blob: 418c65991189cc295c2ddbb6d92f9a9123d284ca [file] [log] [blame]
/* MIPS Simulator definition.
Copyright (C) 1997-2022 Free Software Foundation, Inc.
Contributed by Cygnus Support.
This file is part of the MIPS sim.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef SIM_MAIN_H
#define SIM_MAIN_H
#define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
#include "sim-basics.h"
#include "sim-base.h"
#include "bfd.h"
#include "elf-bfd.h"
#include "elf/mips.h"
/* Deprecated macros and types for manipulating 64bit values. Use
../common/sim-bits.h and ../common/sim-endian.h macros instead. */
typedef int64_t word64;
typedef uint64_t uword64;
#define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
#define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
#define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
#define SET64HI(t) (((uword64)(t))<<32)
#define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
#define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
/* Check if a value will fit within a halfword: */
#define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
typedef enum {
cp0_dmfc0,
cp0_dmtc0,
cp0_mfc0,
cp0_mtc0,
cp0_tlbr,
cp0_tlbwi,
cp0_tlbwr,
cp0_tlbp,
cp0_cache,
cp0_eret,
cp0_deret,
cp0_rfe
} CP0_operation;
/* Floating-point operations: */
#include "sim-fpu.h"
#include "cp1.h"
/* FPU registers must be one of the following types. All other values
are reserved (and undefined). */
typedef enum {
fmt_single = 0,
fmt_double = 1,
fmt_word = 4,
fmt_long = 5,
fmt_ps = 6,
/* The following is a special case for FP conditions where only
the lower 32bits are considered. This is a HACK. */
fmt_dc32 = 7,
/* The following are well outside the normal acceptable format
range, and are used in the register status vector. */
fmt_unknown = 0x10000000,
fmt_uninterpreted = 0x20000000,
fmt_uninterpreted_32 = 0x40000000,
fmt_uninterpreted_64 = 0x80000000U,
} FP_formats;
/* For paired word (pw) operations, the opcode representation is fmt_word,
but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
#define fmt_pw fmt_long
/* This should be the COC1 value at the start of the preceding
instruction: */
#define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
#ifdef TARGET_ENABLE_FR
/* FIXME: this should be enabled for all targets, but needs testing first. */
#define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
? ((SR & status_FR) ? 64 : 32) \
: (WITH_TARGET_FLOATING_POINT_BITSIZE))
#else
#define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
#endif
/* HI/LO register accesses */
/* For some MIPS targets, the HI/LO registers have certain timing
restrictions in that, for instance, a read of a HI register must be
separated by at least three instructions from a preceeding read.
The struct below is used to record the last access by each of A MT,
MF or other OP instruction to a HI/LO register. See mips.igen for
more details. */
typedef struct _hilo_access {
int64_t timestamp;
address_word cia;
} hilo_access;
typedef struct _hilo_history {
hilo_access mt;
hilo_access mf;
hilo_access op;
} hilo_history;
/* Integer ALU operations: */
#include "sim-alu.h"
#define ALU32_END(ANS) \
if (ALU32_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = (int32_t) ALU32_OVERFLOW_RESULT
#define ALU64_END(ANS) \
if (ALU64_HAD_OVERFLOW) \
SignalExceptionIntegerOverflow (); \
(ANS) = ALU64_OVERFLOW_RESULT;
/* The following is probably not used for MIPS IV onwards: */
/* Slots for delayed register updates. For the moment we just have a
fixed number of slots (rather than a more generic, dynamic
system). This keeps the simulator fast. However, we only allow
for the register update to be delayed for a single instruction
cycle. */
#define PSLOTS (8) /* Maximum number of instruction cycles */
typedef struct _pending_write_queue {
int in;
int out;
int total;
int slot_delay[PSLOTS];
int slot_size[PSLOTS];
int slot_bit[PSLOTS];
void *slot_dest[PSLOTS];
uint64_t slot_value[PSLOTS];
} pending_write_queue;
#ifndef PENDING_TRACE
#define PENDING_TRACE 0
#endif
#define PENDING_IN ((CPU)->pending.in)
#define PENDING_OUT ((CPU)->pending.out)
#define PENDING_TOTAL ((CPU)->pending.total)
#define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
#define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
#define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
#define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
#define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
/* Invalidate the pending write queue, all pending writes are
discarded. */
#define PENDING_INVALIDATE() \
memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
/* Schedule a write to DEST for N cycles time. For 64 bit
destinations, schedule two writes. For floating point registers,
the caller should schedule a write to both the dest register and
the FPR_STATE register. When BIT is non-negative, only BIT of DEST
is updated. */
#define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
do { \
if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
sim_engine_abort (SD, CPU, cia, \
"PENDING_SCHED - buffer overflow\n"); \
if (PENDING_TRACE) \
sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
(unsigned long) cia, (unsigned long) &(DEST), \
(unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
PENDING_TOTAL += 1; \
} while (0)
#define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
#define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
#define PENDING_TICK() pending_tick (SD, CPU, cia)
#define PENDING_FLUSH() abort () /* think about this one */
#define PENDING_FP() abort () /* think about this one */
/* For backward compatibility */
#define PENDING_FILL(R,VAL) \
do { \
if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
{ \
PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
} \
else \
PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
} while (0)
enum float_operation
{
FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
};
/* The internal representation of an MDMX accumulator.
Note that 24 and 48 bit accumulator elements are represented in
32 or 64 bits. Since the accumulators are 2's complement with
overflow suppressed, high-order bits can be ignored in most contexts. */
typedef int32_t signed24;
typedef int64_t signed48;
typedef union {
signed24 ob[8];
signed48 qh[4];
} MDMX_accumulator;
/* Conventional system arguments. */
#define SIM_STATE sim_cpu *cpu, address_word cia
#define SIM_ARGS CPU, cia
struct _sim_cpu {
/* The following are internal simulator state variables: */
address_word dspc; /* delay-slot PC */
#define DSPC ((CPU)->dspc)
#define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
#define FORBIDDEN_SLOT() { NIA = forbiddenslot32 (SD_); }
#define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
/* State of the simulator */
unsigned int state;
unsigned int dsstate;
#define STATE ((CPU)->state)
#define DSSTATE ((CPU)->dsstate)
/* Flags in the "state" variable: */
#define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
#define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
#define simTRACE (1 << 8) /* 1 = trace address activity */
#define simPCOC0 (1 << 17) /* COC[1] from current */
#define simPCOC1 (1 << 18) /* COC[1] from previous */
#define simDELAYSLOT (1 << 24) /* 1 = delay slot entry exists */
#define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
#define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
#define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
#define simFORBIDDENSLOT (1 << 30) /* 1 = n forbidden slot */
#ifndef ENGINE_ISSUE_PREFIX_HOOK
#define ENGINE_ISSUE_PREFIX_HOOK() \
{ \
/* Perform any pending writes */ \
PENDING_TICK(); \
/* Set previous flag, depending on current: */ \
if (STATE & simPCOC0) \
STATE |= simPCOC1; \
else \
STATE &= ~simPCOC1; \
/* and update the current value: */ \
if (GETFCC(0)) \
STATE |= simPCOC0; \
else \
STATE &= ~simPCOC0; \
}
#endif /* ENGINE_ISSUE_PREFIX_HOOK */
/* This is nasty, since we have to rely on matching the register
numbers used by GDB. Unfortunately, depending on the MIPS target
GDB uses different register numbers. We cannot just include the
relevant "gdb/tm.h" link, since GDB may not be configured before
the sim world, and also the GDB header file requires too much other
state. */
#ifndef TM_MIPS_H
#define LAST_EMBED_REGNUM (96)
#define NUM_REGS (LAST_EMBED_REGNUM + 1)
#define FP0_REGNUM 38 /* Floating point register 0 (single float) */
#define FCRCS_REGNUM 70 /* FP control/status */
#define FCRIR_REGNUM 71 /* FP implementation/revision */
#endif
/* To keep this default simulator simple, and fast, we use a direct
vector of registers. The internal simulator engine then uses
manifests to access the correct slot. */
unsigned_word registers[LAST_EMBED_REGNUM + 1];
int register_widths[NUM_REGS];
#define REGISTERS ((CPU)->registers)
#define GPR (&REGISTERS[0])
#define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
#define LO (REGISTERS[33])
#define HI (REGISTERS[34])
#define PCIDX 37
#define PC (REGISTERS[PCIDX])
#define CAUSE (REGISTERS[36])
#define SRIDX (32)
#define SR (REGISTERS[SRIDX]) /* CPU status register */
#define FCR0IDX (71)
#define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
#define FCR31IDX (70)
#define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
#define FCSR (FCR31)
#define Debug (REGISTERS[86])
#define DEPC (REGISTERS[87])
#define EPC (REGISTERS[88])
#define ACX (REGISTERS[89])
#define AC0LOIDX (33) /* Must be the same register as LO */
#define AC0HIIDX (34) /* Must be the same register as HI */
#define AC1LOIDX (90)
#define AC1HIIDX (91)
#define AC2LOIDX (92)
#define AC2HIIDX (93)
#define AC3LOIDX (94)
#define AC3HIIDX (95)
#define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
#define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
#define DSPCRIDX (96) /* DSP control register */
#define DSPCR (REGISTERS[DSPCRIDX])
#define DSPCR_POS_SHIFT (0)
#define DSPCR_POS_MASK (0x3f)
#define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
#define DSPCR_SCOUNT_SHIFT (7)
#define DSPCR_SCOUNT_MASK (0x3f)
#define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
#define DSPCR_CARRY_SHIFT (13)
#define DSPCR_CARRY_MASK (1)
#define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
#define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
#define DSPCR_EFI_SHIFT (14)
#define DSPCR_EFI_MASK (1)
#define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
#define DSPCR_EFI (1 << DSPCR_EFI_MASK)
#define DSPCR_OUFLAG_SHIFT (16)
#define DSPCR_OUFLAG_MASK (0xff)
#define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
#define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
#define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
#define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
#define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
#define DSPCR_CCOND_SHIFT (24)
#define DSPCR_CCOND_MASK (0xf)
#define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
/* All internal state modified by signal_exception() that may need to be
rolled back for passing moment-of-exception image back to gdb. */
unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
int exc_suspended;
#define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
#define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
#define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
unsigned_word c0_config_reg;
#define C0_CONFIG ((CPU)->c0_config_reg)
/* The following are pseudonyms for standard registers */
#define ZERO (REGISTERS[0])
#define V0 (REGISTERS[2])
#define A0 (REGISTERS[4])
#define A1 (REGISTERS[5])
#define A2 (REGISTERS[6])
#define A3 (REGISTERS[7])
#define T8IDX 24
#define T8 (REGISTERS[T8IDX])
#define SPIDX 29
#define SP (REGISTERS[SPIDX])
#define RAIDX 31
#define RA (REGISTERS[RAIDX])
/* While space is allocated in the main registers arrray for some of
the COP0 registers, that space isn't sufficient. Unknown COP0
registers overflow into the array below */
#define NR_COP0_GPR 32
unsigned_word cop0_gpr[NR_COP0_GPR];
#define COP0_GPR ((CPU)->cop0_gpr)
#define COP0_BADVADDR (COP0_GPR[8])
/* While space is allocated for the floating point registers in the
main registers array, they are stored separatly. This is because
their size may not necessarily match the size of either the
general-purpose or system specific registers. */
#define NR_FGR (32)
#define FGR_BASE FP0_REGNUM
fp_word fgr[NR_FGR];
#define FGR ((CPU)->fgr)
/* Keep the current format state for each register: */
FP_formats fpr_state[32];
#define FPR_STATE ((CPU)->fpr_state)
pending_write_queue pending;
/* The MDMX accumulator (used only for MDMX ASE). */
MDMX_accumulator acc;
#define ACC ((CPU)->acc)
/* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
read-write instructions. It is set when a linked load occurs. It
is tested and cleared by the conditional store. It is cleared
(during other CPU operations) when a store to the location would
no longer be atomic. In particular, it is cleared by exception
return instructions. */
int llbit;
#define LLBIT ((CPU)->llbit)
/* The HIHISTORY and LOHISTORY timestamps are used to ensure that
corruptions caused by using the HI or LO register too close to a
following operation is spotted. See mips.igen for more details. */
hilo_history hi_history;
#define HIHISTORY (&(CPU)->hi_history)
hilo_history lo_history;
#define LOHISTORY (&(CPU)->lo_history)
sim_cpu_base base;
};
extern void mips_sim_close (SIM_DESC sd, int quitting);
#define SIM_CLOSE_HOOK(...) mips_sim_close (__VA_ARGS__)
/* FIXME: At present much of the simulator is still static */
struct mips_sim_state {
/* microMIPS ISA mode. */
int isa_mode;
};
#define MIPS_SIM_STATE(sd) ((struct mips_sim_state *) STATE_ARCH_DATA (sd))
/* Status information: */
/* TODO : these should be the bitmasks for these bits within the
status register. At the moment the following are VR4300
bit-positions: */
#define status_KSU_mask (0x18) /* mask for KSU bits */
#define status_KSU_shift (3) /* shift for field */
#define ksu_kernel (0x0)
#define ksu_supervisor (0x1)
#define ksu_user (0x2)
#define ksu_unknown (0x3)
#define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
#define status_IE (1 << 0) /* Interrupt enable */
#define status_EIE (1 << 16) /* Enable Interrupt Enable */
#define status_EXL (1 << 1) /* Exception level */
#define status_RE (1 << 25) /* Reverse Endian in user mode */
#define status_FR (1 << 26) /* enables MIPS III additional FP registers */
#define status_SR (1 << 20) /* soft reset or NMI */
#define status_BEV (1 << 22) /* Location of general exception vectors */
#define status_TS (1 << 21) /* TLB shutdown has occurred */
#define status_ERL (1 << 2) /* Error level */
#define status_IM7 (1 << 15) /* Timer Interrupt Mask */
#define status_RP (1 << 27) /* Reduced Power mode */
/* Specializations for TX39 family */
#define status_IEc (1 << 0) /* Interrupt enable (current) */
#define status_KUc (1 << 1) /* Kernel/User mode */
#define status_IEp (1 << 2) /* Interrupt enable (previous) */
#define status_KUp (1 << 3) /* Kernel/User mode */
#define status_IEo (1 << 4) /* Interrupt enable (old) */
#define status_KUo (1 << 5) /* Kernel/User mode */
#define status_IM_mask (0xff) /* Interrupt mask */
#define status_IM_shift (8)
#define status_NMI (1 << 20) /* NMI */
#define status_NMI (1 << 20) /* NMI */
/* Status bits used by MIPS32/MIPS64. */
#define status_UX (1 << 5) /* 64-bit user addrs */
#define status_SX (1 << 6) /* 64-bit supervisor addrs */
#define status_KX (1 << 7) /* 64-bit kernel addrs */
#define status_TS (1 << 21) /* TLB shutdown has occurred */
#define status_PX (1 << 23) /* Enable 64 bit operations */
#define status_MX (1 << 24) /* Enable MDMX resources */
#define status_CU0 (1 << 28) /* Coprocessor 0 usable */
#define status_CU1 (1 << 29) /* Coprocessor 1 usable */
#define status_CU2 (1 << 30) /* Coprocessor 2 usable */
#define status_CU3 (1 << 31) /* Coprocessor 3 usable */
/* Bits reserved for implementations: */
#define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
/* From R6 onwards, some instructions (e.g. ADDIUPC) change behaviour based
* on the Status.UX bits to either sign extend, or act as full 64 bit. */
#define status_optional_EXTEND32(x) ((SR & status_UX) ? x : EXTEND32(x))
#define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
#define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
#define cause_CE_mask 0x30000000 /* Coprocessor exception */
#define cause_CE_shift 28
#define cause_EXC2_mask 0x00070000
#define cause_EXC2_shift 16
#define cause_IP7 (1 << 15) /* Interrupt pending */
#define cause_SIOP (1 << 12) /* SIO pending */
#define cause_IP3 (1 << 11) /* Int 0 pending */
#define cause_IP2 (1 << 10) /* Int 1 pending */
#define cause_EXC_mask (0x1c) /* Exception code */
#define cause_EXC_shift (2)
#define cause_SW0 (1 << 8) /* Software interrupt 0 */
#define cause_SW1 (1 << 9) /* Software interrupt 1 */
#define cause_IP_mask (0x3f) /* Interrupt pending field */
#define cause_IP_shift (10)
#define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
#define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
/* NOTE: We keep the following status flags as bit values (1 for true,
0 for false). This allows them to be used in binary boolean
operations without worrying about what exactly the non-zero true
value is. */
/* UserMode */
#ifdef SUBTARGET_R3900
#define UserMode ((SR & status_KUc) ? 1 : 0)
#else
#define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
#endif /* SUBTARGET_R3900 */
/* BigEndianMem */
/* Hardware configuration. Affects endianness of LoadMemory and
StoreMemory and the endianness of Kernel and Supervisor mode
execution. The value is 0 for little-endian; 1 for big-endian. */
#define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
/*(state & simBE) ? 1 : 0)*/
/* ReverseEndian */
/* This mode is selected if in User mode with the RE bit being set in
SR (Status Register). It reverses the endianness of load and store
instructions. */
#define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
/* BigEndianCPU */
/* The endianness for load and store instructions (0=little;1=big). In
User mode this endianness may be switched by setting the state_RE
bit in the SR register. Thus, BigEndianCPU may be computed as
(BigEndianMem EOR ReverseEndian). */
#define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
/* Exceptions: */
/* NOTE: These numbers depend on the processor architecture being
simulated: */
enum ExceptionCause {
Interrupt = 0,
TLBModification = 1,
TLBLoad = 2,
TLBStore = 3,
AddressLoad = 4,
AddressStore = 5,
InstructionFetch = 6,
DataReference = 7,
SystemCall = 8,
BreakPoint = 9,
ReservedInstruction = 10,
CoProcessorUnusable = 11,
IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
Trap = 13,
FPE = 15,
DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
MDMX = 22,
Watch = 23,
MCheck = 24,
CacheErr = 30,
NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
/* The following exception code is actually private to the simulator
world. It is *NOT* a processor feature, and is used to signal
run-time errors in the simulator. */
SimulatorFault = 0xFFFFFFFF
};
#define TLB_REFILL (0)
#define TLB_INVALID (1)
/* The following break instructions are reserved for use by the
simulator. The first is used to halt the simulation. The second
is used by gdb for break-points. NOTE: Care must be taken, since
this value may be used in later revisions of the MIPS ISA. */
#define HALT_INSTRUCTION_MASK (0x03FFFFC0)
#define HALT_INSTRUCTION (0x03ff000d)
#define HALT_INSTRUCTION2 (0x0000ffcd)
#define BREAKPOINT_INSTRUCTION (0x0005000d)
#define BREAKPOINT_INSTRUCTION2 (0x0000014d)
void interrupt_event (SIM_DESC sd, void *data);
void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
#define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
#define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
#define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
#define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
#define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
#define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
#define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
#define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
#define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
#define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
#define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
#define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
#define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
#define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
#define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
#define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
#define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
#define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
#define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
#define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
/* Co-processor accesses */
/* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
#define COP_Usable(coproc_num) (coproc_num == 1)
void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
#define COP_LW(coproc_num,coproc_reg,memword) \
cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
#define COP_LD(coproc_num,coproc_reg,memword) \
cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
#define COP_SW(coproc_num,coproc_reg) \
cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
#define COP_SD(coproc_num,coproc_reg) \
cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia,
unsigned int instruction, int coprocnum, CP0_operation op,
int rt, int rd, int sel);
#define DecodeCoproc(instruction,coprocnum,op,rt,rd,sel) \
decode_coproc (SD, CPU, cia, (instruction), (coprocnum), (op), \
(rt), (rd), (sel))
int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
/* FPR access. */
uint64_t value_fpr (SIM_STATE, int fpr, FP_formats);
#define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
void store_fpr (SIM_STATE, int fpr, FP_formats fmt, uint64_t value);
#define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
uint64_t ps_lower (SIM_STATE, uint64_t op);
#define PSLower(op) ps_lower (SIM_ARGS, op)
uint64_t ps_upper (SIM_STATE, uint64_t op);
#define PSUpper(op) ps_upper (SIM_ARGS, op)
uint64_t pack_ps (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats from);
#define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
/* FCR access. */
unsigned_word value_fcr (SIM_STATE, int fcr);
#define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
void store_fcr (SIM_STATE, int fcr, unsigned_word value);
#define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
void test_fcsr (SIM_STATE);
#define TestFCSR() test_fcsr (SIM_ARGS)
/* FPU operations. */
/* Non-signalling */
#define FP_R6CMP_AF 0x0
#define FP_R6CMP_EQ 0x2
#define FP_R6CMP_LE 0x6
#define FP_R6CMP_LT 0x4
#define FP_R6CMP_NE 0x13
#define FP_R6CMP_OR 0x11
#define FP_R6CMP_UEQ 0x3
#define FP_R6CMP_ULE 0x7
#define FP_R6CMP_ULT 0x5
#define FP_R6CMP_UN 0x1
#define FP_R6CMP_UNE 0x12
/* Signalling */
#define FP_R6CMP_SAF 0x8
#define FP_R6CMP_SEQ 0xa
#define FP_R6CMP_SLE 0xe
#define FP_R6CMP_SLT 0xc
#define FP_R6CMP_SNE 0x1b
#define FP_R6CMP_SOR 0x19
#define FP_R6CMP_SUEQ 0xb
#define FP_R6CMP_SULE 0xf
#define FP_R6CMP_SULT 0xd
#define FP_R6CMP_SUN 0x9
#define FP_R6CMP_SUNE 0x1a
/* FPU Class */
#define FP_R6CLASS_SNAN (1<<0)
#define FP_R6CLASS_QNAN (1<<1)
#define FP_R6CLASS_NEGINF (1<<2)
#define FP_R6CLASS_NEGNORM (1<<3)
#define FP_R6CLASS_NEGSUB (1<<4)
#define FP_R6CLASS_NEGZERO (1<<5)
#define FP_R6CLASS_POSINF (1<<6)
#define FP_R6CLASS_POSNORM (1<<7)
#define FP_R6CLASS_POSSUB (1<<8)
#define FP_R6CLASS_POSZERO (1<<9)
void fp_cmp (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt,
int abs, int cond, int cc);
#define Compare(op1,op2,fmt,cond,cc) \
fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
uint64_t fp_r6_cmp (SIM_STATE, uint64_t op1, uint64_t op2,
FP_formats fmt, int cond);
#define R6Compare(op1,op2,fmt,cond) fp_r6_cmp(SIM_ARGS, op1, op2, fmt, cond)
uint64_t fp_classify(SIM_STATE, uint64_t op, FP_formats fmt);
#define Classify(op, fmt) fp_classify(SIM_ARGS, op, fmt)
int fp_rint(SIM_STATE, uint64_t op, uint64_t *ans, FP_formats fmt);
#define RoundToIntegralExact(op, ans, fmt) fp_rint(SIM_ARGS, op, ans, fmt)
uint64_t fp_abs (SIM_STATE, uint64_t op, FP_formats fmt);
#define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
uint64_t fp_neg (SIM_STATE, uint64_t op, FP_formats fmt);
#define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
uint64_t fp_add (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
uint64_t fp_sub (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
uint64_t fp_mul (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
uint64_t fp_div (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
uint64_t fp_min (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Min(op1,op2,fmt) fp_min(SIM_ARGS, op1, op2, fmt)
uint64_t fp_max (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Max(op1,op2,fmt) fp_max(SIM_ARGS, op1, op2, fmt)
uint64_t fp_mina (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define MinA(op1,op2,fmt) fp_mina(SIM_ARGS, op1, op2, fmt)
uint64_t fp_maxa (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define MaxA(op1,op2,fmt) fp_maxa(SIM_ARGS, op1, op2, fmt)
uint64_t fp_recip (SIM_STATE, uint64_t op, FP_formats fmt);
#define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
uint64_t fp_sqrt (SIM_STATE, uint64_t op, FP_formats fmt);
#define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
uint64_t fp_rsqrt (SIM_STATE, uint64_t op, FP_formats fmt);
#define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
uint64_t fp_madd (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define FusedMultiplyAdd(op1,op2,op3,fmt) fp_fmadd(SIM_ARGS, op1, op2, op3, fmt)
uint64_t fp_fmadd (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define FusedMultiplySub(op1,op2,op3,fmt) fp_fmsub(SIM_ARGS, op1, op2, op3, fmt)
uint64_t fp_fmsub (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
uint64_t fp_msub (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
uint64_t fp_nmadd (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
uint64_t fp_nmsub (SIM_STATE, uint64_t op1, uint64_t op2,
uint64_t op3, FP_formats fmt);
#define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
uint64_t convert (SIM_STATE, int rm, uint64_t op, FP_formats from, FP_formats to);
#define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
uint64_t convert_ps (SIM_STATE, int rm, uint64_t op, FP_formats from,
FP_formats to);
#define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
/* MIPS-3D ASE operations. */
#define CompareAbs(op1,op2,fmt,cond,cc) \
fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
uint64_t fp_add_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
uint64_t fp_mul_r (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
uint64_t fp_recip1 (SIM_STATE, uint64_t op, FP_formats fmt);
#define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
uint64_t fp_recip2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
uint64_t fp_rsqrt1 (SIM_STATE, uint64_t op, FP_formats fmt);
#define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
uint64_t fp_rsqrt2 (SIM_STATE, uint64_t op1, uint64_t op2, FP_formats fmt);
#define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
/* MDMX access. */
typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
#define ob_fmtsel(sel) (((sel)<<1)|0x0)
#define qh_fmtsel(sel) (((sel)<<2)|0x1)
#define fmt_mdmx fmt_uninterpreted
#define MX_VECT_AND (0)
#define MX_VECT_NOR (1)
#define MX_VECT_OR (2)
#define MX_VECT_XOR (3)
#define MX_VECT_SLL (4)
#define MX_VECT_SRL (5)
#define MX_VECT_ADD (6)
#define MX_VECT_SUB (7)
#define MX_VECT_MIN (8)
#define MX_VECT_MAX (9)
#define MX_VECT_MUL (10)
#define MX_VECT_MSGN (11)
#define MX_VECT_SRA (12)
#define MX_VECT_ABSD (13) /* SB-1 only. */
#define MX_VECT_AVG (14) /* SB-1 only. */
uint64_t mdmx_cpr_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
#define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
#define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
#define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
#define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
#define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
#define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
#define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
#define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
#define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
#define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
#define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
#define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
#define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
#define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
#define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
#define MX_C_EQ 0x1
#define MX_C_LT 0x4
void mdmx_cc_op (SIM_STATE, int cond, uint64_t op1, int vt, MX_fmtsel fmtsel);
#define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
uint64_t mdmx_pick_op (SIM_STATE, int tf, uint64_t op1, int vt, MX_fmtsel fmtsel);
#define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
#define MX_VECT_ADDA (0)
#define MX_VECT_ADDL (1)
#define MX_VECT_MULA (2)
#define MX_VECT_MULL (3)
#define MX_VECT_MULS (4)
#define MX_VECT_MULSL (5)
#define MX_VECT_SUBA (6)
#define MX_VECT_SUBL (7)
#define MX_VECT_ABSDA (8) /* SB-1 only. */
void mdmx_acc_op (SIM_STATE, int op, uint64_t op1, int vt, MX_fmtsel fmtsel);
#define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
#define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
#define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
#define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
#define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
#define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
#define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
#define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
#define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
#define MX_FMT_OB (0)
#define MX_FMT_QH (1)
/* The following codes chosen to indicate the units of shift. */
#define MX_RAC_L (0)
#define MX_RAC_M (1)
#define MX_RAC_H (2)
uint64_t mdmx_rac_op (SIM_STATE, int, int);
#define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
void mdmx_wacl (SIM_STATE, int, uint64_t, uint64_t);
#define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
void mdmx_wach (SIM_STATE, int, uint64_t);
#define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
#define MX_RND_AS (0)
#define MX_RND_AU (1)
#define MX_RND_ES (2)
#define MX_RND_EU (3)
#define MX_RND_ZS (4)
#define MX_RND_ZU (5)
uint64_t mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
#define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
#define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
#define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
#define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
#define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
#define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
uint64_t mdmx_shuffle (SIM_STATE, int, uint64_t, uint64_t);
#define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
/* Memory accesses */
/* The following are generic to all versions of the MIPS architecture
to date: */
#define isINSTRUCTION (1 == 0) /* FALSE */
#define isDATA (1 == 1) /* TRUE */
#define isLOAD (1 == 0) /* FALSE */
#define isSTORE (1 == 1) /* TRUE */
#define isREAL (1 == 0) /* FALSE */
#define isRAW (1 == 1) /* TRUE */
/* The parameter HOST (isTARGET / isHOST) is ignored */
#define isTARGET (1 == 0) /* FALSE */
/* #define isHOST (1 == 1) TRUE */
/* The "AccessLength" specifications for Loads and Stores. NOTE: This
is the number of bytes minus 1. */
#define AccessLength_BYTE (0)
#define AccessLength_HALFWORD (1)
#define AccessLength_TRIPLEBYTE (2)
#define AccessLength_WORD (3)
#define AccessLength_QUINTIBYTE (4)
#define AccessLength_SEXTIBYTE (5)
#define AccessLength_SEPTIBYTE (6)
#define AccessLength_DOUBLEWORD (7)
#define AccessLength_QUADWORD (15)
#define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
? AccessLength_DOUBLEWORD /*7*/ \
: AccessLength_WORD /*3*/)
INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
#define LoadMemory(memvalp,memval1p,AccessLength,pAddr,vAddr,IorD,raw) \
load_memory (SD, CPU, cia, memvalp, memval1p, 0, AccessLength, pAddr, vAddr, IorD)
INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
#define StoreMemory(AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
store_memory (SD, CPU, cia, 0, AccessLength, MemElem, MemElem1, pAddr, vAddr)
INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
#define CacheOp(op,pAddr,vAddr,instruction) \
cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
#define SyncOperation(stype) \
sync_operation (SD, CPU, cia, (stype))
void unpredictable_action (sim_cpu *cpu, address_word cia);
#define NotWordValue(val) not_word_value (SD_, (val))
#define Unpredictable() unpredictable (SD_)
#define UnpredictableResult() /* For now, do nothing. */
INLINE_SIM_MAIN (uint32_t) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
#define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
INLINE_SIM_MAIN (uint16_t) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
#define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
#define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
#define IMEM32_MICROMIPS(CIA) \
(ifetch16 (SD, CPU, (CIA), (CIA)) << 16 | ifetch16 (SD, CPU, (CIA + 2), \
(CIA + 2)))
#define IMEM16_MICROMIPS(CIA) ifetch16 (SD, CPU, (CIA), ((CIA)))
#define MICROMIPS_MINOR_OPCODE(INSN) ((INSN & 0x1C00) >> 10)
#define MICROMIPS_DELAYSLOT_SIZE_ANY 0
#define MICROMIPS_DELAYSLOT_SIZE_16 2
#define MICROMIPS_DELAYSLOT_SIZE_32 4
extern int isa_mode;
#define ISA_MODE_MIPS32 0
#define ISA_MODE_MICROMIPS 1
address_word micromips_instruction_decode (SIM_DESC sd, sim_cpu * cpu,
address_word cia,
int instruction_size);
#if WITH_TRACE_ANY_P
void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, const char *comment, ...) ATTRIBUTE_PRINTF (7, 8);
extern FILE *tracefh;
#else
#define dotrace(sd, cpu, tracefh, type, address, width, comment, ...)
#endif
extern int DSPLO_REGNUM[4];
extern int DSPHI_REGNUM[4];
INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
extern SIM_CORE_SIGNAL_FN mips_core_signal;
char* pr_addr (SIM_ADDR addr);
char* pr_uword64 (uword64 addr);
#define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
#ifdef MIPS_MACH_MULTI
extern int mips_mach_multi(SIM_DESC sd);
#define MIPS_MACH(SD) mips_mach_multi(SD)
#else
#define MIPS_MACH(SD) MIPS_MACH_DEFAULT
#endif
/* Macros for determining whether a MIPS IV or MIPS V part is subject
to the hi/lo restrictions described in mips.igen. */
#define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
(MIPS_MACH (SD) != bfd_mach_mips5500)
#define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
(MIPS_MACH (SD) != bfd_mach_mips5500)
#define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
(MIPS_MACH (SD) != bfd_mach_mips5500)
#if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
#include "sim-main.c"
#endif
#endif