blob: a79b133fa4f721c8beffb81bbc1e1c58cad0a5d0 [file] [log] [blame]
# Copyright 1999-2024 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This file was based on a file written by Fred Fish. (fnf@cygnus.com)
# Test setup routines that work with the MI interpreter.
load_lib gdb-utils.exp
# The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt.
# Set it if it is not already set.
global mi_gdb_prompt
if {![info exists mi_gdb_prompt]} {
set mi_gdb_prompt "\[(\]gdb\[)\] \r\n"
}
global mi_inferior_tty_name
# Always points to GDB's main UI spawn ID, even when testing with MI
# running on a secondary UI.
global gdb_main_spawn_id
# Points to the spawn id of the MI channel. When testing with MI
# running as the primary/main UI, this is the same as
# gdb_main_spawn_id, but will be different when testing with MI
# running on a secondary UI.
global mi_spawn_id
set MIFLAGS "-i=mi"
set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n"
set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?"
set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?"
set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n"
#
# mi_gdb_exit -- exit the GDB, killing the target program if necessary
#
proc mi_gdb_exit {} {
catch mi_uncatched_gdb_exit
}
proc mi_uncatched_gdb_exit {} {
global GDB
global INTERNAL_GDBFLAGS GDBFLAGS
global gdb_spawn_id gdb_main_spawn_id
global mi_spawn_id inferior_spawn_id
global gdb_prompt
global mi_gdb_prompt
global MIFLAGS
if { [info procs sid_exit] != "" } {
sid_exit
}
if ![info exists gdb_spawn_id] {
return
}
verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
if { [is_remote host] && [board_info host exists fileid] } {
send_gdb "999-gdb-exit\n"
gdb_expect 10 {
-re "y or n" {
send_gdb "y\n"
exp_continue
}
-re "Undefined command.*$gdb_prompt $" {
send_gdb "quit\n"
exp_continue
}
-re "DOSEXIT code" { }
-re "\r\n999\\^exit\r\n" { }
}
}
# Switch back to the main spawn id, so that remote_close below
# closes it, and not a secondary channel. Closing a secondary
# channel does not make GDB exit.
if {$gdb_spawn_id != $gdb_main_spawn_id} {
switch_gdb_spawn_id $gdb_main_spawn_id
}
# Close secondary MI channel, if there's one.
if {$mi_spawn_id != $gdb_main_spawn_id} {
close -i $mi_spawn_id
}
if ![is_remote host] {
remote_close host
}
unset gdb_spawn_id
unset gdb_main_spawn_id
unset mi_spawn_id
unset inferior_spawn_id
}
# Create the PTY for the inferior process and tell GDB about it.
proc mi_create_inferior_pty {} {
global mi_gdb_prompt
global inferior_spawn_id
global mi_inferior_tty_name
spawn -pty
set inferior_spawn_id $spawn_id
set tty_name $spawn_out(slave,name)
set mi_inferior_tty_name $tty_name
send_gdb "102-inferior-tty-set $tty_name\n"
gdb_expect 10 {
-re ".*102\\\^done\r\n$mi_gdb_prompt$" {
verbose "redirect inferior output to new terminal device."
}
timeout {
warning "Couldn't redirect inferior output." 2
}
}
}
# Create a new pty, and reate a new MI UI (using the new-ui command) on it.
#
# Return a list with the spawn id for that pty and the pty file name.
proc create_mi_ui {} {
spawn -pty
set tty_name $spawn_out(slave,name)
gdb_test_multiple "new-ui mi $tty_name" "new-ui" {
-re "New UI allocated\r\n$::gdb_prompt $" {
}
}
return [list $spawn_id $tty_name]
}
#
# Like default_mi_gdb_start below, but the MI is created as a separate
# ui in a new tty. The global MI_SPAWN_ID is updated to point at the
# new tty created for the MI interface. The global GDB_MAIN_SPAWN_ID
# is updated to the current value of the global GDB_SPAWN_ID.
#
proc mi_gdb_start_separate_mi_tty { { flags {} } } {
global gdb_prompt mi_gdb_prompt
global timeout
global gdb_spawn_id gdb_main_spawn_id mi_spawn_id
global inferior_spawn_id
set separate_inferior_pty 0
foreach flag $flags {
if {$flag == "separate-inferior-tty"} {
set separate_inferior_pty 1
}
}
gdb_start
# Create the new PTY for the MI UI.
lassign [create_mi_ui] mi_spawn_id mi_tty_name
# Switch to the MI channel.
set gdb_main_spawn_id $gdb_spawn_id
switch_gdb_spawn_id $mi_spawn_id
# Consume pending output and MI prompt.
gdb_expect {
-re "$mi_gdb_prompt$" {
}
default {
perror "MI channel failed"
remote_close host
return -1
}
}
if {$separate_inferior_pty} {
mi_create_inferior_pty
}
mi_detect_async
return 0
}
#
# default_mi_gdb_start [FLAGS] -- start gdb running, default procedure
#
# FLAGS is a list of flags, each flag is a string.
#
# If "separate-inferior-tty" is specified, the inferior works with
# its own PTY.
#
# If "separate-mi-tty" is specified, the gdb starts in CLI mode, with
# MI running on a secondary UI, on its own tty.
#
# When running over NFS, particularly if running many simultaneous
# tests on different hosts all using the same server, things can
# get really slow. Give gdb at least 3 minutes to start up.
#
proc default_mi_gdb_start { { flags {} } } {
global use_gdb_stub
global GDB
global INTERNAL_GDBFLAGS GDBFLAGS
global gdb_prompt
global mi_gdb_prompt
global timeout
global gdb_spawn_id gdb_main_spawn_id inferior_spawn_id mi_spawn_id
global MIFLAGS
global FORCE_SEPARATE_MI_TTY
# Keep track of the number of times GDB has been launched.
global gdb_instances
incr gdb_instances
gdb_stdin_log_init
if {[info exists FORCE_SEPARATE_MI_TTY]} {
set separate_mi_pty $FORCE_SEPARATE_MI_TTY
} else {
set separate_mi_pty 0
}
set separate_inferior_pty 0
foreach flag $flags {
if {$flag == "separate-mi-tty"} {
set separate_mi_pty 1
} elseif {$flag == "separate-inferior-tty"} {
set separate_inferior_pty 1
}
}
if {$separate_mi_pty} {
return [mi_gdb_start_separate_mi_tty $flags]
}
# Set the default value, it may be overriden later by specific testfile.
set use_gdb_stub [target_info exists use_gdb_stub]
# Start SID.
if { [info procs sid_start] != "" } {
verbose "Spawning SID"
sid_start
}
if [info exists gdb_spawn_id] {
return 0
}
save_vars { GDBFLAGS } {
append GDBFLAGS " $MIFLAGS"
set res [gdb_spawn]
if { $res != 0} {
return $res
}
}
gdb_expect {
-re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" {
# We have a new format mi startup prompt.
verbose "GDB initialized."
}
-re "^(=\[^\r\n\]*\r\n)*$mi_gdb_prompt$" {
# Output with -q.
verbose "GDB initialized."
}
-re ".*unrecognized option.*for a complete list of options." {
untested "skip mi tests (not compiled with mi support)."
remote_close host
unset gdb_spawn_id
return -1
}
-re ".*Interpreter `mi' unrecognized." {
untested "skip mi tests (not compiled with mi support)."
remote_close host
unset gdb_spawn_id
return -1
}
timeout {
perror "(timeout) GDB never initialized after 10 seconds."
remote_close host
unset gdb_spawn_id
return -1
}
}
set gdb_main_spawn_id $gdb_spawn_id
set mi_spawn_id $gdb_spawn_id
# FIXME: mi output does not go through pagers, so these can be removed.
# force the height to "unlimited", so no pagers get used
send_gdb "100-gdb-set height 0\n"
gdb_expect 10 {
-re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" {
verbose "Setting height to 0." 2
}
timeout {
warning "Couldn't set the height to 0"
}
}
# force the width to "unlimited", so no wraparound occurs
send_gdb "101-gdb-set width 0\n"
gdb_expect 10 {
-re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" {
verbose "Setting width to 0." 2
}
timeout {
warning "Couldn't set the width to 0."
}
}
if { $separate_inferior_pty } {
mi_create_inferior_pty
}
if {![info exists inferior_spawn_id]} {
set inferior_spawn_id $gdb_spawn_id
}
mi_detect_async
return 0
}
#
# Overridable function. You can override this function in your
# baseboard file.
#
proc mi_gdb_start { args } {
return [eval default_mi_gdb_start $args]
}
# Many of the tests depend on setting breakpoints at various places and
# running until that breakpoint is reached. At times, we want to start
# with a clean-slate with respect to breakpoints, so this utility proc
# lets us do this without duplicating this code everywhere.
#
proc mi_delete_breakpoints {} {
global mi_gdb_prompt
# FIXME: The mi operation won't accept a prompt back and will use the 'all' arg
send_gdb "102-break-delete\n"
gdb_expect 30 {
-re "Delete all breakpoints, watchpoints, tracepoints, and catchpoints.*y or n.*$" {
send_gdb "y\n"
exp_continue
}
-re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" {
# This happens if there were no breakpoints
}
timeout { perror "Delete all breakpoints, watchpoints, tracepoints, and catchpoints in mi_delete_breakpoints (timeout)" ; return }
}
# The correct output is not "No breakpoints, watchpoints, tracepoints, or catchpoints." but an
# empty BreakpointTable. Also, a query is not acceptable with mi.
send_gdb "103-break-list\n"
gdb_expect 30 {
-re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {}
-re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {}
-re "103-break-list\r\n103\\\^doneNo breakpoints, watchpoints, tracepoints, or catchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"}
-re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return }
-re "Delete all breakpoints, watchpoints, tracepoints, and catchpoints.*or n.*$" {
warning "Unexpected prompt for breakpoints deletion"
send_gdb "y\n"
exp_continue
}
timeout { perror "-break-list (timeout)" ; return }
}
}
proc mi_gdb_reinitialize_dir { subdir } {
global mi_gdb_prompt
global MIFLAGS
if [is_remote host] {
return ""
}
send_gdb "104-environment-directory -r\n"
gdb_expect 60 {
-re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {}
-re "$mi_gdb_prompt$" {}
timeout {error "Dir reinitialization failed (timeout)"}
}
send_gdb "105-environment-directory $subdir\n"
gdb_expect 60 {
-re "Source directories searched.*$mi_gdb_prompt$" {
verbose "Dir set to $subdir"
}
-re "105\\\^done.*\r\n$mi_gdb_prompt$" {
# FIXME: We return just the prompt for now.
verbose "Dir set to $subdir"
# perror "Dir \"$subdir\" failed."
}
}
}
# Send GDB the "target" command.
# FIXME: Some of these patterns are not appropriate for MI. Based on
# config/monitor.exp:gdb_target_command.
proc mi_gdb_target_cmd { targetname serialport } {
global mi_gdb_prompt
set serialport_re [string_to_regexp $serialport]
for {set i 1} {$i <= 3} {incr i} {
send_gdb "47-target-select $targetname $serialport\n"
gdb_expect 60 {
-re "47\\^connected.*$mi_gdb_prompt" {
verbose "Set target to $targetname"
return 0
}
-re "unknown host.*$mi_gdb_prompt" {
verbose "Couldn't look up $serialport"
}
-re "Couldn't establish connection to remote.*$mi_gdb_prompt$" {
verbose "Connection failed"
}
-re "Remote MIPS debugging.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Remote target $targetname connected to.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Connected to.*$mi_gdb_prompt$" {
verbose "Set target to $targetname"
return 0
}
-re "Ending remote.*$mi_gdb_prompt$" { }
-re "Connection refused.*$mi_gdb_prompt$" {
verbose "Connection refused by remote target. Pausing, and trying again."
sleep 5
continue
}
-re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" {
unsupported "non-stop mode not supported"
return 1
}
-re "Timeout reading from remote system.*$mi_gdb_prompt$" {
verbose "Got timeout error from gdb."
}
timeout {
send_gdb ""
break
}
}
}
return 1
}
#
# load a file into the debugger (file command only).
# return a -1 if anything goes wrong.
#
proc mi_gdb_file_cmd { arg } {
global loadpath
global loadfile
global GDB
global mi_gdb_prompt
global last_loaded_file
upvar timeout timeout
# GCC for Windows target may create foo.exe given "-o foo".
if { ![file exists $arg] && [file exists "$arg.exe"] } {
set arg "$arg.exe"
}
set last_loaded_file $arg
if [is_remote host] {
set arg [remote_download host $arg]
if { $arg == "" } {
error "download failed"
return -1
}
}
# FIXME: Several of these patterns are only acceptable for console
# output. Queries are an error for mi.
send_gdb "105-file-exec-and-symbols $arg\n"
gdb_expect 120 {
-re "Reading symbols from.*$mi_gdb_prompt$" {
verbose "\t\tLoaded $arg into the $GDB"
return 0
}
-re "has no symbol-table.*$mi_gdb_prompt$" {
perror "$arg wasn't compiled with \"-g\""
return -1
}
-re "Load new symbol table from \".*\".*y or n. $" {
send_gdb "y\n"
gdb_expect 120 {
-re "Reading symbols from.*$mi_gdb_prompt$" {
verbose "\t\tLoaded $arg with new symbol table into $GDB"
# All OK
}
timeout {
perror "(timeout) Couldn't load $arg, other program already loaded."
return -1
}
}
}
-re "No such file or directory.*$mi_gdb_prompt$" {
perror "($arg) No such file or directory\n"
return -1
}
-re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" {
# We (MI) are just giving the prompt back for now, instead of giving
# some acknowledgement.
return 0
}
timeout {
perror "couldn't load $arg into $GDB (timed out)."
return -1
}
eof {
# This is an attempt to detect a core dump, but seems not to
# work. Perhaps we need to match .* followed by eof, in which
# gdb_expect does not seem to have a way to do that.
perror "couldn't load $arg into $GDB (end of file)."
return -1
}
}
}
#
# connect to the target and download a file, if necessary.
# return a -1 if anything goes wrong.
#
proc mi_gdb_target_load { } {
global loadpath
global loadfile
global GDB
global mi_gdb_prompt
if [target_info exists gdb_load_timeout] {
set loadtimeout [target_info gdb_load_timeout]
} else {
set loadtimeout 1600
}
if { [info procs gdbserver_gdb_load] != "" } {
mi_gdb_test "kill" ".*" ""
if { [catch gdbserver_gdb_load res] == 1 } {
perror $res
return -1
}
set protocol [lindex $res 0]
set gdbport [lindex $res 1]
if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } {
return -1
}
} elseif { [info procs send_target_sid] != "" } {
# For SID, things get complex
send_gdb "kill\n"
gdb_expect 10 {
-re ".*$mi_gdb_prompt$"
}
send_target_sid
gdb_expect $loadtimeout {
-re "\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to connect to SID target (timeout)"
return -1
}
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to SID target (timeout)"
return -1
}
}
} elseif { [target_info protocol] == "sim" } {
set target_sim_options "[board_info target gdb,target_sim_options]"
# For the simulator, just connect to it directly.
send_gdb "47-target-select sim $target_sim_options\n"
gdb_expect $loadtimeout {
-re "47\\^connected.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to select sim target (timeout)"
return -1
}
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to sim target (timeout)"
return -1
}
}
} elseif { [target_info gdb_protocol] == "remote" } {
# remote targets
if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } {
perror "Unable to connect to remote target"
return -1
}
send_gdb "48-target-download\n"
gdb_expect $loadtimeout {
-re "48\\^done.*$mi_gdb_prompt$" {
}
timeout {
perror "Unable to download to remote target (timeout)"
return -1
}
}
}
return 0
}
#
# load a file into the debugger.
# return a -1 if anything goes wrong.
#
proc mi_gdb_load { arg } {
if { $arg != "" } {
return [mi_gdb_file_cmd $arg]
}
return 0
}
# Return true if symbols were read in using -readnow. Otherwise,
# return false.
proc mi_readnow { args } {
# Just defer to gdb.exp.
return [readnow]
}
# mi_gdb_test COMMAND [PATTERN [MESSAGE [IPATTERN]]] -- send a command to gdb;
# test the result.
#
# COMMAND is the command to execute, send to GDB with send_gdb. If
# this is the null string no command is sent.
# PATTERN is the pattern to match for a PASS, and must NOT include
# the \r\n sequence immediately before the gdb prompt.
# If not specified, .* is used.
# MESSAGE is the message to be printed. (If this is the empty string,
# then sometimes we don't call pass or fail at all; I don't
# understand this at all.)
# If not specified, COMMAND is used.
# IPATTERN is the pattern to match for the inferior's output. This parameter
# is optional. If present, it will produce a PASS if the match is
# successful, and a FAIL if unsuccessful.
#
# Returns:
# 1 if the test failed,
# 0 if the test passes,
# -1 if there was an internal error.
#
proc mi_gdb_test { args } {
global verbose
global mi_gdb_prompt
global GDB expect_out
global inferior_exited_re async
upvar timeout timeout
if {[llength $args] >= 1} {
set command [lindex $args 0]
} else {
error "Not enough arguments in mi_gdb_test"
}
if {[llength $args] >= 2} {
set pattern [lindex $args 1]
} else {
set pattern ".*"
}
if {[llength $args] >= 3} {
set message [lindex $args 2]
} else {
set message $command
}
if [llength $args]==4 {
set ipattern [lindex $args 3]
}
if [llength $args]==5 {
set question_string [lindex $args 3]
set response_string [lindex $args 4]
} else {
set question_string "^FOOBAR$"
}
if { [llength $args] >= 6 } {
error "Too many arguments in mi_gdb_test"
}
if {$verbose > 2} {
send_user "Sending \"$command\" to gdb\n"
send_user "Looking to match \"$pattern\"\n"
send_user "Message is \"$message\"\n"
}
set result -1
set string "${command}\n"
set string_regex [string_to_regexp $command]
if { $command != "" } {
while { "$string" != "" } {
set foo [string first "\n" "$string"]
set len [string length "$string"]
if { $foo < [expr $len - 1] } {
set str [string range "$string" 0 $foo]
if { [send_gdb "$str"] != "" } {
perror "Couldn't send $command to GDB."
}
gdb_expect 2 {
-re "\[\r\n\]" { }
timeout { }
}
set string [string range "$string" [expr $foo + 1] end]
} else {
break
}
}
if { "$string" != "" } {
if { [send_gdb "$string"] != "" } {
perror "Couldn't send $command to GDB."
}
}
}
if [info exists timeout] {
set tmt $timeout
} else {
global timeout
if [info exists timeout] {
set tmt $timeout
} else {
set tmt 60
}
}
if {$async} {
# With $prompt_re "" there may come arbitrary asynchronous response
# from the previous command, before or after $string_regex.
set string_regex ".*"
}
verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)"
gdb_expect $tmt {
-re "\\*\\*\\* DOSEXIT code.*" {
if { $message != "" } {
fail "$message"
}
return -1
}
-re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" {
if {![isnative]} {
warning "Can`t communicate to remote target."
}
gdb_exit
gdb_start
set result -1
}
-re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" {
# At this point, $expect_out(1,string) is the MI input command.
# and $expect_out(2,string) is the MI output command.
# If $expect_out(1,string) is "", then there was no MI input command here.
# NOTE, there is no trailing anchor because with GDB/MI,
# asynchronous responses can happen at any point, causing more
# data to be available. Normally an anchor is used to make
# sure the end of the output is matched, however, $mi_gdb_prompt
# is just as good of an anchor since mi_gdb_test is meant to
# match a single mi output command. If a second GDB/MI output
# response is sent, it will be in the buffer for the next
# time mi_gdb_test is called.
if {![string match "" $message]} {
pass "$message"
}
set result 0
}
-re "(${question_string})$" {
send_gdb "$response_string\n"
exp_continue
}
-re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" {
perror "Undefined command \"$command\"."
fail "$message"
set result 1
}
-re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" {
perror "\"$command\" is not a unique command name."
fail "$message"
set result 1
}
-re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" {
if {![string match "" $message]} {
set errmsg "$message (the program exited)"
} else {
set errmsg "$command (the program exited)"
}
fail "$errmsg"
return -1
}
-re "The program is not being run.*$mi_gdb_prompt\[ \]*$" {
if {![string match "" $message]} {
set errmsg "$message (the program is no longer running)"
} else {
set errmsg "$command (the program is no longer running)"
}
fail "$errmsg"
return -1
}
-re "(.*$mi_gdb_prompt\[ \]*)$" {
if {![string match "" $message]} {
fail "$message (unexpected output)"
}
set result 1
}
"<return>" {
send_gdb "\n"
perror "Window too small."
fail "$message"
}
eof {
perror "Process no longer exists"
if { $message != "" } {
fail "$message"
}
return -1
}
full_buffer {
perror "internal buffer is full."
fail "$message"
}
timeout {
if {![string match "" $message]} {
fail "$message (timeout)"
}
set result 1
}
}
# If the GDB output matched, compare the inferior output.
if { $result == 0 } {
if [ info exists ipattern ] {
if { ![target_info exists gdb,noinferiorio] } {
global gdb_spawn_id inferior_spawn_id
set sid "$inferior_spawn_id $gdb_spawn_id"
gdb_expect {
-i "$sid" -re "$ipattern" {
pass "$message inferior output"
}
timeout {
fail "$message inferior output (timeout)"
set result 1
}
}
} else {
unsupported "$message inferior output"
}
}
}
return $result
}
# Collect output sent to the console output stream until UNTIL is
# seen. UNTIL is a regular expression. MESSAGE is the message to be
# printed in case of timeout.
proc mi_gdb_expect_cli_output {until message} {
set output ""
gdb_expect {
-re "~\"(\[^\r\n\]+)\"\r\n" {
append output $expect_out(1,string)
exp_continue
}
-notransfer -re "$until" {
# Done
}
timeout {
fail "$message (timeout)"
return ""
}
}
return $output
}
#
# MI run command. (A modified version of gdb_run_cmd)
#
# In patterns, the newline sequence ``\r\n'' is matched explicitly as
# ``.*$'' could swallow up output that we attempt to match elsewhere.
# Send the command to run the test program.
#
# If USE_MI_COMMAND is true, the "-exec-run" command is used.
# Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is
# true, -exec-continue and continue are used instead of their run counterparts.
#
# ARGS is passed as argument to the command used to run the test program.
# Beware that arguments to "-exec-run" do not have the same semantics as
# arguments to the "run" command, so USE_MI_COMMAND influences the meaning
# of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run.
# If USE_MI_COMMAND is false, they are effectively arguments passed
# to the test program. If the global USE_GDB_STUB is true, ARGS is not used.
proc mi_run_cmd_full {use_mi_command args} {
global mi_gdb_prompt use_gdb_stub
global thread_selected_re
global library_loaded_re
if {$use_mi_command} {
set run_prefix "220-exec-"
set run_match "220"
} else {
set run_prefix ""
set run_match ""
}
foreach command [gdb_init_commands] {
send_gdb "$command\n"
gdb_expect 30 {
-re "$mi_gdb_prompt$" { }
default {
unresolved "gdb_init_command for target failed"
return -1
}
}
}
if { [mi_gdb_target_load] < 0 } {
return -1
}
if $use_gdb_stub {
if [target_info exists gdb,do_reload_on_run] {
send_gdb "${run_prefix}continue\n"
gdb_expect 60 {
-re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {}
-re "${run_match}\\^error.*$mi_gdb_prompt" {return -1}
default {}
}
return 0
}
if [target_info exists gdb,start_symbol] {
set start [target_info gdb,start_symbol]
} else {
set start "start"
}
# HACK: Should either use 000-jump or fix the target code
# to better handle RUN.
send_gdb "jump *$start\n"
warning "Using CLI jump command, expect run-to-main FAIL"
gdb_expect {
-re "&\"jump \\*${start}\\\\n\"\[\r\n\]+~\"Continuing at 0x\[0-9A-Fa-f\]+\.\\\\n\"\[\r\n\]+\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\[\r\n\]+${mi_gdb_prompt}" {}
timeout {
unresolved "unable to start target"
return -1
}
}
return 0
}
send_gdb "${run_prefix}run $args\n"
gdb_expect {
-re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" {
}
-re "\\^error,msg=\"The target does not support running in non-stop mode.\"" {
unsupported "non-stop mode not supported"
return -1
}
timeout {
unresolved "unable to start target"
return -1
}
}
# NOTE: Shortly after this there will be a ``000*stopped,...(gdb)''
return 0
}
# A wrapper for mi_run_cmd_full which uses -exec-run and
# -exec-continue, as appropriate. ARGS are passed verbatim to
# mi_run_cmd_full.
proc mi_run_cmd {args} {
return [eval mi_run_cmd_full 1 $args]
}
# A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and
# 'continue', as appropriate. ARGS are passed verbatim to
# mi_run_cmd_full.
proc mi_run_with_cli {args} {
return [eval mi_run_cmd_full 0 $args]
}
# Starts fresh GDB binary and loads an optional executable into GDB.
# Usage: mi_clean_restart [EXECUTABLE]
# EXECUTABLE is the basename of the binary.
# Return -1 if starting gdb or loading the executable failed.
proc mi_clean_restart {{executable ""} {flags {}}} {
global srcdir
global subdir
global errcnt
global warncnt
gdb_exit
# This is a clean restart, so reset error and warning count.
set errcnt 0
set warncnt 0
if {[mi_gdb_start $flags]} {
return -1
}
mi_gdb_reinitialize_dir $srcdir/$subdir
if {$executable != ""} {
set binfile [standard_output_file ${executable}]
return [mi_gdb_load ${binfile}]
}
return 0
}
# Just like gdb's "runto" proc, it will run the target to a given
# function. The big difference here between mi_runto and mi_execute_to
# is that mi_execute_to must have the inferior running already. This
# proc will (like gdb's runto) (re)start the inferior, too.
#
# FUNC is the linespec of the place to stop (it inserts a breakpoint here).
# It returns:
# -1 if failed, timedout
# 0 if test passed
#
# Supported options:
#
# -qualified -- pass --qualified to -break-insert
# -pending -- pass -f to -break-insert to create a pending
# breakpoint.
proc mi_runto_helper {func run_or_continue args} {
global mi_gdb_prompt expect_out
global hex decimal fullname_syntax
parse_args {{qualified} {pending}}
set test "mi runto $func"
if {$pending} {
set bp [mi_make_breakpoint_pending -type breakpoint -disp del]
} else {
set bp [mi_make_breakpoint -type breakpoint -disp del \
-func $func\(\\\(.*\\\)\)?]
}
set extra_opts ""
set extra_output ""
if {$qualified} {
lappend extra_opts "--qualified"
}
if {$pending} {
lappend extra_opts "-f"
# MI prints "Function FUNC not defined", "No line NNN in current
# file.", etc. to the CLI stream.
set extra_output "&\"\[^\r\n\]+\"\r\n"
}
mi_gdb_test "200-break-insert [join $extra_opts " "] -t $func" "${extra_output}200\\^done,$bp" \
"breakpoint at $func"
if {$run_or_continue == "run"} {
if { [mi_run_cmd] < 0 } {
return -1
}
} else {
mi_send_resuming_command "exec-continue" "$test"
}
mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test
}
proc mi_runto {func args} {
return [mi_runto_helper $func "run" {*}$args]
}
# Just like runto_main but works with the MI interface.
proc mi_runto_main {} {
return [mi_runto_helper "main" "run" -qualified]
}
# Next to the next statement
# For return values, see mi_execute_to_helper
proc mi_next { test } {
return [mi_next_to {.*} {.*} {.*} {.*} $test]
}
# Step to the next statement
# For return values, see mi_execute_to_helper
proc mi_step { test } {
return [mi_step_to {.*} {.*} {.*} {.*} $test]
}
set async "unknown"
proc mi_detect_async {} {
global async
global mi_gdb_prompt
send_gdb "show mi-async\n"
gdb_expect {
-re "asynchronous mode is on...*$mi_gdb_prompt$" {
set async 1
}
-re ".*$mi_gdb_prompt$" {
set async 0
}
timeout {
set async 0
}
}
return $async
}
# Wait for MI *stopped notification to appear.
# The REASON, FUNC, ARGS, FILE and LINE are regular expressions
# to match against whatever is output in *stopped. FILE may also match
# filename of a file without debug info. ARGS should not include [] the
# list of argument is enclosed in, and other regular expressions should
# not include quotes.
# EXTRA can be a list of one, two or three elements.
# The first element is the regular expression
# for output expected right after *stopped, and before GDB prompt.
# The third element is the regular expression for the locno
# right after bkptno field. The locno regex should not include
# the comma separating it from the following fields.
#
# When we fail to match output at all, -1 is returned. If FILE does
# match and the target system has no debug info for FILE return 0.
# Otherwise, the line at which we stop is returned. This is useful when
# exact line is not possible to specify for some reason -- one can pass
# the .* or "\[0-9\]*" regexps for line, and then check the line
# programmatically.
#
# Do not pass .* for any argument if you are expecting more than one stop.
proc mi_expect_stop { reason func args file line extra test } {
global mi_gdb_prompt
global hex
global decimal
global fullname_syntax
global async
global thread_selected_re
global breakpoint_re
set any "\[^\n\]*"
set after_stopped ""
set after_reason ""
set locno ""
if { [llength $extra] == 3 } {
set after_stopped [lindex $extra 0]
set after_reason [lindex $extra 1]
set after_reason "${after_reason},"
set locno [lindex $extra 2]
set locno "${locno},"
} elseif { [llength $extra] == 2 } {
set after_stopped [lindex $extra 0]
set after_reason [lindex $extra 1]
set after_reason "${after_reason},"
} elseif { [llength $extra] == 1 } {
set after_stopped [lindex $extra 0]
}
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt$"
}
if { $reason == "really-no-reason" } {
gdb_expect {
-re "\\*stopped\r\n$prompt_re" {
pass "$test"
}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "exited-normally" } {
gdb_expect {
-re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" {
pass "$test"
}
-re ".*$mi_gdb_prompt$" {fail "continue to end (2)"}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "exited" } {
gdb_expect {
-re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" {
pass "$test"
}
-re ".*$mi_gdb_prompt$" {
fail "$test (inferior not stopped)"
}
timeout {
fail "$test (timeout)"
}
}
return
}
if { $reason == "solib-event" } {
set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
verbose -log "mi_expect_stop: expecting: $pattern"
gdb_expect {
-re "$pattern" {
pass "$test"
}
timeout {
fail "$test (timeout)"
}
}
return
}
set args "\\\[$args\\\]"
set bn ""
set ebn ""
if { $reason == "breakpoint-hit" } {
set bn {bkptno="[0-9]+",}
set bn "${bn}${locno}"
} elseif { $reason == "solib-event" } {
set bn ".*"
} elseif { $reason == "exception-caught" } {
set ebn {bkptno="[0-9]+",}
set ebn "${ebn}${locno}"
set bn ".*"
set reason "breakpoint-hit"
}
set r ""
if { $reason != "" } {
if { [regexp "\"" $reason] } {
set r "reason=$reason,"
} else {
set r "reason=\"$reason\","
}
}
set a $after_reason
verbose -log "mi_expect_stop: expecting: \\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
gdb_expect {
-re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
pass "$test"
if {[array names expect_out "2,string"] != ""} {
return $expect_out(2,string)
}
# No debug info available but $file does match.
return 0
}
-re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\",arch=\"$any\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
verbose -log "got $expect_out(buffer)"
fail "$test (stopped at wrong place)"
return -1
}
-re ".*\r\n$mi_gdb_prompt$" {
verbose -log "got $expect_out(buffer)"
fail "$test (unknown output after running)"
return -1
}
timeout {
fail "$test (timeout)"
return -1
}
}
}
# Wait for MI *stopped notification related to an interrupt request to
# appear.
proc mi_expect_interrupt { test } {
global mi_gdb_prompt
global decimal
global async
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt"
}
set r_nonstop "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\""
set r_allstop "reason=\"signal-received\",signal-name=\"SIGINT\",signal-meaning=\"Interrupt\""
set r "(${r_nonstop}|${r_allstop})"
set any "\[^\n\]*"
# A signal can land anywhere, just ignore the location
verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re"
gdb_expect {
-re "\\*stopped,${r}$any\r\n$prompt_re" {
pass "$test"
return 0
}
-re ".*\r\n$mi_gdb_prompt" {
verbose -log "got $expect_out(buffer)"
fail "$test (unknown output after running)"
return -1
}
timeout {
fail "$test (timeout)"
return -1
}
}
}
# cmd should not include the number or newline (i.e. "exec-step 3", not
# "220-exec-step 3\n"
# Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives
# after the first prompt is printed.
proc mi_execute_to { cmd reason func args file line extra test } {
mi_send_resuming_command "$cmd" "$test"
set r [mi_expect_stop $reason $func $args $file $line $extra $test]
return $r
}
proc mi_next_to { func args file line test } {
mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi_step_to { func args file line test } {
mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
"$file" "$line" "" "$test"
}
proc mi_finish_to { func args file line result ret test } {
mi_execute_to "exec-finish" "function-finished" "$func" "$args" \
"$file" "$line" \
",gdb-result-var=\"$result\",return-value=\"$ret\"" \
"$test"
}
proc mi_continue_to {func} {
mi_runto_helper $func "continue"
}
# Creates a breakpoint and checks the reported fields are as expected.
# This procedure takes the same options as mi_make_breakpoint and
# returns the breakpoint regexp from that procedure.
proc mi_create_breakpoint {location test args} {
set bp [eval mi_make_breakpoint $args]
mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
return $bp
}
# Like mi_create_breakpoint, but creates a breakpoint with multiple
# locations using mi_make_breakpoint_multi instead.
proc mi_create_breakpoint_multi {location test args} {
set bp [eval mi_make_breakpoint_multi $args]
mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
return $bp
}
# Like mi_create_breakpoint, but creates a pending breakpoint.
proc mi_create_breakpoint_pending {location test args} {
set bp [eval mi_make_breakpoint_pending $args]
mi_gdb_test "222-break-insert $location" ".*\r\n222\\^done,$bp" $test
return $bp
}
# Creates varobj named NAME for EXPRESSION.
# Name cannot be "-".
proc mi_create_varobj { name expression testname } {
mi_gdb_test "-var-create $name * $expression" \
"\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \
$testname
}
proc mi_create_floating_varobj { name expression testname } {
mi_gdb_test "-var-create $name @ $expression" \
"\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \
$testname
}
# Same as mi_create_varobj, but also checks the reported type
# of the varobj.
proc mi_create_varobj_checked { name expression type testname } {
mi_gdb_test "-var-create $name * $expression" \
"\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \
$testname
}
# Same as mi_create_floating_varobj, but assumes the test is creating
# a dynamic varobj that has children. The "value" and "has_more"
# attributes are checked.
proc mi_create_dynamic_varobj {name expression value has_more testname} {
mi_gdb_test "-var-create $name @ $expression" \
"\\^done,name=\"$name\",numchild=\"0\",value=\"$value\",type=.*,has_more=\"${has_more}\"" \
$testname
}
# Deletes the specified NAME.
proc mi_delete_varobj { name testname } {
mi_gdb_test "-var-delete $name" \
"\\^done,ndeleted=.*" \
$testname
}
# Updates varobj named NAME and checks that all varobjs in EXPECTED
# are reported as updated, and no other varobj is updated.
# Assumes that no varobj is out of scope and that no varobj changes
# types.
proc mi_varobj_update { name expected testname } {
set er "\\^done,changelist=\\\["
set first 1
foreach item $expected {
set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}"
if {$first == 1} {
set er "$er$v"
set first 0
} else {
set er "$er,$v"
}
}
set er "$er\\\]"
verbose -log "Expecting: $er" 2
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } {
set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}"
set er "\\^done,changelist=\\\[$v\\\]"
verbose -log "Expecting: $er"
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_varobj_update_with_type_change { name new_type new_children testname } {
mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname
}
# A helper that turns a key/value list into a regular expression
# matching some MI output.
proc mi_varobj_update_kv_helper {list} {
set first 1
set rx ""
foreach {key value} $list {
if {!$first} {
append rx ,
}
set first 0
if {$key == "new_children"} {
append rx "$key=\\\[$value\\\]"
} else {
append rx "$key=\"$value\""
}
}
return $rx
}
# A helper for mi_varobj_update_dynamic that computes a match
# expression given a child list.
proc mi_varobj_update_dynamic_helper {children} {
set crx ""
set first 1
foreach child $children {
if {!$first} {
append crx ,
}
set first 0
append crx "{"
append crx [mi_varobj_update_kv_helper $child]
append crx "}"
}
return $crx
}
# Update a dynamic varobj named NAME. CHILDREN is a list of children
# that have been updated; NEW_CHILDREN is a list of children that were
# added to the primary varobj. Each child is a list of key/value
# pairs that are expected. SELF is a key/value list holding
# information about the varobj itself. TESTNAME is the name of the
# test.
proc mi_varobj_update_dynamic {name testname self children new_children} {
if {[llength $new_children]} {
set newrx [mi_varobj_update_dynamic_helper $new_children]
lappend self new_children $newrx
}
set selfrx [mi_varobj_update_kv_helper $self]
set crx [mi_varobj_update_dynamic_helper $children]
set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\""
append er ",$selfrx\}"
if {"$crx" != ""} {
append er ",$crx"
}
append er "\\\]"
verbose -log "Expecting: $er"
mi_gdb_test "-var-update $name" $er $testname
}
proc mi_check_varobj_value { name value testname } {
mi_gdb_test "-var-evaluate-expression $name" \
"\\^done,value=\"$value\"" \
$testname
}
# Helper proc which constructs a child regexp for
# mi_list_varobj_children and mi_varobj_update_dynamic.
proc mi_child_regexp {children add_child} {
set children_exp {}
if {$add_child} {
set pre "child="
} else {
set pre ""
}
foreach item $children {
set name [lindex $item 0]
set exp [lindex $item 1]
set numchild [lindex $item 2]
if {[llength $item] == 5} {
set type [lindex $item 3]
set value [lindex $item 4]
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
} elseif {[llength $item] == 4} {
set type [lindex $item 3]
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
} else {
lappend children_exp\
"$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}"
}
}
return [join $children_exp ","]
}
# Check the results of the:
#
# -var-list-children VARNAME
#
# command. The CHILDREN parement should be a list of lists.
# Each inner list can have either 3 or 4 elements, describing
# fields that gdb is expected to report for child variable object,
# in the following order
#
# - Name
# - Expression
# - Number of children
# - Type
#
# If inner list has 3 elements, the gdb is expected to output no
# type for a child and no value.
#
# If the inner list has 4 elements, gdb output is expected to
# have no value.
#
proc mi_list_varobj_children { varname children testname } {
mi_list_varobj_children_range $varname "" "" [llength $children] $children \
$testname
}
# Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is
# the total number of children.
proc mi_list_varobj_children_range {varname from to numchildren children testname} {
set options ""
if {[llength $varname] == 2} {
set options [lindex $varname 1]
set varname [lindex $varname 0]
}
set children_exp_j [mi_child_regexp $children 1]
if {$numchildren} {
set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]"
} {
set expected "\\^done,numchild=\"0\""
}
if {"$to" == ""} {
append expected ",has_more=\"0\""
} elseif {$to >= 0 && $numchildren > $to} {
append expected ",has_more=\"1\""
} else {
append expected ",has_more=\"0\""
}
verbose -log "Expecting: $expected"
mi_gdb_test "-var-list-children $options $varname $from $to" \
$expected $testname
}
# Verifies that variable object VARNAME has NUMBER children,
# where each one is named $VARNAME.<index-of-child> and has type TYPE.
proc mi_list_array_varobj_children { varname number type testname } {
mi_list_array_varobj_children_with_index $varname $number 0 $type $testname
}
# Same as mi_list_array_varobj_children, but allowing to pass a start index
# for an array.
proc mi_list_array_varobj_children_with_index { varname number start_index \
type testname } {
set t {}
set index $start_index
for {set i 0} {$i < $number} {incr i} {
lappend t [list $varname.$index $index 0 $type]
incr index
}
mi_list_varobj_children $varname $t $testname
}
# A list of two-element lists. First element of each list is
# a Tcl statement, and the second element is the line
# number of source C file where the statement originates.
set mi_autotest_data ""
# The name of the source file for autotesting.
set mi_autotest_source ""
# Prepares for running inline tests in FILENAME.
# See comments for mi_run_inline_test for detailed
# explanation of the idea and syntax.
proc mi_prepare_inline_tests { filename } {
global srcdir
global subdir
global mi_autotest_source
global mi_autotest_data
set mi_autotest_data {}
set mi_autotest_source $filename
if {![regexp "^/" "$filename"]} {
set filename "$srcdir/$subdir/$filename"
}
set chan [open $filename]
set content [read $chan]
set line_number 1
while {1} {
set start [string first "/*:" $content]
if {$start != -1} {
set end [string first ":*/" $content]
if {$end == -1} {
error "Unterminated special comment in $filename"
}
set prefix [string range $content 0 $start]
set prefix_newlines [count_newlines $prefix]
set line_number [expr $line_number+$prefix_newlines]
set comment_line $line_number
set comment [string range $content [expr $start+3] [expr $end-1]]
set comment_newlines [count_newlines $comment]
set line_number [expr $line_number+$comment_newlines]
set comment [string trim $comment]
set content [string range $content [expr $end+3] \
[string length $content]]
lappend mi_autotest_data [list $comment $comment_line]
} else {
break
}
}
close $chan
}
# Helper to mi_run_inline_test below.
# Return the list of all (statement,line_number) lists
# that comprise TESTCASE. The begin and end markers
# are not included.
proc mi_get_inline_test {testcase} {
global mi_gdb_prompt
global mi_autotest_data
global mi_autotest_source
set result {}
set seen_begin 0
set seen_end 0
foreach l $mi_autotest_data {
set comment [lindex $l 0]
if {$comment == "BEGIN: $testcase"} {
set seen_begin 1
} elseif {$comment == "END: $testcase"} {
set seen_end 1
break
} elseif {$seen_begin==1} {
lappend result $l
}
}
if {$seen_begin == 0} {
error "Autotest $testcase not found"
}
if {$seen_begin == 1 && $seen_end == 0} {
error "Missing end marker for test $testcase"
}
return $result
}
# Sets temporary breakpoint at LOCATION.
proc mi_tbreak {location test} {
global mi_gdb_prompt
mi_gdb_test "-break-insert -t $location" \
{\^done,bkpt=.*} \
$test
}
# Send COMMAND that must be a command that resumes
# the inferior (run/continue/next/etc) and consumes
# the "^running" output from it.
proc mi_send_resuming_command_raw {command test} {
global mi_gdb_prompt
global thread_selected_re
global library_loaded_re
send_gdb "$command\n"
gdb_expect {
-re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" {
# Note that lack of 'pass' call here -- this works around limitation
# in DejaGNU xfail mechanism. mi-until.exp has this:
#
# setup_kfail gdb/2104 "*-*-*"
# mi_execute_to ...
#
# and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here,
# it will reset kfail, so when the actual test fails, it will be flagged
# as real failure.
return 0
}
-re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" {
unsupported "$test (Thumb mode)"
return -1
}
-re "\\^error,msg=.*" {
fail "$test (MI error)"
return -1
}
-re ".*${mi_gdb_prompt}" {
fail "$test (failed to resume)"
return -1
}
timeout {
fail "$test"
return -1
}
}
}
proc mi_send_resuming_command {command test} {
mi_send_resuming_command_raw -$command $test
}
# Helper to mi_run_inline_test below.
# Sets a temporary breakpoint at LOCATION and runs
# the program using COMMAND. When the program is stopped
# returns the line at which it. Returns -1 if line cannot
# be determined.
# Does not check that the line is the same as requested.
# The caller can check itself if required.
proc_with_prefix mi_continue_to_line {location test} {
with_test_prefix $test {
mi_tbreak $location "set temporary breakpoint"
mi_send_resuming_command "exec-continue" "continue to breakpoint"
return [mi_get_stop_line]
}
}
# Wait until gdb prints the current line.
proc mi_get_stop_line {} {
global mi_gdb_prompt
global async
if {$async} {
set prompt_re ""
} else {
set prompt_re "$mi_gdb_prompt$"
}
gdb_expect {
-re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" {
return $expect_out(1,string)
}
-re ".*$mi_gdb_prompt" {
fail "wait for stop (unexpected output)"
}
timeout {
fail "wait for stop (timeout)"
}
}
}
# Run a MI test embedded in comments in a C file.
# The C file should contain special comments in the following
# three forms:
#
# /*: BEGIN: testname :*/
# /*: <Tcl statements> :*/
# /*: END: testname :*/
#
# This procedure find the begin and end marker for the requested
# test. Then, a temporary breakpoint is set at the begin
# marker and the program is run (from start).
#
# After that, for each special comment between the begin and end
# marker, the Tcl statements are executed. It is assumed that
# for each comment, the immediately preceding line is executable
# C statement. Then, gdb will be single-stepped until that
# preceding C statement is executed, and after that the
# Tcl statements in the comment will be executed.
#
# For example:
#
# /*: BEGIN: assignment-test :*/
# v = 10;
# /*: <Tcl code to check that 'v' is indeed 10 :*/
# /*: END: assignment-test :*/
#
# The mi_prepare_inline_tests function should be called before
# calling this function. A given C file can contain several
# inline tests. The names of the tests must be unique within one
# C file.
#
proc mi_run_inline_test { testcase } {
global mi_gdb_prompt
global hex
global decimal
global fullname_syntax
global mi_autotest_source
set commands [mi_get_inline_test $testcase]
set first 1
set line_now 1
foreach c $commands {
set statements [lindex $c 0]
set line [lindex $c 1]
set line [expr $line-1]
# We want gdb to be stopped at the expression immediately
# before the comment. If this is the first comment, the
# program is either not started yet or is in some random place,
# so we run it. For further comments, we might be already
# standing at the right line. If not continue till the
# right line.
if {$first==1} {
# Start the program afresh.
mi_tbreak "$mi_autotest_source:$line" "set temporary breakpoint"
if { [mi_run_cmd] < 0 } {
return -1
}
set line_now [mi_get_stop_line]
set first 0
} elseif {$line_now!=$line} {
set line_now [mi_continue_to_line "$mi_autotest_source:$line" "continue to $line"]
}
if {$line_now!=$line} {
fail "$testcase: go to line $line"
}
# We're not at the statement right above the comment.
# Execute that statement so that the comment can test
# the state after the statement is executed.
# Single-step past the line.
if { [mi_send_resuming_command "exec-next" "$testcase: step over $line"] != 0 } {
return -1
}
set line_now [mi_get_stop_line]
# We probably want to use 'uplevel' so that statements
# have direct access to global variables that the
# main 'exp' file has set up. But it's not yet clear,
# will need more experience to be sure.
eval $statements
}
return 0
}
proc get_mi_thread_list {name} {
global expect_out
# MI will return a list of thread ids:
#
# -thread-list-ids
# ^done,thread-ids=[thread-id="1",thread-id="2",...],number-of-threads="N"
# (gdb)
mi_gdb_test "-thread-list-ids" \
{.*\^done,thread-ids={(thread-id="[0-9]+"(,)?)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
"-thread_list_ids ($name)"
set output {}
if {[info exists expect_out(buffer)]} {
set output $expect_out(buffer)
}
set thread_list {}
if {![regexp {thread-ids=\{(thread-id="[0-9]+"(,)?)*\}} $output threads]} {
fail "finding threads in MI output ($name)"
} else {
pass "finding threads in MI output ($name)"
# Make list of console threads
set start [expr {[string first \{ $threads] + 1}]
set end [expr {[string first \} $threads] - 1}]
set threads [string range $threads $start $end]
foreach thread [split $threads ,] {
if {[scan $thread {thread-id="%d"} num]} {
lappend thread_list $num
}
}
}
return $thread_list
}
# Helper function for check_mi_and_console_threads.
proc check_mi_and_console_threads_1 { name } {
global expect_out
mi_gdb_test "-thread-list-ids" \
{.*\^done,thread-ids={(thread-id="[0-9]+"(,)*)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
"-thread-list-ids"
set mi_output {}
if {[info exists expect_out(buffer)]} {
set mi_output $expect_out(buffer)
}
# GDB will return a list of thread ids and some more info:
#
# (gdb)
# -interpreter-exec console "info threads"
# ~" 4 Thread 2051 (LWP 7734) 0x401166b1 in __libc_nanosleep () at __libc_nanosleep:-1"
# ~" 3 Thread 1026 (LWP 7733) () at __libc_nanosleep:-1"
# ~" 2 Thread 2049 (LWP 7732) 0x401411f8 in __poll (fds=0x804bb24, nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:63"
# ~"* 1 Thread 1024 (LWP 7731) main (argc=1, argv=0xbfffdd94) at ../../../src/gdb/testsuite/gdb.mi/pthreads.c:160"
# FIXME: kseitz/2002-09-05: Don't use the hack-cli method.
mi_gdb_test "info threads" \
{.*(~".*"[\r\n]*)+.*} \
"info threads"
set console_output {}
if {[info exists expect_out(buffer)]} {
set console_output $expect_out(buffer)
}
# Make a list of all known threads to console (gdb's thread IDs)
set console_thread_list {}
foreach line [split $console_output \n] {
if {[string index $line 0] == "~"} {
# This is a line from the console; trim off "~", " ", "*", and "\""
set line [string trim $line ~\ \"\*]
if {[scan $line "%d" id] == 1} {
lappend console_thread_list $id
}
}
}
# Now find the result string from MI
set mi_result ""
foreach line [split $mi_output \n] {
if {[string range $line 0 4] == "^done"} {
set mi_result $line
}
}
if {$mi_result == ""} {
fail "finding MI result string"
} else {
pass "finding MI result string"
}
# Finally, extract the thread ids and compare them to the console
set num_mi_threads_str ""
if {![regexp {number-of-threads="[0-9]+"} $mi_result num_mi_threads_str]} {
fail "finding number of threads in MI output"
} else {
pass "finding number of threads in MI output"
# Extract the number of threads from the MI result
if {![scan $num_mi_threads_str {number-of-threads="%d"} num_mi_threads]} {
fail "got number of threads from MI"
} else {
pass "got number of threads from MI"
# Check if MI and console have same number of threads
if {$num_mi_threads != [llength $console_thread_list]} {
fail "console and MI have same number of threads"
} else {
pass "console and MI have same number of threads"
# Get MI thread list
set mi_thread_list [get_mi_thread_list $name]
# Check if MI and console have the same threads
set fails 0
foreach ct [lsort $console_thread_list] mt [lsort $mi_thread_list] {
if {$ct != $mt} {
incr fails
}
}
if {$fails > 0} {
fail "MI and console have same threads"
# Send a list of failures to the log
send_log "Console has thread ids: $console_thread_list\n"
send_log "MI has thread ids: $mi_thread_list\n"
} else {
pass "MI and console have same threads"
}
}
}
}
}
# Check that MI and the console know of the same threads.
# Appends NAME to all test names.
proc check_mi_and_console_threads { name } {
with_test_prefix $name {
check_mi_and_console_threads_1 $name
}
}
# Set solib-search-path to allow gdb to locate shlib FILE.
proc mi_locate_shlib { file } {
global mi_spawn_id
if ![info exists mi_spawn_id] {
perror "mi_locate_shlib: GDB is not running"
}
# If the target is remote, we need to tell gdb where to find the
# libraries.
if { ![is_remote target] } {
return
}
# We could set this even when not testing remotely, but a user
# generally won't set it unless necessary. In order to make the tests
# more like the real-life scenarios, we don't set it for local testing.
mi_gdb_test "set solib-search-path [file dirname $file]" "\^done" ""
}
# Copy shlib FILE to the target and set solib-search-path to allow gdb to
# locate it.
proc mi_load_shlib { file } {
set dest [gdb_download_shlib $file]
mi_locate_shlib $file
return $dest
}
# Download shared libraries to the target.
proc mi_load_shlibs { args } {
foreach file $args {
mi_load_shlib $file
}
}
proc mi_check_thread_states { states test } {
global expect_out
set pattern ".*\\^done,threads=\\\["
foreach s $states {
set pattern "${pattern}(.*)state=\"$s\""
}
set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*"
verbose -log "expecting: $pattern"
mi_gdb_test "-thread-info" $pattern $test
}
# Return a list of MI features supported by this gdb.
proc mi_get_features {} {
global expect_out mi_gdb_prompt
send_gdb "-list-features\n"
gdb_expect {
-re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" {
regsub -all -- \" $expect_out(1,string) "" features
return [split $features ,]
}
-re ".*\r\n$mi_gdb_prompt$" {
verbose -log "got $expect_out(buffer)"
return ""
}
timeout {
verbose -log "timeout in mi_gdb_prompt"
return ""
}
}
}
# Variable Object Trees
#
# Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of
# variables (not unlike the actual source code definition), and it will
# automagically test the children for you (by default).
#
# Example:
#
# source code:
# struct bar {
# union {
# int integer;
# void *ptr;
# };
# const int *iPtr;
# };
#
# class foo {
# public:
# int a;
# struct {
# int b;
# struct bar *c;
# };
# };
#
# foo *f = new foo (); <-- break here
#
# We want to check all the children of "f".
#
# Translate the above structures into the following tree:
#
# set tree {
# foo f {
# {} public {
# int a {}
# anonymous struct {
# {} public {
# int b {}
# {bar *} c {
# {} public {
# anonymous union {
# {} public {
# int integer {}
# {void *} ptr {}
# }
# }
# {const int *} iPtr {
# {const int} {*iPtr} {}
# }
# }
# }
# }
# }
# }
# }
# }
#
# mi_walk_varobj_tree c++ $tree
#
# If you'd prefer to walk the tree using your own callback,
# simply pass the name of the callback to mi_walk_varobj_tree.
#
# This callback should take one argument, the name of the variable
# to process. This name is the name of a global array holding the
# variable's properties (object name, type, etc).
#
# An example callback:
#
# proc my_callback {var} {
# upvar #0 $var varobj
#
# puts "my_callback: called on varobj $varobj(obj_name)"
# }
#
# The arrays created for each variable object contain the following
# members:
#
# obj_name - the object name for accessing this variable via MI
# display_name - the display name for this variable (exp="display_name" in
# the output of -var-list-children)
# type - the type of this variable (type="type" in the output
# of -var-list-children, or the special tag "anonymous"
# path_expr - the "-var-info-path-expression" for this variable
# NOTE: This member cannot be used reliably with typedefs.
# Use with caution!
# See notes inside get_path_expr for more.
# parent - the variable name of the parent varobj
# children - a list of children variable names (which are the
# names Tcl arrays, not object names)
#
# For each variable object, an array containing the above fields will
# be created under the root node (conveniently called, "root"). For example,
# a variable object with handle "OBJ.public.0_anonymous.a" will have
# a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a".
#
# Note that right now, this mechanism cannot be used for recursive data
# structures like linked lists.
namespace eval ::varobj_tree {
# An index which is appended to root varobjs to ensure uniqueness.
variable _root_idx 0
# A procedure to help with debuggging varobj trees.
# VARIABLE_NAME is the name of the variable to dump.
# CMD, if present, is the name of the callback to output the contstructed
# strings. By default, it uses expect's "send_log" command.
# TERM, if present, is a terminating character. By default it is the newline.
#
# To output to the terminal (not the expect log), use
# mi_varobj_tree_dump_variable my_variable puts ""
proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} {
upvar #0 $variable_name varobj
eval "$cmd \"VAR = $variable_name$term\""
# Explicitly encode the array indices, since outputting them
# in some logical order is better than what "array names" might
# return.
foreach idx {obj_name parent display_name type path_expr} {
eval "$cmd \"\t$idx = $varobj($idx)$term\""
}
# Output children
set num [llength $varobj(children)]
eval "$cmd \"\tnum_children = $num$term\""
if {$num > 0} {
eval "$cmd \"\tchildren = $varobj(children)$term\""
}
}
# The default callback used by mi_walk_varobj_tree. This callback
# simply checks all of VAR's children. It specifically does not test
# path expressions, since that is very problematic.
#
# This procedure may be used in custom callbacks.
proc test_children_callback {variable_name} {
upvar #0 $variable_name varobj
if {[llength $varobj(children)] > 0} {
# Construct the list of children the way mi_list_varobj_children
# expects to get it:
# { {obj_name display_name num_children type} ... }
set children_list {}
foreach child $varobj(children) {
upvar #0 $child c
set clist [list [string_to_regexp $c(obj_name)] \
[string_to_regexp $c(display_name)] \
[llength $c(children)]]
if {[string length $c(type)] > 0} {
lappend clist [string_to_regexp $c(type)]
}
lappend children_list $clist
}
mi_list_varobj_children $varobj(obj_name) $children_list \
"VT: list children of $varobj(obj_name)"
}
}
# Set the properties of the varobj represented by
# PARENT_VARIABLE - the name of the parent's variable
# OBJNAME - the MI object name of this variable
# DISP_NAME - the display name of this variable
# TYPE - the type of this variable
# PATH - the path expression for this variable
# CHILDREN - a list of the variable's children
proc create_varobj {parent_variable objname disp_name \
type path children} {
upvar #0 $parent_variable parent
set var_name "root.$objname"
global $var_name
array set $var_name [list obj_name $objname]
array set $var_name [list display_name $disp_name]
array set $var_name [list type $type]
array set $var_name [list path_expr $path]
array set $var_name [list parent "$parent_variable"]
array set $var_name [list children \
[get_tree_children $var_name $children]]
return $var_name
}
# Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD
# varobjs and anonymous structs/unions are not used for path expressions.
proc is_path_expr_parent {variable} {
upvar #0 $variable varobj
# If the varobj's type is "", it is a CPLUS_FAKE_CHILD.
# If the tail of the varobj's object name is "%d_anonymous",
# then it represents an anonymous struct or union.
if {[string length $varobj(type)] == 0 \
|| [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} {
return false
}
return true
}
# Return the path expression for the variable named NAME in
# parent varobj whose variable name is given by PARENT_VARIABLE.
proc get_path_expr {parent_variable name type} {
upvar #0 $parent_variable parent
upvar #0 $parent_variable path_parent
# If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs,
# which has no path expression. Likewsise for anonymous structs
# and unions.
if {[string length $type] == 0 \
|| [string compare $type "anonymous"] == 0} {
return ""
}
# Find the path parent variable.
while {![is_path_expr_parent $parent_variable]} {
set parent_variable $path_parent(parent)
upvar #0 $parent_variable path_parent
}
# This is where things get difficult. We do not actually know
# the real type for variables defined via typedefs, so we don't actually
# know whether the parent is a structure/union or not.
#
# So we assume everything that isn't a simple type is a compound type.
set stars ""
regexp {\*+} $parent(type) stars
set is_compound 1
if {[string index $name 0] == "*"} {
set is_compound 0
}
if {[string index $parent(type) end] == "\]"} {
# Parent is an array.
return "($path_parent(path_expr))\[$name\]"
} elseif {$is_compound} {
# Parent is a structure or union or a pointer to one.
if {[string length $stars]} {
set join "->"
} else {
set join "."
}
global root
# To make matters even more hideous, varobj.c has slightly different
# path expressions for C and C++.
set path_expr "($path_parent(path_expr))$join$name"
if {[string compare -nocase $root(language) "c"] == 0} {
return $path_expr
} else {
return "($path_expr)"
}
} else {
# Parent is a pointer.
return "*($path_parent(path_expr))"
}
}
# Process the CHILDREN (a list of varobj_tree elements) of the variable
# given by PARENT_VARIABLE. Returns a list of children variables.
proc get_tree_children {parent_variable children} {
upvar #0 $parent_variable parent
set field_idx 0
set children_list {}
foreach {type name children} $children {
if {[string compare $parent_variable "root"] == 0} {
# Root variable
variable _root_idx
incr _root_idx
set objname "$name$_root_idx"
set disp_name "$name"
set path_expr "$name"
} elseif {[string compare $type "anonymous"] == 0} {
# Special case: anonymous types. In this case, NAME will either be
# "struct" or "union".
set objname "$parent(obj_name).${field_idx}_anonymous"
set disp_name "<anonymous $name>"
set path_expr ""
set type "$name {...}"
} else {
set objname "$parent(obj_name).$name"
set disp_name $name
set path_expr [get_path_expr $parent_variable $name $type]
}
lappend children_list [create_varobj $parent_variable $objname \
$disp_name $type $path_expr $children]
incr field_idx
}
return $children_list
}
# The main procedure to call the given CALLBACK on the elements of the
# given varobj TREE. See detailed explanation above.
proc walk_tree {language tree callback} {
global root
variable _root_idx
if {[llength $tree] < 3} {
error "tree does not contain enough elements"
}
set _root_idx 0
# Create root node and process the tree.
array set root [list language $language]
array set root [list obj_name "root"]
array set root [list display_name "root"]
array set root [list type "root"]
array set root [list path_expr "root"]
array set root [list parent "root"]
array set root [list children [get_tree_children root $tree]]
# Walk the tree
set all_nodes $root(children); # a stack of nodes
while {[llength $all_nodes] > 0} {
# "Pop" the name of the global variable containing this varobj's
# information from the stack of nodes.
set var_name [lindex $all_nodes 0]
set all_nodes [lreplace $all_nodes 0 0]
# Bring the global named in VAR_NAME into scope as the local variable
# VAROBJ.
upvar #0 $var_name varobj
# Append any children of VAROBJ to the list of nodes to walk.
if {[llength $varobj(children)] > 0} {
set all_nodes [concat $all_nodes $varobj(children)]
}
# If this is a root variable, create the variable object for it.
if {[string compare $varobj(parent) "root"] == 0} {
mi_create_varobj $varobj(obj_name) $varobj(display_name) \
"VT: create root varobj for $varobj(display_name)"
}
# Now call the callback for VAROBJ.
uplevel #0 $callback $var_name
}
}
}
# The default varobj tree callback, which simply tests -var-list-children.
proc mi_varobj_tree_test_children_callback {variable} {
::varobj_tree::test_children_callback $variable
}
# Walk the variable object tree given by TREE, calling the specified
# CALLBACK. By default this uses mi_varobj_tree_test_children_callback.
proc mi_walk_varobj_tree {language tree \
{callback \
mi_varobj_tree_test_children_callback}} {
::varobj_tree::walk_tree $language $tree $callback
}
# Build a list of key-value pairs given by the list ATTR_LIST. Flatten
# this list using the optional JOINER, a comma by default.
#
# The list must contain an even number of elements, which are the key-value
# pairs. Each value will be surrounded by quotes, according to the grammar,
# except if the value starts with \[ or \{, when the quotes will be omitted.
#
# Example: mi_build_kv_pairs {a b c d e f g \[.*\]}
# returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\]
proc mi_build_kv_pairs {attr_list {joiner ,}} {
set l {}
foreach {var value} $attr_list {
if {[string range $value 0 1] == "\\\["
|| [string range $value 0 1] == "\\\{"} {
lappend l "$var=$value"
} else {
lappend l "$var=\"$value\""
}
}
return "[join $l $joiner]"
}
# Construct a breakpoint location regexp. This may be used along with
# mi_make_breakpoint_multi to test the output of -break-insert,
# -dprintf-insert, or -break-info with breapoints with multiple
# locations.
#
# All arguments for the breakpoint location may be specified using the
# options: number, enabled, addr, func, file, fullname, line, inferior
# thread-groups, and thread.
#
# For the option -thread the corresponding output field is only added
# if the option is present and not set to the empty string.
#
# Example: mi_make_breakpoint_loc -number 2.1 -file ".*/myfile.c" -line 3
# will return the breakpoint location:
# {number="2.1",enabled=".*",addr=".*",func=".*",
# file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\]}
proc mi_make_breakpoint_loc {args} {
parse_args {{number .*} {enabled .*} {addr .*}
{func .*} {file .*} {fullname .*} {line .*}
{thread-groups \\\[.*\\\]} {thread ""} {inferior ""}}
set attr_list {}
foreach attr [list number enabled addr func file \
fullname line thread-groups inferior] {
if {$attr ne "inferior" || [set $attr] ne ""} {
lappend attr_list $attr [set $attr]
}
}
set result [mi_build_kv_pairs $attr_list]
if {[string length $thread] > 0} {
append result ","
append result [mi_build_kv_pairs [list "thread" $thread]]
}
return "{$result}"
}
# Bits shared between mi_make_breakpoint and mi_make_breakpoint_multi.
proc mi_make_breakpoint_1 {attr_list thread inferior cond evaluated-by \
times ignore script original-location} {
set result "bkpt=\\\{[mi_build_kv_pairs $attr_list]"
# There are always exceptions.
# If THREAD is not present, do not output it.
if {[string length $thread] > 0} {
append result ","
append result [mi_build_kv_pairs [list "thread" $thread]]
}
# If INFERIOR is not present, do not output it.
if {[string length $inferior] > 0} {
append result ","
append result [mi_build_kv_pairs [list "inferior" $inferior]]
}
# If COND is not present, do not output it.
if {[string length $cond] > 0} {
append result ","
append result [mi_build_kv_pairs [list "cond" $cond]]
# When running on a remote, GDB may output who is evaluating
# breakpoint conditions.
if {[string length ${evaluated-by}] > 0} {
append result [mi_build_kv_pairs \
[list "evaluated-by" ${evaluated-by}]]
} else {
append result {(,evaluated-by=".*")?}
}
}
append result ","
append result [mi_build_kv_pairs [list "times" $times]]
# If SCRIPT and IGNORE are not present, do not output them.
if {$ignore != 0} {
append result ","
append result [mi_build_kv_pairs [list "ignore" $ignore]]
append result ","
}
if {[string length $script] > 0} {
append result ","
append result [mi_build_kv_pairs [list "script" $script]]
append result ","
} else {
# Allow anything up until the next "official"/required attribute.
# This pattern skips over script/ignore if matches on those
# were not specifically required by the caller.
append result ".*"
}
append result [mi_build_kv_pairs \
[list "original-location" ${original-location}]]
return $result
}
# Construct a regexp to match against a frame description as returned by
# -stack-info-frame. Take a list of name value pairs. Valid names are
# -level, -addr, -func, -file, -fullname, line, and -arch, each takes a
# regexp which is matched against the corresponding field in the
# -stack-info-frame output.
proc mi_make_info_frame_regexp {args} {
parse_args [list [list level "$::decimal"] [list addr "$::hex"] \
{func .*} {file .*} {fullname .*} \
[list line "$::decimal"] {arch .*}]
set attr_list {}
foreach attr {level addr func file fullname line arch} {
lappend attr_list $attr [set $attr]
}
set result "frame=\\\{"
append result [mi_build_kv_pairs $attr_list]
append result "\\\}"
return $result
}
# Run the -stack-info-frame command and match the result, return true if the
# test passes, otherwise, return false.
#
# TEST is the name used for this test.
#
# ARGS is an optional list of name value pairs, the names -frame and -thread
# if present, expect a decimal argument and control the frame and thread for
# which -stack-info-frame is run. If -frame is not given then the
# -stack-info-frame will operate on the current frame. If -thread is not
# given then -stack-info-frame will operate on the current thread.
#
# The remaining arguments are passed to mi_make_frame_regexp and are used to
# build the regexp for matching against the -stack-info-frame output.
proc mi_info_frame { test args } {
parse_args {{frame ""} {thread ""}}
set re [eval mi_make_info_frame_regexp $args]
set cmd "235-stack-info-frame"
if {$frame ne ""} {
append cmd " --frame ${frame}"
}
if {$thread ne ""} {
append cmd " --thread ${thread}"
}
return [mi_gdb_test $cmd "235\\^done,$re" $test]
}
# Construct a breakpoint regexp, for a breakpoint with multiple
# locations. This may be used to test the output of -break-insert,
# -dprintf-insert, or -break-info with breakpoints with multiple
# locations.
#
# All arguments for the breakpoint may be specified using the options:
# number, type, disp, enabled, times, ignore, script, inferior,
# original-location, cond, evaluated-by, locations, and thread.
#
# Only if -script and -ignore are given will they appear in the output.
# Otherwise, this procedure will skip them using ".*".
#
# For the options -thread and -cond the corresponding output fields
# are only added if the options are present and not set to the empty
# string.
#
# Example: mi_make_breakpoint_multi -number 2 -locations "$loc"
# will return the breakpoint:
# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr="<MULTIPLE>",
# times="0".*original-location=".*",locations=$loc}
#
# You can construct the list of locations with mi_make_breakpoint_loc.
proc mi_make_breakpoint_multi {args} {
parse_args {{number .*} {type .*} {disp .*} {enabled .*}
{times .*} {ignore 0}
{script ""} {original-location .*} {cond ""} {evaluated-by ""}
{locations .*} {thread ""} {inferior ""}}
set attr_list {}
foreach attr [list number type disp enabled] {
lappend attr_list $attr [set $attr]
}
lappend attr_list "addr" "<MULTIPLE>"
set result [mi_make_breakpoint_1 \
$attr_list $thread $inferior $cond ${evaluated-by} \
$times $ignore $script ${original-location}]
append result ","
append result [mi_build_kv_pairs [list "locations" $locations]]
append result "\\\}"
return $result
}
# Construct a breakpoint regexp, for a pending breakpoint. This may
# be used to test the output of -break-insert, -dprintf-insert, or
# -break-info for pending breakpoints.
#
# Arguments for the breakpoint may be specified using the options:
# number, type, disp, enabled, pending, original-location, thread, and
# cond.
#
# For the options -thread and -cond the corresponding output fields
# are only included if the options are present and not the empty
# string.
#
# Example: mi_make_breakpoint_pending -number 2 -pending func
# will return the breakpoint:
# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr="<PENDING>",
# pending="func", times="0".*original-location=".*"}
proc mi_make_breakpoint_pending {args} {
parse_args {{number .*} {type .*} {disp .*} {enabled .*}
{pending .*} {original-location .*} {thread ""} {inferior ""}
{cond ""} {script ""} {times .*}}
set attr_list {}
foreach attr [list number type disp enabled] {
lappend attr_list $attr [set $attr]
}
lappend attr_list "addr" "<PENDING>"
foreach attr [list pending] {
lappend attr_list $attr [set $attr]
}
set ignore 0
set evaluated-by ""
set result [mi_make_breakpoint_1 \
$attr_list $thread $inferior $cond ${evaluated-by} \
$times $ignore $script ${original-location}]
append result "\\\}"
return $result
}
# Construct a breakpoint regexp. This may be used to test the output of
# -break-insert, -dprintf-insert, or -break-info.
#
# All arguments for the breakpoint may be specified using the options
# number, type, disp, enabled, addr, func, file, fullanme, line,
# thread-groups, cond, evaluated-by, times, ignore, script,
# and original-location.
#
# Only if -script and -ignore are given will they appear in the output.
# Otherwise, this procedure will skip them using ".*".
#
# Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3
# will return the breakpoint:
# bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*",
# file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\],
# times="0".*original-location=".*"}
proc mi_make_breakpoint {args} {
parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*}
{func .*} {file .*} {fullname .*} {line .*}
{thread-groups \\\[.*\\\]} {times .*} {ignore 0}
{script ""} {original-location .*} {cond ""} {evaluated-by ""}
{thread ""} {inferior ""}}
set attr_list {}
foreach attr [list number type disp enabled addr func file \
fullname line thread-groups] {
lappend attr_list $attr [set $attr]
}
set result [mi_make_breakpoint_1 \
$attr_list $thread $inferior $cond ${evaluated-by} \
$times $ignore $script ${original-location}]
append result "\\\}"
return $result
}
# Build a breakpoint table regexp given the list of breakpoints in `bp_list',
# constructed by mi_make_breakpoint.
#
# Example: Construct a breakpoint table where the only attributes we
# test for are the existence of three breakpoints numbered 1, 2, and 3.
#
# set bps {}
# lappend bps [mi_make_breakpoint -number 1]
# lappend bps [mi_make_breakpoint -number 2]
# lappned bps [mi_make_breakpoint -number 3]
# mi_make_breakpoint_table $bps
# will return (abbreviated for clarity):
# BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...],
# body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]}
proc mi_make_breakpoint_table {bp_list} {
# Build header -- assume a standard header for all breakpoint tables.
set hl {}
foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \
addr Address what What] {
# The elements here are the MI table headers, which have the
# format:
# {width="7",alignment="-1",col_name="number",colhdr="Num"}
lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \
col_name $nm colhdr $hdr]]}"
}
set header "hdr=\\\[[join $hl ,]\\\]"
# The caller has implicitly supplied the number of columns and rows.
set nc [llength $hl]
set nr [llength $bp_list]
# Build body -- mi_make_breakpoint has done most of the work.
set body "body=\\\[[join $bp_list ,]\\\]"
# Assemble the final regexp.
return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}"
}
# As skip_libstdcxx_probe_tests_prompt, with mi_gdb_prompt.
proc mi_skip_libstdcxx_probe_tests {} {
global mi_gdb_prompt
return [skip_libstdcxx_probe_tests_prompt "$mi_gdb_prompt$"]
}
# Retrieve the value of EXP in the inferior, represented in format
# specified in FMT (using "printFMT"). DEFAULT is used as fallback if
# print fails. TEST is the test message to use. It can be omitted,
# in which case a test message is built from EXP.
#
# This is an MI version of gdb_valueof.
proc mi_get_valueof { fmt exp default {test ""} } {
global mi_gdb_prompt
if {$test == "" } {
set test "get valueof \"${exp}\""
}
set val ${default}
gdb_test_multiple "print${fmt} ${exp}" "$test" -prompt "$::mi_gdb_prompt$" {
-re "~\"\\$\[0-9\]* = (\[^\r\n\]*)\\\\n\"\r\n\\^done\r\n$mi_gdb_prompt$" {
set val $expect_out(1,string)
pass "$test"
}
timeout {
fail "$test (timeout)"
}
}
return ${val}
}
# Some MI tests should be run in the normal way, on the main UI, while
# other tests should be run twice, once when the MI is on the main UI,
# and once with the MI on a secondary UI, this proc facilitates that.
#
# Use as:
#
# foreach_mi_ui_mode mode {
# # ... body ...
# }
#
# The BODY will then be run once with MODE set to 'main' and once with
# MODE set to 'separate'.
#
# However, there are times when we know using the 'separate' UI will
# not work. This proc handles figuring that out, if the 'separate' UI
# is known not to work then the 'separate' mode will be skipped and
# BODY will be run just once with MODE set to 'main'.
proc foreach_mi_ui_mode { var_name body } {
upvar 1 $var_name var
if [gdb_debug_enabled] {
# gdb debug doesn't work for separate-mi-tty.
set modes {"main"}
} else {
set modes {"main" "separate"}
}
foreach var $modes {
with_test_prefix "$var_name=$var" {
set code [catch {uplevel 1 $body} result]
}
if {$code == 1} {
global errorInfo errorCode
return -code $code -errorinfo $errorInfo -errorcode $errorCode $result
} elseif {$code == 3} {
break
} elseif {$code == 2} {
return -code $code $result
}
}
}
# Check if GDB has information about the stderr symbol.
proc mi_gdb_is_stderr_available {} {
set has_stderr_symbol false
set cmd "-data-evaluate-expression stderr"
set test "stderr symbol check"
set msg_re {"'stderr' has unknown type; cast it to its declared type"}
gdb_test_multiple $cmd $test -prompt "$::mi_gdb_prompt$" {
-re -wrap "\\^error,msg=$msg_re" {
# Default value of false is fine.
}
-re -wrap "" {
set has_stderr_symbol true
}
}
return $has_stderr_symbol
}