| /* SPU specific support for 32-bit ELF |
| |
| Copyright (C) 2006-2016 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License along |
| with this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "libiberty.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/spu.h" |
| #include "elf32-spu.h" |
| |
| /* We use RELA style relocs. Don't define USE_REL. */ |
| |
| static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *, |
| void *, asection *, |
| bfd *, char **); |
| |
| /* Values of type 'enum elf_spu_reloc_type' are used to index this |
| array, so it must be declared in the order of that type. */ |
| |
| static reloc_howto_type elf_howto_table[] = { |
| HOWTO (R_SPU_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_NONE", |
| FALSE, 0, 0x00000000, FALSE), |
| HOWTO (R_SPU_ADDR10, 4, 2, 10, FALSE, 14, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_ADDR10", |
| FALSE, 0, 0x00ffc000, FALSE), |
| HOWTO (R_SPU_ADDR16, 2, 2, 16, FALSE, 7, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_ADDR16", |
| FALSE, 0, 0x007fff80, FALSE), |
| HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE, 7, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_ADDR16_HI", |
| FALSE, 0, 0x007fff80, FALSE), |
| HOWTO (R_SPU_ADDR16_LO, 0, 2, 16, FALSE, 7, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_ADDR16_LO", |
| FALSE, 0, 0x007fff80, FALSE), |
| HOWTO (R_SPU_ADDR18, 0, 2, 18, FALSE, 7, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_ADDR18", |
| FALSE, 0, 0x01ffff80, FALSE), |
| HOWTO (R_SPU_ADDR32, 0, 2, 32, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_ADDR32", |
| FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (R_SPU_REL16, 2, 2, 16, TRUE, 7, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_REL16", |
| FALSE, 0, 0x007fff80, TRUE), |
| HOWTO (R_SPU_ADDR7, 0, 2, 7, FALSE, 14, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_ADDR7", |
| FALSE, 0, 0x001fc000, FALSE), |
| HOWTO (R_SPU_REL9, 2, 2, 9, TRUE, 0, complain_overflow_signed, |
| spu_elf_rel9, "SPU_REL9", |
| FALSE, 0, 0x0180007f, TRUE), |
| HOWTO (R_SPU_REL9I, 2, 2, 9, TRUE, 0, complain_overflow_signed, |
| spu_elf_rel9, "SPU_REL9I", |
| FALSE, 0, 0x0000c07f, TRUE), |
| HOWTO (R_SPU_ADDR10I, 0, 2, 10, FALSE, 14, complain_overflow_signed, |
| bfd_elf_generic_reloc, "SPU_ADDR10I", |
| FALSE, 0, 0x00ffc000, FALSE), |
| HOWTO (R_SPU_ADDR16I, 0, 2, 16, FALSE, 7, complain_overflow_signed, |
| bfd_elf_generic_reloc, "SPU_ADDR16I", |
| FALSE, 0, 0x007fff80, FALSE), |
| HOWTO (R_SPU_REL32, 0, 2, 32, TRUE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_REL32", |
| FALSE, 0, 0xffffffff, TRUE), |
| HOWTO (R_SPU_ADDR16X, 0, 2, 16, FALSE, 7, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "SPU_ADDR16X", |
| FALSE, 0, 0x007fff80, FALSE), |
| HOWTO (R_SPU_PPU32, 0, 2, 32, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_PPU32", |
| FALSE, 0, 0xffffffff, FALSE), |
| HOWTO (R_SPU_PPU64, 0, 4, 64, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_PPU64", |
| FALSE, 0, -1, FALSE), |
| HOWTO (R_SPU_ADD_PIC, 0, 0, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "SPU_ADD_PIC", |
| FALSE, 0, 0x00000000, FALSE), |
| }; |
| |
| static struct bfd_elf_special_section const spu_elf_special_sections[] = { |
| { "._ea", 4, 0, SHT_PROGBITS, SHF_WRITE }, |
| { ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static enum elf_spu_reloc_type |
| spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code) |
| { |
| switch (code) |
| { |
| default: |
| return (enum elf_spu_reloc_type) -1; |
| case BFD_RELOC_NONE: |
| return R_SPU_NONE; |
| case BFD_RELOC_SPU_IMM10W: |
| return R_SPU_ADDR10; |
| case BFD_RELOC_SPU_IMM16W: |
| return R_SPU_ADDR16; |
| case BFD_RELOC_SPU_LO16: |
| return R_SPU_ADDR16_LO; |
| case BFD_RELOC_SPU_HI16: |
| return R_SPU_ADDR16_HI; |
| case BFD_RELOC_SPU_IMM18: |
| return R_SPU_ADDR18; |
| case BFD_RELOC_SPU_PCREL16: |
| return R_SPU_REL16; |
| case BFD_RELOC_SPU_IMM7: |
| return R_SPU_ADDR7; |
| case BFD_RELOC_SPU_IMM8: |
| return R_SPU_NONE; |
| case BFD_RELOC_SPU_PCREL9a: |
| return R_SPU_REL9; |
| case BFD_RELOC_SPU_PCREL9b: |
| return R_SPU_REL9I; |
| case BFD_RELOC_SPU_IMM10: |
| return R_SPU_ADDR10I; |
| case BFD_RELOC_SPU_IMM16: |
| return R_SPU_ADDR16I; |
| case BFD_RELOC_32: |
| return R_SPU_ADDR32; |
| case BFD_RELOC_32_PCREL: |
| return R_SPU_REL32; |
| case BFD_RELOC_SPU_PPU32: |
| return R_SPU_PPU32; |
| case BFD_RELOC_SPU_PPU64: |
| return R_SPU_PPU64; |
| case BFD_RELOC_SPU_ADD_PIC: |
| return R_SPU_ADD_PIC; |
| } |
| } |
| |
| static void |
| spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| enum elf_spu_reloc_type r_type; |
| |
| r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info); |
| /* PR 17512: file: 90c2a92e. */ |
| if (r_type >= R_SPU_max) |
| { |
| (*_bfd_error_handler) (_("%B: unrecognised SPU reloc number: %d"), |
| abfd, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| r_type = R_SPU_NONE; |
| } |
| cache_ptr->howto = &elf_howto_table[(int) r_type]; |
| } |
| |
| static reloc_howto_type * |
| spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code); |
| |
| if (r_type == (enum elf_spu_reloc_type) -1) |
| return NULL; |
| |
| return elf_howto_table + r_type; |
| } |
| |
| static reloc_howto_type * |
| spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
| if (elf_howto_table[i].name != NULL |
| && strcasecmp (elf_howto_table[i].name, r_name) == 0) |
| return &elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| /* Apply R_SPU_REL9 and R_SPU_REL9I relocs. */ |
| |
| static bfd_reloc_status_type |
| spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol, |
| void *data, asection *input_section, |
| bfd *output_bfd, char **error_message) |
| { |
| bfd_size_type octets; |
| bfd_vma val; |
| long insn; |
| |
| /* If this is a relocatable link (output_bfd test tells us), just |
| call the generic function. Any adjustment will be done at final |
| link time. */ |
| if (output_bfd != NULL) |
| return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, |
| input_section, output_bfd, error_message); |
| |
| if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
| return bfd_reloc_outofrange; |
| octets = reloc_entry->address * bfd_octets_per_byte (abfd); |
| |
| /* Get symbol value. */ |
| val = 0; |
| if (!bfd_is_com_section (symbol->section)) |
| val = symbol->value; |
| if (symbol->section->output_section) |
| val += symbol->section->output_section->vma; |
| |
| val += reloc_entry->addend; |
| |
| /* Make it pc-relative. */ |
| val -= input_section->output_section->vma + input_section->output_offset; |
| |
| val >>= 2; |
| if (val + 256 >= 512) |
| return bfd_reloc_overflow; |
| |
| insn = bfd_get_32 (abfd, (bfd_byte *) data + octets); |
| |
| /* Move two high bits of value to REL9I and REL9 position. |
| The mask will take care of selecting the right field. */ |
| val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16); |
| insn &= ~reloc_entry->howto->dst_mask; |
| insn |= val & reloc_entry->howto->dst_mask; |
| bfd_put_32 (abfd, insn, (bfd_byte *) data + octets); |
| return bfd_reloc_ok; |
| } |
| |
| static bfd_boolean |
| spu_elf_new_section_hook (bfd *abfd, asection *sec) |
| { |
| if (!sec->used_by_bfd) |
| { |
| struct _spu_elf_section_data *sdata; |
| |
| sdata = bfd_zalloc (abfd, sizeof (*sdata)); |
| if (sdata == NULL) |
| return FALSE; |
| sec->used_by_bfd = sdata; |
| } |
| |
| return _bfd_elf_new_section_hook (abfd, sec); |
| } |
| |
| /* Set up overlay info for executables. */ |
| |
| static bfd_boolean |
| spu_elf_object_p (bfd *abfd) |
| { |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
| { |
| unsigned int i, num_ovl, num_buf; |
| Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; |
| Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); |
| Elf_Internal_Phdr *last_phdr = NULL; |
| |
| for (num_buf = 0, num_ovl = 0, i = 0; i < ehdr->e_phnum; i++, phdr++) |
| if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_OVERLAY) != 0) |
| { |
| unsigned int j; |
| |
| ++num_ovl; |
| if (last_phdr == NULL |
| || ((last_phdr->p_vaddr ^ phdr->p_vaddr) & 0x3ffff) != 0) |
| ++num_buf; |
| last_phdr = phdr; |
| for (j = 1; j < elf_numsections (abfd); j++) |
| { |
| Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[j]; |
| |
| if (ELF_SECTION_SIZE (shdr, phdr) != 0 |
| && ELF_SECTION_IN_SEGMENT (shdr, phdr)) |
| { |
| asection *sec = shdr->bfd_section; |
| spu_elf_section_data (sec)->u.o.ovl_index = num_ovl; |
| spu_elf_section_data (sec)->u.o.ovl_buf = num_buf; |
| } |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Specially mark defined symbols named _EAR_* with BSF_KEEP so that |
| strip --strip-unneeded will not remove them. */ |
| |
| static void |
| spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym) |
| { |
| if (sym->name != NULL |
| && sym->section != bfd_abs_section_ptr |
| && strncmp (sym->name, "_EAR_", 5) == 0) |
| sym->flags |= BSF_KEEP; |
| } |
| |
| /* SPU ELF linker hash table. */ |
| |
| struct spu_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| struct spu_elf_params *params; |
| |
| /* Shortcuts to overlay sections. */ |
| asection *ovtab; |
| asection *init; |
| asection *toe; |
| asection **ovl_sec; |
| |
| /* Count of stubs in each overlay section. */ |
| unsigned int *stub_count; |
| |
| /* The stub section for each overlay section. */ |
| asection **stub_sec; |
| |
| struct elf_link_hash_entry *ovly_entry[2]; |
| |
| /* Number of overlay buffers. */ |
| unsigned int num_buf; |
| |
| /* Total number of overlays. */ |
| unsigned int num_overlays; |
| |
| /* For soft icache. */ |
| unsigned int line_size_log2; |
| unsigned int num_lines_log2; |
| unsigned int fromelem_size_log2; |
| |
| /* How much memory we have. */ |
| unsigned int local_store; |
| |
| /* Count of overlay stubs needed in non-overlay area. */ |
| unsigned int non_ovly_stub; |
| |
| /* Pointer to the fixup section */ |
| asection *sfixup; |
| |
| /* Set on error. */ |
| unsigned int stub_err : 1; |
| }; |
| |
| /* Hijack the generic got fields for overlay stub accounting. */ |
| |
| struct got_entry |
| { |
| struct got_entry *next; |
| unsigned int ovl; |
| union { |
| bfd_vma addend; |
| bfd_vma br_addr; |
| }; |
| bfd_vma stub_addr; |
| }; |
| |
| #define spu_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == SPU_ELF_DATA ? ((struct spu_link_hash_table *) ((p)->hash)) : NULL) |
| |
| struct call_info |
| { |
| struct function_info *fun; |
| struct call_info *next; |
| unsigned int count; |
| unsigned int max_depth; |
| unsigned int is_tail : 1; |
| unsigned int is_pasted : 1; |
| unsigned int broken_cycle : 1; |
| unsigned int priority : 13; |
| }; |
| |
| struct function_info |
| { |
| /* List of functions called. Also branches to hot/cold part of |
| function. */ |
| struct call_info *call_list; |
| /* For hot/cold part of function, point to owner. */ |
| struct function_info *start; |
| /* Symbol at start of function. */ |
| union { |
| Elf_Internal_Sym *sym; |
| struct elf_link_hash_entry *h; |
| } u; |
| /* Function section. */ |
| asection *sec; |
| asection *rodata; |
| /* Where last called from, and number of sections called from. */ |
| asection *last_caller; |
| unsigned int call_count; |
| /* Address range of (this part of) function. */ |
| bfd_vma lo, hi; |
| /* Offset where we found a store of lr, or -1 if none found. */ |
| bfd_vma lr_store; |
| /* Offset where we found the stack adjustment insn. */ |
| bfd_vma sp_adjust; |
| /* Stack usage. */ |
| int stack; |
| /* Distance from root of call tree. Tail and hot/cold branches |
| count as one deeper. We aren't counting stack frames here. */ |
| unsigned int depth; |
| /* Set if global symbol. */ |
| unsigned int global : 1; |
| /* Set if known to be start of function (as distinct from a hunk |
| in hot/cold section. */ |
| unsigned int is_func : 1; |
| /* Set if not a root node. */ |
| unsigned int non_root : 1; |
| /* Flags used during call tree traversal. It's cheaper to replicate |
| the visit flags than have one which needs clearing after a traversal. */ |
| unsigned int visit1 : 1; |
| unsigned int visit2 : 1; |
| unsigned int marking : 1; |
| unsigned int visit3 : 1; |
| unsigned int visit4 : 1; |
| unsigned int visit5 : 1; |
| unsigned int visit6 : 1; |
| unsigned int visit7 : 1; |
| }; |
| |
| struct spu_elf_stack_info |
| { |
| int num_fun; |
| int max_fun; |
| /* Variable size array describing functions, one per contiguous |
| address range belonging to a function. */ |
| struct function_info fun[1]; |
| }; |
| |
| static struct function_info *find_function (asection *, bfd_vma, |
| struct bfd_link_info *); |
| |
| /* Create a spu ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| spu_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct spu_link_hash_table *htab; |
| |
| htab = bfd_zmalloc (sizeof (*htab)); |
| if (htab == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, |
| _bfd_elf_link_hash_newfunc, |
| sizeof (struct elf_link_hash_entry), |
| SPU_ELF_DATA)) |
| { |
| free (htab); |
| return NULL; |
| } |
| |
| htab->elf.init_got_refcount.refcount = 0; |
| htab->elf.init_got_refcount.glist = NULL; |
| htab->elf.init_got_offset.offset = 0; |
| htab->elf.init_got_offset.glist = NULL; |
| return &htab->elf.root; |
| } |
| |
| void |
| spu_elf_setup (struct bfd_link_info *info, struct spu_elf_params *params) |
| { |
| bfd_vma max_branch_log2; |
| |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| htab->params = params; |
| htab->line_size_log2 = bfd_log2 (htab->params->line_size); |
| htab->num_lines_log2 = bfd_log2 (htab->params->num_lines); |
| |
| /* For the software i-cache, we provide a "from" list whose size |
| is a power-of-two number of quadwords, big enough to hold one |
| byte per outgoing branch. Compute this number here. */ |
| max_branch_log2 = bfd_log2 (htab->params->max_branch); |
| htab->fromelem_size_log2 = max_branch_log2 > 4 ? max_branch_log2 - 4 : 0; |
| } |
| |
| /* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP |
| to (hash, NULL) for global symbols, and (NULL, sym) for locals. Set |
| *SYMSECP to the symbol's section. *LOCSYMSP caches local syms. */ |
| |
| static bfd_boolean |
| get_sym_h (struct elf_link_hash_entry **hp, |
| Elf_Internal_Sym **symp, |
| asection **symsecp, |
| Elf_Internal_Sym **locsymsp, |
| unsigned long r_symndx, |
| bfd *ibfd) |
| { |
| Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| |
| if (r_symndx >= symtab_hdr->sh_info) |
| { |
| struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd); |
| struct elf_link_hash_entry *h; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (hp != NULL) |
| *hp = h; |
| |
| if (symp != NULL) |
| *symp = NULL; |
| |
| if (symsecp != NULL) |
| { |
| asection *symsec = NULL; |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| symsec = h->root.u.def.section; |
| *symsecp = symsec; |
| } |
| } |
| else |
| { |
| Elf_Internal_Sym *sym; |
| Elf_Internal_Sym *locsyms = *locsymsp; |
| |
| if (locsyms == NULL) |
| { |
| locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (locsyms == NULL) |
| locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, |
| symtab_hdr->sh_info, |
| 0, NULL, NULL, NULL); |
| if (locsyms == NULL) |
| return FALSE; |
| *locsymsp = locsyms; |
| } |
| sym = locsyms + r_symndx; |
| |
| if (hp != NULL) |
| *hp = NULL; |
| |
| if (symp != NULL) |
| *symp = sym; |
| |
| if (symsecp != NULL) |
| *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Create the note section if not already present. This is done early so |
| that the linker maps the sections to the right place in the output. */ |
| |
| bfd_boolean |
| spu_elf_create_sections (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| bfd *ibfd; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL) |
| break; |
| |
| if (ibfd == NULL) |
| { |
| /* Make SPU_PTNOTE_SPUNAME section. */ |
| asection *s; |
| size_t name_len; |
| size_t size; |
| bfd_byte *data; |
| flagword flags; |
| |
| ibfd = info->input_bfds; |
| flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY; |
| s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (ibfd, s, 4)) |
| return FALSE; |
| |
| name_len = strlen (bfd_get_filename (info->output_bfd)) + 1; |
| size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4); |
| size += (name_len + 3) & -4; |
| |
| if (!bfd_set_section_size (ibfd, s, size)) |
| return FALSE; |
| |
| data = bfd_zalloc (ibfd, size); |
| if (data == NULL) |
| return FALSE; |
| |
| bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0); |
| bfd_put_32 (ibfd, name_len, data + 4); |
| bfd_put_32 (ibfd, 1, data + 8); |
| memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME)); |
| memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4), |
| bfd_get_filename (info->output_bfd), name_len); |
| s->contents = data; |
| } |
| |
| if (htab->params->emit_fixups) |
| { |
| asection *s; |
| flagword flags; |
| |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = ibfd; |
| ibfd = htab->elf.dynobj; |
| flags = (SEC_LOAD | SEC_ALLOC | SEC_READONLY | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY | SEC_LINKER_CREATED); |
| s = bfd_make_section_anyway_with_flags (ibfd, ".fixup", flags); |
| if (s == NULL || !bfd_set_section_alignment (ibfd, s, 2)) |
| return FALSE; |
| htab->sfixup = s; |
| } |
| |
| return TRUE; |
| } |
| |
| /* qsort predicate to sort sections by vma. */ |
| |
| static int |
| sort_sections (const void *a, const void *b) |
| { |
| const asection *const *s1 = a; |
| const asection *const *s2 = b; |
| bfd_signed_vma delta = (*s1)->vma - (*s2)->vma; |
| |
| if (delta != 0) |
| return delta < 0 ? -1 : 1; |
| |
| return (*s1)->index - (*s2)->index; |
| } |
| |
| /* Identify overlays in the output bfd, and number them. |
| Returns 0 on error, 1 if no overlays, 2 if overlays. */ |
| |
| int |
| spu_elf_find_overlays (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| asection **alloc_sec; |
| unsigned int i, n, ovl_index, num_buf; |
| asection *s; |
| bfd_vma ovl_end; |
| static const char *const entry_names[2][2] = { |
| { "__ovly_load", "__icache_br_handler" }, |
| { "__ovly_return", "__icache_call_handler" } |
| }; |
| |
| if (info->output_bfd->section_count < 2) |
| return 1; |
| |
| alloc_sec |
| = bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec)); |
| if (alloc_sec == NULL) |
| return 0; |
| |
| /* Pick out all the alloced sections. */ |
| for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next) |
| if ((s->flags & SEC_ALLOC) != 0 |
| && (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL |
| && s->size != 0) |
| alloc_sec[n++] = s; |
| |
| if (n == 0) |
| { |
| free (alloc_sec); |
| return 1; |
| } |
| |
| /* Sort them by vma. */ |
| qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections); |
| |
| ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size; |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| unsigned int prev_buf = 0, set_id = 0; |
| |
| /* Look for an overlapping vma to find the first overlay section. */ |
| bfd_vma vma_start = 0; |
| |
| for (i = 1; i < n; i++) |
| { |
| s = alloc_sec[i]; |
| if (s->vma < ovl_end) |
| { |
| asection *s0 = alloc_sec[i - 1]; |
| vma_start = s0->vma; |
| ovl_end = (s0->vma |
| + ((bfd_vma) 1 |
| << (htab->num_lines_log2 + htab->line_size_log2))); |
| --i; |
| break; |
| } |
| else |
| ovl_end = s->vma + s->size; |
| } |
| |
| /* Now find any sections within the cache area. */ |
| for (ovl_index = 0, num_buf = 0; i < n; i++) |
| { |
| s = alloc_sec[i]; |
| if (s->vma >= ovl_end) |
| break; |
| |
| /* A section in an overlay area called .ovl.init is not |
| an overlay, in the sense that it might be loaded in |
| by the overlay manager, but rather the initial |
| section contents for the overlay buffer. */ |
| if (strncmp (s->name, ".ovl.init", 9) != 0) |
| { |
| num_buf = ((s->vma - vma_start) >> htab->line_size_log2) + 1; |
| set_id = (num_buf == prev_buf)? set_id + 1 : 0; |
| prev_buf = num_buf; |
| |
| if ((s->vma - vma_start) & (htab->params->line_size - 1)) |
| { |
| info->callbacks->einfo (_("%X%P: overlay section %A " |
| "does not start on a cache line.\n"), |
| s); |
| bfd_set_error (bfd_error_bad_value); |
| return 0; |
| } |
| else if (s->size > htab->params->line_size) |
| { |
| info->callbacks->einfo (_("%X%P: overlay section %A " |
| "is larger than a cache line.\n"), |
| s); |
| bfd_set_error (bfd_error_bad_value); |
| return 0; |
| } |
| |
| alloc_sec[ovl_index++] = s; |
| spu_elf_section_data (s)->u.o.ovl_index |
| = (set_id << htab->num_lines_log2) + num_buf; |
| spu_elf_section_data (s)->u.o.ovl_buf = num_buf; |
| } |
| } |
| |
| /* Ensure there are no more overlay sections. */ |
| for ( ; i < n; i++) |
| { |
| s = alloc_sec[i]; |
| if (s->vma < ovl_end) |
| { |
| info->callbacks->einfo (_("%X%P: overlay section %A " |
| "is not in cache area.\n"), |
| alloc_sec[i-1]); |
| bfd_set_error (bfd_error_bad_value); |
| return 0; |
| } |
| else |
| ovl_end = s->vma + s->size; |
| } |
| } |
| else |
| { |
| /* Look for overlapping vmas. Any with overlap must be overlays. |
| Count them. Also count the number of overlay regions. */ |
| for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++) |
| { |
| s = alloc_sec[i]; |
| if (s->vma < ovl_end) |
| { |
| asection *s0 = alloc_sec[i - 1]; |
| |
| if (spu_elf_section_data (s0)->u.o.ovl_index == 0) |
| { |
| ++num_buf; |
| if (strncmp (s0->name, ".ovl.init", 9) != 0) |
| { |
| alloc_sec[ovl_index] = s0; |
| spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index; |
| spu_elf_section_data (s0)->u.o.ovl_buf = num_buf; |
| } |
| else |
| ovl_end = s->vma + s->size; |
| } |
| if (strncmp (s->name, ".ovl.init", 9) != 0) |
| { |
| alloc_sec[ovl_index] = s; |
| spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index; |
| spu_elf_section_data (s)->u.o.ovl_buf = num_buf; |
| if (s0->vma != s->vma) |
| { |
| info->callbacks->einfo (_("%X%P: overlay sections %A " |
| "and %A do not start at the " |
| "same address.\n"), |
| s0, s); |
| bfd_set_error (bfd_error_bad_value); |
| return 0; |
| } |
| if (ovl_end < s->vma + s->size) |
| ovl_end = s->vma + s->size; |
| } |
| } |
| else |
| ovl_end = s->vma + s->size; |
| } |
| } |
| |
| htab->num_overlays = ovl_index; |
| htab->num_buf = num_buf; |
| htab->ovl_sec = alloc_sec; |
| |
| if (ovl_index == 0) |
| return 1; |
| |
| for (i = 0; i < 2; i++) |
| { |
| const char *name; |
| struct elf_link_hash_entry *h; |
| |
| name = entry_names[i][htab->params->ovly_flavour]; |
| h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE); |
| if (h == NULL) |
| return 0; |
| |
| if (h->root.type == bfd_link_hash_new) |
| { |
| h->root.type = bfd_link_hash_undefined; |
| h->ref_regular = 1; |
| h->ref_regular_nonweak = 1; |
| h->non_elf = 0; |
| } |
| htab->ovly_entry[i] = h; |
| } |
| |
| return 2; |
| } |
| |
| /* Non-zero to use bra in overlay stubs rather than br. */ |
| #define BRA_STUBS 0 |
| |
| #define BRA 0x30000000 |
| #define BRASL 0x31000000 |
| #define BR 0x32000000 |
| #define BRSL 0x33000000 |
| #define NOP 0x40200000 |
| #define LNOP 0x00200000 |
| #define ILA 0x42000000 |
| |
| /* Return true for all relative and absolute branch instructions. |
| bra 00110000 0.. |
| brasl 00110001 0.. |
| br 00110010 0.. |
| brsl 00110011 0.. |
| brz 00100000 0.. |
| brnz 00100001 0.. |
| brhz 00100010 0.. |
| brhnz 00100011 0.. */ |
| |
| static bfd_boolean |
| is_branch (const unsigned char *insn) |
| { |
| return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0; |
| } |
| |
| /* Return true for all indirect branch instructions. |
| bi 00110101 000 |
| bisl 00110101 001 |
| iret 00110101 010 |
| bisled 00110101 011 |
| biz 00100101 000 |
| binz 00100101 001 |
| bihz 00100101 010 |
| bihnz 00100101 011 */ |
| |
| static bfd_boolean |
| is_indirect_branch (const unsigned char *insn) |
| { |
| return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0; |
| } |
| |
| /* Return true for branch hint instructions. |
| hbra 0001000.. |
| hbrr 0001001.. */ |
| |
| static bfd_boolean |
| is_hint (const unsigned char *insn) |
| { |
| return (insn[0] & 0xfc) == 0x10; |
| } |
| |
| /* True if INPUT_SECTION might need overlay stubs. */ |
| |
| static bfd_boolean |
| maybe_needs_stubs (asection *input_section) |
| { |
| /* No stubs for debug sections and suchlike. */ |
| if ((input_section->flags & SEC_ALLOC) == 0) |
| return FALSE; |
| |
| /* No stubs for link-once sections that will be discarded. */ |
| if (input_section->output_section == bfd_abs_section_ptr) |
| return FALSE; |
| |
| /* Don't create stubs for .eh_frame references. */ |
| if (strcmp (input_section->name, ".eh_frame") == 0) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| enum _stub_type |
| { |
| no_stub, |
| call_ovl_stub, |
| br000_ovl_stub, |
| br001_ovl_stub, |
| br010_ovl_stub, |
| br011_ovl_stub, |
| br100_ovl_stub, |
| br101_ovl_stub, |
| br110_ovl_stub, |
| br111_ovl_stub, |
| nonovl_stub, |
| stub_error |
| }; |
| |
| /* Return non-zero if this reloc symbol should go via an overlay stub. |
| Return 2 if the stub must be in non-overlay area. */ |
| |
| static enum _stub_type |
| needs_ovl_stub (struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym, |
| asection *sym_sec, |
| asection *input_section, |
| Elf_Internal_Rela *irela, |
| bfd_byte *contents, |
| struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| enum elf_spu_reloc_type r_type; |
| unsigned int sym_type; |
| bfd_boolean branch, hint, call; |
| enum _stub_type ret = no_stub; |
| bfd_byte insn[4]; |
| |
| if (sym_sec == NULL |
| || sym_sec->output_section == bfd_abs_section_ptr |
| || spu_elf_section_data (sym_sec->output_section) == NULL) |
| return ret; |
| |
| if (h != NULL) |
| { |
| /* Ensure no stubs for user supplied overlay manager syms. */ |
| if (h == htab->ovly_entry[0] || h == htab->ovly_entry[1]) |
| return ret; |
| |
| /* setjmp always goes via an overlay stub, because then the return |
| and hence the longjmp goes via __ovly_return. That magically |
| makes setjmp/longjmp between overlays work. */ |
| if (strncmp (h->root.root.string, "setjmp", 6) == 0 |
| && (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@')) |
| ret = call_ovl_stub; |
| } |
| |
| if (h != NULL) |
| sym_type = h->type; |
| else |
| sym_type = ELF_ST_TYPE (sym->st_info); |
| |
| r_type = ELF32_R_TYPE (irela->r_info); |
| branch = FALSE; |
| hint = FALSE; |
| call = FALSE; |
| if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16) |
| { |
| if (contents == NULL) |
| { |
| contents = insn; |
| if (!bfd_get_section_contents (input_section->owner, |
| input_section, |
| contents, |
| irela->r_offset, 4)) |
| return stub_error; |
| } |
| else |
| contents += irela->r_offset; |
| |
| branch = is_branch (contents); |
| hint = is_hint (contents); |
| if (branch || hint) |
| { |
| call = (contents[0] & 0xfd) == 0x31; |
| if (call |
| && sym_type != STT_FUNC |
| && contents != insn) |
| { |
| /* It's common for people to write assembly and forget |
| to give function symbols the right type. Handle |
| calls to such symbols, but warn so that (hopefully) |
| people will fix their code. We need the symbol |
| type to be correct to distinguish function pointer |
| initialisation from other pointer initialisations. */ |
| const char *sym_name; |
| |
| if (h != NULL) |
| sym_name = h->root.root.string; |
| else |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr; |
| sym_name = bfd_elf_sym_name (input_section->owner, |
| symtab_hdr, |
| sym, |
| sym_sec); |
| } |
| (*_bfd_error_handler) (_("warning: call to non-function" |
| " symbol %s defined in %B"), |
| sym_sec->owner, sym_name); |
| |
| } |
| } |
| } |
| |
| if ((!branch && htab->params->ovly_flavour == ovly_soft_icache) |
| || (sym_type != STT_FUNC |
| && !(branch || hint) |
| && (sym_sec->flags & SEC_CODE) == 0)) |
| return no_stub; |
| |
| /* Usually, symbols in non-overlay sections don't need stubs. */ |
| if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0 |
| && !htab->params->non_overlay_stubs) |
| return ret; |
| |
| /* A reference from some other section to a symbol in an overlay |
| section needs a stub. */ |
| if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index |
| != spu_elf_section_data (input_section->output_section)->u.o.ovl_index) |
| { |
| unsigned int lrlive = 0; |
| if (branch) |
| lrlive = (contents[1] & 0x70) >> 4; |
| |
| if (!lrlive && (call || sym_type == STT_FUNC)) |
| ret = call_ovl_stub; |
| else |
| ret = br000_ovl_stub + lrlive; |
| } |
| |
| /* If this insn isn't a branch then we are possibly taking the |
| address of a function and passing it out somehow. Soft-icache code |
| always generates inline code to do indirect branches. */ |
| if (!(branch || hint) |
| && sym_type == STT_FUNC |
| && htab->params->ovly_flavour != ovly_soft_icache) |
| ret = nonovl_stub; |
| |
| return ret; |
| } |
| |
| static bfd_boolean |
| count_stub (struct spu_link_hash_table *htab, |
| bfd *ibfd, |
| asection *isec, |
| enum _stub_type stub_type, |
| struct elf_link_hash_entry *h, |
| const Elf_Internal_Rela *irela) |
| { |
| unsigned int ovl = 0; |
| struct got_entry *g, **head; |
| bfd_vma addend; |
| |
| /* If this instruction is a branch or call, we need a stub |
| for it. One stub per function per overlay. |
| If it isn't a branch, then we are taking the address of |
| this function so need a stub in the non-overlay area |
| for it. One stub per function. */ |
| if (stub_type != nonovl_stub) |
| ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index; |
| |
| if (h != NULL) |
| head = &h->got.glist; |
| else |
| { |
| if (elf_local_got_ents (ibfd) == NULL) |
| { |
| bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info |
| * sizeof (*elf_local_got_ents (ibfd))); |
| elf_local_got_ents (ibfd) = bfd_zmalloc (amt); |
| if (elf_local_got_ents (ibfd) == NULL) |
| return FALSE; |
| } |
| head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info); |
| } |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| htab->stub_count[ovl] += 1; |
| return TRUE; |
| } |
| |
| addend = 0; |
| if (irela != NULL) |
| addend = irela->r_addend; |
| |
| if (ovl == 0) |
| { |
| struct got_entry *gnext; |
| |
| for (g = *head; g != NULL; g = g->next) |
| if (g->addend == addend && g->ovl == 0) |
| break; |
| |
| if (g == NULL) |
| { |
| /* Need a new non-overlay area stub. Zap other stubs. */ |
| for (g = *head; g != NULL; g = gnext) |
| { |
| gnext = g->next; |
| if (g->addend == addend) |
| { |
| htab->stub_count[g->ovl] -= 1; |
| free (g); |
| } |
| } |
| } |
| } |
| else |
| { |
| for (g = *head; g != NULL; g = g->next) |
| if (g->addend == addend && (g->ovl == ovl || g->ovl == 0)) |
| break; |
| } |
| |
| if (g == NULL) |
| { |
| g = bfd_malloc (sizeof *g); |
| if (g == NULL) |
| return FALSE; |
| g->ovl = ovl; |
| g->addend = addend; |
| g->stub_addr = (bfd_vma) -1; |
| g->next = *head; |
| *head = g; |
| |
| htab->stub_count[ovl] += 1; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Support two sizes of overlay stubs, a slower more compact stub of two |
| instructions, and a faster stub of four instructions. |
| Soft-icache stubs are four or eight words. */ |
| |
| static unsigned int |
| ovl_stub_size (struct spu_elf_params *params) |
| { |
| return 16 << params->ovly_flavour >> params->compact_stub; |
| } |
| |
| static unsigned int |
| ovl_stub_size_log2 (struct spu_elf_params *params) |
| { |
| return 4 + params->ovly_flavour - params->compact_stub; |
| } |
| |
| /* Two instruction overlay stubs look like: |
| |
| brsl $75,__ovly_load |
| .word target_ovl_and_address |
| |
| ovl_and_address is a word with the overlay number in the top 14 bits |
| and local store address in the bottom 18 bits. |
| |
| Four instruction overlay stubs look like: |
| |
| ila $78,ovl_number |
| lnop |
| ila $79,target_address |
| br __ovly_load |
| |
| Software icache stubs are: |
| |
| .word target_index |
| .word target_ia; |
| .word lrlive_branchlocalstoreaddr; |
| brasl $75,__icache_br_handler |
| .quad xor_pattern |
| */ |
| |
| static bfd_boolean |
| build_stub (struct bfd_link_info *info, |
| bfd *ibfd, |
| asection *isec, |
| enum _stub_type stub_type, |
| struct elf_link_hash_entry *h, |
| const Elf_Internal_Rela *irela, |
| bfd_vma dest, |
| asection *dest_sec) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| unsigned int ovl, dest_ovl, set_id; |
| struct got_entry *g, **head; |
| asection *sec; |
| bfd_vma addend, from, to, br_dest, patt; |
| unsigned int lrlive; |
| |
| ovl = 0; |
| if (stub_type != nonovl_stub) |
| ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index; |
| |
| if (h != NULL) |
| head = &h->got.glist; |
| else |
| head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info); |
| |
| addend = 0; |
| if (irela != NULL) |
| addend = irela->r_addend; |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| g = bfd_malloc (sizeof *g); |
| if (g == NULL) |
| return FALSE; |
| g->ovl = ovl; |
| g->br_addr = 0; |
| if (irela != NULL) |
| g->br_addr = (irela->r_offset |
| + isec->output_offset |
| + isec->output_section->vma); |
| g->next = *head; |
| *head = g; |
| } |
| else |
| { |
| for (g = *head; g != NULL; g = g->next) |
| if (g->addend == addend && (g->ovl == ovl || g->ovl == 0)) |
| break; |
| if (g == NULL) |
| abort (); |
| |
| if (g->ovl == 0 && ovl != 0) |
| return TRUE; |
| |
| if (g->stub_addr != (bfd_vma) -1) |
| return TRUE; |
| } |
| |
| sec = htab->stub_sec[ovl]; |
| dest += dest_sec->output_offset + dest_sec->output_section->vma; |
| from = sec->size + sec->output_offset + sec->output_section->vma; |
| g->stub_addr = from; |
| to = (htab->ovly_entry[0]->root.u.def.value |
| + htab->ovly_entry[0]->root.u.def.section->output_offset |
| + htab->ovly_entry[0]->root.u.def.section->output_section->vma); |
| |
| if (((dest | to | from) & 3) != 0) |
| { |
| htab->stub_err = 1; |
| return FALSE; |
| } |
| dest_ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index; |
| |
| if (htab->params->ovly_flavour == ovly_normal |
| && !htab->params->compact_stub) |
| { |
| bfd_put_32 (sec->owner, ILA + ((dest_ovl << 7) & 0x01ffff80) + 78, |
| sec->contents + sec->size); |
| bfd_put_32 (sec->owner, LNOP, |
| sec->contents + sec->size + 4); |
| bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79, |
| sec->contents + sec->size + 8); |
| if (!BRA_STUBS) |
| bfd_put_32 (sec->owner, BR + (((to - (from + 12)) << 5) & 0x007fff80), |
| sec->contents + sec->size + 12); |
| else |
| bfd_put_32 (sec->owner, BRA + ((to << 5) & 0x007fff80), |
| sec->contents + sec->size + 12); |
| } |
| else if (htab->params->ovly_flavour == ovly_normal |
| && htab->params->compact_stub) |
| { |
| if (!BRA_STUBS) |
| bfd_put_32 (sec->owner, BRSL + (((to - from) << 5) & 0x007fff80) + 75, |
| sec->contents + sec->size); |
| else |
| bfd_put_32 (sec->owner, BRASL + ((to << 5) & 0x007fff80) + 75, |
| sec->contents + sec->size); |
| bfd_put_32 (sec->owner, (dest & 0x3ffff) | (dest_ovl << 18), |
| sec->contents + sec->size + 4); |
| } |
| else if (htab->params->ovly_flavour == ovly_soft_icache |
| && htab->params->compact_stub) |
| { |
| lrlive = 0; |
| if (stub_type == nonovl_stub) |
| ; |
| else if (stub_type == call_ovl_stub) |
| /* A brsl makes lr live and *(*sp+16) is live. |
| Tail calls have the same liveness. */ |
| lrlive = 5; |
| else if (!htab->params->lrlive_analysis) |
| /* Assume stack frame and lr save. */ |
| lrlive = 1; |
| else if (irela != NULL) |
| { |
| /* Analyse branch instructions. */ |
| struct function_info *caller; |
| bfd_vma off; |
| |
| caller = find_function (isec, irela->r_offset, info); |
| if (caller->start == NULL) |
| off = irela->r_offset; |
| else |
| { |
| struct function_info *found = NULL; |
| |
| /* Find the earliest piece of this function that |
| has frame adjusting instructions. We might |
| see dynamic frame adjustment (eg. for alloca) |
| in some later piece, but functions using |
| alloca always set up a frame earlier. Frame |
| setup instructions are always in one piece. */ |
| if (caller->lr_store != (bfd_vma) -1 |
| || caller->sp_adjust != (bfd_vma) -1) |
| found = caller; |
| while (caller->start != NULL) |
| { |
| caller = caller->start; |
| if (caller->lr_store != (bfd_vma) -1 |
| || caller->sp_adjust != (bfd_vma) -1) |
| found = caller; |
| } |
| if (found != NULL) |
| caller = found; |
| off = (bfd_vma) -1; |
| } |
| |
| if (off > caller->sp_adjust) |
| { |
| if (off > caller->lr_store) |
| /* Only *(*sp+16) is live. */ |
| lrlive = 1; |
| else |
| /* If no lr save, then we must be in a |
| leaf function with a frame. |
| lr is still live. */ |
| lrlive = 4; |
| } |
| else if (off > caller->lr_store) |
| { |
| /* Between lr save and stack adjust. */ |
| lrlive = 3; |
| /* This should never happen since prologues won't |
| be split here. */ |
| BFD_ASSERT (0); |
| } |
| else |
| /* On entry to function. */ |
| lrlive = 5; |
| |
| if (stub_type != br000_ovl_stub |
| && lrlive != stub_type - br000_ovl_stub) |
| info->callbacks->einfo (_("%A:0x%v lrlive .brinfo (%u) differs " |
| "from analysis (%u)\n"), |
| isec, irela->r_offset, lrlive, |
| stub_type - br000_ovl_stub); |
| } |
| |
| /* If given lrlive info via .brinfo, use it. */ |
| if (stub_type > br000_ovl_stub) |
| lrlive = stub_type - br000_ovl_stub; |
| |
| if (ovl == 0) |
| to = (htab->ovly_entry[1]->root.u.def.value |
| + htab->ovly_entry[1]->root.u.def.section->output_offset |
| + htab->ovly_entry[1]->root.u.def.section->output_section->vma); |
| |
| /* The branch that uses this stub goes to stub_addr + 4. We'll |
| set up an xor pattern that can be used by the icache manager |
| to modify this branch to go directly to its destination. */ |
| g->stub_addr += 4; |
| br_dest = g->stub_addr; |
| if (irela == NULL) |
| { |
| /* Except in the case of _SPUEAR_ stubs, the branch in |
| question is the one in the stub itself. */ |
| BFD_ASSERT (stub_type == nonovl_stub); |
| g->br_addr = g->stub_addr; |
| br_dest = to; |
| } |
| |
| set_id = ((dest_ovl - 1) >> htab->num_lines_log2) + 1; |
| bfd_put_32 (sec->owner, (set_id << 18) | (dest & 0x3ffff), |
| sec->contents + sec->size); |
| bfd_put_32 (sec->owner, BRASL + ((to << 5) & 0x007fff80) + 75, |
| sec->contents + sec->size + 4); |
| bfd_put_32 (sec->owner, (lrlive << 29) | (g->br_addr & 0x3ffff), |
| sec->contents + sec->size + 8); |
| patt = dest ^ br_dest; |
| if (irela != NULL && ELF32_R_TYPE (irela->r_info) == R_SPU_REL16) |
| patt = (dest - g->br_addr) ^ (br_dest - g->br_addr); |
| bfd_put_32 (sec->owner, (patt << 5) & 0x007fff80, |
| sec->contents + sec->size + 12); |
| |
| if (ovl == 0) |
| /* Extra space for linked list entries. */ |
| sec->size += 16; |
| } |
| else |
| abort (); |
| |
| sec->size += ovl_stub_size (htab->params); |
| |
| if (htab->params->emit_stub_syms) |
| { |
| size_t len; |
| char *name; |
| int add; |
| |
| len = 8 + sizeof (".ovl_call.") - 1; |
| if (h != NULL) |
| len += strlen (h->root.root.string); |
| else |
| len += 8 + 1 + 8; |
| add = 0; |
| if (irela != NULL) |
| add = (int) irela->r_addend & 0xffffffff; |
| if (add != 0) |
| len += 1 + 8; |
| name = bfd_malloc (len + 1); |
| if (name == NULL) |
| return FALSE; |
| |
| sprintf (name, "%08x.ovl_call.", g->ovl); |
| if (h != NULL) |
| strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string); |
| else |
| sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x", |
| dest_sec->id & 0xffffffff, |
| (int) ELF32_R_SYM (irela->r_info) & 0xffffffff); |
| if (add != 0) |
| sprintf (name + len - 9, "+%x", add); |
| |
| h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE); |
| free (name); |
| if (h == NULL) |
| return FALSE; |
| if (h->root.type == bfd_link_hash_new) |
| { |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.section = sec; |
| h->size = ovl_stub_size (htab->params); |
| h->root.u.def.value = sec->size - h->size; |
| h->type = STT_FUNC; |
| h->ref_regular = 1; |
| h->def_regular = 1; |
| h->ref_regular_nonweak = 1; |
| h->forced_local = 1; |
| h->non_elf = 0; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_ |
| symbols. */ |
| |
| static bfd_boolean |
| allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf) |
| { |
| /* Symbols starting with _SPUEAR_ need a stub because they may be |
| invoked by the PPU. */ |
| struct bfd_link_info *info = inf; |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| asection *sym_sec; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular |
| && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0 |
| && (sym_sec = h->root.u.def.section) != NULL |
| && sym_sec->output_section != bfd_abs_section_ptr |
| && spu_elf_section_data (sym_sec->output_section) != NULL |
| && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0 |
| || htab->params->non_overlay_stubs)) |
| { |
| return count_stub (htab, NULL, NULL, nonovl_stub, h, NULL); |
| } |
| |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| build_spuear_stubs (struct elf_link_hash_entry *h, void *inf) |
| { |
| /* Symbols starting with _SPUEAR_ need a stub because they may be |
| invoked by the PPU. */ |
| struct bfd_link_info *info = inf; |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| asection *sym_sec; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular |
| && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0 |
| && (sym_sec = h->root.u.def.section) != NULL |
| && sym_sec->output_section != bfd_abs_section_ptr |
| && spu_elf_section_data (sym_sec->output_section) != NULL |
| && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0 |
| || htab->params->non_overlay_stubs)) |
| { |
| return build_stub (info, NULL, NULL, nonovl_stub, h, NULL, |
| h->root.u.def.value, sym_sec); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Size or build stubs. */ |
| |
| static bfd_boolean |
| process_stubs (struct bfd_link_info *info, bfd_boolean build) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| bfd *ibfd; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *isec; |
| Elf_Internal_Sym *local_syms = NULL; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| /* We'll need the symbol table in a second. */ |
| symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| if (symtab_hdr->sh_info == 0) |
| continue; |
| |
| /* Walk over each section attached to the input bfd. */ |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| |
| /* If there aren't any relocs, then there's nothing more to do. */ |
| if ((isec->flags & SEC_RELOC) == 0 |
| || isec->reloc_count == 0) |
| continue; |
| |
| if (!maybe_needs_stubs (isec)) |
| continue; |
| |
| /* Get the relocs. */ |
| internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_ret_free_local; |
| |
| /* Now examine each relocation. */ |
| irela = internal_relocs; |
| irelaend = irela + isec->reloc_count; |
| for (; irela < irelaend; irela++) |
| { |
| enum elf_spu_reloc_type r_type; |
| unsigned int r_indx; |
| asection *sym_sec; |
| Elf_Internal_Sym *sym; |
| struct elf_link_hash_entry *h; |
| enum _stub_type stub_type; |
| |
| r_type = ELF32_R_TYPE (irela->r_info); |
| r_indx = ELF32_R_SYM (irela->r_info); |
| |
| if (r_type >= R_SPU_max) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| error_ret_free_internal: |
| if (elf_section_data (isec)->relocs != internal_relocs) |
| free (internal_relocs); |
| error_ret_free_local: |
| if (local_syms != NULL |
| && (symtab_hdr->contents |
| != (unsigned char *) local_syms)) |
| free (local_syms); |
| return FALSE; |
| } |
| |
| /* Determine the reloc target section. */ |
| if (!get_sym_h (&h, &sym, &sym_sec, &local_syms, r_indx, ibfd)) |
| goto error_ret_free_internal; |
| |
| stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela, |
| NULL, info); |
| if (stub_type == no_stub) |
| continue; |
| else if (stub_type == stub_error) |
| goto error_ret_free_internal; |
| |
| if (htab->stub_count == NULL) |
| { |
| bfd_size_type amt; |
| amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count); |
| htab->stub_count = bfd_zmalloc (amt); |
| if (htab->stub_count == NULL) |
| goto error_ret_free_internal; |
| } |
| |
| if (!build) |
| { |
| if (!count_stub (htab, ibfd, isec, stub_type, h, irela)) |
| goto error_ret_free_internal; |
| } |
| else |
| { |
| bfd_vma dest; |
| |
| if (h != NULL) |
| dest = h->root.u.def.value; |
| else |
| dest = sym->st_value; |
| dest += irela->r_addend; |
| if (!build_stub (info, ibfd, isec, stub_type, h, irela, |
| dest, sym_sec)) |
| goto error_ret_free_internal; |
| } |
| } |
| |
| /* We're done with the internal relocs, free them. */ |
| if (elf_section_data (isec)->relocs != internal_relocs) |
| free (internal_relocs); |
| } |
| |
| if (local_syms != NULL |
| && symtab_hdr->contents != (unsigned char *) local_syms) |
| { |
| if (!info->keep_memory) |
| free (local_syms); |
| else |
| symtab_hdr->contents = (unsigned char *) local_syms; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Allocate space for overlay call and return stubs. |
| Return 0 on error, 1 if no overlays, 2 otherwise. */ |
| |
| int |
| spu_elf_size_stubs (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab; |
| bfd *ibfd; |
| bfd_size_type amt; |
| flagword flags; |
| unsigned int i; |
| asection *stub; |
| |
| if (!process_stubs (info, FALSE)) |
| return 0; |
| |
| htab = spu_hash_table (info); |
| elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info); |
| if (htab->stub_err) |
| return 0; |
| |
| ibfd = info->input_bfds; |
| if (htab->stub_count != NULL) |
| { |
| amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec); |
| htab->stub_sec = bfd_zmalloc (amt); |
| if (htab->stub_sec == NULL) |
| return 0; |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY |
| | SEC_HAS_CONTENTS | SEC_IN_MEMORY); |
| stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags); |
| htab->stub_sec[0] = stub; |
| if (stub == NULL |
| || !bfd_set_section_alignment (ibfd, stub, |
| ovl_stub_size_log2 (htab->params))) |
| return 0; |
| stub->size = htab->stub_count[0] * ovl_stub_size (htab->params); |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| /* Extra space for linked list entries. */ |
| stub->size += htab->stub_count[0] * 16; |
| |
| for (i = 0; i < htab->num_overlays; ++i) |
| { |
| asection *osec = htab->ovl_sec[i]; |
| unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index; |
| stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags); |
| htab->stub_sec[ovl] = stub; |
| if (stub == NULL |
| || !bfd_set_section_alignment (ibfd, stub, |
| ovl_stub_size_log2 (htab->params))) |
| return 0; |
| stub->size = htab->stub_count[ovl] * ovl_stub_size (htab->params); |
| } |
| } |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| /* Space for icache manager tables. |
| a) Tag array, one quadword per cache line. |
| b) Rewrite "to" list, one quadword per cache line. |
| c) Rewrite "from" list, one byte per outgoing branch (rounded up to |
| a power-of-two number of full quadwords) per cache line. */ |
| |
| flags = SEC_ALLOC; |
| htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags); |
| if (htab->ovtab == NULL |
| || !bfd_set_section_alignment (ibfd, htab->ovtab, 4)) |
| return 0; |
| |
| htab->ovtab->size = (16 + 16 + (16 << htab->fromelem_size_log2)) |
| << htab->num_lines_log2; |
| |
| flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; |
| htab->init = bfd_make_section_anyway_with_flags (ibfd, ".ovini", flags); |
| if (htab->init == NULL |
| || !bfd_set_section_alignment (ibfd, htab->init, 4)) |
| return 0; |
| |
| htab->init->size = 16; |
| } |
| else if (htab->stub_count == NULL) |
| return 1; |
| else |
| { |
| /* htab->ovtab consists of two arrays. |
| . struct { |
| . u32 vma; |
| . u32 size; |
| . u32 file_off; |
| . u32 buf; |
| . } _ovly_table[]; |
| . |
| . struct { |
| . u32 mapped; |
| . } _ovly_buf_table[]; |
| . */ |
| |
| flags = SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY; |
| htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags); |
| if (htab->ovtab == NULL |
| || !bfd_set_section_alignment (ibfd, htab->ovtab, 4)) |
| return 0; |
| |
| htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4; |
| } |
| |
| htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC); |
| if (htab->toe == NULL |
| || !bfd_set_section_alignment (ibfd, htab->toe, 4)) |
| return 0; |
| htab->toe->size = 16; |
| |
| return 2; |
| } |
| |
| /* Called from ld to place overlay manager data sections. This is done |
| after the overlay manager itself is loaded, mainly so that the |
| linker's htab->init section is placed after any other .ovl.init |
| sections. */ |
| |
| void |
| spu_elf_place_overlay_data (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| unsigned int i; |
| |
| if (htab->stub_sec != NULL) |
| { |
| (*htab->params->place_spu_section) (htab->stub_sec[0], NULL, ".text"); |
| |
| for (i = 0; i < htab->num_overlays; ++i) |
| { |
| asection *osec = htab->ovl_sec[i]; |
| unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index; |
| (*htab->params->place_spu_section) (htab->stub_sec[ovl], osec, NULL); |
| } |
| } |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| (*htab->params->place_spu_section) (htab->init, NULL, ".ovl.init"); |
| |
| if (htab->ovtab != NULL) |
| { |
| const char *ovout = ".data"; |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| ovout = ".bss"; |
| (*htab->params->place_spu_section) (htab->ovtab, NULL, ovout); |
| } |
| |
| if (htab->toe != NULL) |
| (*htab->params->place_spu_section) (htab->toe, NULL, ".toe"); |
| } |
| |
| /* Functions to handle embedded spu_ovl.o object. */ |
| |
| static void * |
| ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream) |
| { |
| return stream; |
| } |
| |
| static file_ptr |
| ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED, |
| void *stream, |
| void *buf, |
| file_ptr nbytes, |
| file_ptr offset) |
| { |
| struct _ovl_stream *os; |
| size_t count; |
| size_t max; |
| |
| os = (struct _ovl_stream *) stream; |
| max = (const char *) os->end - (const char *) os->start; |
| |
| if ((ufile_ptr) offset >= max) |
| return 0; |
| |
| count = nbytes; |
| if (count > max - offset) |
| count = max - offset; |
| |
| memcpy (buf, (const char *) os->start + offset, count); |
| return count; |
| } |
| |
| static int |
| ovl_mgr_stat (struct bfd *abfd ATTRIBUTE_UNUSED, |
| void *stream, |
| struct stat *sb) |
| { |
| struct _ovl_stream *os = (struct _ovl_stream *) stream; |
| |
| memset (sb, 0, sizeof (*sb)); |
| sb->st_size = (const char *) os->end - (const char *) os->start; |
| return 0; |
| } |
| |
| bfd_boolean |
| spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream) |
| { |
| *ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr", |
| "elf32-spu", |
| ovl_mgr_open, |
| (void *) stream, |
| ovl_mgr_pread, |
| NULL, |
| ovl_mgr_stat); |
| return *ovl_bfd != NULL; |
| } |
| |
| static unsigned int |
| overlay_index (asection *sec) |
| { |
| if (sec == NULL |
| || sec->output_section == bfd_abs_section_ptr) |
| return 0; |
| return spu_elf_section_data (sec->output_section)->u.o.ovl_index; |
| } |
| |
| /* Define an STT_OBJECT symbol. */ |
| |
| static struct elf_link_hash_entry * |
| define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE); |
| if (h == NULL) |
| return NULL; |
| |
| if (h->root.type != bfd_link_hash_defined |
| || !h->def_regular) |
| { |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.section = htab->ovtab; |
| h->type = STT_OBJECT; |
| h->ref_regular = 1; |
| h->def_regular = 1; |
| h->ref_regular_nonweak = 1; |
| h->non_elf = 0; |
| } |
| else if (h->root.u.def.section->owner != NULL) |
| { |
| (*_bfd_error_handler) (_("%B is not allowed to define %s"), |
| h->root.u.def.section->owner, |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| else |
| { |
| (*_bfd_error_handler) (_("you are not allowed to define %s in a script"), |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| return h; |
| } |
| |
| /* Fill in all stubs and the overlay tables. */ |
| |
| static bfd_boolean |
| spu_elf_build_stubs (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| struct elf_link_hash_entry *h; |
| bfd_byte *p; |
| asection *s; |
| bfd *obfd; |
| unsigned int i; |
| |
| if (htab->num_overlays != 0) |
| { |
| for (i = 0; i < 2; i++) |
| { |
| h = htab->ovly_entry[i]; |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular) |
| { |
| s = h->root.u.def.section->output_section; |
| if (spu_elf_section_data (s)->u.o.ovl_index) |
| { |
| (*_bfd_error_handler) (_("%s in overlay section"), |
| h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| } |
| } |
| |
| if (htab->stub_sec != NULL) |
| { |
| for (i = 0; i <= htab->num_overlays; i++) |
| if (htab->stub_sec[i]->size != 0) |
| { |
| htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner, |
| htab->stub_sec[i]->size); |
| if (htab->stub_sec[i]->contents == NULL) |
| return FALSE; |
| htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size; |
| htab->stub_sec[i]->size = 0; |
| } |
| |
| /* Fill in all the stubs. */ |
| process_stubs (info, TRUE); |
| if (!htab->stub_err) |
| elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info); |
| |
| if (htab->stub_err) |
| { |
| (*_bfd_error_handler) (_("overlay stub relocation overflow")); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| for (i = 0; i <= htab->num_overlays; i++) |
| { |
| if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize) |
| { |
| (*_bfd_error_handler) (_("stubs don't match calculated size")); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| htab->stub_sec[i]->rawsize = 0; |
| } |
| } |
| |
| if (htab->ovtab == NULL || htab->ovtab->size == 0) |
| return TRUE; |
| |
| htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size); |
| if (htab->ovtab->contents == NULL) |
| return FALSE; |
| |
| p = htab->ovtab->contents; |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| bfd_vma off; |
| |
| h = define_ovtab_symbol (htab, "__icache_tag_array"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 0; |
| h->size = 16 << htab->num_lines_log2; |
| off = h->size; |
| |
| h = define_ovtab_symbol (htab, "__icache_tag_array_size"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 16 << htab->num_lines_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_rewrite_to"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = off; |
| h->size = 16 << htab->num_lines_log2; |
| off += h->size; |
| |
| h = define_ovtab_symbol (htab, "__icache_rewrite_to_size"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 16 << htab->num_lines_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_rewrite_from"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = off; |
| h->size = 16 << (htab->fromelem_size_log2 + htab->num_lines_log2); |
| off += h->size; |
| |
| h = define_ovtab_symbol (htab, "__icache_rewrite_from_size"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 16 << (htab->fromelem_size_log2 |
| + htab->num_lines_log2); |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_log2_fromelemsize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->fromelem_size_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_base"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->ovl_sec[0]->vma; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| h->size = htab->num_buf << htab->line_size_log2; |
| |
| h = define_ovtab_symbol (htab, "__icache_linesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 1 << htab->line_size_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_log2_linesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->line_size_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_neg_log2_linesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = -htab->line_size_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_cachesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 1 << (htab->num_lines_log2 + htab->line_size_log2); |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_log2_cachesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->num_lines_log2 + htab->line_size_log2; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| h = define_ovtab_symbol (htab, "__icache_neg_log2_cachesize"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = -(htab->num_lines_log2 + htab->line_size_log2); |
| h->root.u.def.section = bfd_abs_section_ptr; |
| |
| if (htab->init != NULL && htab->init->size != 0) |
| { |
| htab->init->contents = bfd_zalloc (htab->init->owner, |
| htab->init->size); |
| if (htab->init->contents == NULL) |
| return FALSE; |
| |
| h = define_ovtab_symbol (htab, "__icache_fileoff"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 0; |
| h->root.u.def.section = htab->init; |
| h->size = 8; |
| } |
| } |
| else |
| { |
| /* Write out _ovly_table. */ |
| /* set low bit of .size to mark non-overlay area as present. */ |
| p[7] = 1; |
| obfd = htab->ovtab->output_section->owner; |
| for (s = obfd->sections; s != NULL; s = s->next) |
| { |
| unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index; |
| |
| if (ovl_index != 0) |
| { |
| unsigned long off = ovl_index * 16; |
| unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf; |
| |
| bfd_put_32 (htab->ovtab->owner, s->vma, p + off); |
| bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, |
| p + off + 4); |
| /* file_off written later in spu_elf_modify_program_headers. */ |
| bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12); |
| } |
| } |
| |
| h = define_ovtab_symbol (htab, "_ovly_table"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = 16; |
| h->size = htab->num_overlays * 16; |
| |
| h = define_ovtab_symbol (htab, "_ovly_table_end"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->num_overlays * 16 + 16; |
| h->size = 0; |
| |
| h = define_ovtab_symbol (htab, "_ovly_buf_table"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->num_overlays * 16 + 16; |
| h->size = htab->num_buf * 4; |
| |
| h = define_ovtab_symbol (htab, "_ovly_buf_table_end"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4; |
| h->size = 0; |
| } |
| |
| h = define_ovtab_symbol (htab, "_EAR_"); |
| if (h == NULL) |
| return FALSE; |
| h->root.u.def.section = htab->toe; |
| h->root.u.def.value = 0; |
| h->size = 16; |
| |
| return TRUE; |
| } |
| |
| /* Check that all loadable section VMAs lie in the range |
| LO .. HI inclusive, and stash some parameters for --auto-overlay. */ |
| |
| asection * |
| spu_elf_check_vma (struct bfd_link_info *info) |
| { |
| struct elf_segment_map *m; |
| unsigned int i; |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| bfd *abfd = info->output_bfd; |
| bfd_vma hi = htab->params->local_store_hi; |
| bfd_vma lo = htab->params->local_store_lo; |
| |
| htab->local_store = hi + 1 - lo; |
| |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_LOAD) |
| for (i = 0; i < m->count; i++) |
| if (m->sections[i]->size != 0 |
| && (m->sections[i]->vma < lo |
| || m->sections[i]->vma > hi |
| || m->sections[i]->vma + m->sections[i]->size - 1 > hi)) |
| return m->sections[i]; |
| |
| return NULL; |
| } |
| |
| /* OFFSET in SEC (presumably) is the beginning of a function prologue. |
| Search for stack adjusting insns, and return the sp delta. |
| If a store of lr is found save the instruction offset to *LR_STORE. |
| If a stack adjusting instruction is found, save that offset to |
| *SP_ADJUST. */ |
| |
| static int |
| find_function_stack_adjust (asection *sec, |
| bfd_vma offset, |
| bfd_vma *lr_store, |
| bfd_vma *sp_adjust) |
| { |
| int reg[128]; |
| |
| memset (reg, 0, sizeof (reg)); |
| for ( ; offset + 4 <= sec->size; offset += 4) |
| { |
| unsigned char buf[4]; |
| int rt, ra; |
| int imm; |
| |
| /* Assume no relocs on stack adjusing insns. */ |
| if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4)) |
| break; |
| |
| rt = buf[3] & 0x7f; |
| ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7); |
| |
| if (buf[0] == 0x24 /* stqd */) |
| { |
| if (rt == 0 /* lr */ && ra == 1 /* sp */) |
| *lr_store = offset; |
| continue; |
| } |
| |
| /* Partly decoded immediate field. */ |
| imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7); |
| |
| if (buf[0] == 0x1c /* ai */) |
| { |
| imm >>= 7; |
| imm = (imm ^ 0x200) - 0x200; |
| reg[rt] = reg[ra] + imm; |
| |
| if (rt == 1 /* sp */) |
| { |
| if (reg[rt] > 0) |
| break; |
| *sp_adjust = offset; |
| return reg[rt]; |
| } |
| } |
| else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */) |
| { |
| int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6); |
| |
| reg[rt] = reg[ra] + reg[rb]; |
| if (rt == 1) |
| { |
| if (reg[rt] > 0) |
| break; |
| *sp_adjust = offset; |
| return reg[rt]; |
| } |
| } |
| else if (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */) |
| { |
| int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6); |
| |
| reg[rt] = reg[rb] - reg[ra]; |
| if (rt == 1) |
| { |
| if (reg[rt] > 0) |
| break; |
| *sp_adjust = offset; |
| return reg[rt]; |
| } |
| } |
| else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */) |
| { |
| if (buf[0] >= 0x42 /* ila */) |
| imm |= (buf[0] & 1) << 17; |
| else |
| { |
| imm &= 0xffff; |
| |
| if (buf[0] == 0x40 /* il */) |
| { |
| if ((buf[1] & 0x80) == 0) |
| continue; |
| imm = (imm ^ 0x8000) - 0x8000; |
| } |
| else if ((buf[1] & 0x80) == 0 /* ilhu */) |
| imm <<= 16; |
| } |
| reg[rt] = imm; |
| continue; |
| } |
| else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */) |
| { |
| reg[rt] |= imm & 0xffff; |
| continue; |
| } |
| else if (buf[0] == 0x04 /* ori */) |
| { |
| imm >>= 7; |
| imm = (imm ^ 0x200) - 0x200; |
| reg[rt] = reg[ra] | imm; |
| continue; |
| } |
| else if (buf[0] == 0x32 && (buf[1] & 0x80) != 0 /* fsmbi */) |
| { |
| reg[rt] = ( ((imm & 0x8000) ? 0xff000000 : 0) |
| | ((imm & 0x4000) ? 0x00ff0000 : 0) |
| | ((imm & 0x2000) ? 0x0000ff00 : 0) |
| | ((imm & 0x1000) ? 0x000000ff : 0)); |
| continue; |
| } |
| else if (buf[0] == 0x16 /* andbi */) |
| { |
| imm >>= 7; |
| imm &= 0xff; |
| imm |= imm << 8; |
| imm |= imm << 16; |
| reg[rt] = reg[ra] & imm; |
| continue; |
| } |
| else if (buf[0] == 0x33 && imm == 1 /* brsl .+4 */) |
| { |
| /* Used in pic reg load. Say rt is trashed. Won't be used |
| in stack adjust, but we need to continue past this branch. */ |
| reg[rt] = 0; |
| continue; |
| } |
| else if (is_branch (buf) || is_indirect_branch (buf)) |
| /* If we hit a branch then we must be out of the prologue. */ |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* qsort predicate to sort symbols by section and value. */ |
| |
| static Elf_Internal_Sym *sort_syms_syms; |
| static asection **sort_syms_psecs; |
| |
| static int |
| sort_syms (const void *a, const void *b) |
| { |
| Elf_Internal_Sym *const *s1 = a; |
| Elf_Internal_Sym *const *s2 = b; |
| asection *sec1,*sec2; |
| bfd_signed_vma delta; |
| |
| sec1 = sort_syms_psecs[*s1 - sort_syms_syms]; |
| sec2 = sort_syms_psecs[*s2 - sort_syms_syms]; |
| |
| if (sec1 != sec2) |
| return sec1->index - sec2->index; |
| |
| delta = (*s1)->st_value - (*s2)->st_value; |
| if (delta != 0) |
| return delta < 0 ? -1 : 1; |
| |
| delta = (*s2)->st_size - (*s1)->st_size; |
| if (delta != 0) |
| return delta < 0 ? -1 : 1; |
| |
| return *s1 < *s2 ? -1 : 1; |
| } |
| |
| /* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info |
| entries for section SEC. */ |
| |
| static struct spu_elf_stack_info * |
| alloc_stack_info (asection *sec, int max_fun) |
| { |
| struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); |
| bfd_size_type amt; |
| |
| amt = sizeof (struct spu_elf_stack_info); |
| amt += (max_fun - 1) * sizeof (struct function_info); |
| sec_data->u.i.stack_info = bfd_zmalloc (amt); |
| if (sec_data->u.i.stack_info != NULL) |
| sec_data->u.i.stack_info->max_fun = max_fun; |
| return sec_data->u.i.stack_info; |
| } |
| |
| /* Add a new struct function_info describing a (part of a) function |
| starting at SYM_H. Keep the array sorted by address. */ |
| |
| static struct function_info * |
| maybe_insert_function (asection *sec, |
| void *sym_h, |
| bfd_boolean global, |
| bfd_boolean is_func) |
| { |
| struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); |
| struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; |
| int i; |
| bfd_vma off, size; |
| |
| if (sinfo == NULL) |
| { |
| sinfo = alloc_stack_info (sec, 20); |
| if (sinfo == NULL) |
| return NULL; |
| } |
| |
| if (!global) |
| { |
| Elf_Internal_Sym *sym = sym_h; |
| off = sym->st_value; |
| size = sym->st_size; |
| } |
| else |
| { |
| struct elf_link_hash_entry *h = sym_h; |
| off = h->root.u.def.value; |
| size = h->size; |
| } |
| |
| for (i = sinfo->num_fun; --i >= 0; ) |
| if (sinfo->fun[i].lo <= off) |
| break; |
| |
| if (i >= 0) |
| { |
| /* Don't add another entry for an alias, but do update some |
| info. */ |
| if (sinfo->fun[i].lo == off) |
| { |
| /* Prefer globals over local syms. */ |
| if (global && !sinfo->fun[i].global) |
| { |
| sinfo->fun[i].global = TRUE; |
| sinfo->fun[i].u.h = sym_h; |
| } |
| if (is_func) |
| sinfo->fun[i].is_func = TRUE; |
| return &sinfo->fun[i]; |
| } |
| /* Ignore a zero-size symbol inside an existing function. */ |
| else if (sinfo->fun[i].hi > off && size == 0) |
| return &sinfo->fun[i]; |
| } |
| |
| if (sinfo->num_fun >= sinfo->max_fun) |
| { |
| bfd_size_type amt = sizeof (struct spu_elf_stack_info); |
| bfd_size_type old = amt; |
| |
| old += (sinfo->max_fun - 1) * sizeof (struct function_info); |
| sinfo->max_fun += 20 + (sinfo->max_fun >> 1); |
| amt += (sinfo->max_fun - 1) * sizeof (struct function_info); |
| sinfo = bfd_realloc (sinfo, amt); |
| if (sinfo == NULL) |
| return NULL; |
| memset ((char *) sinfo + old, 0, amt - old); |
| sec_data->u.i.stack_info = sinfo; |
| } |
| |
| if (++i < sinfo->num_fun) |
| memmove (&sinfo->fun[i + 1], &sinfo->fun[i], |
| (sinfo->num_fun - i) * sizeof (sinfo->fun[i])); |
| sinfo->fun[i].is_func = is_func; |
| sinfo->fun[i].global = global; |
| sinfo->fun[i].sec = sec; |
| if (global) |
| sinfo->fun[i].u.h = sym_h; |
| else |
| sinfo->fun[i].u.sym = sym_h; |
| sinfo->fun[i].lo = off; |
| sinfo->fun[i].hi = off + size; |
| sinfo->fun[i].lr_store = -1; |
| sinfo->fun[i].sp_adjust = -1; |
| sinfo->fun[i].stack = -find_function_stack_adjust (sec, off, |
| &sinfo->fun[i].lr_store, |
| &sinfo->fun[i].sp_adjust); |
| sinfo->num_fun += 1; |
| return &sinfo->fun[i]; |
| } |
| |
| /* Return the name of FUN. */ |
| |
| static const char * |
| func_name (struct function_info *fun) |
| { |
| asection *sec; |
| bfd *ibfd; |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| while (fun->start != NULL) |
| fun = fun->start; |
| |
| if (fun->global) |
| return fun->u.h->root.root.string; |
| |
| sec = fun->sec; |
| if (fun->u.sym->st_name == 0) |
| { |
| size_t len = strlen (sec->name); |
| char *name = bfd_malloc (len + 10); |
| if (name == NULL) |
| return "(null)"; |
| sprintf (name, "%s+%lx", sec->name, |
| (unsigned long) fun->u.sym->st_value & 0xffffffff); |
| return name; |
| } |
| ibfd = sec->owner; |
| symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec); |
| } |
| |
| /* Read the instruction at OFF in SEC. Return true iff the instruction |
| is a nop, lnop, or stop 0 (all zero insn). */ |
| |
| static bfd_boolean |
| is_nop (asection *sec, bfd_vma off) |
| { |
| unsigned char insn[4]; |
| |
| if (off + 4 > sec->size |
| || !bfd_get_section_contents (sec->owner, sec, insn, off, 4)) |
| return FALSE; |
| if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20) |
| return TRUE; |
| if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0) |
| return TRUE; |
| return FALSE; |
| } |
| |
| /* Extend the range of FUN to cover nop padding up to LIMIT. |
| Return TRUE iff some instruction other than a NOP was found. */ |
| |
| static bfd_boolean |
| insns_at_end (struct function_info *fun, bfd_vma limit) |
| { |
| bfd_vma off = (fun->hi + 3) & -4; |
| |
| while (off < limit && is_nop (fun->sec, off)) |
| off += 4; |
| if (off < limit) |
| { |
| fun->hi = off; |
| return TRUE; |
| } |
| fun->hi = limit; |
| return FALSE; |
| } |
| |
| /* Check and fix overlapping function ranges. Return TRUE iff there |
| are gaps in the current info we have about functions in SEC. */ |
| |
| static bfd_boolean |
| check_function_ranges (asection *sec, struct bfd_link_info *info) |
| { |
| struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); |
| struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; |
| int i; |
| bfd_boolean gaps = FALSE; |
| |
| if (sinfo == NULL) |
| return FALSE; |
| |
| for (i = 1; i < sinfo->num_fun; i++) |
| if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo) |
| { |
| /* Fix overlapping symbols. */ |
| const char *f1 = func_name (&sinfo->fun[i - 1]); |
| const char *f2 = func_name (&sinfo->fun[i]); |
| |
| info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2); |
| sinfo->fun[i - 1].hi = sinfo->fun[i].lo; |
| } |
| else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo)) |
| gaps = TRUE; |
| |
| if (sinfo->num_fun == 0) |
| gaps = TRUE; |
| else |
| { |
| if (sinfo->fun[0].lo != 0) |
| gaps = TRUE; |
| if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size) |
| { |
| const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]); |
| |
| info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1); |
| sinfo->fun[sinfo->num_fun - 1].hi = sec->size; |
| } |
| else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size)) |
| gaps = TRUE; |
| } |
| return gaps; |
| } |
| |
| /* Search current function info for a function that contains address |
| OFFSET in section SEC. */ |
| |
| static struct function_info * |
| find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info) |
| { |
| struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); |
| struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; |
| int lo, hi, mid; |
| |
| lo = 0; |
| hi = sinfo->num_fun; |
| while (lo < hi) |
| { |
| mid = (lo + hi) / 2; |
| if (offset < sinfo->fun[mid].lo) |
| hi = mid; |
| else if (offset >= sinfo->fun[mid].hi) |
| lo = mid + 1; |
| else |
| return &sinfo->fun[mid]; |
| } |
| info->callbacks->einfo (_("%A:0x%v not found in function table\n"), |
| sec, offset); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| /* Add CALLEE to CALLER call list if not already present. Return TRUE |
| if CALLEE was new. If this function return FALSE, CALLEE should |
| be freed. */ |
| |
| static bfd_boolean |
| insert_callee (struct function_info *caller, struct call_info *callee) |
| { |
| struct call_info **pp, *p; |
| |
| for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next) |
| if (p->fun == callee->fun) |
| { |
| /* Tail calls use less stack than normal calls. Retain entry |
| for normal call over one for tail call. */ |
| p->is_tail &= callee->is_tail; |
| if (!p->is_tail) |
| { |
| p->fun->start = NULL; |
| p->fun->is_func = TRUE; |
| } |
| p->count += callee->count; |
| /* Reorder list so most recent call is first. */ |
| *pp = p->next; |
| p->next = caller->call_list; |
| caller->call_list = p; |
| return FALSE; |
| } |
| callee->next = caller->call_list; |
| caller->call_list = callee; |
| return TRUE; |
| } |
| |
| /* Copy CALL and insert the copy into CALLER. */ |
| |
| static bfd_boolean |
| copy_callee (struct function_info *caller, const struct call_info *call) |
| { |
| struct call_info *callee; |
| callee = bfd_malloc (sizeof (*callee)); |
| if (callee == NULL) |
| return FALSE; |
| *callee = *call; |
| if (!insert_callee (caller, callee)) |
| free (callee); |
| return TRUE; |
| } |
| |
| /* We're only interested in code sections. Testing SEC_IN_MEMORY excludes |
| overlay stub sections. */ |
| |
| static bfd_boolean |
| interesting_section (asection *s) |
| { |
| return (s->output_section != bfd_abs_section_ptr |
| && ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY)) |
| == (SEC_ALLOC | SEC_LOAD | SEC_CODE)) |
| && s->size != 0); |
| } |
| |
| /* Rummage through the relocs for SEC, looking for function calls. |
| If CALL_TREE is true, fill in call graph. If CALL_TREE is false, |
| mark destination symbols on calls as being functions. Also |
| look at branches, which may be tail calls or go to hot/cold |
| section part of same function. */ |
| |
| static bfd_boolean |
| mark_functions_via_relocs (asection *sec, |
| struct bfd_link_info *info, |
| int call_tree) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| Elf_Internal_Shdr *symtab_hdr; |
| void *psyms; |
| unsigned int priority = 0; |
| static bfd_boolean warned; |
| |
| if (!interesting_section (sec) |
| || sec->reloc_count == 0) |
| return TRUE; |
| |
| internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| return FALSE; |
| |
| symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr; |
| psyms = &symtab_hdr->contents; |
| irela = internal_relocs; |
| irelaend = irela + sec->reloc_count; |
| for (; irela < irelaend; irela++) |
| { |
| enum elf_spu_reloc_type r_type; |
| unsigned int r_indx; |
| asection *sym_sec; |
| Elf_Internal_Sym *sym; |
| struct elf_link_hash_entry *h; |
| bfd_vma val; |
| bfd_boolean nonbranch, is_call; |
| struct function_info *caller; |
| struct call_info *callee; |
| |
| r_type = ELF32_R_TYPE (irela->r_info); |
| nonbranch = r_type != R_SPU_REL16 && r_type != R_SPU_ADDR16; |
| |
| r_indx = ELF32_R_SYM (irela->r_info); |
| if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner)) |
| return FALSE; |
| |
| if (sym_sec == NULL |
| || sym_sec->output_section == bfd_abs_section_ptr) |
| continue; |
| |
| is_call = FALSE; |
| if (!nonbranch) |
| { |
| unsigned char insn[4]; |
| |
| if (!bfd_get_section_contents (sec->owner, sec, insn, |
| irela->r_offset, 4)) |
| return FALSE; |
| if (is_branch (insn)) |
| { |
| is_call = (insn[0] & 0xfd) == 0x31; |
| priority = insn[1] & 0x0f; |
| priority <<= 8; |
| priority |= insn[2]; |
| priority <<= 8; |
| priority |= insn[3]; |
| priority >>= 7; |
| if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE)) |
| != (SEC_ALLOC | SEC_LOAD | SEC_CODE)) |
| { |
| if (!warned) |
| info->callbacks->einfo |
| (_("%B(%A+0x%v): call to non-code section" |
| " %B(%A), analysis incomplete\n"), |
| sec->owner, sec, irela->r_offset, |
| sym_sec->owner, sym_sec); |
| warned = TRUE; |
| continue; |
| } |
| } |
| else |
| { |
| nonbranch = TRUE; |
| if (is_hint (insn)) |
| continue; |
| } |
| } |
| |
| if (nonbranch) |
| { |
| /* For --auto-overlay, count possible stubs we need for |
| function pointer references. */ |
| unsigned int sym_type; |
| if (h) |
| sym_type = h->type; |
| else |
| sym_type = ELF_ST_TYPE (sym->st_info); |
| if (sym_type == STT_FUNC) |
| { |
| if (call_tree && spu_hash_table (info)->params->auto_overlay) |
| spu_hash_table (info)->non_ovly_stub += 1; |
| /* If the symbol type is STT_FUNC then this must be a |
| function pointer initialisation. */ |
| continue; |
| } |
| /* Ignore data references. */ |
| if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE)) |
| != (SEC_ALLOC | SEC_LOAD | SEC_CODE)) |
| continue; |
| /* Otherwise we probably have a jump table reloc for |
| a switch statement or some other reference to a |
| code label. */ |
| } |
| |
| if (h) |
| val = h->root.u.def.value; |
| else |
| val = sym->st_value; |
| val += irela->r_addend; |
| |
| if (!call_tree) |
| { |
| struct function_info *fun; |
| |
| if (irela->r_addend != 0) |
| { |
| Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake)); |
| if (fake == NULL) |
| return FALSE; |
| fake->st_value = val; |
| fake->st_shndx |
| = _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec); |
| sym = fake; |
| } |
| if (sym) |
| fun = maybe_insert_function (sym_sec, sym, FALSE, is_call); |
| else |
| fun = maybe_insert_function (sym_sec, h, TRUE, is_call); |
| if (fun == NULL) |
| return FALSE; |
| if (irela->r_addend != 0 |
| && fun->u.sym != sym) |
| free (sym); |
| continue; |
| } |
| |
| caller = find_function (sec, irela->r_offset, info); |
| if (caller == NULL) |
| return FALSE; |
| callee = bfd_malloc (sizeof *callee); |
| if (callee == NULL) |
| return FALSE; |
| |
| callee->fun = find_function (sym_sec, val, info); |
| if (callee->fun == NULL) |
| return FALSE; |
| callee->is_tail = !is_call; |
| callee->is_pasted = FALSE; |
| callee->broken_cycle = FALSE; |
| callee->priority = priority; |
| callee->count = nonbranch? 0 : 1; |
| if (callee->fun->last_caller != sec) |
| { |
| callee->fun->last_caller = sec; |
| callee->fun->call_count += 1; |
| } |
| if (!insert_callee (caller, callee)) |
| free (callee); |
| else if (!is_call |
| && !callee->fun->is_func |
| && callee->fun->stack == 0) |
| { |
| /* This is either a tail call or a branch from one part of |
| the function to another, ie. hot/cold section. If the |
| destination has been called by some other function then |
| it is a separate function. We also assume that functions |
| are not split across input files. */ |
| if (sec->owner != sym_sec->owner) |
| { |
| callee->fun->start = NULL; |
| callee->fun->is_func = TRUE; |
| } |
| else if (callee->fun->start == NULL) |
| { |
| struct function_info *caller_start = caller; |
| while (caller_start->start) |
| caller_start = caller_start->start; |
| |
| if (caller_start != callee->fun) |
| callee->fun->start = caller_start; |
| } |
| else |
| { |
| struct function_info *callee_start; |
| struct function_info *caller_start; |
| callee_start = callee->fun; |
| while (callee_start->start) |
| callee_start = callee_start->start; |
| caller_start = caller; |
| while (caller_start->start) |
| caller_start = caller_start->start; |
| if (caller_start != callee_start) |
| { |
| callee->fun->start = NULL; |
| callee->fun->is_func = TRUE; |
| } |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Handle something like .init or .fini, which has a piece of a function. |
| These sections are pasted together to form a single function. */ |
| |
| static bfd_boolean |
| pasted_function (asection *sec) |
| { |
| struct bfd_link_order *l; |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| Elf_Internal_Sym *fake; |
| struct function_info *fun, *fun_start; |
| |
| fake = bfd_zmalloc (sizeof (*fake)); |
| if (fake == NULL) |
| return FALSE; |
| fake->st_value = 0; |
| fake->st_size = sec->size; |
| fake->st_shndx |
| = _bfd_elf_section_from_bfd_section (sec->owner, sec); |
| fun = maybe_insert_function (sec, fake, FALSE, FALSE); |
| if (!fun) |
| return FALSE; |
| |
| /* Find a function immediately preceding this section. */ |
| fun_start = NULL; |
| for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next) |
| { |
| if (l->u.indirect.section == sec) |
| { |
| if (fun_start != NULL) |
| { |
| struct call_info *callee = bfd_malloc (sizeof *callee); |
| if (callee == NULL) |
| return FALSE; |
| |
| fun->start = fun_start; |
| callee->fun = fun; |
| callee->is_tail = TRUE; |
| callee->is_pasted = TRUE; |
| callee->broken_cycle = FALSE; |
| callee->priority = 0; |
| callee->count = 1; |
| if (!insert_callee (fun_start, callee)) |
| free (callee); |
| return TRUE; |
| } |
| break; |
| } |
| if (l->type == bfd_indirect_link_order |
| && (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL |
| && sinfo->num_fun != 0) |
| fun_start = &sinfo->fun[sinfo->num_fun - 1]; |
| } |
| |
| /* Don't return an error if we did not find a function preceding this |
| section. The section may have incorrect flags. */ |
| return TRUE; |
| } |
| |
| /* Map address ranges in code sections to functions. */ |
| |
| static bfd_boolean |
| discover_functions (struct bfd_link_info *info) |
| { |
| bfd *ibfd; |
| int bfd_idx; |
| Elf_Internal_Sym ***psym_arr; |
| asection ***sec_arr; |
| bfd_boolean gaps = FALSE; |
| |
| bfd_idx = 0; |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| bfd_idx++; |
| |
| psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr)); |
| if (psym_arr == NULL) |
| return FALSE; |
| sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr)); |
| if (sec_arr == NULL) |
| return FALSE; |
| |
| for (ibfd = info->input_bfds, bfd_idx = 0; |
| ibfd != NULL; |
| ibfd = ibfd->link.next, bfd_idx++) |
| { |
| extern const bfd_target spu_elf32_vec; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *sec; |
| size_t symcount; |
| Elf_Internal_Sym *syms, *sy, **psyms, **psy; |
| asection **psecs, **p; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| /* Read all the symbols. */ |
| symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize; |
| if (symcount == 0) |
| { |
| if (!gaps) |
| for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) |
| if (interesting_section (sec)) |
| { |
| gaps = TRUE; |
| break; |
| } |
| continue; |
| } |
| |
| if (symtab_hdr->contents != NULL) |
| { |
| /* Don't use cached symbols since the generic ELF linker |
| code only reads local symbols, and we need globals too. */ |
| free (symtab_hdr->contents); |
| symtab_hdr->contents = NULL; |
| } |
| syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0, |
| NULL, NULL, NULL); |
| symtab_hdr->contents = (void *) syms; |
| if (syms == NULL) |
| return FALSE; |
| |
| /* Select defined function symbols that are going to be output. */ |
| psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms)); |
| if (psyms == NULL) |
| return FALSE; |
| psym_arr[bfd_idx] = psyms; |
| psecs = bfd_malloc (symcount * sizeof (*psecs)); |
| if (psecs == NULL) |
| return FALSE; |
| sec_arr[bfd_idx] = psecs; |
| for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy) |
| if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE |
| || ELF_ST_TYPE (sy->st_info) == STT_FUNC) |
| { |
| asection *s; |
| |
| *p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx); |
| if (s != NULL && interesting_section (s)) |
| *psy++ = sy; |
| } |
| symcount = psy - psyms; |
| *psy = NULL; |
| |
| /* Sort them by section and offset within section. */ |
| sort_syms_syms = syms; |
| sort_syms_psecs = psecs; |
| qsort (psyms, symcount, sizeof (*psyms), sort_syms); |
| |
| /* Now inspect the function symbols. */ |
| for (psy = psyms; psy < psyms + symcount; ) |
| { |
| asection *s = psecs[*psy - syms]; |
| Elf_Internal_Sym **psy2; |
| |
| for (psy2 = psy; ++psy2 < psyms + symcount; ) |
| if (psecs[*psy2 - syms] != s) |
| break; |
| |
| if (!alloc_stack_info (s, psy2 - psy)) |
| return FALSE; |
| psy = psy2; |
| } |
| |
| /* First install info about properly typed and sized functions. |
| In an ideal world this will cover all code sections, except |
| when partitioning functions into hot and cold sections, |
| and the horrible pasted together .init and .fini functions. */ |
| for (psy = psyms; psy < psyms + symcount; ++psy) |
| { |
| sy = *psy; |
| if (ELF_ST_TYPE (sy->st_info) == STT_FUNC) |
| { |
| asection *s = psecs[sy - syms]; |
| if (!maybe_insert_function (s, sy, FALSE, TRUE)) |
| return FALSE; |
| } |
| } |
| |
| for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) |
| if (interesting_section (sec)) |
| gaps |= check_function_ranges (sec, info); |
| } |
| |
| if (gaps) |
| { |
| /* See if we can discover more function symbols by looking at |
| relocations. */ |
| for (ibfd = info->input_bfds, bfd_idx = 0; |
| ibfd != NULL; |
| ibfd = ibfd->link.next, bfd_idx++) |
| { |
| asection *sec; |
| |
| if (psym_arr[bfd_idx] == NULL) |
| continue; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if (!mark_functions_via_relocs (sec, info, FALSE)) |
| return FALSE; |
| } |
| |
| for (ibfd = info->input_bfds, bfd_idx = 0; |
| ibfd != NULL; |
| ibfd = ibfd->link.next, bfd_idx++) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *sec; |
| Elf_Internal_Sym *syms, *sy, **psyms, **psy; |
| asection **psecs; |
| |
| if ((psyms = psym_arr[bfd_idx]) == NULL) |
| continue; |
| |
| psecs = sec_arr[bfd_idx]; |
| |
| symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; |
| syms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| |
| gaps = FALSE; |
| for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next) |
| if (interesting_section (sec)) |
| gaps |= check_function_ranges (sec, info); |
| if (!gaps) |
| continue; |
| |
| /* Finally, install all globals. */ |
| for (psy = psyms; (sy = *psy) != NULL; ++psy) |
| { |
| asection *s; |
| |
| s = psecs[sy - syms]; |
| |
| /* Global syms might be improperly typed functions. */ |
| if (ELF_ST_TYPE (sy->st_info) != STT_FUNC |
| && ELF_ST_BIND (sy->st_info) == STB_GLOBAL) |
| { |
| if (!maybe_insert_function (s, sy, FALSE, FALSE)) |
| return FALSE; |
| } |
| } |
| } |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| asection *sec; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| /* Some of the symbols we've installed as marking the |
| beginning of functions may have a size of zero. Extend |
| the range of such functions to the beginning of the |
| next symbol of interest. */ |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if (interesting_section (sec)) |
| { |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| |
| sec_data = spu_elf_section_data (sec); |
| sinfo = sec_data->u.i.stack_info; |
| if (sinfo != NULL && sinfo->num_fun != 0) |
| { |
| int fun_idx; |
| bfd_vma hi = sec->size; |
| |
| for (fun_idx = sinfo->num_fun; --fun_idx >= 0; ) |
| { |
| sinfo->fun[fun_idx].hi = hi; |
| hi = sinfo->fun[fun_idx].lo; |
| } |
| |
| sinfo->fun[0].lo = 0; |
| } |
| /* No symbols in this section. Must be .init or .fini |
| or something similar. */ |
| else if (!pasted_function (sec)) |
| return FALSE; |
| } |
| } |
| } |
| |
| for (ibfd = info->input_bfds, bfd_idx = 0; |
| ibfd != NULL; |
| ibfd = ibfd->link.next, bfd_idx++) |
| { |
| if (psym_arr[bfd_idx] == NULL) |
| continue; |
| |
| free (psym_arr[bfd_idx]); |
| free (sec_arr[bfd_idx]); |
| } |
| |
| free (psym_arr); |
| free (sec_arr); |
| |
| return TRUE; |
| } |
| |
| /* Iterate over all function_info we have collected, calling DOIT on |
| each node if ROOT_ONLY is false. Only call DOIT on root nodes |
| if ROOT_ONLY. */ |
| |
| static bfd_boolean |
| for_each_node (bfd_boolean (*doit) (struct function_info *, |
| struct bfd_link_info *, |
| void *), |
| struct bfd_link_info *info, |
| void *param, |
| int root_only) |
| { |
| bfd *ibfd; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| asection *sec; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| |
| if ((sec_data = spu_elf_section_data (sec)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int i; |
| for (i = 0; i < sinfo->num_fun; ++i) |
| if (!root_only || !sinfo->fun[i].non_root) |
| if (!doit (&sinfo->fun[i], info, param)) |
| return FALSE; |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Transfer call info attached to struct function_info entries for |
| all of a given function's sections to the first entry. */ |
| |
| static bfd_boolean |
| transfer_calls (struct function_info *fun, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| void *param ATTRIBUTE_UNUSED) |
| { |
| struct function_info *start = fun->start; |
| |
| if (start != NULL) |
| { |
| struct call_info *call, *call_next; |
| |
| while (start->start != NULL) |
| start = start->start; |
| for (call = fun->call_list; call != NULL; call = call_next) |
| { |
| call_next = call->next; |
| if (!insert_callee (start, call)) |
| free (call); |
| } |
| fun->call_list = NULL; |
| } |
| return TRUE; |
| } |
| |
| /* Mark nodes in the call graph that are called by some other node. */ |
| |
| static bfd_boolean |
| mark_non_root (struct function_info *fun, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| void *param ATTRIBUTE_UNUSED) |
| { |
| struct call_info *call; |
| |
| if (fun->visit1) |
| return TRUE; |
| fun->visit1 = TRUE; |
| for (call = fun->call_list; call; call = call->next) |
| { |
| call->fun->non_root = TRUE; |
| mark_non_root (call->fun, 0, 0); |
| } |
| return TRUE; |
| } |
| |
| /* Remove cycles from the call graph. Set depth of nodes. */ |
| |
| static bfd_boolean |
| remove_cycles (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct call_info **callp, *call; |
| unsigned int depth = *(unsigned int *) param; |
| unsigned int max_depth = depth; |
| |
| fun->depth = depth; |
| fun->visit2 = TRUE; |
| fun->marking = TRUE; |
| |
| callp = &fun->call_list; |
| while ((call = *callp) != NULL) |
| { |
| call->max_depth = depth + !call->is_pasted; |
| if (!call->fun->visit2) |
| { |
| if (!remove_cycles (call->fun, info, &call->max_depth)) |
| return FALSE; |
| if (max_depth < call->max_depth) |
| max_depth = call->max_depth; |
| } |
| else if (call->fun->marking) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| |
| if (!htab->params->auto_overlay |
| && htab->params->stack_analysis) |
| { |
| const char *f1 = func_name (fun); |
| const char *f2 = func_name (call->fun); |
| |
| info->callbacks->info (_("Stack analysis will ignore the call " |
| "from %s to %s\n"), |
| f1, f2); |
| } |
| |
| call->broken_cycle = TRUE; |
| } |
| callp = &call->next; |
| } |
| fun->marking = FALSE; |
| *(unsigned int *) param = max_depth; |
| return TRUE; |
| } |
| |
| /* Check that we actually visited all nodes in remove_cycles. If we |
| didn't, then there is some cycle in the call graph not attached to |
| any root node. Arbitrarily choose a node in the cycle as a new |
| root and break the cycle. */ |
| |
| static bfd_boolean |
| mark_detached_root (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| if (fun->visit2) |
| return TRUE; |
| fun->non_root = FALSE; |
| *(unsigned int *) param = 0; |
| return remove_cycles (fun, info, param); |
| } |
| |
| /* Populate call_list for each function. */ |
| |
| static bfd_boolean |
| build_call_tree (struct bfd_link_info *info) |
| { |
| bfd *ibfd; |
| unsigned int depth; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| asection *sec; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if (!mark_functions_via_relocs (sec, info, TRUE)) |
| return FALSE; |
| } |
| |
| /* Transfer call info from hot/cold section part of function |
| to main entry. */ |
| if (!spu_hash_table (info)->params->auto_overlay |
| && !for_each_node (transfer_calls, info, 0, FALSE)) |
| return FALSE; |
| |
| /* Find the call graph root(s). */ |
| if (!for_each_node (mark_non_root, info, 0, FALSE)) |
| return FALSE; |
| |
| /* Remove cycles from the call graph. We start from the root node(s) |
| so that we break cycles in a reasonable place. */ |
| depth = 0; |
| if (!for_each_node (remove_cycles, info, &depth, TRUE)) |
| return FALSE; |
| |
| return for_each_node (mark_detached_root, info, &depth, FALSE); |
| } |
| |
| /* qsort predicate to sort calls by priority, max_depth then count. */ |
| |
| static int |
| sort_calls (const void *a, const void *b) |
| { |
| struct call_info *const *c1 = a; |
| struct call_info *const *c2 = b; |
| int delta; |
| |
| delta = (*c2)->priority - (*c1)->priority; |
| if (delta != 0) |
| return delta; |
| |
| delta = (*c2)->max_depth - (*c1)->max_depth; |
| if (delta != 0) |
| return delta; |
| |
| delta = (*c2)->count - (*c1)->count; |
| if (delta != 0) |
| return delta; |
| |
| return (char *) c1 - (char *) c2; |
| } |
| |
| struct _mos_param { |
| unsigned int max_overlay_size; |
| }; |
| |
| /* Set linker_mark and gc_mark on any sections that we will put in |
| overlays. These flags are used by the generic ELF linker, but we |
| won't be continuing on to bfd_elf_final_link so it is OK to use |
| them. linker_mark is clear before we get here. Set segment_mark |
| on sections that are part of a pasted function (excluding the last |
| section). |
| |
| Set up function rodata section if --overlay-rodata. We don't |
| currently include merged string constant rodata sections since |
| |
| Sort the call graph so that the deepest nodes will be visited |
| first. */ |
| |
| static bfd_boolean |
| mark_overlay_section (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct call_info *call; |
| unsigned int count; |
| struct _mos_param *mos_param = param; |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| |
| if (fun->visit4) |
| return TRUE; |
| |
| fun->visit4 = TRUE; |
| if (!fun->sec->linker_mark |
| && (htab->params->ovly_flavour != ovly_soft_icache |
| || htab->params->non_ia_text |
| || strncmp (fun->sec->name, ".text.ia.", 9) == 0 |
| || strcmp (fun->sec->name, ".init") == 0 |
| || strcmp (fun->sec->name, ".fini") == 0)) |
| { |
| unsigned int size; |
| |
| fun->sec->linker_mark = 1; |
| fun->sec->gc_mark = 1; |
| fun->sec->segment_mark = 0; |
| /* Ensure SEC_CODE is set on this text section (it ought to |
| be!), and SEC_CODE is clear on rodata sections. We use |
| this flag to differentiate the two overlay section types. */ |
| fun->sec->flags |= SEC_CODE; |
| |
| size = fun->sec->size; |
| if (htab->params->auto_overlay & OVERLAY_RODATA) |
| { |
| char *name = NULL; |
| |
| /* Find the rodata section corresponding to this function's |
| text section. */ |
| if (strcmp (fun->sec->name, ".text") == 0) |
| { |
| name = bfd_malloc (sizeof (".rodata")); |
| if (name == NULL) |
| return FALSE; |
| memcpy (name, ".rodata", sizeof (".rodata")); |
| } |
| else if (strncmp (fun->sec->name, ".text.", 6) == 0) |
| { |
| size_t len = strlen (fun->sec->name); |
| name = bfd_malloc (len + 3); |
| if (name == NULL) |
| return FALSE; |
| memcpy (name, ".rodata", sizeof (".rodata")); |
| memcpy (name + 7, fun->sec->name + 5, len - 4); |
| } |
| else if (strncmp (fun->sec->name, ".gnu.linkonce.t.", 16) == 0) |
| { |
| size_t len = strlen (fun->sec->name) + 1; |
| name = bfd_malloc (len); |
| if (name == NULL) |
| return FALSE; |
| memcpy (name, fun->sec->name, len); |
| name[14] = 'r'; |
| } |
| |
| if (name != NULL) |
| { |
| asection *rodata = NULL; |
| asection *group_sec = elf_section_data (fun->sec)->next_in_group; |
| if (group_sec == NULL) |
| rodata = bfd_get_section_by_name (fun->sec->owner, name); |
| else |
| while (group_sec != NULL && group_sec != fun->sec) |
| { |
| if (strcmp (group_sec->name, name) == 0) |
| { |
| rodata = group_sec; |
| break; |
| } |
| group_sec = elf_section_data (group_sec)->next_in_group; |
| } |
| fun->rodata = rodata; |
| if (fun->rodata) |
| { |
| size += fun->rodata->size; |
| if (htab->params->line_size != 0 |
| && size > htab->params->line_size) |
| { |
| size -= fun->rodata->size; |
| fun->rodata = NULL; |
| } |
| else |
| { |
| fun->rodata->linker_mark = 1; |
| fun->rodata->gc_mark = 1; |
| fun->rodata->flags &= ~SEC_CODE; |
| } |
| } |
| free (name); |
| } |
| } |
| if (mos_param->max_overlay_size < size) |
| mos_param->max_overlay_size = size; |
| } |
| |
| for (count = 0, call = fun->call_list; call != NULL; call = call->next) |
| count += 1; |
| |
| if (count > 1) |
| { |
| struct call_info **calls = bfd_malloc (count * sizeof (*calls)); |
| if (calls == NULL) |
| return FALSE; |
| |
| for (count = 0, call = fun->call_list; call != NULL; call = call->next) |
| calls[count++] = call; |
| |
| qsort (calls, count, sizeof (*calls), sort_calls); |
| |
| fun->call_list = NULL; |
| while (count != 0) |
| { |
| --count; |
| calls[count]->next = fun->call_list; |
| fun->call_list = calls[count]; |
| } |
| free (calls); |
| } |
| |
| for (call = fun->call_list; call != NULL; call = call->next) |
| { |
| if (call->is_pasted) |
| { |
| /* There can only be one is_pasted call per function_info. */ |
| BFD_ASSERT (!fun->sec->segment_mark); |
| fun->sec->segment_mark = 1; |
| } |
| if (!call->broken_cycle |
| && !mark_overlay_section (call->fun, info, param)) |
| return FALSE; |
| } |
| |
| /* Don't put entry code into an overlay. The overlay manager needs |
| a stack! Also, don't mark .ovl.init as an overlay. */ |
| if (fun->lo + fun->sec->output_offset + fun->sec->output_section->vma |
| == info->output_bfd->start_address |
| || strncmp (fun->sec->output_section->name, ".ovl.init", 9) == 0) |
| { |
| fun->sec->linker_mark = 0; |
| if (fun->rodata != NULL) |
| fun->rodata->linker_mark = 0; |
| } |
| return TRUE; |
| } |
| |
| /* If non-zero then unmark functions called from those within sections |
| that we need to unmark. Unfortunately this isn't reliable since the |
| call graph cannot know the destination of function pointer calls. */ |
| #define RECURSE_UNMARK 0 |
| |
| struct _uos_param { |
| asection *exclude_input_section; |
| asection *exclude_output_section; |
| unsigned long clearing; |
| }; |
| |
| /* Undo some of mark_overlay_section's work. */ |
| |
| static bfd_boolean |
| unmark_overlay_section (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct call_info *call; |
| struct _uos_param *uos_param = param; |
| unsigned int excluded = 0; |
| |
| if (fun->visit5) |
| return TRUE; |
| |
| fun->visit5 = TRUE; |
| |
| excluded = 0; |
| if (fun->sec == uos_param->exclude_input_section |
| || fun->sec->output_section == uos_param->exclude_output_section) |
| excluded = 1; |
| |
| if (RECURSE_UNMARK) |
| uos_param->clearing += excluded; |
| |
| if (RECURSE_UNMARK ? uos_param->clearing : excluded) |
| { |
| fun->sec->linker_mark = 0; |
| if (fun->rodata) |
| fun->rodata->linker_mark = 0; |
| } |
| |
| for (call = fun->call_list; call != NULL; call = call->next) |
| if (!call->broken_cycle |
| && !unmark_overlay_section (call->fun, info, param)) |
| return FALSE; |
| |
| if (RECURSE_UNMARK) |
| uos_param->clearing -= excluded; |
| return TRUE; |
| } |
| |
| struct _cl_param { |
| unsigned int lib_size; |
| asection **lib_sections; |
| }; |
| |
| /* Add sections we have marked as belonging to overlays to an array |
| for consideration as non-overlay sections. The array consist of |
| pairs of sections, (text,rodata), for functions in the call graph. */ |
| |
| static bfd_boolean |
| collect_lib_sections (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct _cl_param *lib_param = param; |
| struct call_info *call; |
| unsigned int size; |
| |
| if (fun->visit6) |
| return TRUE; |
| |
| fun->visit6 = TRUE; |
| if (!fun->sec->linker_mark || !fun->sec->gc_mark || fun->sec->segment_mark) |
| return TRUE; |
| |
| size = fun->sec->size; |
| if (fun->rodata) |
| size += fun->rodata->size; |
| |
| if (size <= lib_param->lib_size) |
| { |
| *lib_param->lib_sections++ = fun->sec; |
| fun->sec->gc_mark = 0; |
| if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark) |
| { |
| *lib_param->lib_sections++ = fun->rodata; |
| fun->rodata->gc_mark = 0; |
| } |
| else |
| *lib_param->lib_sections++ = NULL; |
| } |
| |
| for (call = fun->call_list; call != NULL; call = call->next) |
| if (!call->broken_cycle) |
| collect_lib_sections (call->fun, info, param); |
| |
| return TRUE; |
| } |
| |
| /* qsort predicate to sort sections by call count. */ |
| |
| static int |
| sort_lib (const void *a, const void *b) |
| { |
| asection *const *s1 = a; |
| asection *const *s2 = b; |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| int delta; |
| |
| delta = 0; |
| if ((sec_data = spu_elf_section_data (*s1)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int i; |
| for (i = 0; i < sinfo->num_fun; ++i) |
| delta -= sinfo->fun[i].call_count; |
| } |
| |
| if ((sec_data = spu_elf_section_data (*s2)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int i; |
| for (i = 0; i < sinfo->num_fun; ++i) |
| delta += sinfo->fun[i].call_count; |
| } |
| |
| if (delta != 0) |
| return delta; |
| |
| return s1 - s2; |
| } |
| |
| /* Remove some sections from those marked to be in overlays. Choose |
| those that are called from many places, likely library functions. */ |
| |
| static unsigned int |
| auto_ovl_lib_functions (struct bfd_link_info *info, unsigned int lib_size) |
| { |
| bfd *ibfd; |
| asection **lib_sections; |
| unsigned int i, lib_count; |
| struct _cl_param collect_lib_param; |
| struct function_info dummy_caller; |
| struct spu_link_hash_table *htab; |
| |
| memset (&dummy_caller, 0, sizeof (dummy_caller)); |
| lib_count = 0; |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| asection *sec; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if (sec->linker_mark |
| && sec->size < lib_size |
| && (sec->flags & SEC_CODE) != 0) |
| lib_count += 1; |
| } |
| lib_sections = bfd_malloc (lib_count * 2 * sizeof (*lib_sections)); |
| if (lib_sections == NULL) |
| return (unsigned int) -1; |
| collect_lib_param.lib_size = lib_size; |
| collect_lib_param.lib_sections = lib_sections; |
| if (!for_each_node (collect_lib_sections, info, &collect_lib_param, |
| TRUE)) |
| return (unsigned int) -1; |
| lib_count = (collect_lib_param.lib_sections - lib_sections) / 2; |
| |
| /* Sort sections so that those with the most calls are first. */ |
| if (lib_count > 1) |
| qsort (lib_sections, lib_count, 2 * sizeof (*lib_sections), sort_lib); |
| |
| htab = spu_hash_table (info); |
| for (i = 0; i < lib_count; i++) |
| { |
| unsigned int tmp, stub_size; |
| asection *sec; |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| |
| sec = lib_sections[2 * i]; |
| /* If this section is OK, its size must be less than lib_size. */ |
| tmp = sec->size; |
| /* If it has a rodata section, then add that too. */ |
| if (lib_sections[2 * i + 1]) |
| tmp += lib_sections[2 * i + 1]->size; |
| /* Add any new overlay call stubs needed by the section. */ |
| stub_size = 0; |
| if (tmp < lib_size |
| && (sec_data = spu_elf_section_data (sec)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int k; |
| struct call_info *call; |
| |
| for (k = 0; k < sinfo->num_fun; ++k) |
| for (call = sinfo->fun[k].call_list; call; call = call->next) |
| if (call->fun->sec->linker_mark) |
| { |
| struct call_info *p; |
| for (p = dummy_caller.call_list; p; p = p->next) |
| if (p->fun == call->fun) |
| break; |
| if (!p) |
| stub_size += ovl_stub_size (htab->params); |
| } |
| } |
| if (tmp + stub_size < lib_size) |
| { |
| struct call_info **pp, *p; |
| |
| /* This section fits. Mark it as non-overlay. */ |
| lib_sections[2 * i]->linker_mark = 0; |
| if (lib_sections[2 * i + 1]) |
| lib_sections[2 * i + 1]->linker_mark = 0; |
| lib_size -= tmp + stub_size; |
| /* Call stubs to the section we just added are no longer |
| needed. */ |
| pp = &dummy_caller.call_list; |
| while ((p = *pp) != NULL) |
| if (!p->fun->sec->linker_mark) |
| { |
| lib_size += ovl_stub_size (htab->params); |
| *pp = p->next; |
| free (p); |
| } |
| else |
| pp = &p->next; |
| /* Add new call stubs to dummy_caller. */ |
| if ((sec_data = spu_elf_section_data (sec)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int k; |
| struct call_info *call; |
| |
| for (k = 0; k < sinfo->num_fun; ++k) |
| for (call = sinfo->fun[k].call_list; |
| call; |
| call = call->next) |
| if (call->fun->sec->linker_mark) |
| { |
| struct call_info *callee; |
| callee = bfd_malloc (sizeof (*callee)); |
| if (callee == NULL) |
| return (unsigned int) -1; |
| *callee = *call; |
| if (!insert_callee (&dummy_caller, callee)) |
| free (callee); |
| } |
| } |
| } |
| } |
| while (dummy_caller.call_list != NULL) |
| { |
| struct call_info *call = dummy_caller.call_list; |
| dummy_caller.call_list = call->next; |
| free (call); |
| } |
| for (i = 0; i < 2 * lib_count; i++) |
| if (lib_sections[i]) |
| lib_sections[i]->gc_mark = 1; |
| free (lib_sections); |
| return lib_size; |
| } |
| |
| /* Build an array of overlay sections. The deepest node's section is |
| added first, then its parent node's section, then everything called |
| from the parent section. The idea being to group sections to |
| minimise calls between different overlays. */ |
| |
| static bfd_boolean |
| collect_overlays (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct call_info *call; |
| bfd_boolean added_fun; |
| asection ***ovly_sections = param; |
| |
| if (fun->visit7) |
| return TRUE; |
| |
| fun->visit7 = TRUE; |
| for (call = fun->call_list; call != NULL; call = call->next) |
| if (!call->is_pasted && !call->broken_cycle) |
| { |
| if (!collect_overlays (call->fun, info, ovly_sections)) |
| return FALSE; |
| break; |
| } |
| |
| added_fun = FALSE; |
| if (fun->sec->linker_mark && fun->sec->gc_mark) |
| { |
| fun->sec->gc_mark = 0; |
| *(*ovly_sections)++ = fun->sec; |
| if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark) |
| { |
| fun->rodata->gc_mark = 0; |
| *(*ovly_sections)++ = fun->rodata; |
| } |
| else |
| *(*ovly_sections)++ = NULL; |
| added_fun = TRUE; |
| |
| /* Pasted sections must stay with the first section. We don't |
| put pasted sections in the array, just the first section. |
| Mark subsequent sections as already considered. */ |
| if (fun->sec->segment_mark) |
| { |
| struct function_info *call_fun = fun; |
| do |
| { |
| for (call = call_fun->call_list; call != NULL; call = call->next) |
| if (call->is_pasted) |
| { |
| call_fun = call->fun; |
| call_fun->sec->gc_mark = 0; |
| if (call_fun->rodata) |
| call_fun->rodata->gc_mark = 0; |
| break; |
| } |
| if (call == NULL) |
| abort (); |
| } |
| while (call_fun->sec->segment_mark); |
| } |
| } |
| |
| for (call = fun->call_list; call != NULL; call = call->next) |
| if (!call->broken_cycle |
| && !collect_overlays (call->fun, info, ovly_sections)) |
| return FALSE; |
| |
| if (added_fun) |
| { |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| |
| if ((sec_data = spu_elf_section_data (fun->sec)) != NULL |
| && (sinfo = sec_data->u.i.stack_info) != NULL) |
| { |
| int i; |
| for (i = 0; i < sinfo->num_fun; ++i) |
| if (!collect_overlays (&sinfo->fun[i], info, ovly_sections)) |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| struct _sum_stack_param { |
| size_t cum_stack; |
| size_t overall_stack; |
| bfd_boolean emit_stack_syms; |
| }; |
| |
| /* Descend the call graph for FUN, accumulating total stack required. */ |
| |
| static bfd_boolean |
| sum_stack (struct function_info *fun, |
| struct bfd_link_info *info, |
| void *param) |
| { |
| struct call_info *call; |
| struct function_info *max; |
| size_t stack, cum_stack; |
| const char *f1; |
| bfd_boolean has_call; |
| struct _sum_stack_param *sum_stack_param = param; |
| struct spu_link_hash_table *htab; |
| |
| cum_stack = fun->stack; |
| sum_stack_param->cum_stack = cum_stack; |
| if (fun->visit3) |
| return TRUE; |
| |
| has_call = FALSE; |
| max = NULL; |
| for (call = fun->call_list; call; call = call->next) |
| { |
| if (call->broken_cycle) |
| continue; |
| if (!call->is_pasted) |
| has_call = TRUE; |
| if (!sum_stack (call->fun, info, sum_stack_param)) |
| return FALSE; |
| stack = sum_stack_param->cum_stack; |
| /* Include caller stack for normal calls, don't do so for |
| tail calls. fun->stack here is local stack usage for |
| this function. */ |
| if (!call->is_tail || call->is_pasted || call->fun->start != NULL) |
| stack += fun->stack; |
| if (cum_stack < stack) |
| { |
| cum_stack = stack; |
| max = call->fun; |
| } |
| } |
| |
| sum_stack_param->cum_stack = cum_stack; |
| stack = fun->stack; |
| /* Now fun->stack holds cumulative stack. */ |
| fun->stack = cum_stack; |
| fun->visit3 = TRUE; |
| |
| if (!fun->non_root |
| && sum_stack_param->overall_stack < cum_stack) |
| sum_stack_param->overall_stack = cum_stack; |
| |
| htab = spu_hash_table (info); |
| if (htab->params->auto_overlay) |
| return TRUE; |
| |
| f1 = func_name (fun); |
| if (htab->params->stack_analysis) |
| { |
| if (!fun->non_root) |
| info->callbacks->info (_(" %s: 0x%v\n"), f1, (bfd_vma) cum_stack); |
| info->callbacks->minfo (_("%s: 0x%v 0x%v\n"), |
| f1, (bfd_vma) stack, (bfd_vma) cum_stack); |
| |
| if (has_call) |
| { |
| info->callbacks->minfo (_(" calls:\n")); |
| for (call = fun->call_list; call; call = call->next) |
| if (!call->is_pasted && !call->broken_cycle) |
| { |
| const char *f2 = func_name (call->fun); |
| const char *ann1 = call->fun == max ? "*" : " "; |
| const char *ann2 = call->is_tail ? "t" : " "; |
| |
| info->callbacks->minfo (_(" %s%s %s\n"), ann1, ann2, f2); |
| } |
| } |
| } |
| |
| if (sum_stack_param->emit_stack_syms) |
| { |
| char *name = bfd_malloc (18 + strlen (f1)); |
| struct elf_link_hash_entry *h; |
| |
| if (name == NULL) |
| return FALSE; |
| |
| if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL) |
| sprintf (name, "__stack_%s", f1); |
| else |
| sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1); |
| |
| h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE); |
| free (name); |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_new |
| || h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak)) |
| { |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| h->root.u.def.value = cum_stack; |
| h->size = 0; |
| h->type = 0; |
| h->ref_regular = 1; |
| h->def_regular = 1; |
| h->ref_regular_nonweak = 1; |
| h->forced_local = 1; |
| h->non_elf = 0; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* SEC is part of a pasted function. Return the call_info for the |
| next section of this function. */ |
| |
| static struct call_info * |
| find_pasted_call (asection *sec) |
| { |
| struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec); |
| struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info; |
| struct call_info *call; |
| int k; |
| |
| for (k = 0; k < sinfo->num_fun; ++k) |
| for (call = sinfo->fun[k].call_list; call != NULL; call = call->next) |
| if (call->is_pasted) |
| return call; |
| abort (); |
| return 0; |
| } |
| |
| /* qsort predicate to sort bfds by file name. */ |
| |
| static int |
| sort_bfds (const void *a, const void *b) |
| { |
| bfd *const *abfd1 = a; |
| bfd *const *abfd2 = b; |
| |
| return filename_cmp ((*abfd1)->filename, (*abfd2)->filename); |
| } |
| |
| static unsigned int |
| print_one_overlay_section (FILE *script, |
| unsigned int base, |
| unsigned int count, |
| unsigned int ovlynum, |
| unsigned int *ovly_map, |
| asection **ovly_sections, |
| struct bfd_link_info *info) |
| { |
| unsigned int j; |
| |
| for (j = base; j < count && ovly_map[j] == ovlynum; j++) |
| { |
| asection *sec = ovly_sections[2 * j]; |
| |
| if (fprintf (script, " %s%c%s (%s)\n", |
| (sec->owner->my_archive != NULL |
| ? sec->owner->my_archive->filename : ""), |
| info->path_separator, |
| sec->owner->filename, |
| sec->name) <= 0) |
| return -1; |
| if (sec->segment_mark) |
| { |
| struct call_info *call = find_pasted_call (sec); |
| while (call != NULL) |
| { |
| struct function_info *call_fun = call->fun; |
| sec = call_fun->sec; |
| if (fprintf (script, " %s%c%s (%s)\n", |
| (sec->owner->my_archive != NULL |
| ? sec->owner->my_archive->filename : ""), |
| info->path_separator, |
| sec->owner->filename, |
| sec->name) <= 0) |
| return -1; |
| for (call = call_fun->call_list; call; call = call->next) |
| if (call->is_pasted) |
| break; |
| } |
| } |
| } |
| |
| for (j = base; j < count && ovly_map[j] == ovlynum; j++) |
| { |
| asection *sec = ovly_sections[2 * j + 1]; |
| if (sec != NULL |
| && fprintf (script, " %s%c%s (%s)\n", |
| (sec->owner->my_archive != NULL |
| ? sec->owner->my_archive->filename : ""), |
| info->path_separator, |
| sec->owner->filename, |
| sec->name) <= 0) |
| return -1; |
| |
| sec = ovly_sections[2 * j]; |
| if (sec->segment_mark) |
| { |
| struct call_info *call = find_pasted_call (sec); |
| while (call != NULL) |
| { |
| struct function_info *call_fun = call->fun; |
| sec = call_fun->rodata; |
| if (sec != NULL |
| && fprintf (script, " %s%c%s (%s)\n", |
| (sec->owner->my_archive != NULL |
| ? sec->owner->my_archive->filename : ""), |
| info->path_separator, |
| sec->owner->filename, |
| sec->name) <= 0) |
| return -1; |
| for (call = call_fun->call_list; call; call = call->next) |
| if (call->is_pasted) |
| break; |
| } |
| } |
| } |
| |
| return j; |
| } |
| |
| /* Handle --auto-overlay. */ |
| |
| static void |
| spu_elf_auto_overlay (struct bfd_link_info *info) |
| { |
| bfd *ibfd; |
| bfd **bfd_arr; |
| struct elf_segment_map *m; |
| unsigned int fixed_size, lo, hi; |
| unsigned int reserved; |
| struct spu_link_hash_table *htab; |
| unsigned int base, i, count, bfd_count; |
| unsigned int region, ovlynum; |
| asection **ovly_sections, **ovly_p; |
| unsigned int *ovly_map; |
| FILE *script; |
| unsigned int total_overlay_size, overlay_size; |
| const char *ovly_mgr_entry; |
| struct elf_link_hash_entry *h; |
| struct _mos_param mos_param; |
| struct _uos_param uos_param; |
| struct function_info dummy_caller; |
| |
| /* Find the extents of our loadable image. */ |
| lo = (unsigned int) -1; |
| hi = 0; |
| for (m = elf_seg_map (info->output_bfd); m != NULL; m = m->next) |
| if (m->p_type == PT_LOAD) |
| for (i = 0; i < m->count; i++) |
| if (m->sections[i]->size != 0) |
| { |
| if (m->sections[i]->vma < lo) |
| lo = m->sections[i]->vma; |
| if (m->sections[i]->vma + m->sections[i]->size - 1 > hi) |
| hi = m->sections[i]->vma + m->sections[i]->size - 1; |
| } |
| fixed_size = hi + 1 - lo; |
| |
| if (!discover_functions (info)) |
| goto err_exit; |
| |
| if (!build_call_tree (info)) |
| goto err_exit; |
| |
| htab = spu_hash_table (info); |
| reserved = htab->params->auto_overlay_reserved; |
| if (reserved == 0) |
| { |
| struct _sum_stack_param sum_stack_param; |
| |
| sum_stack_param.emit_stack_syms = 0; |
| sum_stack_param.overall_stack = 0; |
| if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE)) |
| goto err_exit; |
| reserved = (sum_stack_param.overall_stack |
| + htab->params->extra_stack_space); |
| } |
| |
| /* No need for overlays if everything already fits. */ |
| if (fixed_size + reserved <= htab->local_store |
| && htab->params->ovly_flavour != ovly_soft_icache) |
| { |
| htab->params->auto_overlay = 0; |
| return; |
| } |
| |
| uos_param.exclude_input_section = 0; |
| uos_param.exclude_output_section |
| = bfd_get_section_by_name (info->output_bfd, ".interrupt"); |
| |
| ovly_mgr_entry = "__ovly_load"; |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| ovly_mgr_entry = "__icache_br_handler"; |
| h = elf_link_hash_lookup (&htab->elf, ovly_mgr_entry, |
| FALSE, FALSE, FALSE); |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular) |
| { |
| /* We have a user supplied overlay manager. */ |
| uos_param.exclude_input_section = h->root.u.def.section; |
| } |
| else |
| { |
| /* If no user overlay manager, spu_elf_load_ovl_mgr will add our |
| builtin version to .text, and will adjust .text size. */ |
| fixed_size += (*htab->params->spu_elf_load_ovl_mgr) (); |
| } |
| |
| /* Mark overlay sections, and find max overlay section size. */ |
| mos_param.max_overlay_size = 0; |
| if (!for_each_node (mark_overlay_section, info, &mos_param, TRUE)) |
| goto err_exit; |
| |
| /* We can't put the overlay manager or interrupt routines in |
| overlays. */ |
| uos_param.clearing = 0; |
| if ((uos_param.exclude_input_section |
| || uos_param.exclude_output_section) |
| && !for_each_node (unmark_overlay_section, info, &uos_param, TRUE)) |
| goto err_exit; |
| |
| bfd_count = 0; |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| ++bfd_count; |
| bfd_arr = bfd_malloc (bfd_count * sizeof (*bfd_arr)); |
| if (bfd_arr == NULL) |
| goto err_exit; |
| |
| /* Count overlay sections, and subtract their sizes from "fixed_size". */ |
| count = 0; |
| bfd_count = 0; |
| total_overlay_size = 0; |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| extern const bfd_target spu_elf32_vec; |
| asection *sec; |
| unsigned int old_count; |
| |
| if (ibfd->xvec != &spu_elf32_vec) |
| continue; |
| |
| old_count = count; |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if (sec->linker_mark) |
| { |
| if ((sec->flags & SEC_CODE) != 0) |
| count += 1; |
| fixed_size -= sec->size; |
| total_overlay_size += sec->size; |
| } |
| else if ((sec->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD) |
| && sec->output_section->owner == info->output_bfd |
| && strncmp (sec->output_section->name, ".ovl.init", 9) == 0) |
| fixed_size -= sec->size; |
| if (count != old_count) |
| bfd_arr[bfd_count++] = ibfd; |
| } |
| |
| /* Since the overlay link script selects sections by file name and |
| section name, ensure that file names are unique. */ |
| if (bfd_count > 1) |
| { |
| bfd_boolean ok = TRUE; |
| |
| qsort (bfd_arr, bfd_count, sizeof (*bfd_arr), sort_bfds); |
| for (i = 1; i < bfd_count; ++i) |
| if (filename_cmp (bfd_arr[i - 1]->filename, bfd_arr[i]->filename) == 0) |
| { |
| if (bfd_arr[i - 1]->my_archive == bfd_arr[i]->my_archive) |
| { |
| if (bfd_arr[i - 1]->my_archive && bfd_arr[i]->my_archive) |
| info->callbacks->einfo (_("%s duplicated in %s\n"), |
| bfd_arr[i]->filename, |
| bfd_arr[i]->my_archive->filename); |
| else |
| info->callbacks->einfo (_("%s duplicated\n"), |
| bfd_arr[i]->filename); |
| ok = FALSE; |
| } |
| } |
| if (!ok) |
| { |
| info->callbacks->einfo (_("sorry, no support for duplicate " |
| "object files in auto-overlay script\n")); |
| bfd_set_error (bfd_error_bad_value); |
| goto err_exit; |
| } |
| } |
| free (bfd_arr); |
| |
| fixed_size += reserved; |
| fixed_size += htab->non_ovly_stub * ovl_stub_size (htab->params); |
| if (fixed_size + mos_param.max_overlay_size <= htab->local_store) |
| { |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| /* Stubs in the non-icache area are bigger. */ |
| fixed_size += htab->non_ovly_stub * 16; |
| /* Space for icache manager tables. |
| a) Tag array, one quadword per cache line. |
| - word 0: ia address of present line, init to zero. */ |
| fixed_size += 16 << htab->num_lines_log2; |
| /* b) Rewrite "to" list, one quadword per cache line. */ |
| fixed_size += 16 << htab->num_lines_log2; |
| /* c) Rewrite "from" list, one byte per outgoing branch (rounded up |
| to a power-of-two number of full quadwords) per cache line. */ |
| fixed_size += 16 << (htab->fromelem_size_log2 |
| + htab->num_lines_log2); |
| /* d) Pointer to __ea backing store (toe), 1 quadword. */ |
| fixed_size += 16; |
| } |
| else |
| { |
| /* Guess number of overlays. Assuming overlay buffer is on |
| average only half full should be conservative. */ |
| ovlynum = (total_overlay_size * 2 * htab->params->num_lines |
| / (htab->local_store - fixed_size)); |
| /* Space for _ovly_table[], _ovly_buf_table[] and toe. */ |
| fixed_size += ovlynum * 16 + 16 + 4 + 16; |
| } |
| } |
| |
| if (fixed_size + mos_param.max_overlay_size > htab->local_store) |
| info->callbacks->einfo (_("non-overlay size of 0x%v plus maximum overlay " |
| "size of 0x%v exceeds local store\n"), |
| (bfd_vma) fixed_size, |
| (bfd_vma) mos_param.max_overlay_size); |
| |
| /* Now see if we should put some functions in the non-overlay area. */ |
| else if (fixed_size < htab->params->auto_overlay_fixed) |
| { |
| unsigned int max_fixed, lib_size; |
| |
| max_fixed = htab->local_store - mos_param.max_overlay_size; |
| if (max_fixed > htab->params->auto_overlay_fixed) |
| max_fixed = htab->params->auto_overlay_fixed; |
| lib_size = max_fixed - fixed_size; |
| lib_size = auto_ovl_lib_functions (info, lib_size); |
| if (lib_size == (unsigned int) -1) |
| goto err_exit; |
| fixed_size = max_fixed - lib_size; |
| } |
| |
| /* Build an array of sections, suitably sorted to place into |
| overlays. */ |
| ovly_sections = bfd_malloc (2 * count * sizeof (*ovly_sections)); |
| if (ovly_sections == NULL) |
| goto err_exit; |
| ovly_p = ovly_sections; |
| if (!for_each_node (collect_overlays, info, &ovly_p, TRUE)) |
| goto err_exit; |
| count = (size_t) (ovly_p - ovly_sections) / 2; |
| ovly_map = bfd_malloc (count * sizeof (*ovly_map)); |
| if (ovly_map == NULL) |
| goto err_exit; |
| |
| memset (&dummy_caller, 0, sizeof (dummy_caller)); |
| overlay_size = (htab->local_store - fixed_size) / htab->params->num_lines; |
| if (htab->params->line_size != 0) |
| overlay_size = htab->params->line_size; |
| base = 0; |
| ovlynum = 0; |
| while (base < count) |
| { |
| unsigned int size = 0, rosize = 0, roalign = 0; |
| |
| for (i = base; i < count; i++) |
| { |
| asection *sec, *rosec; |
| unsigned int tmp, rotmp; |
| unsigned int num_stubs; |
| struct call_info *call, *pasty; |
| struct _spu_elf_section_data *sec_data; |
| struct spu_elf_stack_info *sinfo; |
| unsigned int k; |
| |
| /* See whether we can add this section to the current |
| overlay without overflowing our overlay buffer. */ |
| sec = ovly_sections[2 * i]; |
| tmp = align_power (size, sec->alignment_power) + sec->size; |
| rotmp = rosize; |
| rosec = ovly_sections[2 * i + 1]; |
| if (rosec != NULL) |
| { |
| rotmp = align_power (rotmp, rosec->alignment_power) + rosec->size; |
| if (roalign < rosec->alignment_power) |
| roalign = rosec->alignment_power; |
| } |
| if (align_power (tmp, roalign) + rotmp > overlay_size) |
| break; |
| if (sec->segment_mark) |
| { |
| /* Pasted sections must stay together, so add their |
| sizes too. */ |
| pasty = find_pasted_call (sec); |
| while (pasty != NULL) |
| { |
| struct function_info *call_fun = pasty->fun; |
| tmp = (align_power (tmp, call_fun->sec->alignment_power) |
| + call_fun->sec->size); |
| if (call_fun->rodata) |
| { |
| rotmp = (align_power (rotmp, |
| call_fun->rodata->alignment_power) |
| + call_fun->rodata->size); |
| if (roalign < rosec->alignment_power) |
| roalign = rosec->alignment_power; |
| } |
| for (pasty = call_fun->call_list; pasty; pasty = pasty->next) |
| if (pasty->is_pasted) |
| break; |
| } |
| } |
| if (align_power (tmp, roalign) + rotmp > overlay_size) |
| break; |
| |
| /* If we add this section, we might need new overlay call |
| stubs. Add any overlay section calls to dummy_call. */ |
| pasty = NULL; |
| sec_data = spu_elf_section_data (sec); |
| sinfo = sec_data->u.i.stack_info; |
| for (k = 0; k < (unsigned) sinfo->num_fun; ++k) |
| for (call = sinfo->fun[k].call_list; call; call = call->next) |
| if (call->is_pasted) |
| { |
| BFD_ASSERT (pasty == NULL); |
| pasty = call; |
| } |
| else if (call->fun->sec->linker_mark) |
| { |
| if (!copy_callee (&dummy_caller, call)) |
| goto err_exit; |
| } |
| while (pasty != NULL) |
| { |
| struct function_info *call_fun = pasty->fun; |
| pasty = NULL; |
| for (call = call_fun->call_list; call; call = call->next) |
| if (call->is_pasted) |
| { |
| BFD_ASSERT (pasty == NULL); |
| pasty = call; |
| } |
| else if (!copy_callee (&dummy_caller, call)) |
| goto err_exit; |
| } |
| |
| /* Calculate call stub size. */ |
| num_stubs = 0; |
| for (call = dummy_caller.call_list; call; call = call->next) |
| { |
| unsigned int stub_delta = 1; |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| stub_delta = call->count; |
| num_stubs += stub_delta; |
| |
| /* If the call is within this overlay, we won't need a |
| stub. */ |
| for (k = base; k < i + 1; k++) |
| if (call->fun->sec == ovly_sections[2 * k]) |
| { |
| num_stubs -= stub_delta; |
| break; |
| } |
| } |
| if (htab->params->ovly_flavour == ovly_soft_icache |
| && num_stubs > htab->params->max_branch) |
| break; |
| if (align_power (tmp, roalign) + rotmp |
| + num_stubs * ovl_stub_size (htab->params) > overlay_size) |
| break; |
| size = tmp; |
| rosize = rotmp; |
| } |
| |
| if (i == base) |
| { |
| info->callbacks->einfo (_("%B:%A%s exceeds overlay size\n"), |
| ovly_sections[2 * i]->owner, |
| ovly_sections[2 * i], |
| ovly_sections[2 * i + 1] ? " + rodata" : ""); |
| bfd_set_error (bfd_error_bad_value); |
| goto err_exit; |
| } |
| |
| while (dummy_caller.call_list != NULL) |
| { |
| struct call_info *call = dummy_caller.call_list; |
| dummy_caller.call_list = call->next; |
| free (call); |
| } |
| |
| ++ovlynum; |
| while (base < i) |
| ovly_map[base++] = ovlynum; |
| } |
| |
| script = htab->params->spu_elf_open_overlay_script (); |
| |
| if (htab->params->ovly_flavour == ovly_soft_icache) |
| { |
| if (fprintf (script, "SECTIONS\n{\n") <= 0) |
| goto file_err; |
| |
| if (fprintf (script, |
| " . = ALIGN (%u);\n" |
| " .ovl.init : { *(.ovl.init) }\n" |
| " . = ABSOLUTE (ADDR (.ovl.init));\n", |
| htab->params->line_size) <= 0) |
| goto file_err; |
| |
| base = 0; |
| ovlynum = 1; |
| while (base < count) |
| { |
| unsigned int indx = ovlynum - 1; |
| unsigned int vma, lma; |
| |
| vma = (indx & (htab->params->num_lines - 1)) << htab->line_size_log2; |
| lma = vma + (((indx >> htab->num_lines_log2) + 1) << 18); |
| |
| if (fprintf (script, " .ovly%u ABSOLUTE (ADDR (.ovl.init)) + %u " |
| ": AT (LOADADDR (.ovl.init) + %u) {\n", |
| ovlynum, vma, lma) <= 0) |
| goto file_err; |
| |
| base = print_one_overlay_section (script, base, count, ovlynum, |
| ovly_map, ovly_sections, info); |
| if (base == (unsigned) -1) |
| goto file_err; |
| |
| if (fprintf (script, " }\n") <= 0) |
| goto file_err; |
| |
| ovlynum++; |
| } |
| |
| if (fprintf (script, " . = ABSOLUTE (ADDR (.ovl.init)) + %u;\n", |
| 1 << (htab->num_lines_log2 + htab->line_size_log2)) <= 0) |
| goto file_err; |
| |
| if (fprintf (script, "}\nINSERT AFTER .toe;\n") <= 0) |
| goto file_err; |
| } |
| else |
| { |
| if (fprintf (script, "SECTIONS\n{\n") <= 0) |
| goto file_err; |
| |
| if (fprintf (script, |
| " . = ALIGN (16);\n" |
| " .ovl.init : { *(.ovl.init) }\n" |
| " . = ABSOLUTE (ADDR (.ovl.init));\n") <= 0) |
| goto file_err; |
| |
| for (region = 1; region <= htab->params->num_lines; region++) |
| { |
| ovlynum = region; |
| base = 0; |
| while (base < count && ovly_map[base] < ovlynum) |
| base++; |
| |
| if (base == count) |
| break; |
| |
| if (region == 1) |
| { |
| /* We need to set lma since we are overlaying .ovl.init. */ |
| if (fprintf (script, |
| " OVERLAY : AT (ALIGN (LOADADDR (.ovl.init) + SIZEOF (.ovl.init), 16))\n {\n") <= 0) |
| goto file_err; |
| } |
| else |
| { |
| if (fprintf (script, " OVERLAY :\n {\n") <= 0) |
| goto file_err; |
| } |
| |
| while (base < count) |
| { |
| if (fprintf (script, " .ovly%u {\n", ovlynum) <= 0) |
| goto file_err; |
| |
| base = print_one_overlay_section (script, base, count, ovlynum, |
| ovly_map, ovly_sections, info); |
| if (base == (unsigned) -1) |
| goto file_err; |
| |
| if (fprintf (script, " }\n") <= 0) |
| goto file_err; |
| |
| ovlynum += htab->params->num_lines; |
| while (base < count && ovly_map[base] < ovlynum) |
| base++; |
| } |
| |
| if (fprintf (script, " }\n") <= 0) |
| goto file_err; |
| } |
| |
| if (fprintf (script, "}\nINSERT BEFORE .text;\n") <= 0) |
| goto file_err; |
| } |
| |
| free (ovly_map); |
| free (ovly_sections); |
| |
| if (fclose (script) != 0) |
| goto file_err; |
| |
| if (htab->params->auto_overlay & AUTO_RELINK) |
| (*htab->params->spu_elf_relink) (); |
| |
| xexit (0); |
| |
| file_err: |
| bfd_set_error (bfd_error_system_call); |
| err_exit: |
| info->callbacks->einfo ("%F%P: auto overlay error: %E\n"); |
| xexit (1); |
| } |
| |
| /* Provide an estimate of total stack required. */ |
| |
| static bfd_boolean |
| spu_elf_stack_analysis (struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab; |
| struct _sum_stack_param sum_stack_param; |
| |
| if (!discover_functions (info)) |
| return FALSE; |
| |
| if (!build_call_tree (info)) |
| return FALSE; |
| |
| htab = spu_hash_table (info); |
| if (htab->params->stack_analysis) |
| { |
| info->callbacks->info (_("Stack size for call graph root nodes.\n")); |
| info->callbacks->minfo (_("\nStack size for functions. " |
| "Annotations: '*' max stack, 't' tail call\n")); |
| } |
| |
| sum_stack_param.emit_stack_syms = htab->params->emit_stack_syms; |
| sum_stack_param.overall_stack = 0; |
| if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE)) |
| return FALSE; |
| |
| if (htab->params->stack_analysis) |
| info->callbacks->info (_("Maximum stack required is 0x%v\n"), |
| (bfd_vma) sum_stack_param.overall_stack); |
| return TRUE; |
| } |
| |
| /* Perform a final link. */ |
| |
| static bfd_boolean |
| spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| |
| if (htab->params->auto_overlay) |
| spu_elf_auto_overlay (info); |
| |
| if ((htab->params->stack_analysis |
| || (htab->params->ovly_flavour == ovly_soft_icache |
| && htab->params->lrlive_analysis)) |
| && !spu_elf_stack_analysis (info)) |
| info->callbacks->einfo ("%X%P: stack/lrlive analysis error: %E\n"); |
| |
| if (!spu_elf_build_stubs (info)) |
| info->callbacks->einfo ("%F%P: can not build overlay stubs: %E\n"); |
| |
| return bfd_elf_final_link (output_bfd, info); |
| } |
| |
| /* Called when not normally emitting relocs, ie. !bfd_link_relocatable (info) |
| and !info->emitrelocations. Returns a count of special relocs |
| that need to be emitted. */ |
| |
| static unsigned int |
| spu_elf_count_relocs (struct bfd_link_info *info, asection *sec) |
| { |
| Elf_Internal_Rela *relocs; |
| unsigned int count = 0; |
| |
| relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, |
| info->keep_memory); |
| if (relocs != NULL) |
| { |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend = relocs + sec->reloc_count; |
| |
| for (rel = relocs; rel < relend; rel++) |
| { |
| int r_type = ELF32_R_TYPE (rel->r_info); |
| if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) |
| ++count; |
| } |
| |
| if (elf_section_data (sec)->relocs != relocs) |
| free (relocs); |
| } |
| |
| return count; |
| } |
| |
| /* Functions for adding fixup records to .fixup */ |
| |
| #define FIXUP_RECORD_SIZE 4 |
| |
| #define FIXUP_PUT(output_bfd,htab,index,addr) \ |
| bfd_put_32 (output_bfd, addr, \ |
| htab->sfixup->contents + FIXUP_RECORD_SIZE * (index)) |
| #define FIXUP_GET(output_bfd,htab,index) \ |
| bfd_get_32 (output_bfd, \ |
| htab->sfixup->contents + FIXUP_RECORD_SIZE * (index)) |
| |
| /* Store OFFSET in .fixup. This assumes it will be called with an |
| increasing OFFSET. When this OFFSET fits with the last base offset, |
| it just sets a bit, otherwise it adds a new fixup record. */ |
| static void |
| spu_elf_emit_fixup (bfd * output_bfd, struct bfd_link_info *info, |
| bfd_vma offset) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| asection *sfixup = htab->sfixup; |
| bfd_vma qaddr = offset & ~(bfd_vma) 15; |
| bfd_vma bit = ((bfd_vma) 8) >> ((offset & 15) >> 2); |
| if (sfixup->reloc_count == 0) |
| { |
| FIXUP_PUT (output_bfd, htab, 0, qaddr | bit); |
| sfixup->reloc_count++; |
| } |
| else |
| { |
| bfd_vma base = FIXUP_GET (output_bfd, htab, sfixup->reloc_count - 1); |
| if (qaddr != (base & ~(bfd_vma) 15)) |
| { |
| if ((sfixup->reloc_count + 1) * FIXUP_RECORD_SIZE > sfixup->size) |
| (*_bfd_error_handler) (_("fatal error while creating .fixup")); |
| FIXUP_PUT (output_bfd, htab, sfixup->reloc_count, qaddr | bit); |
| sfixup->reloc_count++; |
| } |
| else |
| FIXUP_PUT (output_bfd, htab, sfixup->reloc_count - 1, base | bit); |
| } |
| } |
| |
| /* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD. */ |
| |
| static int |
| spu_elf_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| Elf_Internal_Rela *rel, *relend; |
| struct spu_link_hash_table *htab; |
| asection *ea; |
| int ret = TRUE; |
| bfd_boolean emit_these_relocs = FALSE; |
| bfd_boolean is_ea_sym; |
| bfd_boolean stubs; |
| unsigned int iovl = 0; |
| |
| htab = spu_hash_table (info); |
| stubs = (htab->stub_sec != NULL |
| && maybe_needs_stubs (input_section)); |
| iovl = overlay_index (input_section); |
| ea = bfd_get_section_by_name (output_bfd, "._ea"); |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd)); |
| |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| int r_type; |
| reloc_howto_type *howto; |
| unsigned int r_symndx; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| struct elf_link_hash_entry *h; |
| const char *sym_name; |
| bfd_vma relocation; |
| bfd_vma addend; |
| bfd_reloc_status_type r; |
| bfd_boolean unresolved_reloc; |
| enum _stub_type stub_type; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| howto = elf_howto_table + r_type; |
| unresolved_reloc = FALSE; |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec); |
| relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| } |
| else |
| { |
| if (sym_hashes == NULL) |
| return FALSE; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| |
| if (info->wrap_hash != NULL |
| && (input_section->flags & SEC_DEBUGGING) != 0) |
| h = ((struct elf_link_hash_entry *) |
| unwrap_hash_lookup (info, input_bfd, &h->root)); |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| relocation = 0; |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| { |
| sec = h->root.u.def.section; |
| if (sec == NULL |
| || sec->output_section == NULL) |
| /* Set a flag that will be cleared later if we find a |
| relocation value for this symbol. output_section |
| is typically NULL for symbols satisfied by a shared |
| library. */ |
| unresolved_reloc = TRUE; |
| else |
| relocation = (h->root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else if (h->root.type == bfd_link_hash_undefweak) |
| ; |
| else if (info->unresolved_syms_in_objects == RM_IGNORE |
| && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
| ; |
| else if (!bfd_link_relocatable (info) |
| && !(r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)) |
| { |
| bfd_boolean err; |
| err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT); |
| (*info->callbacks->undefined_symbol) (info, |
| h->root.root.string, |
| input_bfd, |
| input_section, |
| rel->r_offset, err); |
| } |
| sym_name = h->root.root.string; |
| } |
| |
| if (sec != NULL && discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, 1, relend, howto, 0, contents); |
| |
| if (bfd_link_relocatable (info)) |
| continue; |
| |
| /* Change "a rt,ra,rb" to "ai rt,ra,0". */ |
| if (r_type == R_SPU_ADD_PIC |
| && h != NULL |
| && !(h->def_regular || ELF_COMMON_DEF_P (h))) |
| { |
| bfd_byte *loc = contents + rel->r_offset; |
| loc[0] = 0x1c; |
| loc[1] = 0x00; |
| loc[2] &= 0x3f; |
| } |
| |
| is_ea_sym = (ea != NULL |
| && sec != NULL |
| && sec->output_section == ea); |
| |
| /* If this symbol is in an overlay area, we may need to relocate |
| to the overlay stub. */ |
| addend = rel->r_addend; |
| if (stubs |
| && !is_ea_sym |
| && (stub_type = needs_ovl_stub (h, sym, sec, input_section, rel, |
| contents, info)) != no_stub) |
| { |
| unsigned int ovl = 0; |
| struct got_entry *g, **head; |
| |
| if (stub_type != nonovl_stub) |
| ovl = iovl; |
| |
| if (h != NULL) |
| head = &h->got.glist; |
| else |
| head = elf_local_got_ents (input_bfd) + r_symndx; |
| |
| for (g = *head; g != NULL; g = g->next) |
| if (htab->params->ovly_flavour == ovly_soft_icache |
| ? (g->ovl == ovl |
| && g->br_addr == (rel->r_offset |
| + input_section->output_offset |
| + input_section->output_section->vma)) |
| : g->addend == addend && (g->ovl == ovl || g->ovl == 0)) |
| break; |
| if (g == NULL) |
| abort (); |
| |
| relocation = g->stub_addr; |
| addend = 0; |
| } |
| else |
| { |
| /* For soft icache, encode the overlay index into addresses. */ |
| if (htab->params->ovly_flavour == ovly_soft_icache |
| && (r_type == R_SPU_ADDR16_HI |
| || r_type == R_SPU_ADDR32 || r_type == R_SPU_REL32) |
| && !is_ea_sym) |
| { |
| unsigned int ovl = overlay_index (sec); |
| if (ovl != 0) |
| { |
| unsigned int set_id = ((ovl - 1) >> htab->num_lines_log2) + 1; |
| relocation += set_id << 18; |
| } |
| } |
| } |
| |
| if (htab->params->emit_fixups && !bfd_link_relocatable (info) |
| && (input_section->flags & SEC_ALLOC) != 0 |
| && r_type == R_SPU_ADDR32) |
| { |
| bfd_vma offset; |
| offset = rel->r_offset + input_section->output_section->vma |
| + input_section->output_offset; |
| spu_elf_emit_fixup (output_bfd, info, offset); |
| } |
| |
| if (unresolved_reloc) |
| ; |
| else if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) |
| { |
| if (is_ea_sym) |
| { |
| /* ._ea is a special section that isn't allocated in SPU |
| memory, but rather occupies space in PPU memory as |
| part of an embedded ELF image. If this reloc is |
| against a symbol defined in ._ea, then transform the |
| reloc into an equivalent one without a symbol |
| relative to the start of the ELF image. */ |
| rel->r_addend += (relocation |
| - ea->vma |
| + elf_section_data (ea)->this_hdr.sh_offset); |
| rel->r_info = ELF32_R_INFO (0, r_type); |
| } |
| emit_these_relocs = TRUE; |
| continue; |
| } |
| else if (is_ea_sym) |
| unresolved_reloc = TRUE; |
| |
| if (unresolved_reloc |
| && _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset) != (bfd_vma) -1) |
| { |
| (*_bfd_error_handler) |
| (_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"), |
| input_bfd, |
| bfd_get_section_name (input_bfd, input_section), |
| (long) rel->r_offset, |
| howto->name, |
| sym_name); |
| ret = FALSE; |
| } |
| |
| r = _bfd_final_link_relocate (howto, |
| input_bfd, |
| input_section, |
| contents, |
| rel->r_offset, relocation, addend); |
| |
| if (r != bfd_reloc_ok) |
| { |
| const char *msg = (const char *) 0; |
| |
| switch (r) |
| { |
| case bfd_reloc_overflow: |
| (*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root : NULL), sym_name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, rel->r_offset); |
| break; |
| |
| case bfd_reloc_undefined: |
| (*info->callbacks->undefined_symbol) |
| (info, sym_name, input_bfd, input_section, rel->r_offset, TRUE); |
| break; |
| |
| case bfd_reloc_outofrange: |
| msg = _("internal error: out of range error"); |
| goto common_error; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| goto common_error; |
| |
| case bfd_reloc_dangerous: |
| msg = _("internal error: dangerous error"); |
| goto common_error; |
| |
| default: |
| msg = _("internal error: unknown error"); |
| /* fall through */ |
| |
| common_error: |
| ret = FALSE; |
| (*info->callbacks->warning) (info, msg, sym_name, input_bfd, |
| input_section, rel->r_offset); |
| break; |
| } |
| } |
| } |
| |
| if (ret |
| && emit_these_relocs |
| && !info->emitrelocations) |
| { |
| Elf_Internal_Rela *wrel; |
| Elf_Internal_Shdr *rel_hdr; |
| |
| wrel = rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| int r_type; |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64) |
| *wrel++ = *rel; |
| } |
| input_section->reloc_count = wrel - relocs; |
| /* Backflips for _bfd_elf_link_output_relocs. */ |
| rel_hdr = _bfd_elf_single_rel_hdr (input_section); |
| rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize; |
| ret = 2; |
| } |
| |
| return ret; |
| } |
| |
| static bfd_boolean |
| spu_elf_finish_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| return TRUE; |
| } |
| |
| /* Adjust _SPUEAR_ syms to point at their overlay stubs. */ |
| |
| static int |
| spu_elf_output_symbol_hook (struct bfd_link_info *info, |
| const char *sym_name ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym *sym, |
| asection *sym_sec ATTRIBUTE_UNUSED, |
| struct elf_link_hash_entry *h) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| |
| if (!bfd_link_relocatable (info) |
| && htab->stub_sec != NULL |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular |
| && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0) |
| { |
| struct got_entry *g; |
| |
| for (g = h->got.glist; g != NULL; g = g->next) |
| if (htab->params->ovly_flavour == ovly_soft_icache |
| ? g->br_addr == g->stub_addr |
| : g->addend == 0 && g->ovl == 0) |
| { |
| sym->st_shndx = (_bfd_elf_section_from_bfd_section |
| (htab->stub_sec[0]->output_section->owner, |
| htab->stub_sec[0]->output_section)); |
| sym->st_value = g->stub_addr; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int spu_plugin = 0; |
| |
| void |
| spu_elf_plugin (int val) |
| { |
| spu_plugin = val; |
| } |
| |
| /* Set ELF header e_type for plugins. */ |
| |
| static void |
| spu_elf_post_process_headers (bfd *abfd, struct bfd_link_info *info) |
| { |
| if (spu_plugin) |
| { |
| Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); |
| |
| i_ehdrp->e_type = ET_DYN; |
| } |
| |
| _bfd_elf_post_process_headers (abfd, info); |
| } |
| |
| /* We may add an extra PT_LOAD segment for .toe. We also need extra |
| segments for overlays. */ |
| |
| static int |
| spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info) |
| { |
| int extra = 0; |
| asection *sec; |
| |
| if (info != NULL) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| extra = htab->num_overlays; |
| } |
| |
| if (extra) |
| ++extra; |
| |
| sec = bfd_get_section_by_name (abfd, ".toe"); |
| if (sec != NULL && (sec->flags & SEC_LOAD) != 0) |
| ++extra; |
| |
| return extra; |
| } |
| |
| /* Remove .toe section from other PT_LOAD segments and put it in |
| a segment of its own. Put overlays in separate segments too. */ |
| |
| static bfd_boolean |
| spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info) |
| { |
| asection *toe, *s; |
| struct elf_segment_map *m, *m_overlay; |
| struct elf_segment_map **p, **p_overlay; |
| unsigned int i; |
| |
| if (info == NULL) |
| return TRUE; |
| |
| toe = bfd_get_section_by_name (abfd, ".toe"); |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_LOAD && m->count > 1) |
| for (i = 0; i < m->count; i++) |
| if ((s = m->sections[i]) == toe |
| || spu_elf_section_data (s)->u.o.ovl_index != 0) |
| { |
| struct elf_segment_map *m2; |
| bfd_vma amt; |
| |
| if (i + 1 < m->count) |
| { |
| amt = sizeof (struct elf_segment_map); |
| amt += (m->count - (i + 2)) * sizeof (m->sections[0]); |
| m2 = bfd_zalloc (abfd, amt); |
| if (m2 == NULL) |
| return FALSE; |
| m2->count = m->count - (i + 1); |
| memcpy (m2->sections, m->sections + i + 1, |
| m2->count * sizeof (m->sections[0])); |
| m2->p_type = PT_LOAD; |
| m2->next = m->next; |
| m->next = m2; |
| } |
| m->count = 1; |
| if (i != 0) |
| { |
| m->count = i; |
| amt = sizeof (struct elf_segment_map); |
| m2 = bfd_zalloc (abfd, amt); |
| if (m2 == NULL) |
| return FALSE; |
| m2->p_type = PT_LOAD; |
| m2->count = 1; |
| m2->sections[0] = s; |
| m2->next = m->next; |
| m->next = m2; |
| } |
| break; |
| } |
| |
| |
| /* Some SPU ELF loaders ignore the PF_OVERLAY flag and just load all |
| PT_LOAD segments. This can cause the .ovl.init section to be |
| overwritten with the contents of some overlay segment. To work |
| around this issue, we ensure that all PF_OVERLAY segments are |
| sorted first amongst the program headers; this ensures that even |
| with a broken loader, the .ovl.init section (which is not marked |
| as PF_OVERLAY) will be placed into SPU local store on startup. */ |
| |
| /* Move all overlay segments onto a separate list. */ |
| p = &elf_seg_map (abfd); |
| p_overlay = &m_overlay; |
| while (*p != NULL) |
| { |
| if ((*p)->p_type == PT_LOAD && (*p)->count == 1 |
| && spu_elf_section_data ((*p)->sections[0])->u.o.ovl_index != 0) |
| { |
| m = *p; |
| *p = m->next; |
| *p_overlay = m; |
| p_overlay = &m->next; |
| continue; |
| } |
| |
| p = &((*p)->next); |
| } |
| |
| /* Re-insert overlay segments at the head of the segment map. */ |
| *p_overlay = elf_seg_map (abfd); |
| elf_seg_map (abfd) = m_overlay; |
| |
| return TRUE; |
| } |
| |
| /* Tweak the section type of .note.spu_name. */ |
| |
| static bfd_boolean |
| spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED, |
| Elf_Internal_Shdr *hdr, |
| asection *sec) |
| { |
| if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0) |
| hdr->sh_type = SHT_NOTE; |
| return TRUE; |
| } |
| |
| /* Tweak phdrs before writing them out. */ |
| |
| static int |
| spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed; |
| struct elf_obj_tdata *tdata; |
| Elf_Internal_Phdr *phdr, *last; |
| struct spu_link_hash_table *htab; |
| unsigned int count; |
| unsigned int i; |
| |
| if (info == NULL) |
| return TRUE; |
| |
| bed = get_elf_backend_data (abfd); |
| tdata = elf_tdata (abfd); |
| phdr = tdata->phdr; |
| count = elf_program_header_size (abfd) / bed->s->sizeof_phdr; |
| htab = spu_hash_table (info); |
| if (htab->num_overlays != 0) |
| { |
| struct elf_segment_map *m; |
| unsigned int o; |
| |
| for (i = 0, m = elf_seg_map (abfd); m; ++i, m = m->next) |
| if (m->count != 0 |
| && (o = spu_elf_section_data (m->sections[0])->u.o.ovl_index) != 0) |
| { |
| /* Mark this as an overlay header. */ |
| phdr[i].p_flags |= PF_OVERLAY; |
| |
| if (htab->ovtab != NULL && htab->ovtab->size != 0 |
| && htab->params->ovly_flavour != ovly_soft_icache) |
| { |
| bfd_byte *p = htab->ovtab->contents; |
| unsigned int off = o * 16 + 8; |
| |
| /* Write file_off into _ovly_table. */ |
| bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off); |
| } |
| } |
| /* Soft-icache has its file offset put in .ovl.init. */ |
| if (htab->init != NULL && htab->init->size != 0) |
| { |
| bfd_vma val = elf_section_data (htab->ovl_sec[0])->this_hdr.sh_offset; |
| |
| bfd_put_32 (htab->init->owner, val, htab->init->contents + 4); |
| } |
| } |
| |
| /* Round up p_filesz and p_memsz of PT_LOAD segments to multiples |
| of 16. This should always be possible when using the standard |
| linker scripts, but don't create overlapping segments if |
| someone is playing games with linker scripts. */ |
| last = NULL; |
| for (i = count; i-- != 0; ) |
| if (phdr[i].p_type == PT_LOAD) |
| { |
| unsigned adjust; |
| |
| adjust = -phdr[i].p_filesz & 15; |
| if (adjust != 0 |
| && last != NULL |
| && phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust) |
| break; |
| |
| adjust = -phdr[i].p_memsz & 15; |
| if (adjust != 0 |
| && last != NULL |
| && phdr[i].p_filesz != 0 |
| && phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust |
| && phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr) |
| break; |
| |
| if (phdr[i].p_filesz != 0) |
| last = &phdr[i]; |
| } |
| |
| if (i == (unsigned int) -1) |
| for (i = count; i-- != 0; ) |
| if (phdr[i].p_type == PT_LOAD) |
| { |
| unsigned adjust; |
| |
| adjust = -phdr[i].p_filesz & 15; |
| phdr[i].p_filesz += adjust; |
| |
| adjust = -phdr[i].p_memsz & 15; |
| phdr[i].p_memsz += adjust; |
| } |
| |
| return TRUE; |
| } |
| |
| bfd_boolean |
| spu_elf_size_sections (bfd * output_bfd, struct bfd_link_info *info) |
| { |
| struct spu_link_hash_table *htab = spu_hash_table (info); |
| if (htab->params->emit_fixups) |
| { |
| asection *sfixup = htab->sfixup; |
| int fixup_count = 0; |
| bfd *ibfd; |
| size_t size; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| asection *isec; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| continue; |
| |
| /* Walk over each section attached to the input bfd. */ |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| { |
| Elf_Internal_Rela *internal_relocs, *irelaend, *irela; |
| bfd_vma base_end; |
| |
| /* If there aren't any relocs, then there's nothing more |
| to do. */ |
| if ((isec->flags & SEC_ALLOC) == 0 |
| || (isec->flags & SEC_RELOC) == 0 |
| || isec->reloc_count == 0) |
| continue; |
| |
| /* Get the relocs. */ |
| internal_relocs = |
| _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| return FALSE; |
| |
| /* 1 quadword can contain up to 4 R_SPU_ADDR32 |
| relocations. They are stored in a single word by |
| saving the upper 28 bits of the address and setting the |
| lower 4 bits to a bit mask of the words that have the |
| relocation. BASE_END keeps track of the next quadword. */ |
| irela = internal_relocs; |
| irelaend = irela + isec->reloc_count; |
| base_end = 0; |
| for (; irela < irelaend; irela++) |
| if (ELF32_R_TYPE (irela->r_info) == R_SPU_ADDR32 |
| && irela->r_offset >= base_end) |
| { |
| base_end = (irela->r_offset & ~(bfd_vma) 15) + 16; |
| fixup_count++; |
| } |
| } |
| } |
| |
| /* We always have a NULL fixup as a sentinel */ |
| size = (fixup_count + 1) * FIXUP_RECORD_SIZE; |
| if (!bfd_set_section_size (output_bfd, sfixup, size)) |
| return FALSE; |
| sfixup->contents = (bfd_byte *) bfd_zalloc (info->input_bfds, size); |
| if (sfixup->contents == NULL) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| #define TARGET_BIG_SYM spu_elf32_vec |
| #define TARGET_BIG_NAME "elf32-spu" |
| #define ELF_ARCH bfd_arch_spu |
| #define ELF_TARGET_ID SPU_ELF_DATA |
| #define ELF_MACHINE_CODE EM_SPU |
| /* This matches the alignment need for DMA. */ |
| #define ELF_MAXPAGESIZE 0x80 |
| #define elf_backend_rela_normal 1 |
| #define elf_backend_can_gc_sections 1 |
| |
| #define bfd_elf32_bfd_reloc_type_lookup spu_elf_reloc_type_lookup |
| #define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup |
| #define elf_info_to_howto spu_elf_info_to_howto |
| #define elf_backend_count_relocs spu_elf_count_relocs |
| #define elf_backend_relocate_section spu_elf_relocate_section |
| #define elf_backend_finish_dynamic_sections spu_elf_finish_dynamic_sections |
| #define elf_backend_symbol_processing spu_elf_backend_symbol_processing |
| #define elf_backend_link_output_symbol_hook spu_elf_output_symbol_hook |
| #define elf_backend_object_p spu_elf_object_p |
| #define bfd_elf32_new_section_hook spu_elf_new_section_hook |
| #define bfd_elf32_bfd_link_hash_table_create spu_elf_link_hash_table_create |
| |
| #define elf_backend_additional_program_headers spu_elf_additional_program_headers |
| #define elf_backend_modify_segment_map spu_elf_modify_segment_map |
| #define elf_backend_modify_program_headers spu_elf_modify_program_headers |
| #define elf_backend_post_process_headers spu_elf_post_process_headers |
| #define elf_backend_fake_sections spu_elf_fake_sections |
| #define elf_backend_special_sections spu_elf_special_sections |
| #define bfd_elf32_bfd_final_link spu_elf_final_link |
| |
| #include "elf32-target.h" |