |   // the name is generally already in the symbol table, so it makes | 
 |   // sense to put the long string just once in .strtab rather than in | 
 |   // both .strtab and .shstrtab. | 
 |  | 
 |   // Get the appropriate symbol table header (this will normally be | 
 |   // the single SHT_SYMTAB section, but in principle it need not be). | 
 |   const unsigned int link = this->adjust_shndx(shdr.get_sh_link()); | 
 |   typename This::Shdr symshdr(this, this->elf_file_.section_header(link)); | 
 |  | 
 |   // Read the symbol table entry. | 
 |   unsigned int symndx = shdr.get_sh_info(); | 
 |   if (symndx >= symshdr.get_sh_size() / This::sym_size) | 
 |     { | 
 |       this->error(_("section group %u info %u out of range"), | 
 | 		  index, symndx); | 
 |       return false; | 
 |     } | 
 |   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size; | 
 |   const unsigned char* psym = this->get_view(symoff, This::sym_size, true, | 
 | 					     false); | 
 |   elfcpp::Sym<size, big_endian> sym(psym); | 
 |  | 
 |   // Read the symbol table names. | 
 |   section_size_type symnamelen; | 
 |   const unsigned char* psymnamesu; | 
 |   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()), | 
 | 				      &symnamelen, true); | 
 |   const char* psymnames = reinterpret_cast<const char*>(psymnamesu); | 
 |  | 
 |   // Get the section group signature. | 
 |   if (sym.get_st_name() >= symnamelen) | 
 |     { | 
 |       this->error(_("symbol %u name offset %u out of range"), | 
 | 		  symndx, sym.get_st_name()); | 
 |       return false; | 
 |     } | 
 |  | 
 |   std::string signature(psymnames + sym.get_st_name()); | 
 |  | 
 |   // It seems that some versions of gas will create a section group | 
 |   // associated with a section symbol, and then fail to give a name to | 
 |   // the section symbol.  In such a case, use the name of the section. | 
 |   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION) | 
 |     { | 
 |       bool is_ordinary; | 
 |       unsigned int sym_shndx = this->adjust_sym_shndx(symndx, | 
 | 						      sym.get_st_shndx(), | 
 | 						      &is_ordinary); | 
 |       if (!is_ordinary || sym_shndx >= this->shnum()) | 
 | 	{ | 
 | 	  this->error(_("symbol %u invalid section index %u"), | 
 | 		      symndx, sym_shndx); | 
 | 	  return false; | 
 | 	} | 
 |       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size); | 
 |       if (member_shdr.get_sh_name() < section_names_size) | 
 | 	signature = section_names + member_shdr.get_sh_name(); | 
 |     } | 
 |  | 
 |   // Record this section group in the layout, and see whether we've already | 
 |   // seen one with the same signature. | 
 |   bool include_group; | 
 |   bool is_comdat; | 
 |   Kept_section* kept_section = NULL; | 
 |  | 
 |   if ((flags & elfcpp::GRP_COMDAT) == 0) | 
 |     { | 
 |       include_group = true; | 
 |       is_comdat = false; | 
 |     } | 
 |   else | 
 |     { | 
 |       include_group = layout->find_or_add_kept_section(signature, | 
 | 						       this, index, true, | 
 | 						       true, &kept_section); | 
 |       is_comdat = true; | 
 |     } | 
 |  | 
 |   if (is_comdat && include_group) | 
 |     { | 
 |       Incremental_inputs* incremental_inputs = layout->incremental_inputs(); | 
 |       if (incremental_inputs != NULL) | 
 | 	incremental_inputs->report_comdat_group(this, signature.c_str()); | 
 |     } | 
 |  | 
 |   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word); | 
 |  | 
 |   std::vector<unsigned int> shndxes; | 
 |   bool relocate_group = include_group && parameters->options().relocatable(); | 
 |   if (relocate_group) | 
 |     shndxes.reserve(count - 1); | 
 |  | 
 |   for (size_t i = 1; i < count; ++i) | 
 |     { | 
 |       elfcpp::Elf_Word shndx = | 
 | 	this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i)); | 
 |  | 
 |       if (relocate_group) | 
 | 	shndxes.push_back(shndx); | 
 |  | 
 |       if (shndx >= this->shnum()) | 
 | 	{ | 
 | 	  this->error(_("section %u in section group %u out of range"), | 
 | 		      shndx, index); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // Check for an earlier section number, since we're going to get | 
 |       // it wrong--we may have already decided to include the section. | 
 |       if (shndx < index) | 
 | 	this->error(_("invalid section group %u refers to earlier section %u"), | 
 | 		    index, shndx); | 
 |  | 
 |       // Get the name of the member section. | 
 |       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size); | 
 |       if (member_shdr.get_sh_name() >= section_names_size) | 
 | 	{ | 
 | 	  // This is an error, but it will be diagnosed eventually | 
 | 	  // in do_layout, so we don't need to do anything here but | 
 | 	  // ignore it. | 
 | 	  continue; | 
 | 	} | 
 |       std::string mname(section_names + member_shdr.get_sh_name()); | 
 |  | 
 |       if (include_group) | 
 | 	{ | 
 | 	  if (is_comdat) | 
 | 	    kept_section->add_comdat_section(mname, shndx, | 
 | 					     member_shdr.get_sh_size()); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  (*omit)[shndx] = true; | 
 |  | 
 | 	  // Store a mapping from this section to the Kept_section | 
 | 	  // information for the group.  This mapping is used for | 
 | 	  // relocation processing and diagnostics. | 
 | 	  // If the kept section is a linkonce section, we don't | 
 | 	  // bother with it unless the comdat group contains just | 
 | 	  // a single section, making it easy to match up. | 
 | 	  if (is_comdat | 
 | 	      && (kept_section->is_comdat() || count == 2)) | 
 | 	    this->set_kept_comdat_section(shndx, true, symndx, | 
 | 					  member_shdr.get_sh_size(), | 
 | 					  kept_section); | 
 | 	} | 
 |     } | 
 |  | 
 |   if (relocate_group) | 
 |     layout->layout_group(symtab, this, index, name, signature.c_str(), | 
 | 			 shdr, flags, &shndxes); | 
 |  | 
 |   return include_group; | 
 | } | 
 |  | 
 | // Whether to include a linkonce section in the link.  NAME is the | 
 | // name of the section and SHDR is the section header. | 
 |  | 
 | // Linkonce sections are a GNU extension implemented in the original | 
 | // GNU linker before section groups were defined.  The semantics are | 
 | // that we only include one linkonce section with a given name.  The | 
 | // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME, | 
 | // where T is the type of section and SYMNAME is the name of a symbol. | 
 | // In an attempt to make linkonce sections interact well with section | 
 | // groups, we try to identify SYMNAME and use it like a section group | 
 | // signature.  We want to block section groups with that signature, | 
 | // but not other linkonce sections with that signature.  We also use | 
 | // the full name of the linkonce section as a normal section group | 
 | // signature. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::include_linkonce_section( | 
 |     Layout* layout, | 
 |     unsigned int index, | 
 |     const char* name, | 
 |     const elfcpp::Shdr<size, big_endian>& shdr) | 
 | { | 
 |   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); | 
 |   // In general the symbol name we want will be the string following | 
 |   // the last '.'.  However, we have to handle the case of | 
 |   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by | 
 |   // some versions of gcc.  So we use a heuristic: if the name starts | 
 |   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise | 
 |   // we look for the last '.'.  We can't always simply skip | 
 |   // ".gnu.linkonce.X", because we have to deal with cases like | 
 |   // ".gnu.linkonce.d.rel.ro.local". | 
 |   const char* const linkonce_t = ".gnu.linkonce.t."; | 
 |   const char* symname; | 
 |   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0) | 
 |     symname = name + strlen(linkonce_t); | 
 |   else | 
 |     symname = strrchr(name, '.') + 1; | 
 |   std::string sig1(symname); | 
 |   std::string sig2(name); | 
 |   Kept_section* kept1; | 
 |   Kept_section* kept2; | 
 |   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false, | 
 | 						   false, &kept1); | 
 |   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false, | 
 | 						   true, &kept2); | 
 |  | 
 |   if (!include2) | 
 |     { | 
 |       // We are not including this section because we already saw the | 
 |       // name of the section as a signature.  This normally implies | 
 |       // that the kept section is another linkonce section.  If it is | 
 |       // the same size, record it as the section which corresponds to | 
 |       // this one. | 
 |       if (kept2->object() != NULL && !kept2->is_comdat()) | 
 | 	this->set_kept_comdat_section(index, false, 0, sh_size, kept2); | 
 |     } | 
 |   else if (!include1) | 
 |     { | 
 |       // The section is being discarded on the basis of its symbol | 
 |       // name.  This means that the corresponding kept section was | 
 |       // part of a comdat group, and it will be difficult to identify | 
 |       // the specific section within that group that corresponds to | 
 |       // this linkonce section.  We'll handle the simple case where | 
 |       // the group has only one member section.  Otherwise, it's not | 
 |       // worth the effort. | 
 |       if (kept1->object() != NULL && kept1->is_comdat()) | 
 | 	this->set_kept_comdat_section(index, false, 0, sh_size, kept1); | 
 |     } | 
 |   else | 
 |     { | 
 |       kept1->set_linkonce_size(sh_size); | 
 |       kept2->set_linkonce_size(sh_size); | 
 |     } | 
 |  | 
 |   return include1 && include2; | 
 | } | 
 |  | 
 | // Layout an input section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | inline void | 
 | Sized_relobj_file<size, big_endian>::layout_section( | 
 |     Layout* layout, | 
 |     unsigned int shndx, | 
 |     const char* name, | 
 |     const typename This::Shdr& shdr, | 
 |     unsigned int sh_type, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type) | 
 | { | 
 |   off_t offset; | 
 |   Output_section* os = layout->layout(this, shndx, name, shdr, sh_type, | 
 | 				      reloc_shndx, reloc_type, &offset); | 
 |  | 
 |   this->output_sections()[shndx] = os; | 
 |   if (offset == -1) | 
 |     this->section_offsets()[shndx] = invalid_address; | 
 |   else | 
 |     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); | 
 |  | 
 |   // If this section requires special handling, and if there are | 
 |   // relocs that apply to it, then we must do the special handling | 
 |   // before we apply the relocs. | 
 |   if (offset == -1 && reloc_shndx != 0) | 
 |     this->set_relocs_must_follow_section_writes(); | 
 | } | 
 |  | 
 | // Layout an input .eh_frame section. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::layout_eh_frame_section( | 
 |     Layout* layout, | 
 |     const unsigned char* symbols_data, | 
 |     section_size_type symbols_size, | 
 |     const unsigned char* symbol_names_data, | 
 |     section_size_type symbol_names_size, | 
 |     unsigned int shndx, | 
 |     const typename This::Shdr& shdr, | 
 |     unsigned int reloc_shndx, | 
 |     unsigned int reloc_type) | 
 | { | 
 |   gold_assert(this->has_eh_frame_); | 
 |  | 
 |   off_t offset; | 
 |   Output_section* os = layout->layout_eh_frame(this, | 
 | 					       symbols_data, | 
 | 					       symbols_size, | 
 | 					       symbol_names_data, | 
 | 					       symbol_names_size, | 
 | 					       shndx, | 
 | 					       shdr, | 
 | 					       reloc_shndx, | 
 | 					       reloc_type, | 
 | 					       &offset); | 
 |   this->output_sections()[shndx] = os; | 
 |   if (os == NULL || offset == -1) | 
 |     this->section_offsets()[shndx] = invalid_address; | 
 |   else | 
 |     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset); | 
 |  | 
 |   // If this section requires special handling, and if there are | 
 |   // relocs that aply to it, then we must do the special handling | 
 |   // before we apply the relocs. | 
 |   if (os != NULL && offset == -1 && reloc_shndx != 0) | 
 |     this->set_relocs_must_follow_section_writes(); | 
 | } | 
 |  | 
 | // Layout an input .note.gnu.property section. | 
 |  | 
 | // This note section has an *extremely* non-standard layout. | 
 | // The gABI spec says that ELF-64 files should have 8-byte fields and | 
 | // 8-byte alignment in the note section, but the Gnu tools generally | 
 | // use 4-byte fields and 4-byte alignment (see the comment for | 
 | // Layout::create_note).  This section uses 4-byte fields (i.e., | 
 | // namesz, descsz, and type are always 4 bytes), the name field is | 
 | // padded to a multiple of 4 bytes, but the desc field is padded | 
 | // to a multiple of 4 or 8 bytes, depending on the ELF class. | 
 | // The individual properties within the desc field always use | 
 | // 4-byte pr_type and pr_datasz fields, but pr_data is padded to | 
 | // a multiple of 4 or 8 bytes, depending on the ELF class. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::layout_gnu_property_section( | 
 |     Layout* layout, | 
 |     unsigned int shndx) | 
 | { | 
 |   // We ignore Gnu property sections on incremental links. | 
 |   if (parameters->incremental()) | 
 |     return; | 
 |  | 
 |   section_size_type contents_len; | 
 |   const unsigned char* pcontents = this->section_contents(shndx, | 
 | 							  &contents_len, | 
 | 							  false); | 
 |   const unsigned char* pcontents_end = pcontents + contents_len; | 
 |  | 
 |   // Loop over all the notes in this section. | 
 |   while (pcontents < pcontents_end) | 
 |     { | 
 |       if (pcontents + 16 > pcontents_end) | 
 | 	{ | 
 | 	  gold_warning(_("%s: corrupt .note.gnu.property section " | 
 | 			 "(note too short)"), | 
 | 		       this->name().c_str()); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents); | 
 |       size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4); | 
 |       unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8); | 
 |       const unsigned char* pname = pcontents + 12; | 
 |  | 
 |       if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0) | 
 | 	{ | 
 | 	  gold_warning(_("%s: corrupt .note.gnu.property section " | 
 | 			 "(name is not 'GNU')"), | 
 | 		       this->name().c_str()); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0) | 
 | 	{ | 
 | 	  gold_warning(_("%s: unsupported note type %d " | 
 | 			 "in .note.gnu.property section"), | 
 | 		       this->name().c_str(), ntype); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       size_t aligned_namesz = align_address(namesz, 4); | 
 |       const unsigned char* pdesc = pname + aligned_namesz; | 
 |  | 
 |       if (pdesc + descsz > pcontents + contents_len) | 
 | 	{ | 
 | 	  gold_warning(_("%s: corrupt .note.gnu.property section"), | 
 | 		       this->name().c_str()); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const unsigned char* pprop = pdesc; | 
 |  | 
 |       // Loop over the program properties in this note. | 
 |       while (pprop < pdesc + descsz) | 
 | 	{ | 
 | 	  if (pprop + 8 > pdesc + descsz) | 
 | 	    { | 
 | 	      gold_warning(_("%s: corrupt .note.gnu.property section"), | 
 | 			   this->name().c_str()); | 
 | 	      return; | 
 | 	    } | 
 | 	  unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop); | 
 | 	  size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4); | 
 | 	  pprop += 8; | 
 | 	  if (pprop + pr_datasz > pdesc + descsz) | 
 | 	    { | 
 | 	      gold_warning(_("%s: corrupt .note.gnu.property section"), | 
 | 			   this->name().c_str()); | 
 | 	      return; | 
 | 	    } | 
 | 	  layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this); | 
 | 	  pprop += align_address(pr_datasz, size / 8); | 
 | 	} | 
 |  | 
 |       pcontents = pdesc + align_address(descsz, size / 8); | 
 |     } | 
 | } | 
 |  | 
 | // This a copy of lto_section defined in GCC (lto-streamer.h) | 
 |  | 
 | struct lto_section | 
 | { | 
 |   int16_t major_version; | 
 |   int16_t minor_version; | 
 |   unsigned char slim_object; | 
 |  | 
 |   /* Flags is a private field that is not defined publicly.  */ | 
 |   uint16_t flags; | 
 | }; | 
 |  | 
 | // Lay out the input sections.  We walk through the sections and check | 
 | // whether they should be included in the link.  If they should, we | 
 | // pass them to the Layout object, which will return an output section | 
 | // and an offset. | 
 | // This function is called twice sometimes, two passes, when mapping | 
 | // of input sections to output sections must be delayed. | 
 | // This is true for the following : | 
 | // * Garbage collection (--gc-sections): Some input sections will be | 
 | // discarded and hence the assignment must wait until the second pass. | 
 | // In the first pass,  it is for setting up some sections as roots to | 
 | // a work-list for --gc-sections and to do comdat processing. | 
 | // * Identical Code Folding (--icf=<safe,all>): Some input sections | 
 | // will be folded and hence the assignment must wait. | 
 | // * Using plugins to map some sections to unique segments: Mapping | 
 | // some sections to unique segments requires mapping them to unique | 
 | // output sections too.  This can be done via plugins now and this | 
 | // information is not available in the first pass. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab, | 
 | 					       Layout* layout, | 
 | 					       Read_symbols_data* sd) | 
 | { | 
 |   const unsigned int unwind_section_type = | 
 |       parameters->target().unwind_section_type(); | 
 |   const unsigned int shnum = this->shnum(); | 
 |  | 
 |   /* Should this function be called twice?  */ | 
 |   bool is_two_pass = (parameters->options().gc_sections() | 
 | 		      || parameters->options().icf_enabled() | 
 | 		      || layout->is_unique_segment_for_sections_specified()); | 
 |  | 
 |   /* Only one of is_pass_one and is_pass_two is true.  Both are false when | 
 |      a two-pass approach is not needed.  */ | 
 |   bool is_pass_one = false; | 
 |   bool is_pass_two = false; | 
 |  | 
 |   Symbols_data* gc_sd = NULL; | 
 |  | 
 |   /* Check if do_layout needs to be two-pass.  If so, find out which pass | 
 |      should happen.  In the first pass, the data in sd is saved to be used | 
 |      later in the second pass.  */ | 
 |   if (is_two_pass) | 
 |     { | 
 |       gc_sd = this->get_symbols_data(); | 
 |       if (gc_sd == NULL) | 
 | 	{ | 
 | 	  gold_assert(sd != NULL); | 
 | 	  is_pass_one = true; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (parameters->options().gc_sections()) | 
 | 	    gold_assert(symtab->gc()->is_worklist_ready()); | 
 | 	  if (parameters->options().icf_enabled()) | 
 | 	    gold_assert(symtab->icf()->is_icf_ready());  | 
 | 	  is_pass_two = true; | 
 | 	} | 
 |     } | 
 |      | 
 |   if (shnum == 0) | 
 |     return; | 
 |  | 
 |   if (is_pass_one) | 
 |     { | 
 |       // During garbage collection save the symbols data to use it when | 
 |       // re-entering this function. | 
 |       gc_sd = new Symbols_data; | 
 |       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum); | 
 |       this->set_symbols_data(gc_sd); | 
 |     } | 
 |  | 
 |   const unsigned char* section_headers_data = NULL; | 
 |   section_size_type section_names_size; | 
 |   const unsigned char* symbols_data = NULL; | 
 |   section_size_type symbols_size; | 
 |   const unsigned char* symbol_names_data = NULL; | 
 |   section_size_type symbol_names_size; | 
 |  | 
 |   if (is_two_pass) | 
 |     { | 
 |       section_headers_data = gc_sd->section_headers_data; | 
 |       section_names_size = gc_sd->section_names_size; | 
 |       symbols_data = gc_sd->symbols_data; | 
 |       symbols_size = gc_sd->symbols_size; | 
 |       symbol_names_data = gc_sd->symbol_names_data; | 
 |       symbol_names_size = gc_sd->symbol_names_size; | 
 |     } | 
 |   else | 
 |     { | 
 |       section_headers_data = sd->section_headers->data(); | 
 |       section_names_size = sd->section_names_size; | 
 |       if (sd->symbols != NULL) | 
 | 	symbols_data = sd->symbols->data(); | 
 |       symbols_size = sd->symbols_size; | 
 |       if (sd->symbol_names != NULL) | 
 | 	symbol_names_data = sd->symbol_names->data(); | 
 |       symbol_names_size = sd->symbol_names_size; | 
 |     } | 
 |  | 
 |   // Get the section headers. | 
 |   const unsigned char* shdrs = section_headers_data; | 
 |   const unsigned char* pshdrs; | 
 |  | 
 |   // Get the section names. | 
 |   const unsigned char* pnamesu = (is_two_pass | 
 | 				  ? gc_sd->section_names_data | 
 | 				  : sd->section_names->data()); | 
 |  | 
 |   const char* pnames = reinterpret_cast<const char*>(pnamesu); | 
 |  | 
 |   // If any input files have been claimed by plugins, we need to defer | 
 |   // actual layout until the replacement files have arrived. | 
 |   const bool should_defer_layout = | 
 |       (parameters->options().has_plugins() | 
 |        && parameters->options().plugins()->should_defer_layout()); | 
 |   unsigned int num_sections_to_defer = 0; | 
 |  | 
 |   // For each section, record the index of the reloc section if any. | 
 |   // Use 0 to mean that there is no reloc section, -1U to mean that | 
 |   // there is more than one. | 
 |   std::vector<unsigned int> reloc_shndx(shnum, 0); | 
 |   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL); | 
 |   // Skip the first, dummy, section. | 
 |   pshdrs = shdrs + This::shdr_size; | 
 |   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) | 
 |     { | 
 |       typename This::Shdr shdr(pshdrs); | 
 |  | 
 |       // Count the number of sections whose layout will be deferred. | 
 |       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) | 
 | 	++num_sections_to_defer; | 
 |  | 
 |       unsigned int sh_type = shdr.get_sh_type(); | 
 |       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) | 
 | 	{ | 
 | 	  unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info()); | 
 | 	  if (target_shndx == 0 || target_shndx >= shnum) | 
 | 	    { | 
 | 	      this->error(_("relocation section %u has bad info %u"), | 
 | 			  i, target_shndx); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  if (reloc_shndx[target_shndx] != 0) | 
 | 	    reloc_shndx[target_shndx] = -1U; | 
 | 	  else | 
 | 	    { | 
 | 	      reloc_shndx[target_shndx] = i; | 
 | 	      reloc_type[target_shndx] = sh_type; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   Output_sections& out_sections(this->output_sections()); | 
 |   std::vector<Address>& out_section_offsets(this->section_offsets()); | 
 |  | 
 |   if (!is_pass_two) | 
 |     { | 
 |       out_sections.resize(shnum); | 
 |       out_section_offsets.resize(shnum); | 
 |     } | 
 |  | 
 |   // If we are only linking for symbols, then there is nothing else to | 
 |   // do here. | 
 |   if (this->input_file()->just_symbols()) | 
 |     { | 
 |       if (!is_pass_two) | 
 | 	{ | 
 | 	  delete sd->section_headers; | 
 | 	  sd->section_headers = NULL; | 
 | 	  delete sd->section_names; | 
 | 	  sd->section_names = NULL; | 
 | 	} | 
 |       return; | 
 |     } | 
 |  | 
 |   if (num_sections_to_defer > 0) | 
 |     { | 
 |       parameters->options().plugins()->add_deferred_layout_object(this); | 
 |       this->deferred_layout_.reserve(num_sections_to_defer); | 
 |       this->is_deferred_layout_ = true; | 
 |     } | 
 |  | 
 |   // Whether we've seen a .note.GNU-stack section. | 
 |   bool seen_gnu_stack = false; | 
 |   // The flags of a .note.GNU-stack section. | 
 |   uint64_t gnu_stack_flags = 0; | 
 |  | 
 |   // Keep track of which sections to omit. | 
 |   std::vector<bool> omit(shnum, false); | 
 |  | 
 |   // Keep track of reloc sections when emitting relocations. | 
 |   const bool relocatable = parameters->options().relocatable(); | 
 |   const bool emit_relocs = (relocatable | 
 | 			    || parameters->options().emit_relocs()); | 
 |   std::vector<unsigned int> reloc_sections; | 
 |  | 
 |   // Keep track of .eh_frame sections. | 
 |   std::vector<unsigned int> eh_frame_sections; | 
 |  | 
 |   // Keep track of .debug_info and .debug_types sections. | 
 |   std::vector<unsigned int> debug_info_sections; | 
 |   std::vector<unsigned int> debug_types_sections; | 
 |  | 
 |   // Skip the first, dummy, section. | 
 |   pshdrs = shdrs + This::shdr_size; | 
 |   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size) | 
 |     { | 
 |       typename This::Shdr shdr(pshdrs); | 
 |       const unsigned int sh_name = shdr.get_sh_name(); | 
 |       unsigned int sh_type = shdr.get_sh_type(); | 
 |  | 
 |       if (sh_name >= section_names_size) | 
 | 	{ | 
 | 	  this->error(_("bad section name offset for section %u: %lu"), | 
 | 		      i, static_cast<unsigned long>(sh_name)); | 
 | 	  return; | 
 | 	} | 
 |  | 
 |       const char* name = pnames + sh_name; | 
 |  | 
 |       if (!is_pass_two) | 
 | 	{ | 
 | 	  if (this->handle_gnu_warning_section(name, i, symtab)) | 
 | 	    { | 
 | 	      if (!relocatable && !parameters->options().shared()) | 
 | 		omit[i] = true; | 
 | 	    } | 
 |  | 
 | 	  // The .note.GNU-stack section is special.  It gives the | 
 | 	  // protection flags that this object file requires for the stack | 
 | 	  // in memory. | 
 | 	  if (strcmp(name, ".note.GNU-stack") == 0) | 
 | 	    { | 
 | 	      seen_gnu_stack = true; | 
 | 	      gnu_stack_flags |= shdr.get_sh_flags(); | 
 | 	      omit[i] = true; | 
 | 	    } | 
 |  | 
 | 	  // The .note.GNU-split-stack section is also special.  It | 
 | 	  // indicates that the object was compiled with | 
 | 	  // -fsplit-stack. | 
 | 	  if (this->handle_split_stack_section(name)) | 
 | 	    { | 
 | 	      if (!relocatable && !parameters->options().shared()) | 
 | 		omit[i] = true; | 
 | 	    } | 
 |  | 
 | 	  // Skip attributes section. | 
 | 	  if (parameters->target().is_attributes_section(name)) | 
 | 	    { | 
 | 	      omit[i] = true; | 
 | 	    } | 
 |  | 
 | 	  // Handle .note.gnu.property sections. | 
 | 	  if (sh_type == elfcpp::SHT_NOTE | 
 | 	      && strcmp(name, ".note.gnu.property") == 0) | 
 | 	    { | 
 | 	      this->layout_gnu_property_section(layout, i); | 
 | 	      omit[i] = true; | 
 | 	    } | 
 |  | 
 | 	  bool discard = omit[i]; | 
 | 	  if (!discard) | 
 | 	    { | 
 | 	      if (sh_type == elfcpp::SHT_GROUP) | 
 | 		{ | 
 | 		  if (!this->include_section_group(symtab, layout, i, name, | 
 | 						   shdrs, pnames, | 
 | 						   section_names_size, | 
 | 						   &omit)) | 
 | 		    discard = true; | 
 | 		} | 
 | 	      else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0 | 
 | 		       && Layout::is_linkonce(name)) | 
 | 		{ | 
 | 		  if (!this->include_linkonce_section(layout, i, name, shdr)) | 
 | 		    discard = true; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  // Add the section to the incremental inputs layout. | 
 | 	  Incremental_inputs* incremental_inputs = layout->incremental_inputs(); | 
 | 	  if (incremental_inputs != NULL | 
 | 	      && !discard | 
 | 	      && can_incremental_update(sh_type)) | 
 | 	    { | 
 | 	      off_t sh_size = shdr.get_sh_size(); | 
 | 	      section_size_type uncompressed_size; | 
 | 	      if (this->section_is_compressed(i, &uncompressed_size)) | 
 | 		sh_size = uncompressed_size; | 
 | 	      incremental_inputs->report_input_section(this, i, name, sh_size); | 
 | 	    } | 
 |  | 
 | 	  if (discard) | 
 | 	    { | 
 | 	      // Do not include this section in the link. | 
 | 	      out_sections[i] = NULL; | 
 | 	      out_section_offsets[i] = invalid_address; | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (is_pass_one && parameters->options().gc_sections()) | 
 | 	{ | 
 | 	  if (this->is_section_name_included(name) | 
 | 	      || layout->keep_input_section (this, name) | 
 | 	      || sh_type == elfcpp::SHT_INIT_ARRAY | 
 | 	      || sh_type == elfcpp::SHT_FINI_ARRAY | 
 | 	      || this->osabi().has_shf_retain(shdr.get_sh_flags())) | 
 | 	    { | 
 | 	      symtab->gc()->worklist().push_back(Section_id(this, i)); | 
 | 	    } | 
 | 	  // If the section name XXX can be represented as a C identifier | 
 | 	  // it cannot be discarded if there are references to | 
 | 	  // __start_XXX and __stop_XXX symbols.  These need to be | 
 | 	  // specially handled. | 
 | 	  if (is_cident(name)) | 
 | 	    { | 
 | 	      symtab->gc()->add_cident_section(name, Section_id(this, i)); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       // When doing a relocatable link we are going to copy input | 
 |       // reloc sections into the output.  We only want to copy the | 
 |       // ones associated with sections which are not being discarded. | 
 |       // However, we don't know that yet for all sections.  So save | 
 |       // reloc sections and process them later. Garbage collection is | 
 |       // not triggered when relocatable code is desired. | 
 |       if (emit_relocs | 
 | 	  && (sh_type == elfcpp::SHT_REL | 
 | 	      || sh_type == elfcpp::SHT_RELA)) | 
 | 	{ | 
 | 	  reloc_sections.push_back(i); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (relocatable && sh_type == elfcpp::SHT_GROUP) | 
 | 	continue; | 
 |  | 
 |       // The .eh_frame section is special.  It holds exception frame | 
 |       // information that we need to read in order to generate the | 
 |       // exception frame header.  We process these after all the other | 
 |       // sections so that the exception frame reader can reliably | 
 |       // determine which sections are being discarded, and discard the | 
 |       // corresponding information. | 
 |       if (this->check_eh_frame_flags(&shdr) | 
 | 	  && strcmp(name, ".eh_frame") == 0) | 
 | 	{ | 
 | 	  // If the target has a special unwind section type, let's | 
 | 	  // canonicalize it here. | 
 | 	  sh_type = unwind_section_type; | 
 | 	  if (!relocatable) | 
 | 	    { | 
 | 	      if (is_pass_one) | 
 | 		{ | 
 | 		  if (this->is_deferred_layout()) | 
 | 		    out_sections[i] = reinterpret_cast<Output_section*>(2); | 
 | 		  else | 
 | 		    out_sections[i] = reinterpret_cast<Output_section*>(1); | 
 | 		  out_section_offsets[i] = invalid_address; | 
 | 		} | 
 | 	      else if (this->is_deferred_layout()) | 
 | 		{ | 
 | 		  out_sections[i] = reinterpret_cast<Output_section*>(2); | 
 | 		  out_section_offsets[i] = invalid_address; | 
 | 		  this->deferred_layout_.push_back( | 
 | 		      Deferred_layout(i, name, sh_type, pshdrs, | 
 | 				      reloc_shndx[i], reloc_type[i])); | 
 | 		} | 
 | 	      else | 
 | 		eh_frame_sections.push_back(i); | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (is_pass_two && parameters->options().gc_sections()) | 
 | 	{ | 
 | 	  // This is executed during the second pass of garbage | 
 | 	  // collection. do_layout has been called before and some | 
 | 	  // sections have been already discarded. Simply ignore | 
 | 	  // such sections this time around. | 
 | 	  if (out_sections[i] == NULL) | 
 | 	    { | 
 | 	      gold_assert(out_section_offsets[i] == invalid_address); | 
 | 	      continue; | 
 | 	    } | 
 | 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) | 
 | 	      && symtab->gc()->is_section_garbage(this, i)) | 
 | 	      { | 
 | 		if (parameters->options().print_gc_sections()) | 
 | 		  gold_info(_("%s: removing unused section from '%s'" | 
 | 			      " in file '%s'"), | 
 | 			    program_name, this->section_name(i).c_str(), | 
 | 			    this->name().c_str()); | 
 | 		out_sections[i] = NULL; | 
 | 		out_section_offsets[i] = invalid_address; | 
 | 		continue; | 
 | 	      } | 
 | 	} | 
 |  | 
 |       if (is_pass_two && parameters->options().icf_enabled()) | 
 | 	{ | 
 | 	  if (out_sections[i] == NULL) | 
 | 	    { | 
 | 	      gold_assert(out_section_offsets[i] == invalid_address); | 
 | 	      continue; | 
 | 	    } | 
 | 	  if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0) | 
 | 	      && symtab->icf()->is_section_folded(this, i)) | 
 | 	      { | 
 | 		if (parameters->options().print_icf_sections()) | 
 | 		  { | 
 | 		    Section_id folded = | 
 | 				symtab->icf()->get_folded_section(this, i); | 
 | 		    Relobj* folded_obj = | 
 | 				reinterpret_cast<Relobj*>(folded.first); | 
 | 		    gold_info(_("%s: ICF folding section '%s' in file '%s' " | 
 | 				"into '%s' in file '%s'"), | 
 | 			      program_name, this->section_name(i).c_str(), | 
 | 			      this->name().c_str(), | 
 | 			      folded_obj->section_name(folded.second).c_str(), | 
 | 			      folded_obj->name().c_str()); | 
 | 		  } | 
 | 		out_sections[i] = NULL; | 
 | 		out_section_offsets[i] = invalid_address; | 
 | 		continue; | 
 | 	      } | 
 | 	} | 
 |  | 
 |       // Defer layout here if input files are claimed by plugins.  When gc | 
 |       // is turned on this function is called twice; we only want to do this | 
 |       // on the first pass. | 
 |       if (!is_pass_two | 
 |           && this->is_deferred_layout() | 
 |           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) | 
 | 	{ | 
 | 	  this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type, | 
 | 							   pshdrs, | 
 | 							   reloc_shndx[i], | 
 | 							   reloc_type[i])); | 
 | 	  // Put dummy values here; real values will be supplied by | 
 | 	  // do_layout_deferred_sections. | 
 | 	  out_sections[i] = reinterpret_cast<Output_section*>(2); | 
 | 	  out_section_offsets[i] = invalid_address; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // During gc_pass_two if a section that was previously deferred is | 
 |       // found, do not layout the section as layout_deferred_sections will | 
 |       // do it later from gold.cc. | 
 |       if (is_pass_two | 
 | 	  && (out_sections[i] == reinterpret_cast<Output_section*>(2))) | 
 | 	continue; | 
 |  | 
 |       if (is_pass_one) | 
 | 	{ | 
 | 	  // This is during garbage collection. The out_sections are | 
 | 	  // assigned in the second call to this function. | 
 | 	  out_sections[i] = reinterpret_cast<Output_section*>(1); | 
 | 	  out_section_offsets[i] = invalid_address; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // When garbage collection is switched on the actual layout | 
 | 	  // only happens in the second call. | 
 | 	  this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i], | 
 | 			       reloc_type[i]); | 
 |  | 
 | 	  // When generating a .gdb_index section, we do additional | 
 | 	  // processing of .debug_info and .debug_types sections after all | 
 | 	  // the other sections for the same reason as above. | 
 | 	  if (!relocatable | 
 | 	      && parameters->options().gdb_index() | 
 | 	      && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC)) | 
 | 	    { | 
 | 	      if (strcmp(name, ".debug_info") == 0 | 
 | 		  || strcmp(name, ".zdebug_info") == 0) | 
 | 		debug_info_sections.push_back(i); | 
 | 	      else if (strcmp(name, ".debug_types") == 0 | 
 | 		       || strcmp(name, ".zdebug_types") == 0) | 
 | 		debug_types_sections.push_back(i); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information | 
 | 	 section.  */ | 
 |       const char *lto_section_name = ".gnu.lto_.lto."; | 
 |       if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0) | 
 | 	{ | 
 | 	  section_size_type contents_len; | 
 | 	  const unsigned char* pcontents | 
 | 	    = this->section_contents(i, &contents_len, false); | 
 | 	  if (contents_len >= sizeof(lto_section)) | 
 | 	    { | 
 | 	      const lto_section* lsection | 
 | 		= reinterpret_cast<const lto_section*>(pcontents); | 
 | 	      if (lsection->slim_object) | 
 | 		layout->set_lto_slim_object(); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (!is_pass_two) | 
 |     { | 
 |       layout->merge_gnu_properties(this); | 
 |       layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this); | 
 |     } | 
 |  | 
 |   // Handle the .eh_frame sections after the other sections. | 
 |   gold_assert(!is_pass_one || eh_frame_sections.empty()); | 
 |   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin(); | 
 |        p != eh_frame_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int i = *p; | 
 |       const unsigned char* pshdr; | 
 |       pshdr = section_headers_data + i * This::shdr_size; | 
 |       typename This::Shdr shdr(pshdr); | 
 |  | 
 |       this->layout_eh_frame_section(layout, | 
 | 				    symbols_data, | 
 | 				    symbols_size, | 
 | 				    symbol_names_data, | 
 | 				    symbol_names_size, | 
 | 				    i, | 
 | 				    shdr, | 
 | 				    reloc_shndx[i], | 
 | 				    reloc_type[i]); | 
 |     } | 
 |  | 
 |   // When doing a relocatable link handle the reloc sections at the | 
 |   // end.  Garbage collection  and Identical Code Folding is not | 
 |   // turned on for relocatable code. | 
 |   if (emit_relocs) | 
 |     this->size_relocatable_relocs(); | 
 |  | 
 |   gold_assert(!is_two_pass || reloc_sections.empty()); | 
 |  | 
 |   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin(); | 
 |        p != reloc_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int i = *p; | 
 |       const unsigned char* pshdr; | 
 |       pshdr = section_headers_data + i * This::shdr_size; | 
 |       typename This::Shdr shdr(pshdr); | 
 |  | 
 |       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); | 
 |       if (data_shndx >= shnum) | 
 | 	{ | 
 | 	  // We already warned about this above. | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       Output_section* data_section = out_sections[data_shndx]; | 
 |       if (data_section == reinterpret_cast<Output_section*>(2)) | 
 | 	{ | 
 | 	  if (is_pass_two) | 
 | 	    continue; | 
 | 	  // The layout for the data section was deferred, so we need | 
 | 	  // to defer the relocation section, too. | 
 | 	  const char* name = pnames + shdr.get_sh_name(); | 
 | 	  this->deferred_layout_relocs_.push_back( | 
 | 	      Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0, | 
 | 			      elfcpp::SHT_NULL)); | 
 | 	  out_sections[i] = reinterpret_cast<Output_section*>(2); | 
 | 	  out_section_offsets[i] = invalid_address; | 
 | 	  continue; | 
 | 	} | 
 |       if (data_section == NULL) | 
 | 	{ | 
 | 	  out_sections[i] = NULL; | 
 | 	  out_section_offsets[i] = invalid_address; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       Relocatable_relocs* rr = new Relocatable_relocs(); | 
 |       this->set_relocatable_relocs(i, rr); | 
 |  | 
 |       Output_section* os = layout->layout_reloc(this, i, shdr, data_section, | 
 | 						rr); | 
 |       out_sections[i] = os; | 
 |       out_section_offsets[i] = invalid_address; | 
 |     } | 
 |  | 
 |   // When building a .gdb_index section, scan the .debug_info and | 
 |   // .debug_types sections. | 
 |   gold_assert(!is_pass_one | 
 | 	      || (debug_info_sections.empty() && debug_types_sections.empty())); | 
 |   for (std::vector<unsigned int>::const_iterator p | 
 | 	   = debug_info_sections.begin(); | 
 |        p != debug_info_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int i = *p; | 
 |       layout->add_to_gdb_index(false, this, symbols_data, symbols_size, | 
 | 			       i, reloc_shndx[i], reloc_type[i]); | 
 |     } | 
 |   for (std::vector<unsigned int>::const_iterator p | 
 | 	   = debug_types_sections.begin(); | 
 |        p != debug_types_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int i = *p; | 
 |       layout->add_to_gdb_index(true, this, symbols_data, symbols_size, | 
 | 			       i, reloc_shndx[i], reloc_type[i]); | 
 |     } | 
 |  | 
 |   if (is_pass_two) | 
 |     { | 
 |       delete[] gc_sd->section_headers_data; | 
 |       delete[] gc_sd->section_names_data; | 
 |       delete[] gc_sd->symbols_data; | 
 |       delete[] gc_sd->symbol_names_data; | 
 |       this->set_symbols_data(NULL); | 
 |     } | 
 |   else | 
 |     { | 
 |       delete sd->section_headers; | 
 |       sd->section_headers = NULL; | 
 |       delete sd->section_names; | 
 |       sd->section_names = NULL; | 
 |     } | 
 | } | 
 |  | 
 | // Layout sections whose layout was deferred while waiting for | 
 | // input files from a plugin. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout) | 
 | { | 
 |   typename std::vector<Deferred_layout>::iterator deferred; | 
 |  | 
 |   for (deferred = this->deferred_layout_.begin(); | 
 |        deferred != this->deferred_layout_.end(); | 
 |        ++deferred) | 
 |     { | 
 |       typename This::Shdr shdr(deferred->shdr_data_); | 
 |  | 
 |       if (!parameters->options().relocatable() | 
 | 	  && deferred->name_ == ".eh_frame" | 
 | 	  && this->check_eh_frame_flags(&shdr)) | 
 | 	{ | 
 | 	  // Checking is_section_included is not reliable for | 
 | 	  // .eh_frame sections, because they do not have an output | 
 | 	  // section.  This is not a problem normally because we call | 
 | 	  // layout_eh_frame_section unconditionally, but when | 
 | 	  // deferring sections that is not true.  We don't want to | 
 | 	  // keep all .eh_frame sections because that will cause us to | 
 | 	  // keep all sections that they refer to, which is the wrong | 
 | 	  // way around.  Instead, the eh_frame code will discard | 
 | 	  // .eh_frame sections that refer to discarded sections. | 
 |  | 
 | 	  // Reading the symbols again here may be slow. | 
 | 	  Read_symbols_data sd; | 
 | 	  this->base_read_symbols(&sd); | 
 | 	  this->layout_eh_frame_section(layout, | 
 | 					sd.symbols->data(), | 
 | 					sd.symbols_size, | 
 | 					sd.symbol_names->data(), | 
 | 					sd.symbol_names_size, | 
 | 					deferred->shndx_, | 
 | 					shdr, | 
 | 					deferred->reloc_shndx_, | 
 | 					deferred->reloc_type_); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // If the section is not included, it is because the garbage collector | 
 |       // decided it is not needed.  Avoid reverting that decision. | 
 |       if (!this->is_section_included(deferred->shndx_)) | 
 | 	continue; | 
 |  | 
 |       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(), | 
 | 			   shdr, shdr.get_sh_type(), deferred->reloc_shndx_, | 
 | 			   deferred->reloc_type_); | 
 |     } | 
 |  | 
 |   this->deferred_layout_.clear(); | 
 |  | 
 |   // Now handle the deferred relocation sections. | 
 |  | 
 |   Output_sections& out_sections(this->output_sections()); | 
 |   std::vector<Address>& out_section_offsets(this->section_offsets()); | 
 |  | 
 |   for (deferred = this->deferred_layout_relocs_.begin(); | 
 |        deferred != this->deferred_layout_relocs_.end(); | 
 |        ++deferred) | 
 |     { | 
 |       unsigned int shndx = deferred->shndx_; | 
 |       typename This::Shdr shdr(deferred->shdr_data_); | 
 |       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info()); | 
 |  | 
 |       Output_section* data_section = out_sections[data_shndx]; | 
 |       if (data_section == NULL) | 
 | 	{ | 
 | 	  out_sections[shndx] = NULL; | 
 | 	  out_section_offsets[shndx] = invalid_address; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       Relocatable_relocs* rr = new Relocatable_relocs(); | 
 |       this->set_relocatable_relocs(shndx, rr); | 
 |  | 
 |       Output_section* os = layout->layout_reloc(this, shndx, shdr, | 
 | 						data_section, rr); | 
 |       out_sections[shndx] = os; | 
 |       out_section_offsets[shndx] = invalid_address; | 
 |     } | 
 | } | 
 |  | 
 | // Add the symbols to the symbol table. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab, | 
 | 						    Read_symbols_data* sd, | 
 | 						    Layout* layout) | 
 | { | 
 |   if (sd->symbols == NULL) | 
 |     { | 
 |       gold_assert(sd->symbol_names == NULL); | 
 |       return; | 
 |     } | 
 |  | 
 |   const int sym_size = This::sym_size; | 
 |   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) | 
 | 		     / sym_size); | 
 |   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset) | 
 |     { | 
 |       this->error(_("size of symbols is not multiple of symbol size")); | 
 |       return; | 
 |     } | 
 |  | 
 |   this->symbols_.resize(symcount); | 
 |  | 
 |   if (!parameters->options().relocatable() | 
 |       && layout->is_lto_slim_object ()) | 
 |     gold_info(_("%s: plugin needed to handle lto object"), | 
 | 	      this->name().c_str()); | 
 |  | 
 |   const char* sym_names = | 
 |     reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   symtab->add_from_relobj(this, | 
 | 			  sd->symbols->data() + sd->external_symbols_offset, | 
 | 			  symcount, this->local_symbol_count_, | 
 | 			  sym_names, sd->symbol_names_size, | 
 | 			  &this->symbols_, | 
 | 			  &this->defined_count_); | 
 |  | 
 |   delete sd->symbols; | 
 |   sd->symbols = NULL; | 
 |   delete sd->symbol_names; | 
 |   sd->symbol_names = NULL; | 
 | } | 
 |  | 
 | // Find out if this object, that is a member of a lib group, should be included | 
 | // in the link. We check every symbol defined by this object. If the symbol | 
 | // table has a strong undefined reference to that symbol, we have to include | 
 | // the object. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Archive::Should_include | 
 | Sized_relobj_file<size, big_endian>::do_should_include_member( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Read_symbols_data* sd, | 
 |     std::string* why) | 
 | { | 
 |   char* tmpbuf = NULL; | 
 |   size_t tmpbuflen = 0; | 
 |   const char* sym_names = | 
 |       reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   const unsigned char* syms = | 
 |       sd->symbols->data() + sd->external_symbols_offset; | 
 |   const int sym_size = elfcpp::Elf_sizes<size>::sym_size; | 
 |   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) | 
 | 			 / sym_size); | 
 |  | 
 |   const unsigned char* p = syms; | 
 |  | 
 |   for (size_t i = 0; i < symcount; ++i, p += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> sym(p); | 
 |       unsigned int st_shndx = sym.get_st_shndx(); | 
 |       if (st_shndx == elfcpp::SHN_UNDEF) | 
 | 	continue; | 
 |  | 
 |       unsigned int st_name = sym.get_st_name(); | 
 |       const char* name = sym_names + st_name; | 
 |       Symbol* symbol; | 
 |       Archive::Should_include t = Archive::should_include_member(symtab, | 
 | 								 layout, | 
 | 								 name, | 
 | 								 &symbol, why, | 
 | 								 &tmpbuf, | 
 | 								 &tmpbuflen); | 
 |       if (t == Archive::SHOULD_INCLUDE_YES) | 
 | 	{ | 
 | 	  if (tmpbuf != NULL) | 
 | 	    free(tmpbuf); | 
 | 	  return t; | 
 | 	} | 
 |     } | 
 |   if (tmpbuf != NULL) | 
 |     free(tmpbuf); | 
 |   return Archive::SHOULD_INCLUDE_UNKNOWN; | 
 | } | 
 |  | 
 | // Iterate over global defined symbols, calling a visitor class V for each. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_for_all_global_symbols( | 
 |     Read_symbols_data* sd, | 
 |     Library_base::Symbol_visitor_base* v) | 
 | { | 
 |   const char* sym_names = | 
 |       reinterpret_cast<const char*>(sd->symbol_names->data()); | 
 |   const unsigned char* syms = | 
 |       sd->symbols->data() + sd->external_symbols_offset; | 
 |   const int sym_size = elfcpp::Elf_sizes<size>::sym_size; | 
 |   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset) | 
 | 		     / sym_size); | 
 |   const unsigned char* p = syms; | 
 |  | 
 |   for (size_t i = 0; i < symcount; ++i, p += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> sym(p); | 
 |       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF) | 
 | 	v->visit(sym_names + sym.get_st_name()); | 
 |     } | 
 | } | 
 |  | 
 | // Return whether the local symbol SYMNDX has a PLT offset. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::local_has_plt_offset( | 
 |     unsigned int symndx) const | 
 | { | 
 |   typename Local_plt_offsets::const_iterator p = | 
 |     this->local_plt_offsets_.find(symndx); | 
 |   return p != this->local_plt_offsets_.end(); | 
 | } | 
 |  | 
 | // Get the PLT offset of a local symbol. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned int | 
 | Sized_relobj_file<size, big_endian>::do_local_plt_offset( | 
 |     unsigned int symndx) const | 
 | { | 
 |   typename Local_plt_offsets::const_iterator p = | 
 |     this->local_plt_offsets_.find(symndx); | 
 |   gold_assert(p != this->local_plt_offsets_.end()); | 
 |   return p->second; | 
 | } | 
 |  | 
 | // Set the PLT offset of a local symbol. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::set_local_plt_offset( | 
 |     unsigned int symndx, unsigned int plt_offset) | 
 | { | 
 |   std::pair<typename Local_plt_offsets::iterator, bool> ins = | 
 |     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset)); | 
 |   gold_assert(ins.second); | 
 | } | 
 |  | 
 | // First pass over the local symbols.  Here we add their names to | 
 | // *POOL and *DYNPOOL, and we store the symbol value in | 
 | // THIS->LOCAL_VALUES_.  This function is always called from a | 
 | // singleton thread.  This is followed by a call to | 
 | // finalize_local_symbols. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool, | 
 | 							    Stringpool* dynpool) | 
 | { | 
 |   gold_assert(this->symtab_shndx_ != -1U); | 
 |   if (this->symtab_shndx_ == 0) | 
 |     { | 
 |       // This object has no symbols.  Weird but legal. | 
 |       return; | 
 |     } | 
 |  | 
 |   // Read the symbol table section header. | 
 |   const unsigned int symtab_shndx = this->symtab_shndx_; | 
 |   typename This::Shdr symtabshdr(this, | 
 | 				 this->elf_file_.section_header(symtab_shndx)); | 
 |   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |  | 
 |   // Read the local symbols. | 
 |   const int sym_size = This::sym_size; | 
 |   const unsigned int loccount = this->local_symbol_count_; | 
 |   gold_assert(loccount == symtabshdr.get_sh_info()); | 
 |   off_t locsize = loccount * sym_size; | 
 |   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | 
 | 					      locsize, true, true); | 
 |  | 
 |   // Read the symbol names. | 
 |   const unsigned int strtab_shndx = | 
 |     this->adjust_shndx(symtabshdr.get_sh_link()); | 
 |   section_size_type strtab_size; | 
 |   const unsigned char* pnamesu = this->section_contents(strtab_shndx, | 
 | 							&strtab_size, | 
 | 							true); | 
 |   const char* pnames = reinterpret_cast<const char*>(pnamesu); | 
 |  | 
 |   // Loop over the local symbols. | 
 |  | 
 |   const Output_sections& out_sections(this->output_sections()); | 
 |   std::vector<Address>& out_section_offsets(this->section_offsets()); | 
 |   unsigned int shnum = this->shnum(); | 
 |   unsigned int count = 0; | 
 |   unsigned int dyncount = 0; | 
 |   // Skip the first, dummy, symbol. | 
 |   psyms += sym_size; | 
 |   bool strip_all = parameters->options().strip_all(); | 
 |   bool discard_all = parameters->options().discard_all(); | 
 |   bool discard_locals = parameters->options().discard_locals(); | 
 |   bool discard_sec_merge = parameters->options().discard_sec_merge(); | 
 |   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> sym(psyms); | 
 |  | 
 |       Symbol_value<size>& lv(this->local_values_[i]); | 
 |  | 
 |       bool is_ordinary; | 
 |       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), | 
 | 						  &is_ordinary); | 
 |       lv.set_input_shndx(shndx, is_ordinary); | 
 |  | 
 |       if (sym.get_st_type() == elfcpp::STT_SECTION) | 
 | 	lv.set_is_section_symbol(); | 
 |       else if (sym.get_st_type() == elfcpp::STT_TLS) | 
 | 	lv.set_is_tls_symbol(); | 
 |       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC) | 
 | 	lv.set_is_ifunc_symbol(); | 
 |  | 
 |       // Save the input symbol value for use in do_finalize_local_symbols(). | 
 |       lv.set_input_value(sym.get_st_value()); | 
 |  | 
 |       // Decide whether this symbol should go into the output file. | 
 |  | 
 |       if (is_ordinary | 
 | 	  && shndx < shnum | 
 | 	  && (out_sections[shndx] == NULL | 
 | 	      || (out_sections[shndx]->order() == ORDER_EHFRAME | 
 | 		  && out_section_offsets[shndx] == invalid_address))) | 
 | 	{ | 
 | 	  // This is either a discarded section or an optimized .eh_frame | 
 | 	  // section. | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  gold_assert(!lv.needs_output_dynsym_entry()); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (sym.get_st_type() == elfcpp::STT_SECTION | 
 | 	  || !this->adjust_local_symbol(&lv)) | 
 | 	{ | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  gold_assert(!lv.needs_output_dynsym_entry()); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (sym.get_st_name() >= strtab_size) | 
 | 	{ | 
 | 	  this->error(_("local symbol %u section name out of range: %u >= %u"), | 
 | 		      i, sym.get_st_name(), | 
 | 		      static_cast<unsigned int>(strtab_size)); | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       const char* name = pnames + sym.get_st_name(); | 
 |  | 
 |       // If needed, add the symbol to the dynamic symbol table string pool. | 
 |       if (lv.needs_output_dynsym_entry()) | 
 | 	{ | 
 | 	  dynpool->add(name, true, NULL); | 
 | 	  ++dyncount; | 
 | 	} | 
 |  | 
 |       if (strip_all | 
 | 	  || (discard_all && lv.may_be_discarded_from_output_symtab())) | 
 | 	{ | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // By default, discard temporary local symbols in merge sections. | 
 |       // If --discard-locals option is used, discard all temporary local | 
 |       // symbols.  These symbols start with system-specific local label | 
 |       // prefixes, typically .L for ELF system.  We want to be compatible | 
 |       // with GNU ld so here we essentially use the same check in | 
 |       // bfd_is_local_label().  The code is different because we already | 
 |       // know that: | 
 |       // | 
 |       //   - the symbol is local and thus cannot have global or weak binding. | 
 |       //   - the symbol is not a section symbol. | 
 |       //   - the symbol has a name. | 
 |       // | 
 |       // We do not discard a symbol if it needs a dynamic symbol entry. | 
 |       if ((discard_locals | 
 | 	   || (discard_sec_merge | 
 | 	       && is_ordinary | 
 | 	       && out_section_offsets[shndx] == invalid_address)) | 
 | 	  && sym.get_st_type() != elfcpp::STT_FILE | 
 | 	  && !lv.needs_output_dynsym_entry() | 
 | 	  && lv.may_be_discarded_from_output_symtab() | 
 | 	  && parameters->target().is_local_label_name(name)) | 
 | 	{ | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // Discard the local symbol if -retain_symbols_file is specified | 
 |       // and the local symbol is not in that file. | 
 |       if (!parameters->options().should_retain_symbol(name)) | 
 | 	{ | 
 | 	  lv.set_no_output_symtab_entry(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // Add the symbol to the symbol table string pool. | 
 |       pool->add(name, true, NULL); | 
 |       ++count; | 
 |     } | 
 |  | 
 |   this->output_local_symbol_count_ = count; | 
 |   this->output_local_dynsym_count_ = dyncount; | 
 | } | 
 |  | 
 | // Compute the final value of a local symbol. | 
 |  | 
 | template<int size, bool big_endian> | 
 | typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status | 
 | Sized_relobj_file<size, big_endian>::compute_final_local_value_internal( | 
 |     unsigned int r_sym, | 
 |     const Symbol_value<size>* lv_in, | 
 |     Symbol_value<size>* lv_out, | 
 |     bool relocatable, | 
 |     const Output_sections& out_sections, | 
 |     const std::vector<Address>& out_offsets, | 
 |     const Symbol_table* symtab) | 
 | { | 
 |   // We are going to overwrite *LV_OUT, if it has a merged symbol value, | 
 |   // we may have a memory leak. | 
 |   gold_assert(lv_out->has_output_value()); | 
 |  | 
 |   bool is_ordinary; | 
 |   unsigned int shndx = lv_in->input_shndx(&is_ordinary); | 
 |  | 
 |   // Set the output symbol value. | 
 |  | 
 |   if (!is_ordinary) | 
 |     { | 
 |       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx)) | 
 | 	lv_out->set_output_value(lv_in->input_value()); | 
 |       else | 
 | 	{ | 
 | 	  this->error(_("unknown section index %u for local symbol %u"), | 
 | 		      shndx, r_sym); | 
 | 	  lv_out->set_output_value(0); | 
 | 	  return This::CFLV_ERROR; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       if (shndx >= this->shnum()) | 
 | 	{ | 
 | 	  this->error(_("local symbol %u section index %u out of range"), | 
 | 		      r_sym, shndx); | 
 | 	  lv_out->set_output_value(0); | 
 | 	  return This::CFLV_ERROR; | 
 | 	} | 
 |  | 
 |       Output_section* os = out_sections[shndx]; | 
 |       Address secoffset = out_offsets[shndx]; | 
 |       if (symtab->is_section_folded(this, shndx)) | 
 | 	{ | 
 | 	  gold_assert(os == NULL && secoffset == invalid_address); | 
 | 	  // Get the os of the section it is folded onto. | 
 | 	  Section_id folded = symtab->icf()->get_folded_section(this, | 
 | 								shndx); | 
 | 	  gold_assert(folded.first != NULL); | 
 | 	  Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast | 
 | 	    <Sized_relobj_file<size, big_endian>*>(folded.first); | 
 | 	  os = folded_obj->output_section(folded.second); | 
 | 	  gold_assert(os != NULL); | 
 | 	  secoffset = folded_obj->get_output_section_offset(folded.second); | 
 |  | 
 | 	  // This could be a relaxed input section. | 
 | 	  if (secoffset == invalid_address) | 
 | 	    { | 
 | 	      const Output_relaxed_input_section* relaxed_section = | 
 | 		os->find_relaxed_input_section(folded_obj, folded.second); | 
 | 	      gold_assert(relaxed_section != NULL); | 
 | 	      secoffset = relaxed_section->address() - os->address(); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (os == NULL) | 
 | 	{ | 
 | 	  // This local symbol belongs to a section we are discarding. | 
 | 	  // In some cases when applying relocations later, we will | 
 | 	  // attempt to match it to the corresponding kept section, | 
 | 	  // so we leave the input value unchanged here. | 
 | 	  return This::CFLV_DISCARDED; | 
 | 	} | 
 |       else if (secoffset == invalid_address) | 
 | 	{ | 
 | 	  uint64_t start; | 
 |  | 
 | 	  // This is a SHF_MERGE section or one which otherwise | 
 | 	  // requires special handling. | 
 | 	  if (os->order() == ORDER_EHFRAME) | 
 | 	    { | 
 | 	      // This local symbol belongs to a discarded or optimized | 
 | 	      // .eh_frame section.  Just treat it like the case in which | 
 | 	      // os == NULL above. | 
 | 	      gold_assert(this->has_eh_frame_); | 
 | 	      return This::CFLV_DISCARDED; | 
 | 	    } | 
 | 	  else if (!lv_in->is_section_symbol()) | 
 | 	    { | 
 | 	      // This is not a section symbol.  We can determine | 
 | 	      // the final value now. | 
 | 	      uint64_t value = | 
 | 		os->output_address(this, shndx, lv_in->input_value()); | 
 | 	      if (relocatable) | 
 | 		value -= os->address(); | 
 | 	      lv_out->set_output_value(value); | 
 | 	    } | 
 | 	  else if (!os->find_starting_output_address(this, shndx, &start)) | 
 | 	    { | 
 | 	      // This is a section symbol, but apparently not one in a | 
 | 	      // merged section.  First check to see if this is a relaxed | 
 | 	      // input section.  If so, use its address.  Otherwise just | 
 | 	      // use the start of the output section.  This happens with | 
 | 	      // relocatable links when the input object has section | 
 | 	      // symbols for arbitrary non-merge sections. | 
 | 	      const Output_section_data* posd = | 
 | 		os->find_relaxed_input_section(this, shndx); | 
 | 	      if (posd != NULL) | 
 | 		{ | 
 | 		  uint64_t value = posd->address(); | 
 | 		  if (relocatable) | 
 | 		    value -= os->address(); | 
 | 		  lv_out->set_output_value(value); | 
 | 		} | 
 | 	      else | 
 | 		lv_out->set_output_value(os->address()); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // We have to consider the addend to determine the | 
 | 	      // value to use in a relocation.  START is the start | 
 | 	      // of this input section.  If we are doing a relocatable | 
 | 	      // link, use offset from start output section instead of | 
 | 	      // address. | 
 | 	      Address adjusted_start = | 
 | 		relocatable ? start - os->address() : start; | 
 | 	      Merged_symbol_value<size>* msv = | 
 | 		new Merged_symbol_value<size>(lv_in->input_value(), | 
 | 					      adjusted_start); | 
 | 	      lv_out->set_merged_symbol_value(msv); | 
 | 	    } | 
 | 	} | 
 |       else if (lv_in->is_tls_symbol() | 
 |                || (lv_in->is_section_symbol() | 
 |                    && (os->flags() & elfcpp::SHF_TLS))) | 
 | 	lv_out->set_output_value(os->tls_offset() | 
 | 				 + secoffset | 
 | 				 + lv_in->input_value()); | 
 |       else | 
 | 	lv_out->set_output_value((relocatable ? 0 : os->address()) | 
 | 				 + secoffset | 
 | 				 + lv_in->input_value()); | 
 |     } | 
 |   return This::CFLV_OK; | 
 | } | 
 |  | 
 | // Compute final local symbol value.  R_SYM is the index of a local | 
 | // symbol in symbol table.  LV points to a symbol value, which is | 
 | // expected to hold the input value and to be over-written by the | 
 | // final value.  SYMTAB points to a symbol table.  Some targets may want | 
 | // to know would-be-finalized local symbol values in relaxation. | 
 | // Hence we provide this method.  Since this method updates *LV, a | 
 | // callee should make a copy of the original local symbol value and | 
 | // use the copy instead of modifying an object's local symbols before | 
 | // everything is finalized.  The caller should also free up any allocated | 
 | // memory in the return value in *LV. | 
 | template<int size, bool big_endian> | 
 | typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status | 
 | Sized_relobj_file<size, big_endian>::compute_final_local_value( | 
 |     unsigned int r_sym, | 
 |     const Symbol_value<size>* lv_in, | 
 |     Symbol_value<size>* lv_out, | 
 |     const Symbol_table* symtab) | 
 | { | 
 |   // This is just a wrapper of compute_final_local_value_internal. | 
 |   const bool relocatable = parameters->options().relocatable(); | 
 |   const Output_sections& out_sections(this->output_sections()); | 
 |   const std::vector<Address>& out_offsets(this->section_offsets()); | 
 |   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out, | 
 | 						  relocatable, out_sections, | 
 | 						  out_offsets, symtab); | 
 | } | 
 |  | 
 | // Finalize the local symbols.  Here we set the final value in | 
 | // THIS->LOCAL_VALUES_ and set their output symbol table indexes. | 
 | // This function is always called from a singleton thread.  The actual | 
 | // output of the local symbols will occur in a separate task. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned int | 
 | Sized_relobj_file<size, big_endian>::do_finalize_local_symbols( | 
 |     unsigned int index, | 
 |     off_t off, | 
 |     Symbol_table* symtab) | 
 | { | 
 |   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); | 
 |  | 
 |   const unsigned int loccount = this->local_symbol_count_; | 
 |   this->local_symbol_offset_ = off; | 
 |  | 
 |   const bool relocatable = parameters->options().relocatable(); | 
 |   const Output_sections& out_sections(this->output_sections()); | 
 |   const std::vector<Address>& out_offsets(this->section_offsets()); | 
 |  | 
 |   for (unsigned int i = 1; i < loccount; ++i) | 
 |     { | 
 |       Symbol_value<size>* lv = &this->local_values_[i]; | 
 |  | 
 |       Compute_final_local_value_status cflv_status = | 
 | 	this->compute_final_local_value_internal(i, lv, lv, relocatable, | 
 | 						 out_sections, out_offsets, | 
 | 						 symtab); | 
 |       switch (cflv_status) | 
 | 	{ | 
 | 	case CFLV_OK: | 
 | 	  if (!lv->is_output_symtab_index_set()) | 
 | 	    { | 
 | 	      lv->set_output_symtab_index(index); | 
 | 	      ++index; | 
 | 	    } | 
 | 	  if (lv->is_ifunc_symbol() | 
 | 	      && (lv->has_output_symtab_entry() | 
 | 		  || lv->needs_output_dynsym_entry())) | 
 | 	    symtab->set_has_gnu_output(); | 
 | 	  break; | 
 | 	case CFLV_DISCARDED: | 
 | 	case CFLV_ERROR: | 
 | 	  // Do nothing. | 
 | 	  break; | 
 | 	default: | 
 | 	  gold_unreachable(); | 
 | 	} | 
 |     } | 
 |   return index; | 
 | } | 
 |  | 
 | // Set the output dynamic symbol table indexes for the local variables. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned int | 
 | Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes( | 
 |     unsigned int index) | 
 | { | 
 |   const unsigned int loccount = this->local_symbol_count_; | 
 |   for (unsigned int i = 1; i < loccount; ++i) | 
 |     { | 
 |       Symbol_value<size>& lv(this->local_values_[i]); | 
 |       if (lv.needs_output_dynsym_entry()) | 
 | 	{ | 
 | 	  lv.set_output_dynsym_index(index); | 
 | 	  ++index; | 
 | 	} | 
 |     } | 
 |   return index; | 
 | } | 
 |  | 
 | // Set the offset where local dynamic symbol information will be stored. | 
 | // Returns the count of local symbols contributed to the symbol table by | 
 | // this object. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned int | 
 | Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off) | 
 | { | 
 |   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3))); | 
 |   this->local_dynsym_offset_ = off; | 
 |   return this->output_local_dynsym_count_; | 
 | } | 
 |  | 
 | // If Symbols_data is not NULL get the section flags from here otherwise | 
 | // get it from the file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | uint64_t | 
 | Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx) | 
 | { | 
 |   Symbols_data* sd = this->get_symbols_data(); | 
 |   if (sd != NULL) | 
 |     { | 
 |       const unsigned char* pshdrs = sd->section_headers_data | 
 | 				    + This::shdr_size * shndx; | 
 |       typename This::Shdr shdr(pshdrs); | 
 |       return shdr.get_sh_flags(); | 
 |     } | 
 |   // If sd is NULL, read the section header from the file. | 
 |   return this->elf_file_.section_flags(shndx); | 
 | } | 
 |  | 
 | // Get the section's ent size from Symbols_data.  Called by get_section_contents | 
 | // in icf.cc | 
 |  | 
 | template<int size, bool big_endian> | 
 | uint64_t | 
 | Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx) | 
 | { | 
 |   Symbols_data* sd = this->get_symbols_data(); | 
 |   gold_assert(sd != NULL); | 
 |  | 
 |   const unsigned char* pshdrs = sd->section_headers_data | 
 | 				+ This::shdr_size * shndx; | 
 |   typename This::Shdr shdr(pshdrs); | 
 |   return shdr.get_sh_entsize(); | 
 | } | 
 |  | 
 | // Write out the local symbols. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::write_local_symbols( | 
 |     Output_file* of, | 
 |     const Stringpool* sympool, | 
 |     const Stringpool* dynpool, | 
 |     Output_symtab_xindex* symtab_xindex, | 
 |     Output_symtab_xindex* dynsym_xindex, | 
 |     off_t symtab_off) | 
 | { | 
 |   const bool strip_all = parameters->options().strip_all(); | 
 |   if (strip_all) | 
 |     { | 
 |       if (this->output_local_dynsym_count_ == 0) | 
 | 	return; | 
 |       this->output_local_symbol_count_ = 0; | 
 |     } | 
 |  | 
 |   gold_assert(this->symtab_shndx_ != -1U); | 
 |   if (this->symtab_shndx_ == 0) | 
 |     { | 
 |       // This object has no symbols.  Weird but legal. | 
 |       return; | 
 |     } | 
 |  | 
 |   // Read the symbol table section header. | 
 |   const unsigned int symtab_shndx = this->symtab_shndx_; | 
 |   typename This::Shdr symtabshdr(this, | 
 | 				 this->elf_file_.section_header(symtab_shndx)); | 
 |   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |   const unsigned int loccount = this->local_symbol_count_; | 
 |   gold_assert(loccount == symtabshdr.get_sh_info()); | 
 |  | 
 |   // Read the local symbols. | 
 |   const int sym_size = This::sym_size; | 
 |   off_t locsize = loccount * sym_size; | 
 |   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | 
 | 					      locsize, true, false); | 
 |  | 
 |   // Read the symbol names. | 
 |   const unsigned int strtab_shndx = | 
 |     this->adjust_shndx(symtabshdr.get_sh_link()); | 
 |   section_size_type strtab_size; | 
 |   const unsigned char* pnamesu = this->section_contents(strtab_shndx, | 
 | 							&strtab_size, | 
 | 							false); | 
 |   const char* pnames = reinterpret_cast<const char*>(pnamesu); | 
 |  | 
 |   // Get views into the output file for the portions of the symbol table | 
 |   // and the dynamic symbol table that we will be writing. | 
 |   off_t output_size = this->output_local_symbol_count_ * sym_size; | 
 |   unsigned char* oview = NULL; | 
 |   if (output_size > 0) | 
 |     oview = of->get_output_view(symtab_off + this->local_symbol_offset_, | 
 | 				output_size); | 
 |  | 
 |   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size; | 
 |   unsigned char* dyn_oview = NULL; | 
 |   if (dyn_output_size > 0) | 
 |     dyn_oview = of->get_output_view(this->local_dynsym_offset_, | 
 | 				    dyn_output_size); | 
 |  | 
 |   const Output_sections& out_sections(this->output_sections()); | 
 |  | 
 |   gold_assert(this->local_values_.size() == loccount); | 
 |  | 
 |   unsigned char* ov = oview; | 
 |   unsigned char* dyn_ov = dyn_oview; | 
 |   psyms += sym_size; | 
 |   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> isym(psyms); | 
 |  | 
 |       Symbol_value<size>& lv(this->local_values_[i]); | 
 |  | 
 |       bool is_ordinary; | 
 |       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(), | 
 | 						     &is_ordinary); | 
 |       if (is_ordinary) | 
 | 	{ | 
 | 	  gold_assert(st_shndx < out_sections.size()); | 
 | 	  if (out_sections[st_shndx] == NULL) | 
 | 	    continue; | 
 | 	  st_shndx = out_sections[st_shndx]->out_shndx(); | 
 | 	  if (st_shndx >= elfcpp::SHN_LORESERVE) | 
 | 	    { | 
 | 	      if (lv.has_output_symtab_entry()) | 
 | 		symtab_xindex->add(lv.output_symtab_index(), st_shndx); | 
 | 	      if (lv.has_output_dynsym_entry()) | 
 | 		dynsym_xindex->add(lv.output_dynsym_index(), st_shndx); | 
 | 	      st_shndx = elfcpp::SHN_XINDEX; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       // Write the symbol to the output symbol table. | 
 |       if (lv.has_output_symtab_entry()) | 
 | 	{ | 
 | 	  elfcpp::Sym_write<size, big_endian> osym(ov); | 
 |  | 
 | 	  gold_assert(isym.get_st_name() < strtab_size); | 
 | 	  const char* name = pnames + isym.get_st_name(); | 
 | 	  osym.put_st_name(sympool->get_offset(name)); | 
 | 	  osym.put_st_value(lv.value(this, 0)); | 
 | 	  osym.put_st_size(isym.get_st_size()); | 
 | 	  osym.put_st_info(isym.get_st_info()); | 
 | 	  osym.put_st_other(isym.get_st_other()); | 
 | 	  osym.put_st_shndx(st_shndx); | 
 |  | 
 | 	  ov += sym_size; | 
 | 	} | 
 |  | 
 |       // Write the symbol to the output dynamic symbol table. | 
 |       if (lv.has_output_dynsym_entry()) | 
 | 	{ | 
 | 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size); | 
 | 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov); | 
 |  | 
 | 	  gold_assert(isym.get_st_name() < strtab_size); | 
 | 	  const char* name = pnames + isym.get_st_name(); | 
 | 	  osym.put_st_name(dynpool->get_offset(name)); | 
 | 	  osym.put_st_value(lv.value(this, 0)); | 
 | 	  osym.put_st_size(isym.get_st_size()); | 
 | 	  osym.put_st_info(isym.get_st_info()); | 
 | 	  osym.put_st_other(isym.get_st_other()); | 
 | 	  osym.put_st_shndx(st_shndx); | 
 |  | 
 | 	  dyn_ov += sym_size; | 
 | 	} | 
 |     } | 
 |  | 
 |  | 
 |   if (output_size > 0) | 
 |     { | 
 |       gold_assert(ov - oview == output_size); | 
 |       of->write_output_view(symtab_off + this->local_symbol_offset_, | 
 | 			    output_size, oview); | 
 |     } | 
 |  | 
 |   if (dyn_output_size > 0) | 
 |     { | 
 |       gold_assert(dyn_ov - dyn_oview == dyn_output_size); | 
 |       of->write_output_view(this->local_dynsym_offset_, dyn_output_size, | 
 | 			    dyn_oview); | 
 |     } | 
 | } | 
 |  | 
 | // Set *INFO to symbolic information about the offset OFFSET in the | 
 | // section SHNDX.  Return true if we found something, false if we | 
 | // found nothing. | 
 |  | 
 | template<int size, bool big_endian> | 
 | bool | 
 | Sized_relobj_file<size, big_endian>::get_symbol_location_info( | 
 |     unsigned int shndx, | 
 |     off_t offset, | 
 |     Symbol_location_info* info) | 
 | { | 
 |   if (this->symtab_shndx_ == 0) | 
 |     return false; | 
 |  | 
 |   section_size_type symbols_size; | 
 |   const unsigned char* symbols = this->section_contents(this->symtab_shndx_, | 
 | 							&symbols_size, | 
 | 							false); | 
 |  | 
 |   unsigned int symbol_names_shndx = | 
 |     this->adjust_shndx(this->section_link(this->symtab_shndx_)); | 
 |   section_size_type names_size; | 
 |   const unsigned char* symbol_names_u = | 
 |     this->section_contents(symbol_names_shndx, &names_size, false); | 
 |   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); | 
 |  | 
 |   const int sym_size = This::sym_size; | 
 |   const size_t count = symbols_size / sym_size; | 
 |  | 
 |   const unsigned char* p = symbols; | 
 |   for (size_t i = 0; i < count; ++i, p += sym_size) | 
 |     { | 
 |       elfcpp::Sym<size, big_endian> sym(p); | 
 |  | 
 |       if (sym.get_st_type() == elfcpp::STT_FILE) | 
 | 	{ | 
 | 	  if (sym.get_st_name() >= names_size) | 
 | 	    info->source_file = "(invalid)"; | 
 | 	  else | 
 | 	    info->source_file = symbol_names + sym.get_st_name(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       bool is_ordinary; | 
 |       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), | 
 | 						     &is_ordinary); | 
 |       if (is_ordinary | 
 | 	  && st_shndx == shndx | 
 | 	  && static_cast<off_t>(sym.get_st_value()) <= offset | 
 | 	  && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size()) | 
 | 	      > offset)) | 
 | 	{ | 
 | 	  info->enclosing_symbol_type = sym.get_st_type(); | 
 | 	  if (sym.get_st_name() > names_size) | 
 | 	    info->enclosing_symbol_name = "(invalid)"; | 
 | 	  else | 
 | 	    { | 
 | 	      info->enclosing_symbol_name = symbol_names + sym.get_st_name(); | 
 | 	      if (parameters->options().do_demangle()) | 
 | 		{ | 
 | 		  char* demangled_name = cplus_demangle( | 
 | 		      info->enclosing_symbol_name.c_str(), | 
 | 		      DMGL_ANSI | DMGL_PARAMS); | 
 | 		  if (demangled_name != NULL) | 
 | 		    { | 
 | 		      info->enclosing_symbol_name.assign(demangled_name); | 
 | 		      free(demangled_name); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Look for a kept section corresponding to the given discarded section, | 
 | // and return its output address.  This is used only for relocations in | 
 | // debugging sections.  If we can't find the kept section, return 0. | 
 |  | 
 | template<int size, bool big_endian> | 
 | typename Sized_relobj_file<size, big_endian>::Address | 
 | Sized_relobj_file<size, big_endian>::map_to_kept_section( | 
 |     unsigned int shndx, | 
 |     std::string& section_name, | 
 |     bool* pfound) const | 
 | { | 
 |   Kept_section* kept_section; | 
 |   bool is_comdat; | 
 |   uint64_t sh_size; | 
 |   unsigned int symndx; | 
 |   bool found = false; | 
 |  | 
 |   if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size, | 
 | 				    &kept_section)) | 
 |     { | 
 |       Relobj* kept_object = kept_section->object(); | 
 |       unsigned int kept_shndx = 0; | 
 |       if (!kept_section->is_comdat()) | 
 |         { | 
 | 	  // The kept section is a linkonce section. | 
 | 	  if (sh_size == kept_section->linkonce_size()) | 
 | 	    { | 
 | 	      kept_shndx = kept_section->shndx(); | 
 | 	      found = true; | 
 | 	    } | 
 |         } | 
 |       else | 
 | 	{ | 
 | 	  uint64_t kept_size = 0; | 
 | 	  if (is_comdat) | 
 | 	    { | 
 | 	      // Find the corresponding kept section. | 
 | 	      // Since we're using this mapping for relocation processing, | 
 | 	      // we don't want to match sections unless they have the same | 
 | 	      // size. | 
 | 	      if (kept_section->find_comdat_section(section_name, &kept_shndx, | 
 | 						    &kept_size)) | 
 | 		{ | 
 | 		  if (sh_size == kept_size) | 
 | 		    found = true; | 
 | 		} | 
 | 	    } | 
 | 	  if (!found) | 
 | 	    { | 
 | 	      if (kept_section->find_single_comdat_section(&kept_shndx, | 
 | 							   &kept_size) | 
 | 		  && sh_size == kept_size) | 
 | 		found = true; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (found) | 
 | 	{ | 
 | 	  Sized_relobj_file<size, big_endian>* kept_relobj = | 
 | 	    static_cast<Sized_relobj_file<size, big_endian>*>(kept_object); | 
 | 	  Output_section* os = kept_relobj->output_section(kept_shndx); | 
 | 	  Address offset = kept_relobj->get_output_section_offset(kept_shndx); | 
 | 	  if (os != NULL && offset != invalid_address) | 
 | 	    { | 
 | 	      *pfound = true; | 
 | 	      return os->address() + offset; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   *pfound = false; | 
 |   return 0; | 
 | } | 
 |  | 
 | // Look for a kept section corresponding to the given discarded section, | 
 | // and return its object file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Relobj* | 
 | Sized_relobj_file<size, big_endian>::find_kept_section_object( | 
 |     unsigned int shndx, unsigned int *symndx_p) const | 
 | { | 
 |   Kept_section* kept_section; | 
 |   bool is_comdat; | 
 |   uint64_t sh_size; | 
 |   if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size, | 
 | 				    &kept_section)) | 
 |     return kept_section->object(); | 
 |   return NULL; | 
 | } | 
 |  | 
 | // Return the name of symbol SYMNDX. | 
 |  | 
 | template<int size, bool big_endian> | 
 | std::string | 
 | Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx) | 
 | { | 
 |   if (this->symtab_shndx_ == 0) | 
 |     return NULL; | 
 |  | 
 |   section_size_type symbols_size; | 
 |   const unsigned char* symbols = this->section_contents(this->symtab_shndx_, | 
 | 							&symbols_size, | 
 | 							false); | 
 |  | 
 |   const unsigned char* p = symbols + symndx * This::sym_size; | 
 |   if (p >= symbols + symbols_size) | 
 |     return NULL; | 
 |  | 
 |   elfcpp::Sym<size, big_endian> sym(p); | 
 |  | 
 |   if (sym.get_st_name() == 0 && sym.get_st_type() == elfcpp::STT_SECTION) | 
 |     { | 
 |       bool is_ordinary; | 
 |       unsigned int sym_shndx = this->adjust_sym_shndx(symndx, | 
 | 						      sym.get_st_shndx(), | 
 | 						      &is_ordinary); | 
 |       if (!is_ordinary || sym_shndx >= this->shnum()) | 
 | 	return NULL; | 
 |  | 
 |       return this->section_name(sym_shndx); | 
 |     } | 
 |  | 
 |   unsigned int symbol_names_shndx = | 
 |     this->adjust_shndx(this->section_link(this->symtab_shndx_)); | 
 |   section_size_type names_size; | 
 |   const unsigned char* symbol_names_u = | 
 |     this->section_contents(symbol_names_shndx, &names_size, false); | 
 |   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u); | 
 |  | 
 |   unsigned int sym_name = sym.get_st_name(); | 
 |   if (sym_name >= names_size) | 
 |     return NULL; | 
 |   const char* namep = symbol_names + sym_name; | 
 |   const void* endp = memchr(namep, 0, names_size - sym_name); | 
 |   if (!endp) | 
 |     endp = symbol_names + names_size; | 
 |   std::string name = std::string(namep, static_cast<const char*>(endp) - namep); | 
 |  | 
 |   if (!parameters->options().do_demangle()) | 
 |     return name; | 
 |  | 
 |   char* demangled_name = cplus_demangle(name.c_str(), DMGL_ANSI | DMGL_PARAMS); | 
 |   if (!demangled_name) | 
 |     return name; | 
 |  | 
 |   name = demangled_name; | 
 |   free(demangled_name); | 
 |   return name; | 
 | } | 
 |  | 
 | // Get symbol counts. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts( | 
 |     const Symbol_table*, | 
 |     size_t* defined, | 
 |     size_t* used) const | 
 | { | 
 |   *defined = this->defined_count_; | 
 |   size_t count = 0; | 
 |   for (typename Symbols::const_iterator p = this->symbols_.begin(); | 
 |        p != this->symbols_.end(); | 
 |        ++p) | 
 |     if (*p != NULL | 
 | 	&& (*p)->source() == Symbol::FROM_OBJECT | 
 | 	&& (*p)->object() == this | 
 | 	&& (*p)->is_defined()) | 
 |       ++count; | 
 |   *used = count; | 
 | } | 
 |  | 
 | // Return a view of the decompressed contents of a section.  Set *PLEN | 
 | // to the size.  Set *IS_NEW to true if the contents need to be freed | 
 | // by the caller. | 
 |  | 
 | const unsigned char* | 
 | Object::decompressed_section_contents( | 
 |     unsigned int shndx, | 
 |     section_size_type* plen, | 
 |     bool* is_new, | 
 |     uint64_t* palign) | 
 | { | 
 |   section_size_type buffer_size; | 
 |   const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size, | 
 | 							  false); | 
 |  | 
 |   if (this->compressed_sections_ == NULL) | 
 |     { | 
 |       *plen = buffer_size; | 
 |       *is_new = false; | 
 |       return buffer; | 
 |     } | 
 |  | 
 |   Compressed_section_map::const_iterator p = | 
 |       this->compressed_sections_->find(shndx); | 
 |   if (p == this->compressed_sections_->end()) | 
 |     { | 
 |       *plen = buffer_size; | 
 |       *is_new = false; | 
 |       return buffer; | 
 |     } | 
 |  | 
 |   section_size_type uncompressed_size = p->second.size; | 
 |   if (p->second.contents != NULL) | 
 |     { | 
 |       *plen = uncompressed_size; | 
 |       *is_new = false; | 
 |       if (palign != NULL) | 
 | 	*palign = p->second.addralign; | 
 |       return p->second.contents; | 
 |     } | 
 |  | 
 |   unsigned char* uncompressed_data = new unsigned char[uncompressed_size]; | 
 |   if (!decompress_input_section(buffer, | 
 | 				buffer_size, | 
 | 				uncompressed_data, | 
 | 				uncompressed_size, | 
 | 				elfsize(), | 
 | 				is_big_endian(), | 
 | 				p->second.flag)) | 
 |     this->error(_("could not decompress section %s"), | 
 | 		this->do_section_name(shndx).c_str()); | 
 |  | 
 |   // We could cache the results in p->second.contents and store | 
 |   // false in *IS_NEW, but build_compressed_section_map() would | 
 |   // have done so if it had expected it to be profitable.  If | 
 |   // we reach this point, we expect to need the contents only | 
 |   // once in this pass. | 
 |   *plen = uncompressed_size; | 
 |   *is_new = true; | 
 |   if (palign != NULL) | 
 |     *palign = p->second.addralign; | 
 |   return uncompressed_data; | 
 | } | 
 |  | 
 | // Discard any buffers of uncompressed sections.  This is done | 
 | // at the end of the Add_symbols task. | 
 |  | 
 | void | 
 | Object::discard_decompressed_sections() | 
 | { | 
 |   if (this->compressed_sections_ == NULL) | 
 |     return; | 
 |  | 
 |   for (Compressed_section_map::iterator p = this->compressed_sections_->begin(); | 
 |        p != this->compressed_sections_->end(); | 
 |        ++p) | 
 |     { | 
 |       if (p->second.contents != NULL) | 
 | 	{ | 
 | 	  delete[] p->second.contents; | 
 | 	  p->second.contents = NULL; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Input_objects methods. | 
 |  | 
 | // Add a regular relocatable object to the list.  Return false if this | 
 | // object should be ignored. | 
 |  | 
 | bool | 
 | Input_objects::add_object(Object* obj) | 
 | { | 
 |   // Print the filename if the -t/--trace option is selected. | 
 |   if (parameters->options().trace()) | 
 |     gold_trace("%s", obj->name().c_str()); | 
 |  | 
 |   if (!obj->is_dynamic()) | 
 |     this->relobj_list_.push_back(static_cast<Relobj*>(obj)); | 
 |   else | 
 |     { | 
 |       // See if this is a duplicate SONAME. | 
 |       Dynobj* dynobj = static_cast<Dynobj*>(obj); | 
 |       const char* soname = dynobj->soname(); | 
 |  | 
 |       Unordered_map<std::string, Object*>::value_type val(soname, obj); | 
 |       std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins = | 
 | 	this->sonames_.insert(val); | 
 |       if (!ins.second) | 
 | 	{ | 
 | 	  // We have already seen a dynamic object with this soname. | 
 | 	  // If any instances of this object on the command line have | 
 | 	  // the --no-as-needed flag, make sure the one we keep is | 
 | 	  // marked so. | 
 | 	  if (!obj->as_needed()) | 
 | 	    { | 
 | 	      gold_assert(ins.first->second != NULL); | 
 | 	      ins.first->second->clear_as_needed(); | 
 | 	    } | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       this->dynobj_list_.push_back(dynobj); | 
 |     } | 
 |  | 
 |   // Add this object to the cross-referencer if requested. | 
 |   if (parameters->options().user_set_print_symbol_counts() | 
 |       || parameters->options().cref()) | 
 |     { | 
 |       if (this->cref_ == NULL) | 
 | 	this->cref_ = new Cref(); | 
 |       this->cref_->add_object(obj); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // For each dynamic object, record whether we've seen all of its | 
 | // explicit dependencies. | 
 |  | 
 | void | 
 | Input_objects::check_dynamic_dependencies() const | 
 | { | 
 |   bool issued_copy_dt_needed_error = false; | 
 |   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin(); | 
 |        p != this->dynobj_list_.end(); | 
 |        ++p) | 
 |     { | 
 |       const Dynobj::Needed& needed((*p)->needed()); | 
 |       bool found_all = true; | 
 |       Dynobj::Needed::const_iterator pneeded; | 
 |       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded) | 
 | 	{ | 
 | 	  if (this->sonames_.find(*pneeded) == this->sonames_.end()) | 
 | 	    { | 
 | 	      found_all = false; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       (*p)->set_has_unknown_needed_entries(!found_all); | 
 |  | 
 |       // --copy-dt-needed-entries aka --add-needed is a GNU ld option | 
 |       // that gold does not support.  However, they cause no trouble | 
 |       // unless there is a DT_NEEDED entry that we don't know about; | 
 |       // warn only in that case. | 
 |       if (!found_all | 
 | 	  && !issued_copy_dt_needed_error | 
 | 	  && (parameters->options().copy_dt_needed_entries() | 
 | 	      || parameters->options().add_needed())) | 
 | 	{ | 
 | 	  const char* optname; | 
 | 	  if (parameters->options().copy_dt_needed_entries()) | 
 | 	    optname = "--copy-dt-needed-entries"; | 
 | 	  else | 
 | 	    optname = "--add-needed"; | 
 | 	  gold_error(_("%s is not supported but is required for %s in %s"), | 
 | 		     optname, (*pneeded).c_str(), (*p)->name().c_str()); | 
 | 	  issued_copy_dt_needed_error = true; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Start processing an archive. | 
 |  | 
 | void | 
 | Input_objects::archive_start(Archive* archive) | 
 | { | 
 |   if (parameters->options().user_set_print_symbol_counts() | 
 |       || parameters->options().cref()) | 
 |     { | 
 |       if (this->cref_ == NULL) | 
 | 	this->cref_ = new Cref(); | 
 |       this->cref_->add_archive_start(archive); | 
 |     } | 
 | } | 
 |  | 
 | // Stop processing an archive. | 
 |  | 
 | void | 
 | Input_objects::archive_stop(Archive* archive) | 
 | { | 
 |   if (parameters->options().user_set_print_symbol_counts() | 
 |       || parameters->options().cref()) | 
 |     this->cref_->add_archive_stop(archive); | 
 | } | 
 |  | 
 | // Print symbol counts | 
 |  | 
 | void | 
 | Input_objects::print_symbol_counts(const Symbol_table* symtab) const | 
 | { | 
 |   if (parameters->options().user_set_print_symbol_counts() | 
 |       && this->cref_ != NULL) | 
 |     this->cref_->print_symbol_counts(symtab); | 
 | } | 
 |  | 
 | // Print a cross reference table. | 
 |  | 
 | void | 
 | Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const | 
 | { | 
 |   if (parameters->options().cref() && this->cref_ != NULL) | 
 |     this->cref_->print_cref(symtab, f); | 
 | } | 
 |  | 
 | // Relocate_info methods. | 
 |  | 
 | // Return a string describing the location of a relocation when file | 
 | // and lineno information is not available.  This is only used in | 
 | // error messages. | 
 |  | 
 | template<int size, bool big_endian> | 
 | std::string | 
 | Relocate_info<size, big_endian>::location(size_t, off_t offset) const | 
 | { | 
 |   Sized_dwarf_line_info<size, big_endian> line_info(this->object); | 
 |   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL); | 
 |   if (!ret.empty()) | 
 |     return ret; | 
 |  | 
 |   ret = this->object->name(); | 
 |  | 
 |   Symbol_location_info info; | 
 |   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info)) | 
 |     { | 
 |       if (!info.source_file.empty()) | 
 | 	{ | 
 | 	  ret += ":"; | 
 | 	  ret += info.source_file; | 
 | 	} | 
 |       ret += ":"; | 
 |       if (info.enclosing_symbol_type == elfcpp::STT_FUNC) | 
 | 	ret += _("function "); | 
 |       ret += info.enclosing_symbol_name; | 
 |       ret += ":"; | 
 |     } | 
 |  | 
 |   ret += "("; | 
 |   ret += this->object->section_name(this->data_shndx); | 
 |   char buf[100]; | 
 |   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset)); | 
 |   ret += buf; | 
 |   return ret; | 
 | } | 
 |  | 
 | } // End namespace gold. | 
 |  | 
 | namespace | 
 | { | 
 |  | 
 | using namespace gold; | 
 |  | 
 | // Read an ELF file with the header and return the appropriate | 
 | // instance of Object. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Object* | 
 | make_elf_sized_object(const std::string& name, Input_file* input_file, | 
 | 		      off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr, | 
 | 		      bool* punconfigured) | 
 | { | 
 |   Target* target = select_target(input_file, offset, | 
 | 				 ehdr.get_e_machine(), size, big_endian, | 
 | 				 ehdr.get_ei_osabi(), | 
 | 				 ehdr.get_ei_abiversion()); | 
 |   if (target == NULL) | 
 |     gold_fatal(_("%s: unsupported ELF machine number %d"), | 
 | 	       name.c_str(), ehdr.get_e_machine()); | 
 |  | 
 |   if (!parameters->target_valid()) | 
 |     set_parameters_target(target); | 
 |   else if (target != ¶meters->target()) | 
 |     { | 
 |       if (punconfigured != NULL) | 
 | 	*punconfigured = true; | 
 |       else | 
 | 	gold_error(_("%s: incompatible target"), name.c_str()); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   return target->make_elf_object<size, big_endian>(name, input_file, offset, | 
 | 						   ehdr); | 
 | } | 
 |  | 
 | } // End anonymous namespace. | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // Return whether INPUT_FILE is an ELF object. | 
 |  | 
 | bool | 
 | is_elf_object(Input_file* input_file, off_t offset, | 
 | 	      const unsigned char** start, int* read_size) | 
 | { | 
 |   off_t filesize = input_file->file().filesize(); | 
 |   int want = elfcpp::Elf_recognizer::max_header_size; | 
 |   if (filesize - offset < want) | 
 |     want = filesize - offset; | 
 |  | 
 |   const unsigned char* p = input_file->file().get_view(offset, 0, want, | 
 | 						       true, false); | 
 |   *start = p; | 
 |   *read_size = want; | 
 |  | 
 |   return elfcpp::Elf_recognizer::is_elf_file(p, want); | 
 | } | 
 |  | 
 | // Read an ELF file and return the appropriate instance of Object. | 
 |  | 
 | Object* | 
 | make_elf_object(const std::string& name, Input_file* input_file, off_t offset, | 
 | 		const unsigned char* p, section_offset_type bytes, | 
 | 		bool* punconfigured) | 
 | { | 
 |   if (punconfigured != NULL) | 
 |     *punconfigured = false; | 
 |  | 
 |   std::string error; | 
 |   bool big_endian = false; | 
 |   int size = 0; | 
 |   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size, | 
 | 					       &big_endian, &error)) | 
 |     { | 
 |       gold_error(_("%s: %s"), name.c_str(), error.c_str()); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   if (size == 32) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | 	  elfcpp::Ehdr<32, true> ehdr(p); | 
 | 	  return make_elf_sized_object<32, true>(name, input_file, | 
 | 						 offset, ehdr, punconfigured); | 
 | #else | 
 | 	  if (punconfigured != NULL) | 
 | 	    *punconfigured = true; | 
 | 	  else | 
 | 	    gold_error(_("%s: not configured to support " | 
 | 			 "32-bit big-endian object"), | 
 | 		       name.c_str()); | 
 | 	  return NULL; | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | 	  elfcpp::Ehdr<32, false> ehdr(p); | 
 | 	  return make_elf_sized_object<32, false>(name, input_file, | 
 | 						  offset, ehdr, punconfigured); | 
 | #else | 
 | 	  if (punconfigured != NULL) | 
 | 	    *punconfigured = true; | 
 | 	  else | 
 | 	    gold_error(_("%s: not configured to support " | 
 | 			 "32-bit little-endian object"), | 
 | 		       name.c_str()); | 
 | 	  return NULL; | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else if (size == 64) | 
 |     { | 
 |       if (big_endian) | 
 | 	{ | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | 	  elfcpp::Ehdr<64, true> ehdr(p); | 
 | 	  return make_elf_sized_object<64, true>(name, input_file, | 
 | 						 offset, ehdr, punconfigured); | 
 | #else | 
 | 	  if (punconfigured != NULL) | 
 | 	    *punconfigured = true; | 
 | 	  else | 
 | 	    gold_error(_("%s: not configured to support " | 
 | 			 "64-bit big-endian object"), | 
 | 		       name.c_str()); | 
 | 	  return NULL; | 
 | #endif | 
 | 	} | 
 |       else | 
 | 	{ | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | 	  elfcpp::Ehdr<64, false> ehdr(p); | 
 | 	  return make_elf_sized_object<64, false>(name, input_file, | 
 | 						  offset, ehdr, punconfigured); | 
 | #else | 
 | 	  if (punconfigured != NULL) | 
 | 	    *punconfigured = true; | 
 | 	  else | 
 | 	    gold_error(_("%s: not configured to support " | 
 | 			 "64-bit little-endian object"), | 
 | 		       name.c_str()); | 
 | 	  return NULL; | 
 | #endif | 
 | 	} | 
 |     } | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Instantiate the templates we need. | 
 |  | 
 | #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) | 
 | template | 
 | void | 
 | Relobj::initialize_input_to_output_map<64>(unsigned int shndx, | 
 |       elfcpp::Elf_types<64>::Elf_Addr starting_address, | 
 |       Unordered_map<section_offset_type, | 
 |       elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const; | 
 | #endif | 
 |  | 
 | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) | 
 | template | 
 | void | 
 | Relobj::initialize_input_to_output_map<32>(unsigned int shndx, | 
 |       elfcpp::Elf_types<32>::Elf_Addr starting_address, | 
 |       Unordered_map<section_offset_type, | 
 |       elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | void | 
 | Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*, | 
 | 				     Read_symbols_data*); | 
 | template | 
 | const unsigned char* | 
 | Object::find_shdr<32,false>(const unsigned char*, const char*, const char*, | 
 | 			    section_size_type, const unsigned char*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | void | 
 | Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*, | 
 | 				    Read_symbols_data*); | 
 | template | 
 | const unsigned char* | 
 | Object::find_shdr<32,true>(const unsigned char*, const char*, const char*, | 
 | 			   section_size_type, const unsigned char*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | void | 
 | Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*, | 
 | 				     Read_symbols_data*); | 
 | template | 
 | const unsigned char* | 
 | Object::find_shdr<64,false>(const unsigned char*, const char*, const char*, | 
 | 			    section_size_type, const unsigned char*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | void | 
 | Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*, | 
 | 				    Read_symbols_data*); | 
 | template | 
 | const unsigned char* | 
 | Object::find_shdr<64,true>(const unsigned char*, const char*, const char*, | 
 | 			   section_size_type, const unsigned char*) const; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Sized_relobj<32, false>; | 
 |  | 
 | template | 
 | class Sized_relobj_file<32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Sized_relobj<32, true>; | 
 |  | 
 | template | 
 | class Sized_relobj_file<32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Sized_relobj<64, false>; | 
 |  | 
 | template | 
 | class Sized_relobj_file<64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Sized_relobj<64, true>; | 
 |  | 
 | template | 
 | class Sized_relobj_file<64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | struct Relocate_info<32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | struct Relocate_info<32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | struct Relocate_info<64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | struct Relocate_info<64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | void | 
 | Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int); | 
 |  | 
 | template | 
 | void | 
 | Xindex::read_symtab_xindex<32, false>(Object*, unsigned int, | 
 | 				      const unsigned char*); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | void | 
 | Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int); | 
 |  | 
 | template | 
 | void | 
 | Xindex::read_symtab_xindex<32, true>(Object*, unsigned int, | 
 | 				     const unsigned char*); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | void | 
 | Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int); | 
 |  | 
 | template | 
 | void | 
 | Xindex::read_symtab_xindex<64, false>(Object*, unsigned int, | 
 | 				      const unsigned char*); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | void | 
 | Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int); | 
 |  | 
 | template | 
 | void | 
 | Xindex::read_symtab_xindex<64, true>(Object*, unsigned int, | 
 | 				     const unsigned char*); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | Compressed_section_map* | 
 | build_compressed_section_map<32, false>(const unsigned char*, unsigned int, | 
 | 					const char*, section_size_type,  | 
 | 					Object*, bool); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | Compressed_section_map* | 
 | build_compressed_section_map<32, true>(const unsigned char*, unsigned int, | 
 | 					const char*, section_size_type,  | 
 | 					Object*, bool); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | Compressed_section_map* | 
 | build_compressed_section_map<64, false>(const unsigned char*, unsigned int, | 
 | 					const char*, section_size_type,  | 
 | 					Object*, bool); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | Compressed_section_map* | 
 | build_compressed_section_map<64, true>(const unsigned char*, unsigned int, | 
 | 					const char*, section_size_type,  | 
 | 					Object*, bool); | 
 | #endif | 
 |  | 
 | } // End namespace gold. |