| /* ELF linking support for BFD. |
| Copyright (C) 1995-2020 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #define ARCH_SIZE 0 |
| #include "elf-bfd.h" |
| #include "safe-ctype.h" |
| #include "libiberty.h" |
| #include "objalloc.h" |
| #if BFD_SUPPORTS_PLUGINS |
| #include "plugin-api.h" |
| #include "plugin.h" |
| #endif |
| |
| /* This struct is used to pass information to routines called via |
| elf_link_hash_traverse which must return failure. */ |
| |
| struct elf_info_failed |
| { |
| struct bfd_link_info *info; |
| bfd_boolean failed; |
| }; |
| |
| /* This structure is used to pass information to |
| _bfd_elf_link_find_version_dependencies. */ |
| |
| struct elf_find_verdep_info |
| { |
| /* General link information. */ |
| struct bfd_link_info *info; |
| /* The number of dependencies. */ |
| unsigned int vers; |
| /* Whether we had a failure. */ |
| bfd_boolean failed; |
| }; |
| |
| static bfd_boolean _bfd_elf_fix_symbol_flags |
| (struct elf_link_hash_entry *, struct elf_info_failed *); |
| |
| asection * |
| _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, |
| unsigned long r_symndx, |
| bfd_boolean discard) |
| { |
| if (r_symndx >= cookie->locsymcount |
| || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && discarded_section (h->root.u.def.section)) |
| return h->root.u.def.section; |
| else |
| return NULL; |
| } |
| else |
| { |
| /* It's not a relocation against a global symbol, |
| but it could be a relocation against a local |
| symbol for a discarded section. */ |
| asection *isec; |
| Elf_Internal_Sym *isym; |
| |
| /* Need to: get the symbol; get the section. */ |
| isym = &cookie->locsyms[r_symndx]; |
| isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); |
| if (isec != NULL |
| && discard ? discarded_section (isec) : 1) |
| return isec; |
| } |
| return NULL; |
| } |
| |
| /* Define a symbol in a dynamic linkage section. */ |
| |
| struct elf_link_hash_entry * |
| _bfd_elf_define_linkage_sym (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const char *name) |
| { |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| const struct elf_backend_data *bed; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); |
| if (h != NULL) |
| { |
| /* Zap symbol defined in an as-needed lib that wasn't linked. |
| This is a symptom of a larger problem: Absolute symbols |
| defined in shared libraries can't be overridden, because we |
| lose the link to the bfd which is via the symbol section. */ |
| h->root.type = bfd_link_hash_new; |
| bh = &h->root; |
| } |
| else |
| bh = NULL; |
| |
| bed = get_elf_backend_data (abfd); |
| if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, |
| sec, 0, NULL, FALSE, bed->collect, |
| &bh)) |
| return NULL; |
| h = (struct elf_link_hash_entry *) bh; |
| BFD_ASSERT (h != NULL); |
| h->def_regular = 1; |
| h->non_elf = 0; |
| h->root.linker_def = 1; |
| h->type = STT_OBJECT; |
| if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
| h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
| |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| return h; |
| } |
| |
| bfd_boolean |
| _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection *s; |
| struct elf_link_hash_entry *h; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* This function may be called more than once. */ |
| if (htab->sgot != NULL) |
| return TRUE; |
| |
| flags = bed->dynamic_sec_flags; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.got" : ".rel.got"), |
| (bed->dynamic_sec_flags |
| | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->srelgot = s; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->sgot = s; |
| |
| if (bed->want_got_plt) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->sgotplt = s; |
| } |
| |
| /* The first bit of the global offset table is the header. */ |
| s->size += bed->got_header_size; |
| |
| if (bed->want_got_sym) |
| { |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got |
| (or .got.plt) section. We don't do this in the linker script |
| because we don't want to define the symbol if we are not creating |
| a global offset table. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| "_GLOBAL_OFFSET_TABLE_"); |
| elf_hash_table (info)->hgot = h; |
| if (h == NULL) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Create a strtab to hold the dynamic symbol names. */ |
| static bfd_boolean |
| _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf_link_hash_table *hash_table; |
| |
| hash_table = elf_hash_table (info); |
| if (hash_table->dynobj == NULL) |
| { |
| /* We may not set dynobj, an input file holding linker created |
| dynamic sections to abfd, which may be a dynamic object with |
| its own dynamic sections. We need to find a normal input file |
| to hold linker created sections if possible. */ |
| if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) |
| { |
| bfd *ibfd; |
| asection *s; |
| for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) |
| if ((ibfd->flags |
| & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 |
| && bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
| && elf_object_id (ibfd) == elf_hash_table_id (hash_table) |
| && !((s = ibfd->sections) != NULL |
| && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) |
| { |
| abfd = ibfd; |
| break; |
| } |
| } |
| hash_table->dynobj = abfd; |
| } |
| |
| if (hash_table->dynstr == NULL) |
| { |
| hash_table->dynstr = _bfd_elf_strtab_init (); |
| if (hash_table->dynstr == NULL) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Create some sections which will be filled in with dynamic linking |
| information. ABFD is an input file which requires dynamic sections |
| to be created. The dynamic sections take up virtual memory space |
| when the final executable is run, so we need to create them before |
| addresses are assigned to the output sections. We work out the |
| actual contents and size of these sections later. */ |
| |
| bfd_boolean |
| _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags; |
| asection *s; |
| const struct elf_backend_data *bed; |
| struct elf_link_hash_entry *h; |
| |
| if (! is_elf_hash_table (info->hash)) |
| return FALSE; |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| return TRUE; |
| |
| if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
| return FALSE; |
| |
| abfd = elf_hash_table (info)->dynobj; |
| bed = get_elf_backend_data (abfd); |
| |
| flags = bed->dynamic_sec_flags; |
| |
| /* A dynamically linked executable has a .interp section, but a |
| shared library does not. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".interp", |
| flags | SEC_READONLY); |
| if (s == NULL) |
| return FALSE; |
| } |
| |
| /* Create sections to hold version informations. These are removed |
| if they are not needed. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, 1)) |
| return FALSE; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| elf_hash_table (info)->dynsym = s; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", |
| flags | SEC_READONLY); |
| if (s == NULL) |
| return FALSE; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| |
| /* The special symbol _DYNAMIC is always set to the start of the |
| .dynamic section. We could set _DYNAMIC in a linker script, but we |
| only want to define it if we are, in fact, creating a .dynamic |
| section. We don't want to define it if there is no .dynamic |
| section, since on some ELF platforms the start up code examines it |
| to decide how to initialize the process. */ |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); |
| elf_hash_table (info)->hdynamic = h; |
| if (h == NULL) |
| return FALSE; |
| |
| if (info->emit_hash) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".hash", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; |
| } |
| |
| if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: |
| 4 32-bit words followed by variable count of 64-bit words, then |
| variable count of 32-bit words. */ |
| if (bed->s->arch_size == 64) |
| elf_section_data (s)->this_hdr.sh_entsize = 0; |
| else |
| elf_section_data (s)->this_hdr.sh_entsize = 4; |
| } |
| |
| /* Let the backend create the rest of the sections. This lets the |
| backend set the right flags. The backend will normally create |
| the .got and .plt sections. */ |
| if (bed->elf_backend_create_dynamic_sections == NULL |
| || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) |
| return FALSE; |
| |
| elf_hash_table (info)->dynamic_sections_created = TRUE; |
| |
| return TRUE; |
| } |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| bfd_boolean |
| _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| flagword flags, pltflags; |
| struct elf_link_hash_entry *h; |
| asection *s; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
| .rel[a].bss sections. */ |
| flags = bed->dynamic_sec_flags; |
| |
| pltflags = flags; |
| if (bed->plt_not_loaded) |
| /* We do not clear SEC_ALLOC here because we still want the OS to |
| allocate space for the section; it's just that there's nothing |
| to read in from the object file. */ |
| pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); |
| else |
| pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; |
| if (bed->plt_readonly) |
| pltflags |= SEC_READONLY; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->plt_alignment)) |
| return FALSE; |
| htab->splt = s; |
| |
| /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| .plt section. */ |
| if (bed->want_plt_sym) |
| { |
| h = _bfd_elf_define_linkage_sym (abfd, info, s, |
| "_PROCEDURE_LINKAGE_TABLE_"); |
| elf_hash_table (info)->hplt = h; |
| if (h == NULL) |
| return FALSE; |
| } |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.plt" : ".rel.plt"), |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->srelplt = s; |
| |
| if (! _bfd_elf_create_got_section (abfd, info)) |
| return FALSE; |
| |
| if (bed->want_dynbss) |
| { |
| /* The .dynbss section is a place to put symbols which are defined |
| by dynamic objects, are referenced by regular objects, and are |
| not functions. We must allocate space for them in the process |
| image and use a R_*_COPY reloc to tell the dynamic linker to |
| initialize them at run time. The linker script puts the .dynbss |
| section into the .bss section of the final image. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
| SEC_ALLOC | SEC_LINKER_CREATED); |
| if (s == NULL) |
| return FALSE; |
| htab->sdynbss = s; |
| |
| if (bed->want_dynrelro) |
| { |
| /* Similarly, but for symbols that were originally in read-only |
| sections. This section doesn't really need to have contents, |
| but make it like other .data.rel.ro sections. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", |
| flags); |
| if (s == NULL) |
| return FALSE; |
| htab->sdynrelro = s; |
| } |
| |
| /* The .rel[a].bss section holds copy relocs. This section is not |
| normally needed. We need to create it here, though, so that the |
| linker will map it to an output section. We can't just create it |
| only if we need it, because we will not know whether we need it |
| until we have seen all the input files, and the first time the |
| main linker code calls BFD after examining all the input files |
| (size_dynamic_sections) the input sections have already been |
| mapped to the output sections. If the section turns out not to |
| be needed, we can discard it later. We will never need this |
| section when generating a shared object, since they do not use |
| copy relocs. */ |
| if (bfd_link_executable (info)) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->rela_plts_and_copies_p |
| ? ".rela.bss" : ".rel.bss"), |
| flags | SEC_READONLY); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->srelbss = s; |
| |
| if (bed->want_dynrelro) |
| { |
| s = (bfd_make_section_anyway_with_flags |
| (abfd, (bed->rela_plts_and_copies_p |
| ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), |
| flags | SEC_READONLY)); |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->s->log_file_align)) |
| return FALSE; |
| htab->sreldynrelro = s; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Record a new dynamic symbol. We record the dynamic symbols as we |
| read the input files, since we need to have a list of all of them |
| before we can determine the final sizes of the output sections. |
| Note that we may actually call this function even though we are not |
| going to output any dynamic symbols; in some cases we know that a |
| symbol should be in the dynamic symbol table, but only if there is |
| one. */ |
| |
| bfd_boolean |
| bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| if (h->dynindx == -1) |
| { |
| struct elf_strtab_hash *dynstr; |
| char *p; |
| const char *name; |
| size_t indx; |
| |
| /* XXX: The ABI draft says the linker must turn hidden and |
| internal symbols into STB_LOCAL symbols when producing the |
| DSO. However, if ld.so honors st_other in the dynamic table, |
| this would not be necessary. */ |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| if (h->root.type != bfd_link_hash_undefined |
| && h->root.type != bfd_link_hash_undefweak) |
| { |
| h->forced_local = 1; |
| if (!elf_hash_table (info)->is_relocatable_executable) |
| return TRUE; |
| } |
| |
| default: |
| break; |
| } |
| |
| h->dynindx = elf_hash_table (info)->dynsymcount; |
| ++elf_hash_table (info)->dynsymcount; |
| |
| dynstr = elf_hash_table (info)->dynstr; |
| if (dynstr == NULL) |
| { |
| /* Create a strtab to hold the dynamic symbol names. */ |
| elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
| if (dynstr == NULL) |
| return FALSE; |
| } |
| |
| /* We don't put any version information in the dynamic string |
| table. */ |
| name = h->root.root.string; |
| p = strchr (name, ELF_VER_CHR); |
| if (p != NULL) |
| /* We know that the p points into writable memory. In fact, |
| there are only a few symbols that have read-only names, being |
| those like _GLOBAL_OFFSET_TABLE_ that are created specially |
| by the backends. Most symbols will have names pointing into |
| an ELF string table read from a file, or to objalloc memory. */ |
| *p = 0; |
| |
| indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); |
| |
| if (p != NULL) |
| *p = ELF_VER_CHR; |
| |
| if (indx == (size_t) -1) |
| return FALSE; |
| h->dynstr_index = indx; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Mark a symbol dynamic. */ |
| |
| static void |
| bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct bfd_elf_dynamic_list *d = info->dynamic_list; |
| |
| /* It may be called more than once on the same H. */ |
| if(h->dynamic || bfd_link_relocatable (info)) |
| return; |
| |
| if ((info->dynamic_data |
| && (h->type == STT_OBJECT |
| || h->type == STT_COMMON |
| || (sym != NULL |
| && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT |
| || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) |
| || (d != NULL |
| && h->non_elf |
| && (*d->match) (&d->head, NULL, h->root.root.string))) |
| { |
| h->dynamic = 1; |
| /* NB: If a symbol is made dynamic by --dynamic-list, it has |
| non-IR reference. */ |
| h->root.non_ir_ref_dynamic = 1; |
| } |
| } |
| |
| /* Record an assignment to a symbol made by a linker script. We need |
| this in case some dynamic object refers to this symbol. */ |
| |
| bfd_boolean |
| bfd_elf_record_link_assignment (bfd *output_bfd, |
| struct bfd_link_info *info, |
| const char *name, |
| bfd_boolean provide, |
| bfd_boolean hidden) |
| { |
| struct elf_link_hash_entry *h, *hv; |
| struct elf_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| |
| if (!is_elf_hash_table (info->hash)) |
| return TRUE; |
| |
| htab = elf_hash_table (info); |
| h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); |
| if (h == NULL) |
| return provide; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (h->versioned == unknown) |
| { |
| /* Set versioned if symbol version is unknown. */ |
| char *version = strrchr (name, ELF_VER_CHR); |
| if (version) |
| { |
| if (version > name && version[-1] != ELF_VER_CHR) |
| h->versioned = versioned_hidden; |
| else |
| h->versioned = versioned; |
| } |
| } |
| |
| /* Symbols defined in a linker script but not referenced anywhere |
| else will have non_elf set. */ |
| if (h->non_elf) |
| { |
| bfd_elf_link_mark_dynamic_symbol (info, h, NULL); |
| h->non_elf = 0; |
| } |
| |
| switch (h->root.type) |
| { |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| case bfd_link_hash_common: |
| break; |
| case bfd_link_hash_undefweak: |
| case bfd_link_hash_undefined: |
| /* Since we're defining the symbol, don't let it seem to have not |
| been defined. record_dynamic_symbol and size_dynamic_sections |
| may depend on this. */ |
| h->root.type = bfd_link_hash_new; |
| if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) |
| bfd_link_repair_undef_list (&htab->root); |
| break; |
| case bfd_link_hash_new: |
| break; |
| case bfd_link_hash_indirect: |
| /* We had a versioned symbol in a dynamic library. We make the |
| the versioned symbol point to this one. */ |
| bed = get_elf_backend_data (output_bfd); |
| hv = h; |
| while (hv->root.type == bfd_link_hash_indirect |
| || hv->root.type == bfd_link_hash_warning) |
| hv = (struct elf_link_hash_entry *) hv->root.u.i.link; |
| /* We don't need to update h->root.u since linker will set them |
| later. */ |
| h->root.type = bfd_link_hash_undefined; |
| hv->root.type = bfd_link_hash_indirect; |
| hv->root.u.i.link = (struct bfd_link_hash_entry *) h; |
| (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); |
| break; |
| default: |
| BFD_FAIL (); |
| return FALSE; |
| } |
| |
| /* If this symbol is being provided by the linker script, and it is |
| currently defined by a dynamic object, but not by a regular |
| object, then mark it as undefined so that the generic linker will |
| force the correct value. */ |
| if (provide |
| && h->def_dynamic |
| && !h->def_regular) |
| h->root.type = bfd_link_hash_undefined; |
| |
| /* If this symbol is currently defined by a dynamic object, but not |
| by a regular object, then clear out any version information because |
| the symbol will not be associated with the dynamic object any |
| more. */ |
| if (h->def_dynamic && !h->def_regular) |
| h->verinfo.verdef = NULL; |
| |
| /* Make sure this symbol is not garbage collected. */ |
| h->mark = 1; |
| |
| h->def_regular = 1; |
| |
| if (hidden) |
| { |
| bed = get_elf_backend_data (output_bfd); |
| if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) |
| h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| } |
| |
| /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects |
| and executables. */ |
| if (!bfd_link_relocatable (info) |
| && h->dynindx != -1 |
| && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN |
| || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) |
| h->forced_local = 1; |
| |
| if ((h->def_dynamic |
| || h->ref_dynamic |
| || bfd_link_dll (info) |
| || elf_hash_table (info)->is_relocatable_executable) |
| && !h->forced_local |
| && h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| /* If this is a weak defined symbol, and we know a corresponding |
| real symbol from the same dynamic object, make sure the real |
| symbol is also made into a dynamic symbol. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| |
| if (def->dynindx == -1 |
| && !bfd_elf_link_record_dynamic_symbol (info, def)) |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Record a new local dynamic symbol. Returns 0 on failure, 1 on |
| success, and 2 on a failure caused by attempting to record a symbol |
| in a discarded section, eg. a discarded link-once section symbol. */ |
| |
| int |
| bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, |
| bfd *input_bfd, |
| long input_indx) |
| { |
| size_t amt; |
| struct elf_link_local_dynamic_entry *entry; |
| struct elf_link_hash_table *eht; |
| struct elf_strtab_hash *dynstr; |
| size_t dynstr_index; |
| char *name; |
| Elf_External_Sym_Shndx eshndx; |
| char esym[sizeof (Elf64_External_Sym)]; |
| |
| if (! is_elf_hash_table (info->hash)) |
| return 0; |
| |
| /* See if the entry exists already. */ |
| for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) |
| if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) |
| return 1; |
| |
| amt = sizeof (*entry); |
| entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); |
| if (entry == NULL) |
| return 0; |
| |
| /* Go find the symbol, so that we can find it's name. */ |
| if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, |
| 1, input_indx, &entry->isym, esym, &eshndx)) |
| { |
| bfd_release (input_bfd, entry); |
| return 0; |
| } |
| |
| if (entry->isym.st_shndx != SHN_UNDEF |
| && entry->isym.st_shndx < SHN_LORESERVE) |
| { |
| asection *s; |
| |
| s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); |
| if (s == NULL || bfd_is_abs_section (s->output_section)) |
| { |
| /* We can still bfd_release here as nothing has done another |
| bfd_alloc. We can't do this later in this function. */ |
| bfd_release (input_bfd, entry); |
| return 2; |
| } |
| } |
| |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, |
| entry->isym.st_name)); |
| |
| dynstr = elf_hash_table (info)->dynstr; |
| if (dynstr == NULL) |
| { |
| /* Create a strtab to hold the dynamic symbol names. */ |
| elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); |
| if (dynstr == NULL) |
| return 0; |
| } |
| |
| dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); |
| if (dynstr_index == (size_t) -1) |
| return 0; |
| entry->isym.st_name = dynstr_index; |
| |
| eht = elf_hash_table (info); |
| |
| entry->next = eht->dynlocal; |
| eht->dynlocal = entry; |
| entry->input_bfd = input_bfd; |
| entry->input_indx = input_indx; |
| eht->dynsymcount++; |
| |
| /* Whatever binding the symbol had before, it's now local. */ |
| entry->isym.st_info |
| = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); |
| |
| /* The dynindx will be set at the end of size_dynamic_sections. */ |
| |
| return 1; |
| } |
| |
| /* Return the dynindex of a local dynamic symbol. */ |
| |
| long |
| _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, |
| bfd *input_bfd, |
| long input_indx) |
| { |
| struct elf_link_local_dynamic_entry *e; |
| |
| for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) |
| if (e->input_bfd == input_bfd && e->input_indx == input_indx) |
| return e->dynindx; |
| return -1; |
| } |
| |
| /* This function is used to renumber the dynamic symbols, if some of |
| them are removed because they are marked as local. This is called |
| via elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, |
| void *data) |
| { |
| size_t *count = (size_t *) data; |
| |
| if (h->forced_local) |
| return TRUE; |
| |
| if (h->dynindx != -1) |
| h->dynindx = ++(*count); |
| |
| return TRUE; |
| } |
| |
| |
| /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with |
| STB_LOCAL binding. */ |
| |
| static bfd_boolean |
| elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, |
| void *data) |
| { |
| size_t *count = (size_t *) data; |
| |
| if (!h->forced_local) |
| return TRUE; |
| |
| if (h->dynindx != -1) |
| h->dynindx = ++(*count); |
| |
| return TRUE; |
| } |
| |
| /* Return true if the dynamic symbol for a given section should be |
| omitted when creating a shared library. */ |
| bfd_boolean |
| _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info, |
| asection *p) |
| { |
| struct elf_link_hash_table *htab; |
| asection *ip; |
| |
| switch (elf_section_data (p)->this_hdr.sh_type) |
| { |
| case SHT_PROGBITS: |
| case SHT_NOBITS: |
| /* If sh_type is yet undecided, assume it could be |
| SHT_PROGBITS/SHT_NOBITS. */ |
| case SHT_NULL: |
| htab = elf_hash_table (info); |
| if (htab->text_index_section != NULL) |
| return p != htab->text_index_section && p != htab->data_index_section; |
| |
| return (htab->dynobj != NULL |
| && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL |
| && ip->output_section == p); |
| |
| /* There shouldn't be section relative relocations |
| against any other section. */ |
| default: |
| return TRUE; |
| } |
| } |
| |
| bfd_boolean |
| _bfd_elf_omit_section_dynsym_all |
| (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| asection *p ATTRIBUTE_UNUSED) |
| { |
| return TRUE; |
| } |
| |
| /* Assign dynsym indices. In a shared library we generate a section |
| symbol for each output section, which come first. Next come symbols |
| which have been forced to local binding. Then all of the back-end |
| allocated local dynamic syms, followed by the rest of the global |
| symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. |
| (This prevents the early call before elf_backend_init_index_section |
| and strip_excluded_output_sections setting dynindx for sections |
| that are stripped.) */ |
| |
| static unsigned long |
| _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, |
| struct bfd_link_info *info, |
| unsigned long *section_sym_count) |
| { |
| unsigned long dynsymcount = 0; |
| bfd_boolean do_sec = section_sym_count != NULL; |
| |
| if (bfd_link_pic (info) |
| || elf_hash_table (info)->is_relocatable_executable) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| asection *p; |
| for (p = output_bfd->sections; p ; p = p->next) |
| if ((p->flags & SEC_EXCLUDE) == 0 |
| && (p->flags & SEC_ALLOC) != 0 |
| && elf_hash_table (info)->dynamic_relocs |
| && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) |
| { |
| ++dynsymcount; |
| if (do_sec) |
| elf_section_data (p)->dynindx = dynsymcount; |
| } |
| else if (do_sec) |
| elf_section_data (p)->dynindx = 0; |
| } |
| if (do_sec) |
| *section_sym_count = dynsymcount; |
| |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_link_renumber_local_hash_table_dynsyms, |
| &dynsymcount); |
| |
| if (elf_hash_table (info)->dynlocal) |
| { |
| struct elf_link_local_dynamic_entry *p; |
| for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) |
| p->dynindx = ++dynsymcount; |
| } |
| elf_hash_table (info)->local_dynsymcount = dynsymcount; |
| |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_link_renumber_hash_table_dynsyms, |
| &dynsymcount); |
| |
| /* There is an unused NULL entry at the head of the table which we |
| must account for in our count even if the table is empty since it |
| is intended for the mandatory DT_SYMTAB tag (.dynsym section) in |
| .dynamic section. */ |
| dynsymcount++; |
| |
| elf_hash_table (info)->dynsymcount = dynsymcount; |
| return dynsymcount; |
| } |
| |
| /* Merge st_other field. */ |
| |
| static void |
| elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, |
| const Elf_Internal_Sym *isym, asection *sec, |
| bfd_boolean definition, bfd_boolean dynamic) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| /* If st_other has a processor-specific meaning, specific |
| code might be needed here. */ |
| if (bed->elf_backend_merge_symbol_attribute) |
| (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, |
| dynamic); |
| |
| if (!dynamic) |
| { |
| unsigned symvis = ELF_ST_VISIBILITY (isym->st_other); |
| unsigned hvis = ELF_ST_VISIBILITY (h->other); |
| |
| /* Keep the most constraining visibility. Leave the remainder |
| of the st_other field to elf_backend_merge_symbol_attribute. */ |
| if (symvis - 1 < hvis - 1) |
| h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); |
| } |
| else if (definition |
| && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT |
| && (sec->flags & SEC_READONLY) == 0) |
| h->protected_def = 1; |
| } |
| |
| /* This function is called when we want to merge a new symbol with an |
| existing symbol. It handles the various cases which arise when we |
| find a definition in a dynamic object, or when there is already a |
| definition in a dynamic object. The new symbol is described by |
| NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table |
| entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK |
| if the old symbol was weak. We set POLD_ALIGNMENT to the alignment |
| of an old common symbol. We set OVERRIDE if the old symbol is |
| overriding a new definition. We set TYPE_CHANGE_OK if it is OK for |
| the type to change. We set SIZE_CHANGE_OK if it is OK for the size |
| to change. By OK to change, we mean that we shouldn't warn if the |
| type or size does change. */ |
| |
| static bfd_boolean |
| _bfd_elf_merge_symbol (bfd *abfd, |
| struct bfd_link_info *info, |
| const char *name, |
| Elf_Internal_Sym *sym, |
| asection **psec, |
| bfd_vma *pvalue, |
| struct elf_link_hash_entry **sym_hash, |
| bfd **poldbfd, |
| bfd_boolean *pold_weak, |
| unsigned int *pold_alignment, |
| bfd_boolean *skip, |
| bfd_boolean *override, |
| bfd_boolean *type_change_ok, |
| bfd_boolean *size_change_ok, |
| bfd_boolean *matched) |
| { |
| asection *sec, *oldsec; |
| struct elf_link_hash_entry *h; |
| struct elf_link_hash_entry *hi; |
| struct elf_link_hash_entry *flip; |
| int bind; |
| bfd *oldbfd; |
| bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; |
| bfd_boolean newweak, oldweak, newfunc, oldfunc; |
| const struct elf_backend_data *bed; |
| char *new_version; |
| bfd_boolean default_sym = *matched; |
| |
| *skip = FALSE; |
| *override = FALSE; |
| |
| sec = *psec; |
| bind = ELF_ST_BIND (sym->st_info); |
| |
| if (! bfd_is_und_section (sec)) |
| h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); |
| else |
| h = ((struct elf_link_hash_entry *) |
| bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); |
| if (h == NULL) |
| return FALSE; |
| *sym_hash = h; |
| |
| bed = get_elf_backend_data (abfd); |
| |
| /* NEW_VERSION is the symbol version of the new symbol. */ |
| if (h->versioned != unversioned) |
| { |
| /* Symbol version is unknown or versioned. */ |
| new_version = strrchr (name, ELF_VER_CHR); |
| if (new_version) |
| { |
| if (h->versioned == unknown) |
| { |
| if (new_version > name && new_version[-1] != ELF_VER_CHR) |
| h->versioned = versioned_hidden; |
| else |
| h->versioned = versioned; |
| } |
| new_version += 1; |
| if (new_version[0] == '\0') |
| new_version = NULL; |
| } |
| else |
| h->versioned = unversioned; |
| } |
| else |
| new_version = NULL; |
| |
| /* For merging, we only care about real symbols. But we need to make |
| sure that indirect symbol dynamic flags are updated. */ |
| hi = h; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (!*matched) |
| { |
| if (hi == h || h->root.type == bfd_link_hash_new) |
| *matched = TRUE; |
| else |
| { |
| /* OLD_HIDDEN is true if the existing symbol is only visible |
| to the symbol with the same symbol version. NEW_HIDDEN is |
| true if the new symbol is only visible to the symbol with |
| the same symbol version. */ |
| bfd_boolean old_hidden = h->versioned == versioned_hidden; |
| bfd_boolean new_hidden = hi->versioned == versioned_hidden; |
| if (!old_hidden && !new_hidden) |
| /* The new symbol matches the existing symbol if both |
| aren't hidden. */ |
| *matched = TRUE; |
| else |
| { |
| /* OLD_VERSION is the symbol version of the existing |
| symbol. */ |
| char *old_version; |
| |
| if (h->versioned >= versioned) |
| old_version = strrchr (h->root.root.string, |
| ELF_VER_CHR) + 1; |
| else |
| old_version = NULL; |
| |
| /* The new symbol matches the existing symbol if they |
| have the same symbol version. */ |
| *matched = (old_version == new_version |
| || (old_version != NULL |
| && new_version != NULL |
| && strcmp (old_version, new_version) == 0)); |
| } |
| } |
| } |
| |
| /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the |
| existing symbol. */ |
| |
| oldbfd = NULL; |
| oldsec = NULL; |
| switch (h->root.type) |
| { |
| default: |
| break; |
| |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| oldbfd = h->root.u.undef.abfd; |
| break; |
| |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| oldbfd = h->root.u.def.section->owner; |
| oldsec = h->root.u.def.section; |
| break; |
| |
| case bfd_link_hash_common: |
| oldbfd = h->root.u.c.p->section->owner; |
| oldsec = h->root.u.c.p->section; |
| if (pold_alignment) |
| *pold_alignment = h->root.u.c.p->alignment_power; |
| break; |
| } |
| if (poldbfd && *poldbfd == NULL) |
| *poldbfd = oldbfd; |
| |
| /* Differentiate strong and weak symbols. */ |
| newweak = bind == STB_WEAK; |
| oldweak = (h->root.type == bfd_link_hash_defweak |
| || h->root.type == bfd_link_hash_undefweak); |
| if (pold_weak) |
| *pold_weak = oldweak; |
| |
| /* We have to check it for every instance since the first few may be |
| references and not all compilers emit symbol type for undefined |
| symbols. */ |
| bfd_elf_link_mark_dynamic_symbol (info, h, sym); |
| |
| /* NEWDYN and OLDDYN indicate whether the new or old symbol, |
| respectively, is from a dynamic object. */ |
| |
| newdyn = (abfd->flags & DYNAMIC) != 0; |
| |
| /* ref_dynamic_nonweak and dynamic_def flags track actual undefined |
| syms and defined syms in dynamic libraries respectively. |
| ref_dynamic on the other hand can be set for a symbol defined in |
| a dynamic library, and def_dynamic may not be set; When the |
| definition in a dynamic lib is overridden by a definition in the |
| executable use of the symbol in the dynamic lib becomes a |
| reference to the executable symbol. */ |
| if (newdyn) |
| { |
| if (bfd_is_und_section (sec)) |
| { |
| if (bind != STB_WEAK) |
| { |
| h->ref_dynamic_nonweak = 1; |
| hi->ref_dynamic_nonweak = 1; |
| } |
| } |
| else |
| { |
| /* Update the existing symbol only if they match. */ |
| if (*matched) |
| h->dynamic_def = 1; |
| hi->dynamic_def = 1; |
| } |
| } |
| |
| /* If we just created the symbol, mark it as being an ELF symbol. |
| Other than that, there is nothing to do--there is no merge issue |
| with a newly defined symbol--so we just return. */ |
| |
| if (h->root.type == bfd_link_hash_new) |
| { |
| h->non_elf = 0; |
| return TRUE; |
| } |
| |
| /* In cases involving weak versioned symbols, we may wind up trying |
| to merge a symbol with itself. Catch that here, to avoid the |
| confusion that results if we try to override a symbol with |
| itself. The additional tests catch cases like |
| _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a |
| dynamic object, which we do want to handle here. */ |
| if (abfd == oldbfd |
| && (newweak || oldweak) |
| && ((abfd->flags & DYNAMIC) == 0 |
| || !h->def_regular)) |
| return TRUE; |
| |
| olddyn = FALSE; |
| if (oldbfd != NULL) |
| olddyn = (oldbfd->flags & DYNAMIC) != 0; |
| else if (oldsec != NULL) |
| { |
| /* This handles the special SHN_MIPS_{TEXT,DATA} section |
| indices used by MIPS ELF. */ |
| olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; |
| } |
| |
| /* Handle a case where plugin_notice won't be called and thus won't |
| set the non_ir_ref flags on the first pass over symbols. */ |
| if (oldbfd != NULL |
| && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN) |
| && newdyn != olddyn) |
| { |
| h->root.non_ir_ref_dynamic = TRUE; |
| hi->root.non_ir_ref_dynamic = TRUE; |
| } |
| |
| /* NEWDEF and OLDDEF indicate whether the new or old symbol, |
| respectively, appear to be a definition rather than reference. */ |
| |
| newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); |
| |
| olddef = (h->root.type != bfd_link_hash_undefined |
| && h->root.type != bfd_link_hash_undefweak |
| && h->root.type != bfd_link_hash_common); |
| |
| /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, |
| respectively, appear to be a function. */ |
| |
| newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE |
| && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); |
| |
| oldfunc = (h->type != STT_NOTYPE |
| && bed->is_function_type (h->type)); |
| |
| if (!(newfunc && oldfunc) |
| && ELF_ST_TYPE (sym->st_info) != h->type |
| && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE |
| && h->type != STT_NOTYPE |
| && (newdef || bfd_is_com_section (sec)) |
| && (olddef || h->root.type == bfd_link_hash_common)) |
| { |
| /* If creating a default indirect symbol ("foo" or "foo@") from |
| a dynamic versioned definition ("foo@@") skip doing so if |
| there is an existing regular definition with a different |
| type. We don't want, for example, a "time" variable in the |
| executable overriding a "time" function in a shared library. */ |
| if (newdyn |
| && !olddyn) |
| { |
| *skip = TRUE; |
| return TRUE; |
| } |
| |
| /* When adding a symbol from a regular object file after we have |
| created indirect symbols, undo the indirection and any |
| dynamic state. */ |
| if (hi != h |
| && !newdyn |
| && olddyn) |
| { |
| h = hi; |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| h->forced_local = 0; |
| h->ref_dynamic = 0; |
| h->def_dynamic = 0; |
| h->dynamic_def = 0; |
| if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) |
| { |
| h->root.type = bfd_link_hash_undefined; |
| h->root.u.undef.abfd = abfd; |
| } |
| else |
| { |
| h->root.type = bfd_link_hash_new; |
| h->root.u.undef.abfd = NULL; |
| } |
| return TRUE; |
| } |
| } |
| |
| /* Check TLS symbols. We don't check undefined symbols introduced |
| by "ld -u" which have no type (and oldbfd NULL), and we don't |
| check symbols from plugins because they also have no type. */ |
| if (oldbfd != NULL |
| && (oldbfd->flags & BFD_PLUGIN) == 0 |
| && (abfd->flags & BFD_PLUGIN) == 0 |
| && ELF_ST_TYPE (sym->st_info) != h->type |
| && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) |
| { |
| bfd *ntbfd, *tbfd; |
| bfd_boolean ntdef, tdef; |
| asection *ntsec, *tsec; |
| |
| if (h->type == STT_TLS) |
| { |
| ntbfd = abfd; |
| ntsec = sec; |
| ntdef = newdef; |
| tbfd = oldbfd; |
| tsec = oldsec; |
| tdef = olddef; |
| } |
| else |
| { |
| ntbfd = oldbfd; |
| ntsec = oldsec; |
| ntdef = olddef; |
| tbfd = abfd; |
| tsec = sec; |
| tdef = newdef; |
| } |
| |
| if (tdef && ntdef) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%s: TLS definition in %pB section %pA " |
| "mismatches non-TLS definition in %pB section %pA"), |
| h->root.root.string, tbfd, tsec, ntbfd, ntsec); |
| else if (!tdef && !ntdef) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%s: TLS reference in %pB " |
| "mismatches non-TLS reference in %pB"), |
| h->root.root.string, tbfd, ntbfd); |
| else if (tdef) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%s: TLS definition in %pB section %pA " |
| "mismatches non-TLS reference in %pB"), |
| h->root.root.string, tbfd, tsec, ntbfd); |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%s: TLS reference in %pB " |
| "mismatches non-TLS definition in %pB section %pA"), |
| h->root.root.string, tbfd, ntbfd, ntsec); |
| |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| /* If the old symbol has non-default visibility, we ignore the new |
| definition from a dynamic object. */ |
| if (newdyn |
| && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && !bfd_is_und_section (sec)) |
| { |
| *skip = TRUE; |
| /* Make sure this symbol is dynamic. */ |
| h->ref_dynamic = 1; |
| hi->ref_dynamic = 1; |
| /* A protected symbol has external availability. Make sure it is |
| recorded as dynamic. |
| |
| FIXME: Should we check type and size for protected symbol? */ |
| if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
| return bfd_elf_link_record_dynamic_symbol (info, h); |
| else |
| return TRUE; |
| } |
| else if (!newdyn |
| && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT |
| && h->def_dynamic) |
| { |
| /* If the new symbol with non-default visibility comes from a |
| relocatable file and the old definition comes from a dynamic |
| object, we remove the old definition. */ |
| if (hi->root.type == bfd_link_hash_indirect) |
| { |
| /* Handle the case where the old dynamic definition is |
| default versioned. We need to copy the symbol info from |
| the symbol with default version to the normal one if it |
| was referenced before. */ |
| if (h->ref_regular) |
| { |
| hi->root.type = h->root.type; |
| h->root.type = bfd_link_hash_indirect; |
| (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); |
| |
| h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
| if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
| { |
| /* If the new symbol is hidden or internal, completely undo |
| any dynamic link state. */ |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| h->forced_local = 0; |
| h->ref_dynamic = 0; |
| } |
| else |
| h->ref_dynamic = 1; |
| |
| h->def_dynamic = 0; |
| /* FIXME: Should we check type and size for protected symbol? */ |
| h->size = 0; |
| h->type = 0; |
| |
| h = hi; |
| } |
| else |
| h = hi; |
| } |
| |
| /* If the old symbol was undefined before, then it will still be |
| on the undefs list. If the new symbol is undefined or |
| common, we can't make it bfd_link_hash_new here, because new |
| undefined or common symbols will be added to the undefs list |
| by _bfd_generic_link_add_one_symbol. Symbols may not be |
| added twice to the undefs list. Also, if the new symbol is |
| undefweak then we don't want to lose the strong undef. */ |
| if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) |
| { |
| h->root.type = bfd_link_hash_undefined; |
| h->root.u.undef.abfd = abfd; |
| } |
| else |
| { |
| h->root.type = bfd_link_hash_new; |
| h->root.u.undef.abfd = NULL; |
| } |
| |
| if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) |
| { |
| /* If the new symbol is hidden or internal, completely undo |
| any dynamic link state. */ |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| h->forced_local = 0; |
| h->ref_dynamic = 0; |
| } |
| else |
| h->ref_dynamic = 1; |
| h->def_dynamic = 0; |
| /* FIXME: Should we check type and size for protected symbol? */ |
| h->size = 0; |
| h->type = 0; |
| return TRUE; |
| } |
| |
| /* If a new weak symbol definition comes from a regular file and the |
| old symbol comes from a dynamic library, we treat the new one as |
| strong. Similarly, an old weak symbol definition from a regular |
| file is treated as strong when the new symbol comes from a dynamic |
| library. Further, an old weak symbol from a dynamic library is |
| treated as strong if the new symbol is from a dynamic library. |
| This reflects the way glibc's ld.so works. |
| |
| Also allow a weak symbol to override a linker script symbol |
| defined by an early pass over the script. This is done so the |
| linker knows the symbol is defined in an object file, for the |
| DEFINED script function. |
| |
| Do this before setting *type_change_ok or *size_change_ok so that |
| we warn properly when dynamic library symbols are overridden. */ |
| |
| if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) |
| newweak = FALSE; |
| if (olddef && newdyn) |
| oldweak = FALSE; |
| |
| /* Allow changes between different types of function symbol. */ |
| if (newfunc && oldfunc) |
| *type_change_ok = TRUE; |
| |
| /* It's OK to change the type if either the existing symbol or the |
| new symbol is weak. A type change is also OK if the old symbol |
| is undefined and the new symbol is defined. */ |
| |
| if (oldweak |
| || newweak |
| || (newdef |
| && h->root.type == bfd_link_hash_undefined)) |
| *type_change_ok = TRUE; |
| |
| /* It's OK to change the size if either the existing symbol or the |
| new symbol is weak, or if the old symbol is undefined. */ |
| |
| if (*type_change_ok |
| || h->root.type == bfd_link_hash_undefined) |
| *size_change_ok = TRUE; |
| |
| /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old |
| symbol, respectively, appears to be a common symbol in a dynamic |
| object. If a symbol appears in an uninitialized section, and is |
| not weak, and is not a function, then it may be a common symbol |
| which was resolved when the dynamic object was created. We want |
| to treat such symbols specially, because they raise special |
| considerations when setting the symbol size: if the symbol |
| appears as a common symbol in a regular object, and the size in |
| the regular object is larger, we must make sure that we use the |
| larger size. This problematic case can always be avoided in C, |
| but it must be handled correctly when using Fortran shared |
| libraries. |
| |
| Note that if NEWDYNCOMMON is set, NEWDEF will be set, and |
| likewise for OLDDYNCOMMON and OLDDEF. |
| |
| Note that this test is just a heuristic, and that it is quite |
| possible to have an uninitialized symbol in a shared object which |
| is really a definition, rather than a common symbol. This could |
| lead to some minor confusion when the symbol really is a common |
| symbol in some regular object. However, I think it will be |
| harmless. */ |
| |
| if (newdyn |
| && newdef |
| && !newweak |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (sec->flags & SEC_LOAD) == 0 |
| && sym->st_size > 0 |
| && !newfunc) |
| newdyncommon = TRUE; |
| else |
| newdyncommon = FALSE; |
| |
| if (olddyn |
| && olddef |
| && h->root.type == bfd_link_hash_defined |
| && h->def_dynamic |
| && (h->root.u.def.section->flags & SEC_ALLOC) != 0 |
| && (h->root.u.def.section->flags & SEC_LOAD) == 0 |
| && h->size > 0 |
| && !oldfunc) |
| olddyncommon = TRUE; |
| else |
| olddyncommon = FALSE; |
| |
| /* We now know everything about the old and new symbols. We ask the |
| backend to check if we can merge them. */ |
| if (bed->merge_symbol != NULL) |
| { |
| if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) |
| return FALSE; |
| sec = *psec; |
| } |
| |
| /* There are multiple definitions of a normal symbol. Skip the |
| default symbol as well as definition from an IR object. */ |
| if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak |
| && !default_sym && h->def_regular |
| && !(oldbfd != NULL |
| && (oldbfd->flags & BFD_PLUGIN) != 0 |
| && (abfd->flags & BFD_PLUGIN) == 0)) |
| { |
| /* Handle a multiple definition. */ |
| (*info->callbacks->multiple_definition) (info, &h->root, |
| abfd, sec, *pvalue); |
| *skip = TRUE; |
| return TRUE; |
| } |
| |
| /* If both the old and the new symbols look like common symbols in a |
| dynamic object, set the size of the symbol to the larger of the |
| two. */ |
| |
| if (olddyncommon |
| && newdyncommon |
| && sym->st_size != h->size) |
| { |
| /* Since we think we have two common symbols, issue a multiple |
| common warning if desired. Note that we only warn if the |
| size is different. If the size is the same, we simply let |
| the old symbol override the new one as normally happens with |
| symbols defined in dynamic objects. */ |
| |
| (*info->callbacks->multiple_common) (info, &h->root, abfd, |
| bfd_link_hash_common, sym->st_size); |
| if (sym->st_size > h->size) |
| h->size = sym->st_size; |
| |
| *size_change_ok = TRUE; |
| } |
| |
| /* If we are looking at a dynamic object, and we have found a |
| definition, we need to see if the symbol was already defined by |
| some other object. If so, we want to use the existing |
| definition, and we do not want to report a multiple symbol |
| definition error; we do this by clobbering *PSEC to be |
| bfd_und_section_ptr. |
| |
| We treat a common symbol as a definition if the symbol in the |
| shared library is a function, since common symbols always |
| represent variables; this can cause confusion in principle, but |
| any such confusion would seem to indicate an erroneous program or |
| shared library. We also permit a common symbol in a regular |
| object to override a weak symbol in a shared object. */ |
| |
| if (newdyn |
| && newdef |
| && (olddef |
| || (h->root.type == bfd_link_hash_common |
| && (newweak || newfunc)))) |
| { |
| *override = TRUE; |
| newdef = FALSE; |
| newdyncommon = FALSE; |
| |
| *psec = sec = bfd_und_section_ptr; |
| *size_change_ok = TRUE; |
| |
| /* If we get here when the old symbol is a common symbol, then |
| we are explicitly letting it override a weak symbol or |
| function in a dynamic object, and we don't want to warn about |
| a type change. If the old symbol is a defined symbol, a type |
| change warning may still be appropriate. */ |
| |
| if (h->root.type == bfd_link_hash_common) |
| *type_change_ok = TRUE; |
| } |
| |
| /* Handle the special case of an old common symbol merging with a |
| new symbol which looks like a common symbol in a shared object. |
| We change *PSEC and *PVALUE to make the new symbol look like a |
| common symbol, and let _bfd_generic_link_add_one_symbol do the |
| right thing. */ |
| |
| if (newdyncommon |
| && h->root.type == bfd_link_hash_common) |
| { |
| *override = TRUE; |
| newdef = FALSE; |
| newdyncommon = FALSE; |
| *pvalue = sym->st_size; |
| *psec = sec = bed->common_section (oldsec); |
| *size_change_ok = TRUE; |
| } |
| |
| /* Skip weak definitions of symbols that are already defined. */ |
| if (newdef && olddef && newweak) |
| { |
| /* Don't skip new non-IR weak syms. */ |
| if (!(oldbfd != NULL |
| && (oldbfd->flags & BFD_PLUGIN) != 0 |
| && (abfd->flags & BFD_PLUGIN) == 0)) |
| { |
| newdef = FALSE; |
| *skip = TRUE; |
| } |
| |
| /* Merge st_other. If the symbol already has a dynamic index, |
| but visibility says it should not be visible, turn it into a |
| local symbol. */ |
| elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn); |
| if (h->dynindx != -1) |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| break; |
| } |
| } |
| |
| /* If the old symbol is from a dynamic object, and the new symbol is |
| a definition which is not from a dynamic object, then the new |
| symbol overrides the old symbol. Symbols from regular files |
| always take precedence over symbols from dynamic objects, even if |
| they are defined after the dynamic object in the link. |
| |
| As above, we again permit a common symbol in a regular object to |
| override a definition in a shared object if the shared object |
| symbol is a function or is weak. */ |
| |
| flip = NULL; |
| if (!newdyn |
| && (newdef |
| || (bfd_is_com_section (sec) |
| && (oldweak || oldfunc))) |
| && olddyn |
| && olddef |
| && h->def_dynamic) |
| { |
| /* Change the hash table entry to undefined, and let |
| _bfd_generic_link_add_one_symbol do the right thing with the |
| new definition. */ |
| |
| h->root.type = bfd_link_hash_undefined; |
| h->root.u.undef.abfd = h->root.u.def.section->owner; |
| *size_change_ok = TRUE; |
| |
| olddef = FALSE; |
| olddyncommon = FALSE; |
| |
| /* We again permit a type change when a common symbol may be |
| overriding a function. */ |
| |
| if (bfd_is_com_section (sec)) |
| { |
| if (oldfunc) |
| { |
| /* If a common symbol overrides a function, make sure |
| that it isn't defined dynamically nor has type |
| function. */ |
| h->def_dynamic = 0; |
| h->type = STT_NOTYPE; |
| } |
| *type_change_ok = TRUE; |
| } |
| |
| if (hi->root.type == bfd_link_hash_indirect) |
| flip = hi; |
| else |
| /* This union may have been set to be non-NULL when this symbol |
| was seen in a dynamic object. We must force the union to be |
| NULL, so that it is correct for a regular symbol. */ |
| h->verinfo.vertree = NULL; |
| } |
| |
| /* Handle the special case of a new common symbol merging with an |
| old symbol that looks like it might be a common symbol defined in |
| a shared object. Note that we have already handled the case in |
| which a new common symbol should simply override the definition |
| in the shared library. */ |
| |
| if (! newdyn |
| && bfd_is_com_section (sec) |
| && olddyncommon) |
| { |
| /* It would be best if we could set the hash table entry to a |
| common symbol, but we don't know what to use for the section |
| or the alignment. */ |
| (*info->callbacks->multiple_common) (info, &h->root, abfd, |
| bfd_link_hash_common, sym->st_size); |
| |
| /* If the presumed common symbol in the dynamic object is |
| larger, pretend that the new symbol has its size. */ |
| |
| if (h->size > *pvalue) |
| *pvalue = h->size; |
| |
| /* We need to remember the alignment required by the symbol |
| in the dynamic object. */ |
| BFD_ASSERT (pold_alignment); |
| *pold_alignment = h->root.u.def.section->alignment_power; |
| |
| olddef = FALSE; |
| olddyncommon = FALSE; |
| |
| h->root.type = bfd_link_hash_undefined; |
| h->root.u.undef.abfd = h->root.u.def.section->owner; |
| |
| *size_change_ok = TRUE; |
| *type_change_ok = TRUE; |
| |
| if (hi->root.type == bfd_link_hash_indirect) |
| flip = hi; |
| else |
| h->verinfo.vertree = NULL; |
| } |
| |
| if (flip != NULL) |
| { |
| /* Handle the case where we had a versioned symbol in a dynamic |
| library and now find a definition in a normal object. In this |
| case, we make the versioned symbol point to the normal one. */ |
| flip->root.type = h->root.type; |
| flip->root.u.undef.abfd = h->root.u.undef.abfd; |
| h->root.type = bfd_link_hash_indirect; |
| h->root.u.i.link = (struct bfd_link_hash_entry *) flip; |
| (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); |
| if (h->def_dynamic) |
| { |
| h->def_dynamic = 0; |
| flip->ref_dynamic = 1; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* This function is called to create an indirect symbol from the |
| default for the symbol with the default version if needed. The |
| symbol is described by H, NAME, SYM, SEC, and VALUE. We |
| set DYNSYM if the new indirect symbol is dynamic. */ |
| |
| static bfd_boolean |
| _bfd_elf_add_default_symbol (bfd *abfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| const char *name, |
| Elf_Internal_Sym *sym, |
| asection *sec, |
| bfd_vma value, |
| bfd **poldbfd, |
| bfd_boolean *dynsym) |
| { |
| bfd_boolean type_change_ok; |
| bfd_boolean size_change_ok; |
| bfd_boolean skip; |
| char *shortname; |
| struct elf_link_hash_entry *hi; |
| struct bfd_link_hash_entry *bh; |
| const struct elf_backend_data *bed; |
| bfd_boolean collect; |
| bfd_boolean dynamic; |
| bfd_boolean override; |
| char *p; |
| size_t len, shortlen; |
| asection *tmp_sec; |
| bfd_boolean matched; |
| |
| if (h->versioned == unversioned || h->versioned == versioned_hidden) |
| return TRUE; |
| |
| /* If this symbol has a version, and it is the default version, we |
| create an indirect symbol from the default name to the fully |
| decorated name. This will cause external references which do not |
| specify a version to be bound to this version of the symbol. */ |
| p = strchr (name, ELF_VER_CHR); |
| if (h->versioned == unknown) |
| { |
| if (p == NULL) |
| { |
| h->versioned = unversioned; |
| return TRUE; |
| } |
| else |
| { |
| if (p[1] != ELF_VER_CHR) |
| { |
| h->versioned = versioned_hidden; |
| return TRUE; |
| } |
| else |
| h->versioned = versioned; |
| } |
| } |
| else |
| { |
| /* PR ld/19073: We may see an unversioned definition after the |
| default version. */ |
| if (p == NULL) |
| return TRUE; |
| } |
| |
| bed = get_elf_backend_data (abfd); |
| collect = bed->collect; |
| dynamic = (abfd->flags & DYNAMIC) != 0; |
| |
| shortlen = p - name; |
| shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); |
| if (shortname == NULL) |
| return FALSE; |
| memcpy (shortname, name, shortlen); |
| shortname[shortlen] = '\0'; |
| |
| /* We are going to create a new symbol. Merge it with any existing |
| symbol with this name. For the purposes of the merge, act as |
| though we were defining the symbol we just defined, although we |
| actually going to define an indirect symbol. */ |
| type_change_ok = FALSE; |
| size_change_ok = FALSE; |
| matched = TRUE; |
| tmp_sec = sec; |
| if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, |
| &hi, poldbfd, NULL, NULL, &skip, &override, |
| &type_change_ok, &size_change_ok, &matched)) |
| return FALSE; |
| |
| if (skip) |
| goto nondefault; |
| |
| if (hi->def_regular || ELF_COMMON_DEF_P (hi)) |
| { |
| /* If the undecorated symbol will have a version added by a |
| script different to H, then don't indirect to/from the |
| undecorated symbol. This isn't ideal because we may not yet |
| have seen symbol versions, if given by a script on the |
| command line rather than via --version-script. */ |
| if (hi->verinfo.vertree == NULL && info->version_info != NULL) |
| { |
| bfd_boolean hide; |
| |
| hi->verinfo.vertree |
| = bfd_find_version_for_sym (info->version_info, |
| hi->root.root.string, &hide); |
| if (hi->verinfo.vertree != NULL && hide) |
| { |
| (*bed->elf_backend_hide_symbol) (info, hi, TRUE); |
| goto nondefault; |
| } |
| } |
| if (hi->verinfo.vertree != NULL |
| && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) |
| goto nondefault; |
| } |
| |
| if (! override) |
| { |
| /* Add the default symbol if not performing a relocatable link. */ |
| if (! bfd_link_relocatable (info)) |
| { |
| bh = &hi->root; |
| if (bh->type == bfd_link_hash_defined |
| && bh->u.def.section->owner != NULL |
| && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) |
| { |
| /* Mark the previous definition from IR object as |
| undefined so that the generic linker will override |
| it. */ |
| bh->type = bfd_link_hash_undefined; |
| bh->u.undef.abfd = bh->u.def.section->owner; |
| } |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, shortname, BSF_INDIRECT, |
| bfd_ind_section_ptr, |
| 0, name, FALSE, collect, &bh))) |
| return FALSE; |
| hi = (struct elf_link_hash_entry *) bh; |
| } |
| } |
| else |
| { |
| /* In this case the symbol named SHORTNAME is overriding the |
| indirect symbol we want to add. We were planning on making |
| SHORTNAME an indirect symbol referring to NAME. SHORTNAME |
| is the name without a version. NAME is the fully versioned |
| name, and it is the default version. |
| |
| Overriding means that we already saw a definition for the |
| symbol SHORTNAME in a regular object, and it is overriding |
| the symbol defined in the dynamic object. |
| |
| When this happens, we actually want to change NAME, the |
| symbol we just added, to refer to SHORTNAME. This will cause |
| references to NAME in the shared object to become references |
| to SHORTNAME in the regular object. This is what we expect |
| when we override a function in a shared object: that the |
| references in the shared object will be mapped to the |
| definition in the regular object. */ |
| |
| while (hi->root.type == bfd_link_hash_indirect |
| || hi->root.type == bfd_link_hash_warning) |
| hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| |
| h->root.type = bfd_link_hash_indirect; |
| h->root.u.i.link = (struct bfd_link_hash_entry *) hi; |
| if (h->def_dynamic) |
| { |
| h->def_dynamic = 0; |
| hi->ref_dynamic = 1; |
| if (hi->ref_regular |
| || hi->def_regular) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, hi)) |
| return FALSE; |
| } |
| } |
| |
| /* Now set HI to H, so that the following code will set the |
| other fields correctly. */ |
| hi = h; |
| } |
| |
| /* Check if HI is a warning symbol. */ |
| if (hi->root.type == bfd_link_hash_warning) |
| hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| |
| /* If there is a duplicate definition somewhere, then HI may not |
| point to an indirect symbol. We will have reported an error to |
| the user in that case. */ |
| |
| if (hi->root.type == bfd_link_hash_indirect) |
| { |
| struct elf_link_hash_entry *ht; |
| |
| ht = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); |
| |
| /* A reference to the SHORTNAME symbol from a dynamic library |
| will be satisfied by the versioned symbol at runtime. In |
| effect, we have a reference to the versioned symbol. */ |
| ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; |
| hi->dynamic_def |= ht->dynamic_def; |
| |
| /* See if the new flags lead us to realize that the symbol must |
| be dynamic. */ |
| if (! *dynsym) |
| { |
| if (! dynamic) |
| { |
| if (! bfd_link_executable (info) |
| || hi->def_dynamic |
| || hi->ref_dynamic) |
| *dynsym = TRUE; |
| } |
| else |
| { |
| if (hi->ref_regular) |
| *dynsym = TRUE; |
| } |
| } |
| } |
| |
| /* We also need to define an indirection from the nondefault version |
| of the symbol. */ |
| |
| nondefault: |
| len = strlen (name); |
| shortname = (char *) bfd_hash_allocate (&info->hash->table, len); |
| if (shortname == NULL) |
| return FALSE; |
| memcpy (shortname, name, shortlen); |
| memcpy (shortname + shortlen, p + 1, len - shortlen); |
| |
| /* Once again, merge with any existing symbol. */ |
| type_change_ok = FALSE; |
| size_change_ok = FALSE; |
| tmp_sec = sec; |
| if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, |
| &hi, poldbfd, NULL, NULL, &skip, &override, |
| &type_change_ok, &size_change_ok, &matched)) |
| return FALSE; |
| |
| if (skip) |
| return TRUE; |
| |
| if (override) |
| { |
| /* Here SHORTNAME is a versioned name, so we don't expect to see |
| the type of override we do in the case above unless it is |
| overridden by a versioned definition. */ |
| if (hi->root.type != bfd_link_hash_defined |
| && hi->root.type != bfd_link_hash_defweak) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), |
| abfd, shortname); |
| } |
| else |
| { |
| bh = &hi->root; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, shortname, BSF_INDIRECT, |
| bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) |
| return FALSE; |
| hi = (struct elf_link_hash_entry *) bh; |
| |
| /* If there is a duplicate definition somewhere, then HI may not |
| point to an indirect symbol. We will have reported an error |
| to the user in that case. */ |
| |
| if (hi->root.type == bfd_link_hash_indirect) |
| { |
| (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
| h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; |
| hi->dynamic_def |= h->dynamic_def; |
| |
| /* See if the new flags lead us to realize that the symbol |
| must be dynamic. */ |
| if (! *dynsym) |
| { |
| if (! dynamic) |
| { |
| if (! bfd_link_executable (info) |
| || hi->ref_dynamic) |
| *dynsym = TRUE; |
| } |
| else |
| { |
| if (hi->ref_regular) |
| *dynsym = TRUE; |
| } |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* This routine is used to export all defined symbols into the dynamic |
| symbol table. It is called via elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) |
| { |
| struct elf_info_failed *eif = (struct elf_info_failed *) data; |
| |
| /* Ignore indirect symbols. These are added by the versioning code. */ |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| /* Ignore this if we won't export it. */ |
| if (!eif->info->export_dynamic && !h->dynamic) |
| return TRUE; |
| |
| if (h->dynindx == -1 |
| && (h->def_regular || h->ref_regular) |
| && ! bfd_hide_sym_by_version (eif->info->version_info, |
| h->root.root.string)) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
| { |
| eif->failed = TRUE; |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Look through the symbols which are defined in other shared |
| libraries and referenced here. Update the list of version |
| dependencies. This will be put into the .gnu.version_r section. |
| This function is called via elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, |
| void *data) |
| { |
| struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; |
| Elf_Internal_Verneed *t; |
| Elf_Internal_Vernaux *a; |
| size_t amt; |
| |
| /* We only care about symbols defined in shared objects with version |
| information. */ |
| if (!h->def_dynamic |
| || h->def_regular |
| || h->dynindx == -1 |
| || h->verinfo.verdef == NULL |
| || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) |
| & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) |
| return TRUE; |
| |
| /* See if we already know about this version. */ |
| for (t = elf_tdata (rinfo->info->output_bfd)->verref; |
| t != NULL; |
| t = t->vn_nextref) |
| { |
| if (t->vn_bfd != h->verinfo.verdef->vd_bfd) |
| continue; |
| |
| for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| if (a->vna_nodename == h->verinfo.verdef->vd_nodename) |
| return TRUE; |
| |
| break; |
| } |
| |
| /* This is a new version. Add it to tree we are building. */ |
| |
| if (t == NULL) |
| { |
| amt = sizeof *t; |
| t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); |
| if (t == NULL) |
| { |
| rinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| t->vn_bfd = h->verinfo.verdef->vd_bfd; |
| t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; |
| elf_tdata (rinfo->info->output_bfd)->verref = t; |
| } |
| |
| amt = sizeof *a; |
| a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); |
| if (a == NULL) |
| { |
| rinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| /* Note that we are copying a string pointer here, and testing it |
| above. If bfd_elf_string_from_elf_section is ever changed to |
| discard the string data when low in memory, this will have to be |
| fixed. */ |
| a->vna_nodename = h->verinfo.verdef->vd_nodename; |
| |
| a->vna_flags = h->verinfo.verdef->vd_flags; |
| a->vna_nextptr = t->vn_auxptr; |
| |
| h->verinfo.verdef->vd_exp_refno = rinfo->vers; |
| ++rinfo->vers; |
| |
| a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; |
| |
| t->vn_auxptr = a; |
| |
| return TRUE; |
| } |
| |
| /* Return TRUE and set *HIDE to TRUE if the versioned symbol is |
| hidden. Set *T_P to NULL if there is no match. */ |
| |
| static bfd_boolean |
| _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| const char *version_p, |
| struct bfd_elf_version_tree **t_p, |
| bfd_boolean *hide) |
| { |
| struct bfd_elf_version_tree *t; |
| |
| /* Look for the version. If we find it, it is no longer weak. */ |
| for (t = info->version_info; t != NULL; t = t->next) |
| { |
| if (strcmp (t->name, version_p) == 0) |
| { |
| size_t len; |
| char *alc; |
| struct bfd_elf_version_expr *d; |
| |
| len = version_p - h->root.root.string; |
| alc = (char *) bfd_malloc (len); |
| if (alc == NULL) |
| return FALSE; |
| memcpy (alc, h->root.root.string, len - 1); |
| alc[len - 1] = '\0'; |
| if (alc[len - 2] == ELF_VER_CHR) |
| alc[len - 2] = '\0'; |
| |
| h->verinfo.vertree = t; |
| t->used = TRUE; |
| d = NULL; |
| |
| if (t->globals.list != NULL) |
| d = (*t->match) (&t->globals, NULL, alc); |
| |
| /* See if there is anything to force this symbol to |
| local scope. */ |
| if (d == NULL && t->locals.list != NULL) |
| { |
| d = (*t->match) (&t->locals, NULL, alc); |
| if (d != NULL |
| && h->dynindx != -1 |
| && ! info->export_dynamic) |
| *hide = TRUE; |
| } |
| |
| free (alc); |
| break; |
| } |
| } |
| |
| *t_p = t; |
| |
| return TRUE; |
| } |
| |
| /* Return TRUE if the symbol H is hidden by version script. */ |
| |
| bfd_boolean |
| _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| const char *p; |
| bfd_boolean hide = FALSE; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (info->output_bfd); |
| |
| /* Version script only hides symbols defined in regular objects. */ |
| if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
| return TRUE; |
| |
| p = strchr (h->root.root.string, ELF_VER_CHR); |
| if (p != NULL && h->verinfo.vertree == NULL) |
| { |
| struct bfd_elf_version_tree *t; |
| |
| ++p; |
| if (*p == ELF_VER_CHR) |
| ++p; |
| |
| if (*p != '\0' |
| && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) |
| && hide) |
| { |
| if (hide) |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| return TRUE; |
| } |
| } |
| |
| /* If we don't have a version for this symbol, see if we can find |
| something. */ |
| if (h->verinfo.vertree == NULL && info->version_info != NULL) |
| { |
| h->verinfo.vertree |
| = bfd_find_version_for_sym (info->version_info, |
| h->root.root.string, &hide); |
| if (h->verinfo.vertree != NULL && hide) |
| { |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| return TRUE; |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| /* Figure out appropriate versions for all the symbols. We may not |
| have the version number script until we have read all of the input |
| files, so until that point we don't know which symbols should be |
| local. This function is called via elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) |
| { |
| struct elf_info_failed *sinfo; |
| struct bfd_link_info *info; |
| const struct elf_backend_data *bed; |
| struct elf_info_failed eif; |
| char *p; |
| bfd_boolean hide; |
| |
| sinfo = (struct elf_info_failed *) data; |
| info = sinfo->info; |
| |
| /* Fix the symbol flags. */ |
| eif.failed = FALSE; |
| eif.info = info; |
| if (! _bfd_elf_fix_symbol_flags (h, &eif)) |
| { |
| if (eif.failed) |
| sinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| bed = get_elf_backend_data (info->output_bfd); |
| |
| /* We only need version numbers for symbols defined in regular |
| objects. */ |
| if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
| { |
| /* Hide symbols defined in discarded input sections. */ |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && discarded_section (h->root.u.def.section)) |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| return TRUE; |
| } |
| |
| hide = FALSE; |
| p = strchr (h->root.root.string, ELF_VER_CHR); |
| if (p != NULL && h->verinfo.vertree == NULL) |
| { |
| struct bfd_elf_version_tree *t; |
| |
| ++p; |
| if (*p == ELF_VER_CHR) |
| ++p; |
| |
| /* If there is no version string, we can just return out. */ |
| if (*p == '\0') |
| return TRUE; |
| |
| if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) |
| { |
| sinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| if (hide) |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| |
| /* If we are building an application, we need to create a |
| version node for this version. */ |
| if (t == NULL && bfd_link_executable (info)) |
| { |
| struct bfd_elf_version_tree **pp; |
| int version_index; |
| |
| /* If we aren't going to export this symbol, we don't need |
| to worry about it. */ |
| if (h->dynindx == -1) |
| return TRUE; |
| |
| t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, |
| sizeof *t); |
| if (t == NULL) |
| { |
| sinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| t->name = p; |
| t->name_indx = (unsigned int) -1; |
| t->used = TRUE; |
| |
| version_index = 1; |
| /* Don't count anonymous version tag. */ |
| if (sinfo->info->version_info != NULL |
| && sinfo->info->version_info->vernum == 0) |
| version_index = 0; |
| for (pp = &sinfo->info->version_info; |
| *pp != NULL; |
| pp = &(*pp)->next) |
| ++version_index; |
| t->vernum = version_index; |
| |
| *pp = t; |
| |
| h->verinfo.vertree = t; |
| } |
| else if (t == NULL) |
| { |
| /* We could not find the version for a symbol when |
| generating a shared archive. Return an error. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: version node not found for symbol %s"), |
| info->output_bfd, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| sinfo->failed = TRUE; |
| return FALSE; |
| } |
| } |
| |
| /* If we don't have a version for this symbol, see if we can find |
| something. */ |
| if (!hide |
| && h->verinfo.vertree == NULL |
| && sinfo->info->version_info != NULL) |
| { |
| h->verinfo.vertree |
| = bfd_find_version_for_sym (sinfo->info->version_info, |
| h->root.root.string, &hide); |
| if (h->verinfo.vertree != NULL && hide) |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Read and swap the relocs from the section indicated by SHDR. This |
| may be either a REL or a RELA section. The relocations are |
| translated into RELA relocations and stored in INTERNAL_RELOCS, |
| which should have already been allocated to contain enough space. |
| The EXTERNAL_RELOCS are a buffer where the external form of the |
| relocations should be stored. |
| |
| Returns FALSE if something goes wrong. */ |
| |
| static bfd_boolean |
| elf_link_read_relocs_from_section (bfd *abfd, |
| asection *sec, |
| Elf_Internal_Shdr *shdr, |
| void *external_relocs, |
| Elf_Internal_Rela *internal_relocs) |
| { |
| const struct elf_backend_data *bed; |
| void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
| const bfd_byte *erela; |
| const bfd_byte *erelaend; |
| Elf_Internal_Rela *irela; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t nsyms; |
| |
| /* Position ourselves at the start of the section. */ |
| if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) |
| return FALSE; |
| |
| /* Read the relocations. */ |
| if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) |
| return FALSE; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| nsyms = NUM_SHDR_ENTRIES (symtab_hdr); |
| |
| bed = get_elf_backend_data (abfd); |
| |
| /* Convert the external relocations to the internal format. */ |
| if (shdr->sh_entsize == bed->s->sizeof_rel) |
| swap_in = bed->s->swap_reloc_in; |
| else if (shdr->sh_entsize == bed->s->sizeof_rela) |
| swap_in = bed->s->swap_reloca_in; |
| else |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return FALSE; |
| } |
| |
| erela = (const bfd_byte *) external_relocs; |
| /* Setting erelaend like this and comparing with <= handles case of |
| a fuzzed object with sh_size not a multiple of sh_entsize. */ |
| erelaend = erela + shdr->sh_size - shdr->sh_entsize; |
| irela = internal_relocs; |
| while (erela <= erelaend) |
| { |
| bfd_vma r_symndx; |
| |
| (*swap_in) (abfd, erela, irela); |
| r_symndx = ELF32_R_SYM (irela->r_info); |
| if (bed->s->arch_size == 64) |
| r_symndx >>= 24; |
| if (nsyms > 0) |
| { |
| if ((size_t) r_symndx >= nsyms) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" |
| " for offset %#" PRIx64 " in section `%pA'"), |
| abfd, (uint64_t) r_symndx, (unsigned long) nsyms, |
| (uint64_t) irela->r_offset, sec); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| else if (r_symndx != STN_UNDEF) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: non-zero symbol index (%#" PRIx64 ")" |
| " for offset %#" PRIx64 " in section `%pA'" |
| " when the object file has no symbol table"), |
| abfd, (uint64_t) r_symndx, |
| (uint64_t) irela->r_offset, sec); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| irela += bed->s->int_rels_per_ext_rel; |
| erela += shdr->sh_entsize; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Read and swap the relocs for a section O. They may have been |
| cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are |
| not NULL, they are used as buffers to read into. They are known to |
| be large enough. If the INTERNAL_RELOCS relocs argument is NULL, |
| the return value is allocated using either malloc or bfd_alloc, |
| according to the KEEP_MEMORY argument. If O has two relocation |
| sections (both REL and RELA relocations), then the REL_HDR |
| relocations will appear first in INTERNAL_RELOCS, followed by the |
| RELA_HDR relocations. */ |
| |
| Elf_Internal_Rela * |
| _bfd_elf_link_read_relocs (bfd *abfd, |
| asection *o, |
| void *external_relocs, |
| Elf_Internal_Rela *internal_relocs, |
| bfd_boolean keep_memory) |
| { |
| void *alloc1 = NULL; |
| Elf_Internal_Rela *alloc2 = NULL; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct bfd_elf_section_data *esdo = elf_section_data (o); |
| Elf_Internal_Rela *internal_rela_relocs; |
| |
| if (esdo->relocs != NULL) |
| return esdo->relocs; |
| |
| if (o->reloc_count == 0) |
| return NULL; |
| |
| if (internal_relocs == NULL) |
| { |
| bfd_size_type size; |
| |
| size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); |
| if (keep_memory) |
| internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); |
| else |
| internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); |
| if (internal_relocs == NULL) |
| goto error_return; |
| } |
| |
| if (external_relocs == NULL) |
| { |
| bfd_size_type size = 0; |
| |
| if (esdo->rel.hdr) |
| size += esdo->rel.hdr->sh_size; |
| if (esdo->rela.hdr) |
| size += esdo->rela.hdr->sh_size; |
| |
| alloc1 = bfd_malloc (size); |
| if (alloc1 == NULL) |
| goto error_return; |
| external_relocs = alloc1; |
| } |
| |
| internal_rela_relocs = internal_relocs; |
| if (esdo->rel.hdr) |
| { |
| if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, |
| external_relocs, |
| internal_relocs)) |
| goto error_return; |
| external_relocs = (((bfd_byte *) external_relocs) |
| + esdo->rel.hdr->sh_size); |
| internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) |
| * bed->s->int_rels_per_ext_rel); |
| } |
| |
| if (esdo->rela.hdr |
| && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, |
| external_relocs, |
| internal_rela_relocs))) |
| goto error_return; |
| |
| /* Cache the results for next time, if we can. */ |
| if (keep_memory) |
| esdo->relocs = internal_relocs; |
| |
| free (alloc1); |
| |
| /* Don't free alloc2, since if it was allocated we are passing it |
| back (under the name of internal_relocs). */ |
| |
| return internal_relocs; |
| |
| error_return: |
| free (alloc1); |
| if (alloc2 != NULL) |
| { |
| if (keep_memory) |
| bfd_release (abfd, alloc2); |
| else |
| free (alloc2); |
| } |
| return NULL; |
| } |
| |
| /* Compute the size of, and allocate space for, REL_HDR which is the |
| section header for a section containing relocations for O. */ |
| |
| static bfd_boolean |
| _bfd_elf_link_size_reloc_section (bfd *abfd, |
| struct bfd_elf_section_reloc_data *reldata) |
| { |
| Elf_Internal_Shdr *rel_hdr = reldata->hdr; |
| |
| /* That allows us to calculate the size of the section. */ |
| rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; |
| |
| /* The contents field must last into write_object_contents, so we |
| allocate it with bfd_alloc rather than malloc. Also since we |
| cannot be sure that the contents will actually be filled in, |
| we zero the allocated space. */ |
| rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); |
| if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) |
| return FALSE; |
| |
| if (reldata->hashes == NULL && reldata->count) |
| { |
| struct elf_link_hash_entry **p; |
| |
| p = ((struct elf_link_hash_entry **) |
| bfd_zmalloc (reldata->count * sizeof (*p))); |
| if (p == NULL) |
| return FALSE; |
| |
| reldata->hashes = p; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Copy the relocations indicated by the INTERNAL_RELOCS (which |
| originated from the section given by INPUT_REL_HDR) to the |
| OUTPUT_BFD. */ |
| |
| bfd_boolean |
| _bfd_elf_link_output_relocs (bfd *output_bfd, |
| asection *input_section, |
| Elf_Internal_Shdr *input_rel_hdr, |
| Elf_Internal_Rela *internal_relocs, |
| struct elf_link_hash_entry **rel_hash |
| ATTRIBUTE_UNUSED) |
| { |
| Elf_Internal_Rela *irela; |
| Elf_Internal_Rela *irelaend; |
| bfd_byte *erel; |
| struct bfd_elf_section_reloc_data *output_reldata; |
| asection *output_section; |
| const struct elf_backend_data *bed; |
| void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
| struct bfd_elf_section_data *esdo; |
| |
| output_section = input_section->output_section; |
| |
| bed = get_elf_backend_data (output_bfd); |
| esdo = elf_section_data (output_section); |
| if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) |
| { |
| output_reldata = &esdo->rel; |
| swap_out = bed->s->swap_reloc_out; |
| } |
| else if (esdo->rela.hdr |
| && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) |
| { |
| output_reldata = &esdo->rela; |
| swap_out = bed->s->swap_reloca_out; |
| } |
| else |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: relocation size mismatch in %pB section %pA"), |
| output_bfd, input_section->owner, input_section); |
| bfd_set_error (bfd_error_wrong_format); |
| return FALSE; |
| } |
| |
| erel = output_reldata->hdr->contents; |
| erel += output_reldata->count * input_rel_hdr->sh_entsize; |
| irela = internal_relocs; |
| irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) |
| * bed->s->int_rels_per_ext_rel); |
| while (irela < irelaend) |
| { |
| (*swap_out) (output_bfd, irela, erel); |
| irela += bed->s->int_rels_per_ext_rel; |
| erel += input_rel_hdr->sh_entsize; |
| } |
| |
| /* Bump the counter, so that we know where to add the next set of |
| relocations. */ |
| output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); |
| |
| return TRUE; |
| } |
| |
| /* Make weak undefined symbols in PIE dynamic. */ |
| |
| bfd_boolean |
| _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| if (bfd_link_pie (info) |
| && h->dynindx == -1 |
| && h->root.type == bfd_link_hash_undefweak) |
| return bfd_elf_link_record_dynamic_symbol (info, h); |
| |
| return TRUE; |
| } |
| |
| /* Fix up the flags for a symbol. This handles various cases which |
| can only be fixed after all the input files are seen. This is |
| currently called by both adjust_dynamic_symbol and |
| assign_sym_version, which is unnecessary but perhaps more robust in |
| the face of future changes. */ |
| |
| static bfd_boolean |
| _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, |
| struct elf_info_failed *eif) |
| { |
| const struct elf_backend_data *bed; |
| |
| /* If this symbol was mentioned in a non-ELF file, try to set |
| DEF_REGULAR and REF_REGULAR correctly. This is the only way to |
| permit a non-ELF file to correctly refer to a symbol defined in |
| an ELF dynamic object. */ |
| if (h->non_elf) |
| { |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| { |
| h->ref_regular = 1; |
| h->ref_regular_nonweak = 1; |
| } |
| else |
| { |
| if (h->root.u.def.section->owner != NULL |
| && (bfd_get_flavour (h->root.u.def.section->owner) |
| == bfd_target_elf_flavour)) |
| { |
| h->ref_regular = 1; |
| h->ref_regular_nonweak = 1; |
| } |
| else |
| h->def_regular = 1; |
| } |
| |
| if (h->dynindx == -1 |
| && (h->def_dynamic |
| || h->ref_dynamic)) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
| { |
| eif->failed = TRUE; |
| return FALSE; |
| } |
| } |
| } |
| else |
| { |
| /* Unfortunately, NON_ELF is only correct if the symbol |
| was first seen in a non-ELF file. Fortunately, if the symbol |
| was first seen in an ELF file, we're probably OK unless the |
| symbol was defined in a non-ELF file. Catch that case here. |
| FIXME: We're still in trouble if the symbol was first seen in |
| a dynamic object, and then later in a non-ELF regular object. */ |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && !h->def_regular |
| && (h->root.u.def.section->owner != NULL |
| ? (bfd_get_flavour (h->root.u.def.section->owner) |
| != bfd_target_elf_flavour) |
| : (bfd_is_abs_section (h->root.u.def.section) |
| && !h->def_dynamic))) |
| h->def_regular = 1; |
| } |
| |
| /* Backend specific symbol fixup. */ |
| bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); |
| if (bed->elf_backend_fixup_symbol |
| && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) |
| return FALSE; |
| |
| /* If this is a final link, and the symbol was defined as a common |
| symbol in a regular object file, and there was no definition in |
| any dynamic object, then the linker will have allocated space for |
| the symbol in a common section but the DEF_REGULAR |
| flag will not have been set. */ |
| if (h->root.type == bfd_link_hash_defined |
| && !h->def_regular |
| && h->ref_regular |
| && !h->def_dynamic |
| && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) |
| h->def_regular = 1; |
| |
| /* Symbols defined in discarded sections shouldn't be dynamic. */ |
| if (h->root.type == bfd_link_hash_undefined && h->indx == -3) |
| (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
| |
| /* If a weak undefined symbol has non-default visibility, we also |
| hide it from the dynamic linker. */ |
| else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak) |
| (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
| |
| /* A hidden versioned symbol in executable should be forced local if |
| it is is locally defined, not referenced by shared library and not |
| exported. */ |
| else if (bfd_link_executable (eif->info) |
| && h->versioned == versioned_hidden |
| && !eif->info->export_dynamic |
| && !h->dynamic |
| && !h->ref_dynamic |
| && h->def_regular) |
| (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
| |
| /* If -Bsymbolic was used (which means to bind references to global |
| symbols to the definition within the shared object), and this |
| symbol was defined in a regular object, then it actually doesn't |
| need a PLT entry. Likewise, if the symbol has non-default |
| visibility. If the symbol has hidden or internal visibility, we |
| will force it local. */ |
| else if (h->needs_plt |
| && bfd_link_pic (eif->info) |
| && is_elf_hash_table (eif->info->hash) |
| && (SYMBOLIC_BIND (eif->info, h) |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| && h->def_regular) |
| { |
| bfd_boolean force_local; |
| |
| force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL |
| || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); |
| (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); |
| } |
| |
| /* If this is a weak defined symbol in a dynamic object, and we know |
| the real definition in the dynamic object, copy interesting flags |
| over to the real definition. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| |
| /* If the real definition is defined by a regular object file, |
| don't do anything special. See the longer description in |
| _bfd_elf_adjust_dynamic_symbol, below. If the def is not |
| bfd_link_hash_defined as it was when put on the alias list |
| then it must have originally been a versioned symbol (for |
| which a non-versioned indirect symbol is created) and later |
| a definition for the non-versioned symbol is found. In that |
| case the indirection is flipped with the versioned symbol |
| becoming an indirect pointing at the non-versioned symbol. |
| Thus, not an alias any more. */ |
| if (def->def_regular |
| || def->root.type != bfd_link_hash_defined) |
| { |
| h = def; |
| while ((h = h->u.alias) != def) |
| h->is_weakalias = 0; |
| } |
| else |
| { |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| BFD_ASSERT (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak); |
| BFD_ASSERT (def->def_dynamic); |
| (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Make the backend pick a good value for a dynamic symbol. This is |
| called via elf_link_hash_traverse, and also calls itself |
| recursively. */ |
| |
| static bfd_boolean |
| _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) |
| { |
| struct elf_info_failed *eif = (struct elf_info_failed *) data; |
| struct elf_link_hash_table *htab; |
| const struct elf_backend_data *bed; |
| |
| if (! is_elf_hash_table (eif->info->hash)) |
| return FALSE; |
| |
| /* Ignore indirect symbols. These are added by the versioning code. */ |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| /* Fix the symbol flags. */ |
| if (! _bfd_elf_fix_symbol_flags (h, eif)) |
| return FALSE; |
| |
| htab = elf_hash_table (eif->info); |
| bed = get_elf_backend_data (htab->dynobj); |
| |
| if (h->root.type == bfd_link_hash_undefweak) |
| { |
| if (eif->info->dynamic_undefined_weak == 0) |
| (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); |
| else if (eif->info->dynamic_undefined_weak > 0 |
| && h->ref_regular |
| && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| && !bfd_hide_sym_by_version (eif->info->version_info, |
| h->root.root.string)) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) |
| { |
| eif->failed = TRUE; |
| return FALSE; |
| } |
| } |
| } |
| |
| /* If this symbol does not require a PLT entry, and it is not |
| defined by a dynamic object, or is not referenced by a regular |
| object, ignore it. We do have to handle a weak defined symbol, |
| even if no regular object refers to it, if we decided to add it |
| to the dynamic symbol table. FIXME: Do we normally need to worry |
| about symbols which are defined by one dynamic object and |
| referenced by another one? */ |
| if (!h->needs_plt |
| && h->type != STT_GNU_IFUNC |
| && (h->def_regular |
| || !h->def_dynamic |
| || (!h->ref_regular |
| && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) |
| { |
| h->plt = elf_hash_table (eif->info)->init_plt_offset; |
| return TRUE; |
| } |
| |
| /* If we've already adjusted this symbol, don't do it again. This |
| can happen via a recursive call. */ |
| if (h->dynamic_adjusted) |
| return TRUE; |
| |
| /* Don't look at this symbol again. Note that we must set this |
| after checking the above conditions, because we may look at a |
| symbol once, decide not to do anything, and then get called |
| recursively later after REF_REGULAR is set below. */ |
| h->dynamic_adjusted = 1; |
| |
| /* If this is a weak definition, and we know a real definition, and |
| the real symbol is not itself defined by a regular object file, |
| then get a good value for the real definition. We handle the |
| real symbol first, for the convenience of the backend routine. |
| |
| Note that there is a confusing case here. If the real definition |
| is defined by a regular object file, we don't get the real symbol |
| from the dynamic object, but we do get the weak symbol. If the |
| processor backend uses a COPY reloc, then if some routine in the |
| dynamic object changes the real symbol, we will not see that |
| change in the corresponding weak symbol. This is the way other |
| ELF linkers work as well, and seems to be a result of the shared |
| library model. |
| |
| I will clarify this issue. Most SVR4 shared libraries define the |
| variable _timezone and define timezone as a weak synonym. The |
| tzset call changes _timezone. If you write |
| extern int timezone; |
| int _timezone = 5; |
| int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } |
| you might expect that, since timezone is a synonym for _timezone, |
| the same number will print both times. However, if the processor |
| backend uses a COPY reloc, then actually timezone will be copied |
| into your process image, and, since you define _timezone |
| yourself, _timezone will not. Thus timezone and _timezone will |
| wind up at different memory locations. The tzset call will set |
| _timezone, leaving timezone unchanged. */ |
| |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| |
| /* If we get to this point, there is an implicit reference to |
| the alias by a regular object file via the weak symbol H. */ |
| def->ref_regular = 1; |
| |
| /* Ensure that the backend adjust_dynamic_symbol function sees |
| the strong alias before H by recursively calling ourselves. */ |
| if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) |
| return FALSE; |
| } |
| |
| /* If a symbol has no type and no size and does not require a PLT |
| entry, then we are probably about to do the wrong thing here: we |
| are probably going to create a COPY reloc for an empty object. |
| This case can arise when a shared object is built with assembly |
| code, and the assembly code fails to set the symbol type. */ |
| if (h->size == 0 |
| && h->type == STT_NOTYPE |
| && !h->needs_plt) |
| _bfd_error_handler |
| (_("warning: type and size of dynamic symbol `%s' are not defined"), |
| h->root.root.string); |
| |
| if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) |
| { |
| eif->failed = TRUE; |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, |
| DYNBSS. */ |
| |
| bfd_boolean |
| _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| asection *dynbss) |
| { |
| unsigned int power_of_two; |
| bfd_vma mask; |
| asection *sec = h->root.u.def.section; |
| |
| /* The section alignment of the definition is the maximum alignment |
| requirement of symbols defined in the section. Since we don't |
| know the symbol alignment requirement, we start with the |
| maximum alignment and check low bits of the symbol address |
| for the minimum alignment. */ |
| power_of_two = bfd_section_alignment (sec); |
| mask = ((bfd_vma) 1 << power_of_two) - 1; |
| while ((h->root.u.def.value & mask) != 0) |
| { |
| mask >>= 1; |
| --power_of_two; |
| } |
| |
| if (power_of_two > bfd_section_alignment (dynbss)) |
| { |
| /* Adjust the section alignment if needed. */ |
| if (!bfd_set_section_alignment (dynbss, power_of_two)) |
| return FALSE; |
| } |
| |
| /* We make sure that the symbol will be aligned properly. */ |
| dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); |
| |
| /* Define the symbol as being at this point in DYNBSS. */ |
| h->root.u.def.section = dynbss; |
| h->root.u.def.value = dynbss->size; |
| |
| /* Increment the size of DYNBSS to make room for the symbol. */ |
| dynbss->size += h->size; |
| |
| /* No error if extern_protected_data is true. */ |
| if (h->protected_def |
| && (!info->extern_protected_data |
| || (info->extern_protected_data < 0 |
| && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) |
| info->callbacks->einfo |
| (_("%P: copy reloc against protected `%pT' is dangerous\n"), |
| h->root.root.string); |
| |
| return TRUE; |
| } |
| |
| /* Adjust all external symbols pointing into SEC_MERGE sections |
| to reflect the object merging within the sections. */ |
| |
| static bfd_boolean |
| _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) |
| { |
| asection *sec; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && ((sec = h->root.u.def.section)->flags & SEC_MERGE) |
| && sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| { |
| bfd *output_bfd = (bfd *) data; |
| |
| h->root.u.def.value = |
| _bfd_merged_section_offset (output_bfd, |
| &h->root.u.def.section, |
| elf_section_data (sec)->sec_info, |
| h->root.u.def.value); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Returns false if the symbol referred to by H should be considered |
| to resolve local to the current module, and true if it should be |
| considered to bind dynamically. */ |
| |
| bfd_boolean |
| _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
| struct bfd_link_info *info, |
| bfd_boolean not_local_protected) |
| { |
| bfd_boolean binding_stays_local_p; |
| const struct elf_backend_data *bed; |
| struct elf_link_hash_table *hash_table; |
| |
| if (h == NULL) |
| return FALSE; |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* If it was forced local, then clearly it's not dynamic. */ |
| if (h->dynindx == -1) |
| return FALSE; |
| if (h->forced_local) |
| return FALSE; |
| |
| /* Identify the cases where name binding rules say that a |
| visible symbol resolves locally. */ |
| binding_stays_local_p = (bfd_link_executable (info) |
| || SYMBOLIC_BIND (info, h)); |
| |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| return FALSE; |
| |
| case STV_PROTECTED: |
| hash_table = elf_hash_table (info); |
| if (!is_elf_hash_table (hash_table)) |
| return FALSE; |
| |
| bed = get_elf_backend_data (hash_table->dynobj); |
| |
| /* Proper resolution for function pointer equality may require |
| that these symbols perhaps be resolved dynamically, even though |
| we should be resolving them to the current module. */ |
| if (!not_local_protected || !bed->is_function_type (h->type)) |
| binding_stays_local_p = TRUE; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* If it isn't defined locally, then clearly it's dynamic. */ |
| if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
| return TRUE; |
| |
| /* Otherwise, the symbol is dynamic if binding rules don't tell |
| us that it remains local. */ |
| return !binding_stays_local_p; |
| } |
| |
| /* Return true if the symbol referred to by H should be considered |
| to resolve local to the current module, and false otherwise. Differs |
| from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of |
| undefined symbols. The two functions are virtually identical except |
| for the place where dynindx == -1 is tested. If that test is true, |
| _bfd_elf_dynamic_symbol_p will say the symbol is local, while |
| _bfd_elf_symbol_refs_local_p will say the symbol is local only for |
| defined symbols. |
| It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as |
| !_bfd_elf_symbol_refs_local_p, except that targets differ in their |
| treatment of undefined weak symbols. For those that do not make |
| undefined weak symbols dynamic, both functions may return false. */ |
| |
| bfd_boolean |
| _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, |
| struct bfd_link_info *info, |
| bfd_boolean local_protected) |
| { |
| const struct elf_backend_data *bed; |
| struct elf_link_hash_table *hash_table; |
| |
| /* If it's a local sym, of course we resolve locally. */ |
| if (h == NULL) |
| return TRUE; |
| |
| /* STV_HIDDEN or STV_INTERNAL ones must be local. */ |
| if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN |
| || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) |
| return TRUE; |
| |
| /* Forced local symbols resolve locally. */ |
| if (h->forced_local) |
| return TRUE; |
| |
| /* Common symbols that become definitions don't get the DEF_REGULAR |
| flag set, so test it first, and don't bail out. */ |
| if (ELF_COMMON_DEF_P (h)) |
| /* Do nothing. */; |
| /* If we don't have a definition in a regular file, then we can't |
| resolve locally. The sym is either undefined or dynamic. */ |
| else if (!h->def_regular) |
| return FALSE; |
| |
| /* Non-dynamic symbols resolve locally. */ |
| if (h->dynindx == -1) |
| return TRUE; |
| |
| /* At this point, we know the symbol is defined and dynamic. In an |
| executable it must resolve locally, likewise when building symbolic |
| shared libraries. */ |
| if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) |
| return TRUE; |
| |
| /* Now deal with defined dynamic symbols in shared libraries. Ones |
| with default visibility might not resolve locally. */ |
| if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
| return FALSE; |
| |
| hash_table = elf_hash_table (info); |
| if (!is_elf_hash_table (hash_table)) |
| return TRUE; |
| |
| bed = get_elf_backend_data (hash_table->dynobj); |
| |
| /* If extern_protected_data is false, STV_PROTECTED non-function |
| symbols are local. */ |
| if ((!info->extern_protected_data |
| || (info->extern_protected_data < 0 |
| && !bed->extern_protected_data)) |
| && !bed->is_function_type (h->type)) |
| return TRUE; |
| |
| /* Function pointer equality tests may require that STV_PROTECTED |
| symbols be treated as dynamic symbols. If the address of a |
| function not defined in an executable is set to that function's |
| plt entry in the executable, then the address of the function in |
| a shared library must also be the plt entry in the executable. */ |
| return local_protected; |
| } |
| |
| /* Caches some TLS segment info, and ensures that the TLS segment vma is |
| aligned. Returns the first TLS output section. */ |
| |
| struct bfd_section * |
| _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) |
| { |
| struct bfd_section *sec, *tls; |
| unsigned int align = 0; |
| |
| for (sec = obfd->sections; sec != NULL; sec = sec->next) |
| if ((sec->flags & SEC_THREAD_LOCAL) != 0) |
| break; |
| tls = sec; |
| |
| for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) |
| if (sec->alignment_power > align) |
| align = sec->alignment_power; |
| |
| elf_hash_table (info)->tls_sec = tls; |
| |
| /* Ensure the alignment of the first section (usually .tdata) is the largest |
| alignment, so that the tls segment starts aligned. */ |
| if (tls != NULL) |
| tls->alignment_power = align; |
| |
| return tls; |
| } |
| |
| /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ |
| static bfd_boolean |
| is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym *sym) |
| { |
| const struct elf_backend_data *bed; |
| |
| /* Local symbols do not count, but target specific ones might. */ |
| if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL |
| && ELF_ST_BIND (sym->st_info) < STB_LOOS) |
| return FALSE; |
| |
| bed = get_elf_backend_data (abfd); |
| /* Function symbols do not count. */ |
| if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) |
| return FALSE; |
| |
| /* If the section is undefined, then so is the symbol. */ |
| if (sym->st_shndx == SHN_UNDEF) |
| return FALSE; |
| |
| /* If the symbol is defined in the common section, then |
| it is a common definition and so does not count. */ |
| if (bed->common_definition (sym)) |
| return FALSE; |
| |
| /* If the symbol is in a target specific section then we |
| must rely upon the backend to tell us what it is. */ |
| if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) |
| /* FIXME - this function is not coded yet: |
| |
| return _bfd_is_global_symbol_definition (abfd, sym); |
| |
| Instead for now assume that the definition is not global, |
| Even if this is wrong, at least the linker will behave |
| in the same way that it used to do. */ |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| /* Search the symbol table of the archive element of the archive ABFD |
| whose archive map contains a mention of SYMDEF, and determine if |
| the symbol is defined in this element. */ |
| static bfd_boolean |
| elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) |
| { |
| Elf_Internal_Shdr * hdr; |
| size_t symcount; |
| size_t extsymcount; |
| size_t extsymoff; |
| Elf_Internal_Sym *isymbuf; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| bfd_boolean result; |
| |
| abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
| if (abfd == NULL) |
| return FALSE; |
| |
| if (! bfd_check_format (abfd, bfd_object)) |
| return FALSE; |
| |
| /* Select the appropriate symbol table. If we don't know if the |
| object file is an IR object, give linker LTO plugin a chance to |
| get the correct symbol table. */ |
| if (abfd->plugin_format == bfd_plugin_yes |
| #if BFD_SUPPORTS_PLUGINS |
| || (abfd->plugin_format == bfd_plugin_unknown |
| && bfd_link_plugin_object_p (abfd)) |
| #endif |
| ) |
| { |
| /* Use the IR symbol table if the object has been claimed by |
| plugin. */ |
| abfd = abfd->plugin_dummy_bfd; |
| hdr = &elf_tdata (abfd)->symtab_hdr; |
| } |
| else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) |
| hdr = &elf_tdata (abfd)->symtab_hdr; |
| else |
| hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| |
| symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
| |
| /* The sh_info field of the symtab header tells us where the |
| external symbols start. We don't care about the local symbols. */ |
| if (elf_bad_symtab (abfd)) |
| { |
| extsymcount = symcount; |
| extsymoff = 0; |
| } |
| else |
| { |
| extsymcount = symcount - hdr->sh_info; |
| extsymoff = hdr->sh_info; |
| } |
| |
| if (extsymcount == 0) |
| return FALSE; |
| |
| /* Read in the symbol table. */ |
| isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| return FALSE; |
| |
| /* Scan the symbol table looking for SYMDEF. */ |
| result = FALSE; |
| for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) |
| { |
| const char *name; |
| |
| name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| isym->st_name); |
| if (name == NULL) |
| break; |
| |
| if (strcmp (name, symdef->name) == 0) |
| { |
| result = is_global_data_symbol_definition (abfd, isym); |
| break; |
| } |
| } |
| |
| free (isymbuf); |
| |
| return result; |
| } |
| |
| /* Add an entry to the .dynamic table. */ |
| |
| bfd_boolean |
| _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, |
| bfd_vma tag, |
| bfd_vma val) |
| { |
| struct elf_link_hash_table *hash_table; |
| const struct elf_backend_data *bed; |
| asection *s; |
| bfd_size_type newsize; |
| bfd_byte *newcontents; |
| Elf_Internal_Dyn dyn; |
| |
| hash_table = elf_hash_table (info); |
| if (! is_elf_hash_table (hash_table)) |
| return FALSE; |
| |
| if (tag == DT_RELA || tag == DT_REL) |
| hash_table->dynamic_relocs = TRUE; |
| |
| bed = get_elf_backend_data (hash_table->dynobj); |
| s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); |
| BFD_ASSERT (s != NULL); |
| |
| newsize = s->size + bed->s->sizeof_dyn; |
| newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); |
| if (newcontents == NULL) |
| return FALSE; |
| |
| dyn.d_tag = tag; |
| dyn.d_un.d_val = val; |
| bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); |
| |
| s->size = newsize; |
| s->contents = newcontents; |
| |
| return TRUE; |
| } |
| |
| /* Strip zero-sized dynamic sections. */ |
| |
| bfd_boolean |
| _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info) |
| { |
| struct elf_link_hash_table *hash_table; |
| const struct elf_backend_data *bed; |
| asection *s, *sdynamic, **pp; |
| asection *rela_dyn, *rel_dyn; |
| Elf_Internal_Dyn dyn; |
| bfd_byte *extdyn, *next; |
| void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
| bfd_boolean strip_zero_sized; |
| bfd_boolean strip_zero_sized_plt; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| hash_table = elf_hash_table (info); |
| if (!is_elf_hash_table (hash_table)) |
| return FALSE; |
| |
| if (!hash_table->dynobj) |
| return TRUE; |
| |
| sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic"); |
| if (!sdynamic) |
| return TRUE; |
| |
| bed = get_elf_backend_data (hash_table->dynobj); |
| swap_dyn_in = bed->s->swap_dyn_in; |
| |
| strip_zero_sized = FALSE; |
| strip_zero_sized_plt = FALSE; |
| |
| /* Strip zero-sized dynamic sections. */ |
| rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn"); |
| rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn"); |
| for (pp = &info->output_bfd->sections; (s = *pp) != NULL;) |
| if (s->size == 0 |
| && (s == rela_dyn |
| || s == rel_dyn |
| || s == hash_table->srelplt->output_section |
| || s == hash_table->splt->output_section)) |
| { |
| *pp = s->next; |
| info->output_bfd->section_count--; |
| strip_zero_sized = TRUE; |
| if (s == rela_dyn) |
| s = rela_dyn; |
| if (s == rel_dyn) |
| s = rel_dyn; |
| else if (s == hash_table->splt->output_section) |
| { |
| s = hash_table->splt; |
| strip_zero_sized_plt = TRUE; |
| } |
| else |
| s = hash_table->srelplt; |
| s->flags |= SEC_EXCLUDE; |
| s->output_section = bfd_abs_section_ptr; |
| } |
| else |
| pp = &s->next; |
| |
| if (strip_zero_sized_plt) |
| for (extdyn = sdynamic->contents; |
| extdyn < sdynamic->contents + sdynamic->size; |
| extdyn = next) |
| { |
| next = extdyn + bed->s->sizeof_dyn; |
| swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
| switch (dyn.d_tag) |
| { |
| default: |
| break; |
| case DT_JMPREL: |
| case DT_PLTRELSZ: |
| case DT_PLTREL: |
| /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if |
| the procedure linkage table (the .plt section) has been |
| removed. */ |
| memmove (extdyn, next, |
| sdynamic->size - (next - sdynamic->contents)); |
| next = extdyn; |
| } |
| } |
| |
| if (strip_zero_sized) |
| { |
| /* Regenerate program headers. */ |
| elf_seg_map (info->output_bfd) = NULL; |
| return _bfd_elf_map_sections_to_segments (info->output_bfd, info); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error, |
| 1 if a DT_NEEDED tag already exists, and 0 on success. */ |
| |
| int |
| bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf_link_hash_table *hash_table; |
| size_t strindex; |
| const char *soname; |
| |
| if (!_bfd_elf_link_create_dynstrtab (abfd, info)) |
| return -1; |
| |
| hash_table = elf_hash_table (info); |
| soname = elf_dt_name (abfd); |
| strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); |
| if (strindex == (size_t) -1) |
| return -1; |
| |
| if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) |
| { |
| asection *sdyn; |
| const struct elf_backend_data *bed; |
| bfd_byte *extdyn; |
| |
| bed = get_elf_backend_data (hash_table->dynobj); |
| sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); |
| if (sdyn != NULL) |
| for (extdyn = sdyn->contents; |
| extdyn < sdyn->contents + sdyn->size; |
| extdyn += bed->s->sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| |
| bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); |
| if (dyn.d_tag == DT_NEEDED |
| && dyn.d_un.d_val == strindex) |
| { |
| _bfd_elf_strtab_delref (hash_table->dynstr, strindex); |
| return 1; |
| } |
| } |
| } |
| |
| if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) |
| return -1; |
| |
| if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Return true if SONAME is on the needed list between NEEDED and STOP |
| (or the end of list if STOP is NULL), and needed by a library that |
| will be loaded. */ |
| |
| static bfd_boolean |
| on_needed_list (const char *soname, |
| struct bfd_link_needed_list *needed, |
| struct bfd_link_needed_list *stop) |
| { |
| struct bfd_link_needed_list *look; |
| for (look = needed; look != stop; look = look->next) |
| if (strcmp (soname, look->name) == 0 |
| && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 |
| /* If needed by a library that itself is not directly |
| needed, recursively check whether that library is |
| indirectly needed. Since we add DT_NEEDED entries to |
| the end of the list, library dependencies appear after |
| the library. Therefore search prior to the current |
| LOOK, preventing possible infinite recursion. */ |
| || on_needed_list (elf_dt_name (look->by), needed, look))) |
| return TRUE; |
| |
| return FALSE; |
| } |
| |
| /* Sort symbol by value, section, size, and type. */ |
| static int |
| elf_sort_symbol (const void *arg1, const void *arg2) |
| { |
| const struct elf_link_hash_entry *h1; |
| const struct elf_link_hash_entry *h2; |
| bfd_signed_vma vdiff; |
| int sdiff; |
| const char *n1; |
| const char *n2; |
| |
| h1 = *(const struct elf_link_hash_entry **) arg1; |
| h2 = *(const struct elf_link_hash_entry **) arg2; |
| vdiff = h1->root.u.def.value - h2->root.u.def.value; |
| if (vdiff != 0) |
| return vdiff > 0 ? 1 : -1; |
| |
| sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; |
| if (sdiff != 0) |
| return sdiff; |
| |
| /* Sort so that sized symbols are selected over zero size symbols. */ |
| vdiff = h1->size - h2->size; |
| if (vdiff != 0) |
| return vdiff > 0 ? 1 : -1; |
| |
| /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ |
| if (h1->type != h2->type) |
| return h1->type - h2->type; |
| |
| /* If symbols are properly sized and typed, and multiple strong |
| aliases are not defined in a shared library by the user we |
| shouldn't get here. Unfortunately linker script symbols like |
| __bss_start sometimes match a user symbol defined at the start of |
| .bss without proper size and type. We'd like to preference the |
| user symbol over reserved system symbols. Sort on leading |
| underscores. */ |
| n1 = h1->root.root.string; |
| n2 = h2->root.root.string; |
| while (*n1 == *n2) |
| { |
| if (*n1 == 0) |
| break; |
| ++n1; |
| ++n2; |
| } |
| if (*n1 == '_') |
| return -1; |
| if (*n2 == '_') |
| return 1; |
| |
| /* Final sort on name selects user symbols like '_u' over reserved |
| system symbols like '_Z' and also will avoid qsort instability. */ |
| return *n1 - *n2; |
| } |
| |
| /* This function is used to adjust offsets into .dynstr for |
| dynamic symbols. This is called via elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) |
| { |
| struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; |
| |
| if (h->dynindx != -1) |
| h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); |
| return TRUE; |
| } |
| |
| /* Assign string offsets in .dynstr, update all structures referencing |
| them. */ |
| |
| static bfd_boolean |
| elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct elf_link_hash_table *hash_table = elf_hash_table (info); |
| struct elf_link_local_dynamic_entry *entry; |
| struct elf_strtab_hash *dynstr = hash_table->dynstr; |
| bfd *dynobj = hash_table->dynobj; |
| asection *sdyn; |
| bfd_size_type size; |
| const struct elf_backend_data *bed; |
| bfd_byte *extdyn; |
| |
| _bfd_elf_strtab_finalize (dynstr); |
| size = _bfd_elf_strtab_size (dynstr); |
| |
| bed = get_elf_backend_data (dynobj); |
| sdyn = bfd_get_linker_section (dynobj, ".dynamic"); |
| BFD_ASSERT (sdyn != NULL); |
| |
| /* Update all .dynamic entries referencing .dynstr strings. */ |
| for (extdyn = sdyn->contents; |
| extdyn < sdyn->contents + sdyn->size; |
| extdyn += bed->s->sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| |
| bed->s->swap_dyn_in (dynobj, extdyn, &dyn); |
| switch (dyn.d_tag) |
| { |
| case DT_STRSZ: |
| dyn.d_un.d_val = size; |
| break; |
| case DT_NEEDED: |
| case DT_SONAME: |
| case DT_RPATH: |
| case DT_RUNPATH: |
| case DT_FILTER: |
| case DT_AUXILIARY: |
| case DT_AUDIT: |
| case DT_DEPAUDIT: |
| dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); |
| break; |
| default: |
| continue; |
| } |
| bed->s->swap_dyn_out (dynobj, &dyn, extdyn); |
| } |
| |
| /* Now update local dynamic symbols. */ |
| for (entry = hash_table->dynlocal; entry ; entry = entry->next) |
| entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, |
| entry->isym.st_name); |
| |
| /* And the rest of dynamic symbols. */ |
| elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); |
| |
| /* Adjust version definitions. */ |
| if (elf_tdata (output_bfd)->cverdefs) |
| { |
| asection *s; |
| bfd_byte *p; |
| size_t i; |
| Elf_Internal_Verdef def; |
| Elf_Internal_Verdaux defaux; |
| |
| s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
| p = s->contents; |
| do |
| { |
| _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, |
| &def); |
| p += sizeof (Elf_External_Verdef); |
| if (def.vd_aux != sizeof (Elf_External_Verdef)) |
| continue; |
| for (i = 0; i < def.vd_cnt; ++i) |
| { |
| _bfd_elf_swap_verdaux_in (output_bfd, |
| (Elf_External_Verdaux *) p, &defaux); |
| defaux.vda_name = _bfd_elf_strtab_offset (dynstr, |
| defaux.vda_name); |
| _bfd_elf_swap_verdaux_out (output_bfd, |
| &defaux, (Elf_External_Verdaux *) p); |
| p += sizeof (Elf_External_Verdaux); |
| } |
| } |
| while (def.vd_next); |
| } |
| |
| /* Adjust version references. */ |
| if (elf_tdata (output_bfd)->verref) |
| { |
| asection *s; |
| bfd_byte *p; |
| size_t i; |
| Elf_Internal_Verneed need; |
| Elf_Internal_Vernaux needaux; |
| |
| s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
| p = s->contents; |
| do |
| { |
| _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, |
| &need); |
| need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); |
| _bfd_elf_swap_verneed_out (output_bfd, &need, |
| (Elf_External_Verneed *) p); |
| p += sizeof (Elf_External_Verneed); |
| for (i = 0; i < need.vn_cnt; ++i) |
| { |
| _bfd_elf_swap_vernaux_in (output_bfd, |
| (Elf_External_Vernaux *) p, &needaux); |
| needaux.vna_name = _bfd_elf_strtab_offset (dynstr, |
| needaux.vna_name); |
| _bfd_elf_swap_vernaux_out (output_bfd, |
| &needaux, |
| (Elf_External_Vernaux *) p); |
| p += sizeof (Elf_External_Vernaux); |
| } |
| } |
| while (need.vn_next); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
| The default is to only match when the INPUT and OUTPUT are exactly |
| the same target. */ |
| |
| bfd_boolean |
| _bfd_elf_default_relocs_compatible (const bfd_target *input, |
| const bfd_target *output) |
| { |
| return input == output; |
| } |
| |
| /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. |
| This version is used when different targets for the same architecture |
| are virtually identical. */ |
| |
| bfd_boolean |
| _bfd_elf_relocs_compatible (const bfd_target *input, |
| const bfd_target *output) |
| { |
| const struct elf_backend_data *obed, *ibed; |
| |
| if (input == output) |
| return TRUE; |
| |
| ibed = xvec_get_elf_backend_data (input); |
| obed = xvec_get_elf_backend_data (output); |
| |
| if (ibed->arch != obed->arch) |
| return FALSE; |
| |
| /* If both backends are using this function, deem them compatible. */ |
| return ibed->relocs_compatible == obed->relocs_compatible; |
| } |
| |
| /* Make a special call to the linker "notice" function to tell it that |
| we are about to handle an as-needed lib, or have finished |
| processing the lib. */ |
| |
| bfd_boolean |
| _bfd_elf_notice_as_needed (bfd *ibfd, |
| struct bfd_link_info *info, |
| enum notice_asneeded_action act) |
| { |
| return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); |
| } |
| |
| /* Check relocations an ELF object file. */ |
| |
| bfd_boolean |
| _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| |
| /* If this object is the same format as the output object, and it is |
| not a shared library, then let the backend look through the |
| relocs. |
| |
| This is required to build global offset table entries and to |
| arrange for dynamic relocs. It is not required for the |
| particular common case of linking non PIC code, even when linking |
| against shared libraries, but unfortunately there is no way of |
| knowing whether an object file has been compiled PIC or not. |
| Looking through the relocs is not particularly time consuming. |
| The problem is that we must either (1) keep the relocs in memory, |
| which causes the linker to require additional runtime memory or |
| (2) read the relocs twice from the input file, which wastes time. |
| This would be a good case for using mmap. |
| |
| I have no idea how to handle linking PIC code into a file of a |
| different format. It probably can't be done. */ |
| if ((abfd->flags & DYNAMIC) == 0 |
| && is_elf_hash_table (htab) |
| && bed->check_relocs != NULL |
| && elf_object_id (abfd) == elf_hash_table_id (htab) |
| && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) |
| { |
| asection *o; |
| |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| bfd_boolean ok; |
| |
| /* Don't check relocations in excluded sections. Don't do |
| anything special with non-loaded, non-alloced sections. |
| In particular, any relocs in such sections should not |
| affect GOT and PLT reference counting (ie. we don't |
| allow them to create GOT or PLT entries), there's no |
| possibility or desire to optimize TLS relocs, and |
| there's not much point in propagating relocs to shared |
| libs that the dynamic linker won't relocate. */ |
| if ((o->flags & SEC_ALLOC) == 0 |
| || (o->flags & SEC_RELOC) == 0 |
| || (o->flags & SEC_EXCLUDE) != 0 |
| || o->reloc_count == 0 |
| || ((info->strip == strip_all || info->strip == strip_debugger) |
| && (o->flags & SEC_DEBUGGING) != 0) |
| || bfd_is_abs_section (o->output_section)) |
| continue; |
| |
| internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| return FALSE; |
| |
| ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); |
| |
| if (elf_section_data (o)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| if (! ok) |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Add symbols from an ELF object file to the linker hash table. */ |
| |
| static bfd_boolean |
| elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) |
| { |
| Elf_Internal_Ehdr *ehdr; |
| Elf_Internal_Shdr *hdr; |
| size_t symcount; |
| size_t extsymcount; |
| size_t extsymoff; |
| struct elf_link_hash_entry **sym_hash; |
| bfd_boolean dynamic; |
| Elf_External_Versym *extversym = NULL; |
| Elf_External_Versym *extversym_end = NULL; |
| Elf_External_Versym *ever; |
| struct elf_link_hash_entry *weaks; |
| struct elf_link_hash_entry **nondeflt_vers = NULL; |
| size_t nondeflt_vers_cnt = 0; |
| Elf_Internal_Sym *isymbuf = NULL; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| const struct elf_backend_data *bed; |
| bfd_boolean add_needed; |
| struct elf_link_hash_table *htab; |
| void *alloc_mark = NULL; |
| struct bfd_hash_entry **old_table = NULL; |
| unsigned int old_size = 0; |
| unsigned int old_count = 0; |
| void *old_tab = NULL; |
| void *old_ent; |
| struct bfd_link_hash_entry *old_undefs = NULL; |
| struct bfd_link_hash_entry *old_undefs_tail = NULL; |
| void *old_strtab = NULL; |
| size_t tabsize = 0; |
| asection *s; |
| bfd_boolean just_syms; |
| |
| htab = elf_hash_table (info); |
| bed = get_elf_backend_data (abfd); |
| |
| if ((abfd->flags & DYNAMIC) == 0) |
| dynamic = FALSE; |
| else |
| { |
| dynamic = TRUE; |
| |
| /* You can't use -r against a dynamic object. Also, there's no |
| hope of using a dynamic object which does not exactly match |
| the format of the output file. */ |
| if (bfd_link_relocatable (info) |
| || !is_elf_hash_table (htab) |
| || info->output_bfd->xvec != abfd->xvec) |
| { |
| if (bfd_link_relocatable (info)) |
| bfd_set_error (bfd_error_invalid_operation); |
| else |
| bfd_set_error (bfd_error_wrong_format); |
| goto error_return; |
| } |
| } |
| |
| ehdr = elf_elfheader (abfd); |
| if (info->warn_alternate_em |
| && bed->elf_machine_code != ehdr->e_machine |
| && ((bed->elf_machine_alt1 != 0 |
| && ehdr->e_machine == bed->elf_machine_alt1) |
| || (bed->elf_machine_alt2 != 0 |
| && ehdr->e_machine == bed->elf_machine_alt2))) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("alternate ELF machine code found (%d) in %pB, expecting %d"), |
| ehdr->e_machine, abfd, bed->elf_machine_code); |
| |
| /* As a GNU extension, any input sections which are named |
| .gnu.warning.SYMBOL are treated as warning symbols for the given |
| symbol. This differs from .gnu.warning sections, which generate |
| warnings when they are included in an output file. */ |
| /* PR 12761: Also generate this warning when building shared libraries. */ |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| const char *name; |
| |
| name = bfd_section_name (s); |
| if (CONST_STRNEQ (name, ".gnu.warning.")) |
| { |
| char *msg; |
| bfd_size_type sz; |
| |
| name += sizeof ".gnu.warning." - 1; |
| |
| /* If this is a shared object, then look up the symbol |
| in the hash table. If it is there, and it is already |
| been defined, then we will not be using the entry |
| from this shared object, so we don't need to warn. |
| FIXME: If we see the definition in a regular object |
| later on, we will warn, but we shouldn't. The only |
| fix is to keep track of what warnings we are supposed |
| to emit, and then handle them all at the end of the |
| link. */ |
| if (dynamic) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); |
| |
| /* FIXME: What about bfd_link_hash_common? */ |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| continue; |
| } |
| |
| sz = s->size; |
| msg = (char *) bfd_alloc (abfd, sz + 1); |
| if (msg == NULL) |
| goto error_return; |
| |
| if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) |
| goto error_return; |
| |
| msg[sz] = '\0'; |
| |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, name, BSF_WARNING, s, 0, msg, |
| FALSE, bed->collect, NULL))) |
| goto error_return; |
| |
| if (bfd_link_executable (info)) |
| { |
| /* Clobber the section size so that the warning does |
| not get copied into the output file. */ |
| s->size = 0; |
| |
| /* Also set SEC_EXCLUDE, so that symbols defined in |
| the warning section don't get copied to the output. */ |
| s->flags |= SEC_EXCLUDE; |
| } |
| } |
| } |
| |
| just_syms = ((s = abfd->sections) != NULL |
| && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); |
| |
| add_needed = TRUE; |
| if (! dynamic) |
| { |
| /* If we are creating a shared library, create all the dynamic |
| sections immediately. We need to attach them to something, |
| so we attach them to this BFD, provided it is the right |
| format and is not from ld --just-symbols. Always create the |
| dynamic sections for -E/--dynamic-list. FIXME: If there |
| are no input BFD's of the same format as the output, we can't |
| make a shared library. */ |
| if (!just_syms |
| && (bfd_link_pic (info) |
| || (!bfd_link_relocatable (info) |
| && info->nointerp |
| && (info->export_dynamic || info->dynamic))) |
| && is_elf_hash_table (htab) |
| && info->output_bfd->xvec == abfd->xvec |
| && !htab->dynamic_sections_created) |
| { |
| if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) |
| goto error_return; |
| } |
| } |
| else if (!is_elf_hash_table (htab)) |
| goto error_return; |
| else |
| { |
| const char *soname = NULL; |
| char *audit = NULL; |
| struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; |
| const Elf_Internal_Phdr *phdr; |
| struct elf_link_loaded_list *loaded_lib; |
| |
| /* ld --just-symbols and dynamic objects don't mix very well. |
| ld shouldn't allow it. */ |
| if (just_syms) |
| abort (); |
| |
| /* If this dynamic lib was specified on the command line with |
| --as-needed in effect, then we don't want to add a DT_NEEDED |
| tag unless the lib is actually used. Similary for libs brought |
| in by another lib's DT_NEEDED. When --no-add-needed is used |
| on a dynamic lib, we don't want to add a DT_NEEDED entry for |
| any dynamic library in DT_NEEDED tags in the dynamic lib at |
| all. */ |
| add_needed = (elf_dyn_lib_class (abfd) |
| & (DYN_AS_NEEDED | DYN_DT_NEEDED |
| | DYN_NO_NEEDED)) == 0; |
| |
| s = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (s != NULL) |
| { |
| bfd_byte *dynbuf; |
| bfd_byte *extdyn; |
| unsigned int elfsec; |
| unsigned long shlink; |
| |
| if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
| { |
| error_free_dyn: |
| free (dynbuf); |
| goto error_return; |
| } |
| |
| elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| if (elfsec == SHN_BAD) |
| goto error_free_dyn; |
| shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
| |
| for (extdyn = dynbuf; |
| extdyn <= dynbuf + s->size - bed->s->sizeof_dyn; |
| extdyn += bed->s->sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| |
| bed->s->swap_dyn_in (abfd, extdyn, &dyn); |
| if (dyn.d_tag == DT_SONAME) |
| { |
| unsigned int tagv = dyn.d_un.d_val; |
| soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (soname == NULL) |
| goto error_free_dyn; |
| } |
| if (dyn.d_tag == DT_NEEDED) |
| { |
| struct bfd_link_needed_list *n, **pn; |
| char *fnm, *anm; |
| unsigned int tagv = dyn.d_un.d_val; |
| size_t amt = sizeof (struct bfd_link_needed_list); |
| |
| n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
| fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (n == NULL || fnm == NULL) |
| goto error_free_dyn; |
| amt = strlen (fnm) + 1; |
| anm = (char *) bfd_alloc (abfd, amt); |
| if (anm == NULL) |
| goto error_free_dyn; |
| memcpy (anm, fnm, amt); |
| n->name = anm; |
| n->by = abfd; |
| n->next = NULL; |
| for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) |
| ; |
| *pn = n; |
| } |
| if (dyn.d_tag == DT_RUNPATH) |
| { |
| struct bfd_link_needed_list *n, **pn; |
| char *fnm, *anm; |
| unsigned int tagv = dyn.d_un.d_val; |
| size_t amt = sizeof (struct bfd_link_needed_list); |
| |
| n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
| fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (n == NULL || fnm == NULL) |
| goto error_free_dyn; |
| amt = strlen (fnm) + 1; |
| anm = (char *) bfd_alloc (abfd, amt); |
| if (anm == NULL) |
| goto error_free_dyn; |
| memcpy (anm, fnm, amt); |
| n->name = anm; |
| n->by = abfd; |
| n->next = NULL; |
| for (pn = & runpath; |
| *pn != NULL; |
| pn = &(*pn)->next) |
| ; |
| *pn = n; |
| } |
| /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ |
| if (!runpath && dyn.d_tag == DT_RPATH) |
| { |
| struct bfd_link_needed_list *n, **pn; |
| char *fnm, *anm; |
| unsigned int tagv = dyn.d_un.d_val; |
| size_t amt = sizeof (struct bfd_link_needed_list); |
| |
| n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
| fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (n == NULL || fnm == NULL) |
| goto error_free_dyn; |
| amt = strlen (fnm) + 1; |
| anm = (char *) bfd_alloc (abfd, amt); |
| if (anm == NULL) |
| goto error_free_dyn; |
| memcpy (anm, fnm, amt); |
| n->name = anm; |
| n->by = abfd; |
| n->next = NULL; |
| for (pn = & rpath; |
| *pn != NULL; |
| pn = &(*pn)->next) |
| ; |
| *pn = n; |
| } |
| if (dyn.d_tag == DT_AUDIT) |
| { |
| unsigned int tagv = dyn.d_un.d_val; |
| audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| } |
| } |
| |
| free (dynbuf); |
| } |
| |
| /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that |
| frees all more recently bfd_alloc'd blocks as well. */ |
| if (runpath) |
| rpath = runpath; |
| |
| if (rpath) |
| { |
| struct bfd_link_needed_list **pn; |
| for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) |
| ; |
| *pn = rpath; |
| } |
| |
| /* If we have a PT_GNU_RELRO program header, mark as read-only |
| all sections contained fully therein. This makes relro |
| shared library sections appear as they will at run-time. */ |
| phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; |
| while (phdr-- > elf_tdata (abfd)->phdr) |
| if (phdr->p_type == PT_GNU_RELRO) |
| { |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| unsigned int opb = bfd_octets_per_byte (abfd, s); |
| |
| if ((s->flags & SEC_ALLOC) != 0 |
| && s->vma * opb >= phdr->p_vaddr |
| && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz) |
| s->flags |= SEC_READONLY; |
| } |
| break; |
| } |
| |
| /* We do not want to include any of the sections in a dynamic |
| object in the output file. We hack by simply clobbering the |
| list of sections in the BFD. This could be handled more |
| cleanly by, say, a new section flag; the existing |
| SEC_NEVER_LOAD flag is not the one we want, because that one |
| still implies that the section takes up space in the output |
| file. */ |
| bfd_section_list_clear (abfd); |
| |
| /* Find the name to use in a DT_NEEDED entry that refers to this |
| object. If the object has a DT_SONAME entry, we use it. |
| Otherwise, if the generic linker stuck something in |
| elf_dt_name, we use that. Otherwise, we just use the file |
| name. */ |
| if (soname == NULL || *soname == '\0') |
| { |
| soname = elf_dt_name (abfd); |
| if (soname == NULL || *soname == '\0') |
| soname = bfd_get_filename (abfd); |
| } |
| |
| /* Save the SONAME because sometimes the linker emulation code |
| will need to know it. */ |
| elf_dt_name (abfd) = soname; |
| |
| /* If we have already included this dynamic object in the |
| link, just ignore it. There is no reason to include a |
| particular dynamic object more than once. */ |
| for (loaded_lib = htab->dyn_loaded; |
| loaded_lib != NULL; |
| loaded_lib = loaded_lib->next) |
| { |
| if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0) |
| return TRUE; |
| } |
| |
| /* Create dynamic sections for backends that require that be done |
| before setup_gnu_properties. */ |
| if (add_needed |
| && !_bfd_elf_link_create_dynamic_sections (abfd, info)) |
| return FALSE; |
| |
| /* Save the DT_AUDIT entry for the linker emulation code. */ |
| elf_dt_audit (abfd) = audit; |
| } |
| |
| /* If this is a dynamic object, we always link against the .dynsym |
| symbol table, not the .symtab symbol table. The dynamic linker |
| will only see the .dynsym symbol table, so there is no reason to |
| look at .symtab for a dynamic object. */ |
| |
| if (! dynamic || elf_dynsymtab (abfd) == 0) |
| hdr = &elf_tdata (abfd)->symtab_hdr; |
| else |
| hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| |
| symcount = hdr->sh_size / bed->s->sizeof_sym; |
| |
| /* The sh_info field of the symtab header tells us where the |
| external symbols start. We don't care about the local symbols at |
| this point. */ |
| if (elf_bad_symtab (abfd)) |
| { |
| extsymcount = symcount; |
| extsymoff = 0; |
| } |
| else |
| { |
| extsymcount = symcount - hdr->sh_info; |
| extsymoff = hdr->sh_info; |
| } |
| |
| sym_hash = elf_sym_hashes (abfd); |
| if (extsymcount != 0) |
| { |
| isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| |
| if (sym_hash == NULL) |
| { |
| /* We store a pointer to the hash table entry for each |
| external symbol. */ |
| size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *); |
| sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); |
| if (sym_hash == NULL) |
| goto error_free_sym; |
| elf_sym_hashes (abfd) = sym_hash; |
| } |
| } |
| |
| if (dynamic) |
| { |
| /* Read in any version definitions. */ |
| if (!_bfd_elf_slurp_version_tables (abfd, |
| info->default_imported_symver)) |
| goto error_free_sym; |
| |
| /* Read in the symbol versions, but don't bother to convert them |
| to internal format. */ |
| if (elf_dynversym (abfd) != 0) |
| { |
| Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr; |
| bfd_size_type amt = versymhdr->sh_size; |
| |
| if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0) |
| goto error_free_sym; |
| extversym = (Elf_External_Versym *) |
| _bfd_malloc_and_read (abfd, amt, amt); |
| if (extversym == NULL) |
| goto error_free_sym; |
| extversym_end = extversym + amt / sizeof (*extversym); |
| } |
| } |
| |
| /* If we are loading an as-needed shared lib, save the symbol table |
| state before we start adding symbols. If the lib turns out |
| to be unneeded, restore the state. */ |
| if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) |
| { |
| unsigned int i; |
| size_t entsize; |
| |
| for (entsize = 0, i = 0; i < htab->root.table.size; i++) |
| { |
| struct bfd_hash_entry *p; |
| struct elf_link_hash_entry *h; |
| |
| for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
| { |
| h = (struct elf_link_hash_entry *) p; |
| entsize += htab->root.table.entsize; |
| if (h->root.type == bfd_link_hash_warning) |
| entsize += htab->root.table.entsize; |
| } |
| } |
| |
| tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); |
| old_tab = bfd_malloc (tabsize + entsize); |
| if (old_tab == NULL) |
| goto error_free_vers; |
| |
| /* Remember the current objalloc pointer, so that all mem for |
| symbols added can later be reclaimed. */ |
| alloc_mark = bfd_hash_allocate (&htab->root.table, 1); |
| if (alloc_mark == NULL) |
| goto error_free_vers; |
| |
| /* Make a special call to the linker "notice" function to |
| tell it that we are about to handle an as-needed lib. */ |
| if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) |
| goto error_free_vers; |
| |
| /* Clone the symbol table. Remember some pointers into the |
| symbol table, and dynamic symbol count. */ |
| old_ent = (char *) old_tab + tabsize; |
| memcpy (old_tab, htab->root.table.table, tabsize); |
| old_undefs = htab->root.undefs; |
| old_undefs_tail = htab->root.undefs_tail; |
| old_table = htab->root.table.table; |
| old_size = htab->root.table.size; |
| old_count = htab->root.table.count; |
| old_strtab = NULL; |
| if (htab->dynstr != NULL) |
| { |
| old_strtab = _bfd_elf_strtab_save (htab->dynstr); |
| if (old_strtab == NULL) |
| goto error_free_vers; |
| } |
| |
| for (i = 0; i < htab->root.table.size; i++) |
| { |
| struct bfd_hash_entry *p; |
| struct elf_link_hash_entry *h; |
| |
| for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
| { |
| memcpy (old_ent, p, htab->root.table.entsize); |
| old_ent = (char *) old_ent + htab->root.table.entsize; |
| h = (struct elf_link_hash_entry *) p; |
| if (h->root.type == bfd_link_hash_warning) |
| { |
| memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); |
| old_ent = (char *) old_ent + htab->root.table.entsize; |
| } |
| } |
| } |
| } |
| |
| weaks = NULL; |
| if (extversym == NULL) |
| ever = NULL; |
| else if (extversym + extsymoff < extversym_end) |
| ever = extversym + extsymoff; |
| else |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), |
| abfd, (long) extsymoff, |
| (long) (extversym_end - extversym) / sizeof (* extversym)); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_free_vers; |
| } |
| |
| if (!bfd_link_relocatable (info) |
| && abfd->lto_slim_object) |
| { |
| _bfd_error_handler |
| (_("%pB: plugin needed to handle lto object"), abfd); |
| } |
| |
| for (isym = isymbuf, isymend = isymbuf + extsymcount; |
| isym < isymend; |
| isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) |
| { |
| int bind; |
| bfd_vma value; |
| asection *sec, *new_sec; |
| flagword flags; |
| const char *name; |
| struct elf_link_hash_entry *h; |
| struct elf_link_hash_entry *hi; |
| bfd_boolean definition; |
| bfd_boolean size_change_ok; |
| bfd_boolean type_change_ok; |
| bfd_boolean new_weak; |
| bfd_boolean old_weak; |
| bfd_boolean override; |
| bfd_boolean common; |
| bfd_boolean discarded; |
| unsigned int old_alignment; |
| unsigned int shindex; |
| bfd *old_bfd; |
| bfd_boolean matched; |
| |
| override = FALSE; |
| |
| flags = BSF_NO_FLAGS; |
| sec = NULL; |
| value = isym->st_value; |
| common = bed->common_definition (isym); |
| if (common && info->inhibit_common_definition) |
| { |
| /* Treat common symbol as undefined for --no-define-common. */ |
| isym->st_shndx = SHN_UNDEF; |
| common = FALSE; |
| } |
| discarded = FALSE; |
| |
| bind = ELF_ST_BIND (isym->st_info); |
| switch (bind) |
| { |
| case STB_LOCAL: |
| /* This should be impossible, since ELF requires that all |
| global symbols follow all local symbols, and that sh_info |
| point to the first global symbol. Unfortunately, Irix 5 |
| screws this up. */ |
| if (elf_bad_symtab (abfd)) |
| continue; |
| |
| /* If we aren't prepared to handle locals within the globals |
| then we'll likely segfault on a NULL symbol hash if the |
| symbol is ever referenced in relocations. */ |
| shindex = elf_elfheader (abfd)->e_shstrndx; |
| name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); |
| _bfd_error_handler (_("%pB: %s local symbol at index %lu" |
| " (>= sh_info of %lu)"), |
| abfd, name, (long) (isym - isymbuf + extsymoff), |
| (long) extsymoff); |
| |
| /* Dynamic object relocations are not processed by ld, so |
| ld won't run into the problem mentioned above. */ |
| if (dynamic) |
| continue; |
| bfd_set_error (bfd_error_bad_value); |
| goto error_free_vers; |
| |
| case STB_GLOBAL: |
| if (isym->st_shndx != SHN_UNDEF && !common) |
| flags = BSF_GLOBAL; |
| break; |
| |
| case STB_WEAK: |
| flags = BSF_WEAK; |
| break; |
| |
| case STB_GNU_UNIQUE: |
| flags = BSF_GNU_UNIQUE; |
| break; |
| |
| default: |
| /* Leave it up to the processor backend. */ |
| break; |
| } |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| sec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| { |
| sec = bfd_com_section_ptr; |
| /* What ELF calls the size we call the value. What ELF |
| calls the value we call the alignment. */ |
| value = isym->st_size; |
| } |
| else |
| { |
| sec = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (sec == NULL) |
| sec = bfd_abs_section_ptr; |
| else if (discarded_section (sec)) |
| { |
| /* Symbols from discarded section are undefined. We keep |
| its visibility. */ |
| sec = bfd_und_section_ptr; |
| discarded = TRUE; |
| isym->st_shndx = SHN_UNDEF; |
| } |
| else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
| value -= sec->vma; |
| } |
| |
| name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| isym->st_name); |
| if (name == NULL) |
| goto error_free_vers; |
| |
| if (isym->st_shndx == SHN_COMMON |
| && (abfd->flags & BFD_PLUGIN) != 0) |
| { |
| asection *xc = bfd_get_section_by_name (abfd, "COMMON"); |
| |
| if (xc == NULL) |
| { |
| flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP |
| | SEC_EXCLUDE); |
| xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); |
| if (xc == NULL) |
| goto error_free_vers; |
| } |
| sec = xc; |
| } |
| else if (isym->st_shndx == SHN_COMMON |
| && ELF_ST_TYPE (isym->st_info) == STT_TLS |
| && !bfd_link_relocatable (info)) |
| { |
| asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); |
| |
| if (tcomm == NULL) |
| { |
| flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON |
| | SEC_LINKER_CREATED); |
| tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); |
| if (tcomm == NULL) |
| goto error_free_vers; |
| } |
| sec = tcomm; |
| } |
| else if (bed->elf_add_symbol_hook) |
| { |
| if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, |
| &sec, &value)) |
| goto error_free_vers; |
| |
| /* The hook function sets the name to NULL if this symbol |
| should be skipped for some reason. */ |
| if (name == NULL) |
| continue; |
| } |
| |
| /* Sanity check that all possibilities were handled. */ |
| if (sec == NULL) |
| abort (); |
| |
| /* Silently discard TLS symbols from --just-syms. There's |
| no way to combine a static TLS block with a new TLS block |
| for this executable. */ |
| if (ELF_ST_TYPE (isym->st_info) == STT_TLS |
| && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| if (bfd_is_und_section (sec) |
| || bfd_is_com_section (sec)) |
| definition = FALSE; |
| else |
| definition = TRUE; |
| |
| size_change_ok = FALSE; |
| type_change_ok = bed->type_change_ok; |
| old_weak = FALSE; |
| matched = FALSE; |
| old_alignment = 0; |
| old_bfd = NULL; |
| new_sec = sec; |
| |
| if (is_elf_hash_table (htab)) |
| { |
| Elf_Internal_Versym iver; |
| unsigned int vernum = 0; |
| bfd_boolean skip; |
| |
| if (ever == NULL) |
| { |
| if (info->default_imported_symver) |
| /* Use the default symbol version created earlier. */ |
| iver.vs_vers = elf_tdata (abfd)->cverdefs; |
| else |
| iver.vs_vers = 0; |
| } |
| else if (ever >= extversym_end) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: not enough version information"), |
| abfd); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_free_vers; |
| } |
| else |
| _bfd_elf_swap_versym_in (abfd, ever, &iver); |
| |
| vernum = iver.vs_vers & VERSYM_VERSION; |
| |
| /* If this is a hidden symbol, or if it is not version |
| 1, we append the version name to the symbol name. |
| However, we do not modify a non-hidden absolute symbol |
| if it is not a function, because it might be the version |
| symbol itself. FIXME: What if it isn't? */ |
| if ((iver.vs_vers & VERSYM_HIDDEN) != 0 |
| || (vernum > 1 |
| && (!bfd_is_abs_section (sec) |
| || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) |
| { |
| const char *verstr; |
| size_t namelen, verlen, newlen; |
| char *newname, *p; |
| |
| if (isym->st_shndx != SHN_UNDEF) |
| { |
| if (vernum > elf_tdata (abfd)->cverdefs) |
| verstr = NULL; |
| else if (vernum > 1) |
| verstr = |
| elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
| else |
| verstr = ""; |
| |
| if (verstr == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %s: invalid version %u (max %d)"), |
| abfd, name, vernum, |
| elf_tdata (abfd)->cverdefs); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_free_vers; |
| } |
| } |
| else |
| { |
| /* We cannot simply test for the number of |
| entries in the VERNEED section since the |
| numbers for the needed versions do not start |
| at 0. */ |
| Elf_Internal_Verneed *t; |
| |
| verstr = NULL; |
| for (t = elf_tdata (abfd)->verref; |
| t != NULL; |
| t = t->vn_nextref) |
| { |
| Elf_Internal_Vernaux *a; |
| |
| for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| { |
| if (a->vna_other == vernum) |
| { |
| verstr = a->vna_nodename; |
| break; |
| } |
| } |
| if (a != NULL) |
| break; |
| } |
| if (verstr == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %s: invalid needed version %d"), |
| abfd, name, vernum); |
| bfd_set_error (bfd_error_bad_value); |
| goto error_free_vers; |
| } |
| } |
| |
| namelen = strlen (name); |
| verlen = strlen (verstr); |
| newlen = namelen + verlen + 2; |
| if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
| && isym->st_shndx != SHN_UNDEF) |
| ++newlen; |
| |
| newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); |
| if (newname == NULL) |
| goto error_free_vers; |
| memcpy (newname, name, namelen); |
| p = newname + namelen; |
| *p++ = ELF_VER_CHR; |
| /* If this is a defined non-hidden version symbol, |
| we add another @ to the name. This indicates the |
| default version of the symbol. */ |
| if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
| && isym->st_shndx != SHN_UNDEF) |
| *p++ = ELF_VER_CHR; |
| memcpy (p, verstr, verlen + 1); |
| |
| name = newname; |
| } |
| |
| /* If this symbol has default visibility and the user has |
| requested we not re-export it, then mark it as hidden. */ |
| if (!bfd_is_und_section (sec) |
| && !dynamic |
| && abfd->no_export |
| && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) |
| isym->st_other = (STV_HIDDEN |
| | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); |
| |
| if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, |
| sym_hash, &old_bfd, &old_weak, |
| &old_alignment, &skip, &override, |
| &type_change_ok, &size_change_ok, |
| &matched)) |
| goto error_free_vers; |
| |
| if (skip) |
| continue; |
| |
| /* Override a definition only if the new symbol matches the |
| existing one. */ |
| if (override && matched) |
| definition = FALSE; |
| |
| h = *sym_hash; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if (elf_tdata (abfd)->verdef != NULL |
| && vernum > 1 |
| && definition) |
| h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; |
| } |
| |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, |
| (struct bfd_link_hash_entry **) sym_hash))) |
| goto error_free_vers; |
| |
| h = *sym_hash; |
| /* We need to make sure that indirect symbol dynamic flags are |
| updated. */ |
| hi = h; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* Setting the index to -3 tells elf_link_output_extsym that |
| this symbol is defined in a discarded section. */ |
| if (discarded) |
| h->indx = -3; |
| |
| *sym_hash = h; |
| |
| new_weak = (flags & BSF_WEAK) != 0; |
| if (dynamic |
| && definition |
| && new_weak |
| && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) |
| && is_elf_hash_table (htab) |
| && h->u.alias == NULL) |
| { |
| /* Keep a list of all weak defined non function symbols from |
| a dynamic object, using the alias field. Later in this |
| function we will set the alias field to the correct |
| value. We only put non-function symbols from dynamic |
| objects on this list, because that happens to be the only |
| time we need to know the normal symbol corresponding to a |
| weak symbol, and the information is time consuming to |
| figure out. If the alias field is not already NULL, |
| then this symbol was already defined by some previous |
| dynamic object, and we will be using that previous |
| definition anyhow. */ |
| |
| h->u.alias = weaks; |
| weaks = h; |
| } |
| |
| /* Set the alignment of a common symbol. */ |
| if ((common || bfd_is_com_section (sec)) |
| && h->root.type == bfd_link_hash_common) |
| { |
| unsigned int align; |
| |
| if (common) |
| align = bfd_log2 (isym->st_value); |
| else |
| { |
| /* The new symbol is a common symbol in a shared object. |
| We need to get the alignment from the section. */ |
| align = new_sec->alignment_power; |
| } |
| if (align > old_alignment) |
| h->root.u.c.p->alignment_power = align; |
| else |
| h->root.u.c.p->alignment_power = old_alignment; |
| } |
| |
| if (is_elf_hash_table (htab)) |
| { |
| /* Set a flag in the hash table entry indicating the type of |
| reference or definition we just found. A dynamic symbol |
| is one which is referenced or defined by both a regular |
| object and a shared object. */ |
| bfd_boolean dynsym = FALSE; |
| |
| /* Plugin symbols aren't normal. Don't set def_regular or |
| ref_regular for them, or make them dynamic. */ |
| if ((abfd->flags & BFD_PLUGIN) != 0) |
| ; |
| else if (! dynamic) |
| { |
| if (! definition) |
| { |
| h->ref_regular = 1; |
| if (bind != STB_WEAK) |
| h->ref_regular_nonweak = 1; |
| } |
| else |
| { |
| h->def_regular = 1; |
| if (h->def_dynamic) |
| { |
| h->def_dynamic = 0; |
| h->ref_dynamic = 1; |
| } |
| } |
| |
| /* If the indirect symbol has been forced local, don't |
| make the real symbol dynamic. */ |
| if ((h == hi || !hi->forced_local) |
| && (bfd_link_dll (info) |
| || h->def_dynamic |
| || h->ref_dynamic)) |
| dynsym = TRUE; |
| } |
| else |
| { |
| if (! definition) |
| { |
| h->ref_dynamic = 1; |
| hi->ref_dynamic = 1; |
| } |
| else |
| { |
| h->def_dynamic = 1; |
| hi->def_dynamic = 1; |
| } |
| |
| /* If the indirect symbol has been forced local, don't |
| make the real symbol dynamic. */ |
| if ((h == hi || !hi->forced_local) |
| && (h->def_regular |
| || h->ref_regular |
| || (h->is_weakalias |
| && weakdef (h)->dynindx != -1))) |
| dynsym = TRUE; |
| } |
| |
| /* Check to see if we need to add an indirect symbol for |
| the default name. */ |
| if (definition |
| || (!override && h->root.type == bfd_link_hash_common)) |
| if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, |
| sec, value, &old_bfd, &dynsym)) |
| goto error_free_vers; |
| |
| /* Check the alignment when a common symbol is involved. This |
| can change when a common symbol is overridden by a normal |
| definition or a common symbol is ignored due to the old |
| normal definition. We need to make sure the maximum |
| alignment is maintained. */ |
| if ((old_alignment || common) |
| && h->root.type != bfd_link_hash_common) |
| { |
| unsigned int common_align; |
| unsigned int normal_align; |
| unsigned int symbol_align; |
| bfd *normal_bfd; |
| bfd *common_bfd; |
| |
| BFD_ASSERT (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak); |
| |
| symbol_align = ffs (h->root.u.def.value) - 1; |
| if (h->root.u.def.section->owner != NULL |
| && (h->root.u.def.section->owner->flags |
| & (DYNAMIC | BFD_PLUGIN)) == 0) |
| { |
| normal_align = h->root.u.def.section->alignment_power; |
| if (normal_align > symbol_align) |
| normal_align = symbol_align; |
| } |
| else |
| normal_align = symbol_align; |
| |
| if (old_alignment) |
| { |
| common_align = old_alignment; |
| common_bfd = old_bfd; |
| normal_bfd = abfd; |
| } |
| else |
| { |
| common_align = bfd_log2 (isym->st_value); |
| common_bfd = abfd; |
| normal_bfd = old_bfd; |
| } |
| |
| if (normal_align < common_align) |
| { |
| /* PR binutils/2735 */ |
| if (normal_bfd == NULL) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: alignment %u of common symbol `%s' in %pB is" |
| " greater than the alignment (%u) of its section %pA"), |
| 1 << common_align, name, common_bfd, |
| 1 << normal_align, h->root.u.def.section); |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: alignment %u of symbol `%s' in %pB" |
| " is smaller than %u in %pB"), |
| 1 << normal_align, name, normal_bfd, |
| 1 << common_align, common_bfd); |
| } |
| } |
| |
| /* Remember the symbol size if it isn't undefined. */ |
| if (isym->st_size != 0 |
| && isym->st_shndx != SHN_UNDEF |
| && (definition || h->size == 0)) |
| { |
| if (h->size != 0 |
| && h->size != isym->st_size |
| && ! size_change_ok) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("warning: size of symbol `%s' changed" |
| " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), |
| name, (uint64_t) h->size, old_bfd, |
| (uint64_t) isym->st_size, abfd); |
| |
| h->size = isym->st_size; |
| } |
| |
| /* If this is a common symbol, then we always want H->SIZE |
| to be the size of the common symbol. The code just above |
| won't fix the size if a common symbol becomes larger. We |
| don't warn about a size change here, because that is |
| covered by --warn-common. Allow changes between different |
| function types. */ |
| if (h->root.type == bfd_link_hash_common) |
| h->size = h->root.u.c.size; |
| |
| if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE |
| && ((definition && !new_weak) |
| || (old_weak && h->root.type == bfd_link_hash_common) |
| || h->type == STT_NOTYPE)) |
| { |
| unsigned int type = ELF_ST_TYPE (isym->st_info); |
| |
| /* Turn an IFUNC symbol from a DSO into a normal FUNC |
| symbol. */ |
| if (type == STT_GNU_IFUNC |
| && (abfd->flags & DYNAMIC) != 0) |
| type = STT_FUNC; |
| |
| if (h->type != type) |
| { |
| if (h->type != STT_NOTYPE && ! type_change_ok) |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("warning: type of symbol `%s' changed" |
| " from %d to %d in %pB"), |
| name, h->type, type, abfd); |
| |
| h->type = type; |
| } |
| } |
| |
| /* Merge st_other field. */ |
| elf_merge_st_other (abfd, h, isym, sec, definition, dynamic); |
| |
| /* We don't want to make debug symbol dynamic. */ |
| if (definition |
| && (sec->flags & SEC_DEBUGGING) |
| && !bfd_link_relocatable (info)) |
| dynsym = FALSE; |
| |
| /* Nor should we make plugin symbols dynamic. */ |
| if ((abfd->flags & BFD_PLUGIN) != 0) |
| dynsym = FALSE; |
| |
| if (definition) |
| { |
| h->target_internal = isym->st_target_internal; |
| h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; |
| } |
| |
| if (definition && !dynamic) |
| { |
| char *p = strchr (name, ELF_VER_CHR); |
| if (p != NULL && p[1] != ELF_VER_CHR) |
| { |
| /* Queue non-default versions so that .symver x, x@FOO |
| aliases can be checked. */ |
| if (!nondeflt_vers) |
| { |
| size_t amt = ((isymend - isym + 1) |
| * sizeof (struct elf_link_hash_entry *)); |
| nondeflt_vers |
| = (struct elf_link_hash_entry **) bfd_malloc (amt); |
| if (!nondeflt_vers) |
| goto error_free_vers; |
| } |
| nondeflt_vers[nondeflt_vers_cnt++] = h; |
| } |
| } |
| |
| if (dynsym && h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| goto error_free_vers; |
| if (h->is_weakalias |
| && weakdef (h)->dynindx == -1) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) |
| goto error_free_vers; |
| } |
| } |
| else if (h->dynindx != -1) |
| /* If the symbol already has a dynamic index, but |
| visibility says it should not be visible, turn it into |
| a local symbol. */ |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| dynsym = FALSE; |
| break; |
| } |
| |
| /* Don't add DT_NEEDED for references from the dummy bfd nor |
| for unmatched symbol. */ |
| if (!add_needed |
| && matched |
| && definition |
| && ((dynsym |
| && h->ref_regular_nonweak |
| && (old_bfd == NULL |
| || (old_bfd->flags & BFD_PLUGIN) == 0)) |
| || (h->ref_dynamic_nonweak |
| && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 |
| && !on_needed_list (elf_dt_name (abfd), |
| htab->needed, NULL)))) |
| { |
| const char *soname = elf_dt_name (abfd); |
| |
| info->callbacks->minfo ("%!", soname, old_bfd, |
| h->root.root.string); |
| |
| /* A symbol from a library loaded via DT_NEEDED of some |
| other library is referenced by a regular object. |
| Add a DT_NEEDED entry for it. Issue an error if |
| --no-add-needed is used and the reference was not |
| a weak one. */ |
| if (old_bfd != NULL |
| && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: undefined reference to symbol '%s'"), |
| old_bfd, name); |
| bfd_set_error (bfd_error_missing_dso); |
| goto error_free_vers; |
| } |
| |
| elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) |
| (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); |
| |
| /* Create dynamic sections for backends that require |
| that be done before setup_gnu_properties. */ |
| if (!_bfd_elf_link_create_dynamic_sections (abfd, info)) |
| return FALSE; |
| add_needed = TRUE; |
| } |
| } |
| } |
| |
| if (info->lto_plugin_active |
| && !bfd_link_relocatable (info) |
| && (abfd->flags & BFD_PLUGIN) == 0 |
| && !just_syms |
| && extsymcount) |
| { |
| int r_sym_shift; |
| |
| if (bed->s->arch_size == 32) |
| r_sym_shift = 8; |
| else |
| r_sym_shift = 32; |
| |
| /* If linker plugin is enabled, set non_ir_ref_regular on symbols |
| referenced in regular objects so that linker plugin will get |
| the correct symbol resolution. */ |
| |
| sym_hash = elf_sym_hashes (abfd); |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *rel, *relend; |
| |
| /* Don't check relocations in excluded sections. */ |
| if ((s->flags & SEC_RELOC) == 0 |
| || s->reloc_count == 0 |
| || (s->flags & SEC_EXCLUDE) != 0 |
| || ((info->strip == strip_all |
| || info->strip == strip_debugger) |
| && (s->flags & SEC_DEBUGGING) != 0)) |
| continue; |
| |
| internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL, |
| NULL, |
| info->keep_memory); |
| if (internal_relocs == NULL) |
| goto error_free_vers; |
| |
| rel = internal_relocs; |
| relend = rel + s->reloc_count; |
| for ( ; rel < relend; rel++) |
| { |
| unsigned long r_symndx = rel->r_info >> r_sym_shift; |
| struct elf_link_hash_entry *h; |
| |
| /* Skip local symbols. */ |
| if (r_symndx < extsymoff) |
| continue; |
| |
| h = sym_hash[r_symndx - extsymoff]; |
| if (h != NULL) |
| h->root.non_ir_ref_regular = 1; |
| } |
| |
| if (elf_section_data (s)->relocs != internal_relocs) |
| free (internal_relocs); |
| } |
| } |
| |
| free (extversym); |
| extversym = NULL; |
| free (isymbuf); |
| isymbuf = NULL; |
| |
| if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) |
| { |
| unsigned int i; |
| |
| /* Restore the symbol table. */ |
| old_ent = (char *) old_tab + tabsize; |
| memset (elf_sym_hashes (abfd), 0, |
| extsymcount * sizeof (struct elf_link_hash_entry *)); |
| htab->root.table.table = old_table; |
| htab->root.table.size = old_size; |
| htab->root.table.count = old_count; |
| memcpy (htab->root.table.table, old_tab, tabsize); |
| htab->root.undefs = old_undefs; |
| htab->root.undefs_tail = old_undefs_tail; |
| if (htab->dynstr != NULL) |
| _bfd_elf_strtab_restore (htab->dynstr, old_strtab); |
| free (old_strtab); |
| old_strtab = NULL; |
| for (i = 0; i < htab->root.table.size; i++) |
| { |
| struct bfd_hash_entry *p; |
| struct elf_link_hash_entry *h; |
| bfd_size_type size; |
| unsigned int alignment_power; |
| unsigned int non_ir_ref_dynamic; |
| |
| for (p = htab->root.table.table[i]; p != NULL; p = p->next) |
| { |
| h = (struct elf_link_hash_entry *) p; |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* Preserve the maximum alignment and size for common |
| symbols even if this dynamic lib isn't on DT_NEEDED |
| since it can still be loaded at run time by another |
| dynamic lib. */ |
| if (h->root.type == bfd_link_hash_common) |
| { |
| size = h->root.u.c.size; |
| alignment_power = h->root.u.c.p->alignment_power; |
| } |
| else |
| { |
| size = 0; |
| alignment_power = 0; |
| } |
| /* Preserve non_ir_ref_dynamic so that this symbol |
| will be exported when the dynamic lib becomes needed |
| in the second pass. */ |
| non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; |
| memcpy (p, old_ent, htab->root.table.entsize); |
| old_ent = (char *) old_ent + htab->root.table.entsize; |
| h = (struct elf_link_hash_entry *) p; |
| if (h->root.type == bfd_link_hash_warning) |
| { |
| memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); |
| old_ent = (char *) old_ent + htab->root.table.entsize; |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| if (h->root.type == bfd_link_hash_common) |
| { |
| if (size > h->root.u.c.size) |
| h->root.u.c.size = size; |
| if (alignment_power > h->root.u.c.p->alignment_power) |
| h->root.u.c.p->alignment_power = alignment_power; |
| } |
| h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; |
| } |
| } |
| |
| /* Make a special call to the linker "notice" function to |
| tell it that symbols added for crefs may need to be removed. */ |
| if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) |
| goto error_free_vers; |
| |
| free (old_tab); |
| objalloc_free_block ((struct objalloc *) htab->root.table.memory, |
| alloc_mark); |
| free (nondeflt_vers); |
| return TRUE; |
| } |
| |
| if (old_tab != NULL) |
| { |
| if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) |
| goto error_free_vers; |
| free (old_tab); |
| old_tab = NULL; |
| } |
| |
| /* Now that all the symbols from this input file are created, if |
| not performing a relocatable link, handle .symver foo, foo@BAR |
| such that any relocs against foo become foo@BAR. */ |
| if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) |
| { |
| size_t cnt, symidx; |
| |
| for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) |
| { |
| struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; |
| char *shortname, *p; |
| size_t amt; |
| |
| p = strchr (h->root.root.string, ELF_VER_CHR); |
| if (p == NULL |
| || (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak)) |
| continue; |
| |
| amt = p - h->root.root.string; |
| shortname = (char *) bfd_malloc (amt + 1); |
| if (!shortname) |
| goto error_free_vers; |
| memcpy (shortname, h->root.root.string, amt); |
| shortname[amt] = '\0'; |
| |
| hi = (struct elf_link_hash_entry *) |
| bfd_link_hash_lookup (&htab->root, shortname, |
| FALSE, FALSE, FALSE); |
| if (hi != NULL |
| && hi->root.type == h->root.type |
| && hi->root.u.def.value == h->root.u.def.value |
| && hi->root.u.def.section == h->root.u.def.section) |
| { |
| (*bed->elf_backend_hide_symbol) (info, hi, TRUE); |
| hi->root.type = bfd_link_hash_indirect; |
| hi->root.u.i.link = (struct bfd_link_hash_entry *) h; |
| (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); |
| sym_hash = elf_sym_hashes (abfd); |
| if (sym_hash) |
| for (symidx = 0; symidx < extsymcount; ++symidx) |
| if (sym_hash[symidx] == hi) |
| { |
| sym_hash[symidx] = h; |
| break; |
| } |
| } |
| free (shortname); |
| } |
| free (nondeflt_vers); |
| nondeflt_vers = NULL; |
| } |
| |
| /* Now set the alias field correctly for all the weak defined |
| symbols we found. The only way to do this is to search all the |
| symbols. Since we only need the information for non functions in |
| dynamic objects, that's the only time we actually put anything on |
| the list WEAKS. We need this information so that if a regular |
| object refers to a symbol defined weakly in a dynamic object, the |
| real symbol in the dynamic object is also put in the dynamic |
| symbols; we also must arrange for both symbols to point to the |
| same memory location. We could handle the general case of symbol |
| aliasing, but a general symbol alias can only be generated in |
| assembler code, handling it correctly would be very time |
| consuming, and other ELF linkers don't handle general aliasing |
| either. */ |
| if (weaks != NULL) |
| { |
| struct elf_link_hash_entry **hpp; |
| struct elf_link_hash_entry **hppend; |
| struct elf_link_hash_entry **sorted_sym_hash; |
| struct elf_link_hash_entry *h; |
| size_t sym_count, amt; |
| |
| /* Since we have to search the whole symbol list for each weak |
| defined symbol, search time for N weak defined symbols will be |
| O(N^2). Binary search will cut it down to O(NlogN). */ |
| amt = extsymcount * sizeof (*sorted_sym_hash); |
| sorted_sym_hash = bfd_malloc (amt); |
| if (sorted_sym_hash == NULL) |
| goto error_return; |
| sym_hash = sorted_sym_hash; |
| hpp = elf_sym_hashes (abfd); |
| hppend = hpp + extsymcount; |
| sym_count = 0; |
| for (; hpp < hppend; hpp++) |
| { |
| h = *hpp; |
| if (h != NULL |
| && h->root.type == bfd_link_hash_defined |
| && !bed->is_function_type (h->type)) |
| { |
| *sym_hash = h; |
| sym_hash++; |
| sym_count++; |
| } |
| } |
| |
| qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), |
| elf_sort_symbol); |
| |
| while (weaks != NULL) |
| { |
| struct elf_link_hash_entry *hlook; |
| asection *slook; |
| bfd_vma vlook; |
| size_t i, j, idx = 0; |
| |
| hlook = weaks; |
| weaks = hlook->u.alias; |
| hlook->u.alias = NULL; |
| |
| if (hlook->root.type != bfd_link_hash_defined |
| && hlook->root.type != bfd_link_hash_defweak) |
| continue; |
| |
| slook = hlook->root.u.def.section; |
| vlook = hlook->root.u.def.value; |
| |
| i = 0; |
| j = sym_count; |
| while (i != j) |
| { |
| bfd_signed_vma vdiff; |
| idx = (i + j) / 2; |
| h = sorted_sym_hash[idx]; |
| vdiff = vlook - h->root.u.def.value; |
| if (vdiff < 0) |
| j = idx; |
| else if (vdiff > 0) |
| i = idx + 1; |
| else |
| { |
| int sdiff = slook->id - h->root.u.def.section->id; |
| if (sdiff < 0) |
| j = idx; |
| else if (sdiff > 0) |
| i = idx + 1; |
| else |
| break; |
| } |
| } |
| |
| /* We didn't find a value/section match. */ |
| if (i == j) |
| continue; |
| |
| /* With multiple aliases, or when the weak symbol is already |
| strongly defined, we have multiple matching symbols and |
| the binary search above may land on any of them. Step |
| one past the matching symbol(s). */ |
| while (++idx != j) |
| { |
| h = sorted_sym_hash[idx]; |
| if (h->root.u.def.section != slook |
| || h->root.u.def.value != vlook) |
| break; |
| } |
| |
| /* Now look back over the aliases. Since we sorted by size |
| as well as value and section, we'll choose the one with |
| the largest size. */ |
| while (idx-- != i) |
| { |
| h = sorted_sym_hash[idx]; |
| |
| /* Stop if value or section doesn't match. */ |
| if (h->root.u.def.section != slook |
| || h->root.u.def.value != vlook) |
| break; |
| else if (h != hlook) |
| { |
| struct elf_link_hash_entry *t; |
| |
| hlook->u.alias = h; |
| hlook->is_weakalias = 1; |
| t = h; |
| if (t->u.alias != NULL) |
| while (t->u.alias != h) |
| t = t->u.alias; |
| t->u.alias = hlook; |
| |
| /* If the weak definition is in the list of dynamic |
| symbols, make sure the real definition is put |
| there as well. */ |
| if (hlook->dynindx != -1 && h->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| { |
| err_free_sym_hash: |
| free (sorted_sym_hash); |
| goto error_return; |
| } |
| } |
| |
| /* If the real definition is in the list of dynamic |
| symbols, make sure the weak definition is put |
| there as well. If we don't do this, then the |
| dynamic loader might not merge the entries for the |
| real definition and the weak definition. */ |
| if (h->dynindx != -1 && hlook->dynindx == -1) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) |
| goto err_free_sym_hash; |
| } |
| break; |
| } |
| } |
| } |
| |
| free (sorted_sym_hash); |
| } |
| |
| if (bed->check_directives |
| && !(*bed->check_directives) (abfd, info)) |
| return FALSE; |
| |
| /* If this is a non-traditional link, try to optimize the handling |
| of the .stab/.stabstr sections. */ |
| if (! dynamic |
| && ! info->traditional_format |
| && is_elf_hash_table (htab) |
| && (info->strip != strip_all && info->strip != strip_debugger)) |
| { |
| asection *stabstr; |
| |
| stabstr = bfd_get_section_by_name (abfd, ".stabstr"); |
| if (stabstr != NULL) |
| { |
| bfd_size_type string_offset = 0; |
| asection *stab; |
| |
| for (stab = abfd->sections; stab; stab = stab->next) |
| if (CONST_STRNEQ (stab->name, ".stab") |
| && (!stab->name[5] || |
| (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) |
| && (stab->flags & SEC_MERGE) == 0 |
| && !bfd_is_abs_section (stab->output_section)) |
| { |
| struct bfd_elf_section_data *secdata; |
| |
| secdata = elf_section_data (stab); |
| if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, |
| stabstr, &secdata->sec_info, |
| &string_offset)) |
| goto error_return; |
| if (secdata->sec_info) |
| stab->sec_info_type = SEC_INFO_TYPE_STABS; |
| } |
| } |
| } |
| |
| if (dynamic && add_needed) |
| { |
| /* Add this bfd to the loaded list. */ |
| struct elf_link_loaded_list *n; |
| |
| n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); |
| if (n == NULL) |
| goto error_return; |
| n->abfd = abfd; |
| n->next = htab->dyn_loaded; |
| htab->dyn_loaded = n; |
| } |
| if (dynamic && !add_needed |
| && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0) |
| elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED; |
| |
| return TRUE; |
| |
| error_free_vers: |
| free (old_tab); |
| free (old_strtab); |
| free (nondeflt_vers); |
| free (extversym); |
| error_free_sym: |
| free (isymbuf); |
| error_return: |
| return FALSE; |
| } |
| |
| /* Return the linker hash table entry of a symbol that might be |
| satisfied by an archive symbol. Return -1 on error. */ |
| |
| struct elf_link_hash_entry * |
| _bfd_elf_archive_symbol_lookup (bfd *abfd, |
| struct bfd_link_info *info, |
| const char *name) |
| { |
| struct elf_link_hash_entry *h; |
| char *p, *copy; |
| size_t len, first; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); |
| if (h != NULL) |
| return h; |
| |
| /* If this is a default version (the name contains @@), look up the |
| symbol again with only one `@' as well as without the version. |
| The effect is that references to the symbol with and without the |
| version will be matched by the default symbol in the archive. */ |
| |
| p = strchr (name, ELF_VER_CHR); |
| if (p == NULL || p[1] != ELF_VER_CHR) |
| return h; |
| |
| /* First check with only one `@'. */ |
| len = strlen (name); |
| copy = (char *) bfd_alloc (abfd, len); |
| if (copy == NULL) |
| return (struct elf_link_hash_entry *) -1; |
| |
| first = p - name + 1; |
| memcpy (copy, name, first); |
| memcpy (copy + first, name + first + 1, len - first); |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE); |
| if (h == NULL) |
| { |
| /* We also need to check references to the symbol without the |
| version. */ |
| copy[first - 1] = '\0'; |
| h = elf_link_hash_lookup (elf_hash_table (info), copy, |
| FALSE, FALSE, TRUE); |
| } |
| |
| bfd_release (abfd, copy); |
| return h; |
| } |
| |
| /* Add symbols from an ELF archive file to the linker hash table. We |
| don't use _bfd_generic_link_add_archive_symbols because we need to |
| handle versioned symbols. |
| |
| Fortunately, ELF archive handling is simpler than that done by |
| _bfd_generic_link_add_archive_symbols, which has to allow for a.out |
| oddities. In ELF, if we find a symbol in the archive map, and the |
| symbol is currently undefined, we know that we must pull in that |
| object file. |
| |
| Unfortunately, we do have to make multiple passes over the symbol |
| table until nothing further is resolved. */ |
| |
| static bfd_boolean |
| elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) |
| { |
| symindex c; |
| unsigned char *included = NULL; |
| carsym *symdefs; |
| bfd_boolean loop; |
| size_t amt; |
| const struct elf_backend_data *bed; |
| struct elf_link_hash_entry * (*archive_symbol_lookup) |
| (bfd *, struct bfd_link_info *, const char *); |
| |
| if (! bfd_has_map (abfd)) |
| { |
| /* An empty archive is a special case. */ |
| if (bfd_openr_next_archived_file (abfd, NULL) == NULL) |
| return TRUE; |
| bfd_set_error (bfd_error_no_armap); |
| return FALSE; |
| } |
| |
| /* Keep track of all symbols we know to be already defined, and all |
| files we know to be already included. This is to speed up the |
| second and subsequent passes. */ |
| c = bfd_ardata (abfd)->symdef_count; |
| if (c == 0) |
| return TRUE; |
| amt = c * sizeof (*included); |
| included = (unsigned char *) bfd_zmalloc (amt); |
| if (included == NULL) |
| return FALSE; |
| |
| symdefs = bfd_ardata (abfd)->symdefs; |
| bed = get_elf_backend_data (abfd); |
| archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; |
| |
| do |
| { |
| file_ptr last; |
| symindex i; |
| carsym *symdef; |
| carsym *symdefend; |
| |
| loop = FALSE; |
| last = -1; |
| |
| symdef = symdefs; |
| symdefend = symdef + c; |
| for (i = 0; symdef < symdefend; symdef++, i++) |
| { |
| struct elf_link_hash_entry *h; |
| bfd *element; |
| struct bfd_link_hash_entry *undefs_tail; |
| symindex mark; |
| |
| if (included[i]) |
| continue; |
| if (symdef->file_offset == last) |
| { |
| included[i] = TRUE; |
| continue; |
| } |
| |
| h = archive_symbol_lookup (abfd, info, symdef->name); |
| if (h == (struct elf_link_hash_entry *) -1) |
| goto error_return; |
| |
| if (h == NULL) |
| continue; |
| |
| if (h->root.type == bfd_link_hash_common) |
| { |
| /* We currently have a common symbol. The archive map contains |
| a reference to this symbol, so we may want to include it. We |
| only want to include it however, if this archive element |
| contains a definition of the symbol, not just another common |
| declaration of it. |
| |
| Unfortunately some archivers (including GNU ar) will put |
| declarations of common symbols into their archive maps, as |
| well as real definitions, so we cannot just go by the archive |
| map alone. Instead we must read in the element's symbol |
| table and check that to see what kind of symbol definition |
| this is. */ |
| if (! elf_link_is_defined_archive_symbol (abfd, symdef)) |
| continue; |
| } |
| else if (h->root.type != bfd_link_hash_undefined) |
| { |
| if (h->root.type != bfd_link_hash_undefweak) |
| /* Symbol must be defined. Don't check it again. */ |
| included[i] = TRUE; |
| continue; |
| } |
| |
| /* We need to include this archive member. */ |
| element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); |
| if (element == NULL) |
| goto error_return; |
| |
| if (! bfd_check_format (element, bfd_object)) |
| goto error_return; |
| |
| undefs_tail = info->hash->undefs_tail; |
| |
| if (!(*info->callbacks |
| ->add_archive_element) (info, element, symdef->name, &element)) |
| continue; |
| if (!bfd_link_add_symbols (element, info)) |
| goto error_return; |
| |
| /* If there are any new undefined symbols, we need to make |
| another pass through the archive in order to see whether |
| they can be defined. FIXME: This isn't perfect, because |
| common symbols wind up on undefs_tail and because an |
| undefined symbol which is defined later on in this pass |
| does not require another pass. This isn't a bug, but it |
| does make the code less efficient than it could be. */ |
| if (undefs_tail != info->hash->undefs_tail) |
| loop = TRUE; |
| |
| /* Look backward to mark all symbols from this object file |
| which we have already seen in this pass. */ |
| mark = i; |
| do |
| { |
| included[mark] = TRUE; |
| if (mark == 0) |
| break; |
| --mark; |
| } |
| while (symdefs[mark].file_offset == symdef->file_offset); |
| |
| /* We mark subsequent symbols from this object file as we go |
| on through the loop. */ |
| last = symdef->file_offset; |
| } |
| } |
| while (loop); |
| |
| free (included); |
| return TRUE; |
| |
| error_return: |
| free (included); |
| return FALSE; |
| } |
| |
| /* Given an ELF BFD, add symbols to the global hash table as |
| appropriate. */ |
| |
| bfd_boolean |
| bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) |
| { |
| switch (bfd_get_format (abfd)) |
| { |
| case bfd_object: |
| return elf_link_add_object_symbols (abfd, info); |
| case bfd_archive: |
| return elf_link_add_archive_symbols (abfd, info); |
| default: |
| bfd_set_error (bfd_error_wrong_format); |
| return FALSE; |
| } |
| } |
| |
| struct hash_codes_info |
| { |
| unsigned long *hashcodes; |
| bfd_boolean error; |
| }; |
| |
| /* This function will be called though elf_link_hash_traverse to store |
| all hash value of the exported symbols in an array. */ |
| |
| static bfd_boolean |
| elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) |
| { |
| struct hash_codes_info *inf = (struct hash_codes_info *) data; |
| const char *name; |
| unsigned long ha; |
| char *alc = NULL; |
| |
| /* Ignore indirect symbols. These are added by the versioning code. */ |
| if (h->dynindx == -1) |
| return TRUE; |
| |
| name = h->root.root.string; |
| if (h->versioned >= versioned) |
| { |
| char *p = strchr (name, ELF_VER_CHR); |
| if (p != NULL) |
| { |
| alc = (char *) bfd_malloc (p - name + 1); |
| if (alc == NULL) |
| { |
| inf->error = TRUE; |
| return FALSE; |
| } |
| memcpy (alc, name, p - name); |
| alc[p - name] = '\0'; |
| name = alc; |
| } |
| } |
| |
| /* Compute the hash value. */ |
| ha = bfd_elf_hash (name); |
| |
| /* Store the found hash value in the array given as the argument. */ |
| *(inf->hashcodes)++ = ha; |
| |
| /* And store it in the struct so that we can put it in the hash table |
| later. */ |
| h->u.elf_hash_value = ha; |
| |
| free (alc); |
| return TRUE; |
| } |
| |
| struct collect_gnu_hash_codes |
| { |
| bfd *output_bfd; |
| const struct elf_backend_data *bed; |
| unsigned long int nsyms; |
| unsigned long int maskbits; |
| unsigned long int *hashcodes; |
| unsigned long int *hashval; |
| unsigned long int *indx; |
| unsigned long int *counts; |
| bfd_vma *bitmask; |
| bfd_byte *contents; |
| bfd_size_type xlat; |
| long int min_dynindx; |
| unsigned long int bucketcount; |
| unsigned long int symindx; |
| long int local_indx; |
| long int shift1, shift2; |
| unsigned long int mask; |
| bfd_boolean error; |
| }; |
| |
| /* This function will be called though elf_link_hash_traverse to store |
| all hash value of the exported symbols in an array. */ |
| |
| static bfd_boolean |
| elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) |
| { |
| struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
| const char *name; |
| unsigned long ha; |
| char *alc = NULL; |
| |
| /* Ignore indirect symbols. These are added by the versioning code. */ |
| if (h->dynindx == -1) |
| return TRUE; |
| |
| /* Ignore also local symbols and undefined symbols. */ |
| if (! (*s->bed->elf_hash_symbol) (h)) |
| return TRUE; |
| |
| name = h->root.root.string; |
| if (h->versioned >= versioned) |
| { |
| char *p = strchr (name, ELF_VER_CHR); |
| if (p != NULL) |
| { |
| alc = (char *) bfd_malloc (p - name + 1); |
| if (alc == NULL) |
| { |
| s->error = TRUE; |
| return FALSE; |
| } |
| memcpy (alc, name, p - name); |
| alc[p - name] = '\0'; |
| name = alc; |
| } |
| } |
| |
| /* Compute the hash value. */ |
| ha = bfd_elf_gnu_hash (name); |
| |
| /* Store the found hash value in the array for compute_bucket_count, |
| and also for .dynsym reordering purposes. */ |
| s->hashcodes[s->nsyms] = ha; |
| s->hashval[h->dynindx] = ha; |
| ++s->nsyms; |
| if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) |
| s->min_dynindx = h->dynindx; |
| |
| free (alc); |
| return TRUE; |
| } |
| |
| /* This function will be called though elf_link_hash_traverse to do |
| final dynamic symbol renumbering in case of .gnu.hash. |
| If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index |
| to the translation table. */ |
| |
| static bfd_boolean |
| elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) |
| { |
| struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; |
| unsigned long int bucket; |
| unsigned long int val; |
| |
| /* Ignore indirect symbols. */ |
| if (h->dynindx == -1) |
| return TRUE; |
| |
| /* Ignore also local symbols and undefined symbols. */ |
| if (! (*s->bed->elf_hash_symbol) (h)) |
| { |
| if (h->dynindx >= s->min_dynindx) |
| { |
| if (s->bed->record_xhash_symbol != NULL) |
| { |
| (*s->bed->record_xhash_symbol) (h, 0); |
| s->local_indx++; |
| } |
| else |
| h->dynindx = s->local_indx++; |
| } |
| return TRUE; |
| } |
| |
| bucket = s->hashval[h->dynindx] % s->bucketcount; |
| val = (s->hashval[h->dynindx] >> s->shift1) |
| & ((s->maskbits >> s->shift1) - 1); |
| s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); |
| s->bitmask[val] |
| |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); |
| val = s->hashval[h->dynindx] & ~(unsigned long int) 1; |
| if (s->counts[bucket] == 1) |
| /* Last element terminates the chain. */ |
| val |= 1; |
| bfd_put_32 (s->output_bfd, val, |
| s->contents + (s->indx[bucket] - s->symindx) * 4); |
| --s->counts[bucket]; |
| if (s->bed->record_xhash_symbol != NULL) |
| { |
| bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; |
| |
| (*s->bed->record_xhash_symbol) (h, xlat_loc); |
| } |
| else |
| h->dynindx = s->indx[bucket]++; |
| return TRUE; |
| } |
| |
| /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
| |
| bfd_boolean |
| _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) |
| { |
| return !(h->forced_local |
| || h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak |
| || ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->root.u.def.section->output_section == NULL)); |
| } |
| |
| /* Array used to determine the number of hash table buckets to use |
| based on the number of symbols there are. If there are fewer than |
| 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, |
| fewer than 37 we use 17 buckets, and so forth. We never use more |
| than 32771 buckets. */ |
| |
| static const size_t elf_buckets[] = |
| { |
| 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, |
| 16411, 32771, 0 |
| }; |
| |
| /* Compute bucket count for hashing table. We do not use a static set |
| of possible tables sizes anymore. Instead we determine for all |
| possible reasonable sizes of the table the outcome (i.e., the |
| number of collisions etc) and choose the best solution. The |
| weighting functions are not too simple to allow the table to grow |
| without bounds. Instead one of the weighting factors is the size. |
| Therefore the result is always a good payoff between few collisions |
| (= short chain lengths) and table size. */ |
| static size_t |
| compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| unsigned long int *hashcodes ATTRIBUTE_UNUSED, |
| unsigned long int nsyms, |
| int gnu_hash) |
| { |
| size_t best_size = 0; |
| unsigned long int i; |
| |
| /* We have a problem here. The following code to optimize the table |
| size requires an integer type with more the 32 bits. If |
| BFD_HOST_U_64_BIT is set we know about such a type. */ |
| #ifdef BFD_HOST_U_64_BIT |
| if (info->optimize) |
| { |
| size_t minsize; |
| size_t maxsize; |
| BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); |
| bfd *dynobj = elf_hash_table (info)->dynobj; |
| size_t dynsymcount = elf_hash_table (info)->dynsymcount; |
| const struct elf_backend_data *bed = get_elf_backend_data (dynobj); |
| unsigned long int *counts; |
| bfd_size_type amt; |
| unsigned int no_improvement_count = 0; |
| |
| /* Possible optimization parameters: if we have NSYMS symbols we say |
| that the hashing table must at least have NSYMS/4 and at most |
| 2*NSYMS buckets. */ |
| minsize = nsyms / 4; |
| if (minsize == 0) |
| minsize = 1; |
| best_size = maxsize = nsyms * 2; |
| if (gnu_hash) |
| { |
| if (minsize < 2) |
| minsize = 2; |
| if ((best_size & 31) == 0) |
| ++best_size; |
| } |
| |
| /* Create array where we count the collisions in. We must use bfd_malloc |
| since the size could be large. */ |
| amt = maxsize; |
| amt *= sizeof (unsigned long int); |
| counts = (unsigned long int *) bfd_malloc (amt); |
| if (counts == NULL) |
| return 0; |
| |
| /* Compute the "optimal" size for the hash table. The criteria is a |
| minimal chain length. The minor criteria is (of course) the size |
| of the table. */ |
| for (i = minsize; i < maxsize; ++i) |
| { |
| /* Walk through the array of hashcodes and count the collisions. */ |
| BFD_HOST_U_64_BIT max; |
| unsigned long int j; |
| unsigned long int fact; |
| |
| if (gnu_hash && (i & 31) == 0) |
| continue; |
| |
| memset (counts, '\0', i * sizeof (unsigned long int)); |
| |
| /* Determine how often each hash bucket is used. */ |
| for (j = 0; j < nsyms; ++j) |
| ++counts[hashcodes[j] % i]; |
| |
| /* For the weight function we need some information about the |
| pagesize on the target. This is information need not be 100% |
| accurate. Since this information is not available (so far) we |
| define it here to a reasonable default value. If it is crucial |
| to have a better value some day simply define this value. */ |
| # ifndef BFD_TARGET_PAGESIZE |
| # define BFD_TARGET_PAGESIZE (4096) |
| # endif |
| |
| /* We in any case need 2 + DYNSYMCOUNT entries for the size values |
| and the chains. */ |
| max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; |
| |
| # if 1 |
| /* Variant 1: optimize for short chains. We add the squares |
| of all the chain lengths (which favors many small chain |
| over a few long chains). */ |
| for (j = 0; j < i; ++j) |
| max += counts[j] * counts[j]; |
| |
| /* This adds penalties for the overall size of the table. */ |
| fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
| max *= fact * fact; |
| # else |
| /* Variant 2: Optimize a lot more for small table. Here we |
| also add squares of the size but we also add penalties for |
| empty slots (the +1 term). */ |
| for (j = 0; j < i; ++j) |
| max += (1 + counts[j]) * (1 + counts[j]); |
| |
| /* The overall size of the table is considered, but not as |
| strong as in variant 1, where it is squared. */ |
| fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; |
| max *= fact; |
| # endif |
| |
| /* Compare with current best results. */ |
| if (max < best_chlen) |
| { |
| best_chlen = max; |
| best_size = i; |
| no_improvement_count = 0; |
| } |
| /* PR 11843: Avoid futile long searches for the best bucket size |
| when there are a large number of symbols. */ |
| else if (++no_improvement_count == 100) |
| break; |
| } |
| |
| free (counts); |
| } |
| else |
| #endif /* defined (BFD_HOST_U_64_BIT) */ |
| { |
| /* This is the fallback solution if no 64bit type is available or if we |
| are not supposed to spend much time on optimizations. We select the |
| bucket count using a fixed set of numbers. */ |
| for (i = 0; elf_buckets[i] != 0; i++) |
| { |
| best_size = elf_buckets[i]; |
| if (nsyms < elf_buckets[i + 1]) |
| break; |
| } |
| if (gnu_hash && best_size < 2) |
| best_size = 2; |
| } |
| |
| return best_size; |
| } |
| |
| /* Size any SHT_GROUP section for ld -r. */ |
| |
| bfd_boolean |
| _bfd_elf_size_group_sections (struct bfd_link_info *info) |
| { |
| bfd *ibfd; |
| asection *s; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
| && (s = ibfd->sections) != NULL |
| && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS |
| && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) |
| return FALSE; |
| return TRUE; |
| } |
| |
| /* Set a default stack segment size. The value in INFO wins. If it |
| is unset, LEGACY_SYMBOL's value is used, and if that symbol is |
| undefined it is initialized. */ |
| |
| bfd_boolean |
| bfd_elf_stack_segment_size (bfd *output_bfd, |
| struct bfd_link_info *info, |
| const char *legacy_symbol, |
| bfd_vma default_size) |
| { |
| struct elf_link_hash_entry *h = NULL; |
| |
| /* Look for legacy symbol. */ |
| if (legacy_symbol) |
| h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, |
| FALSE, FALSE, FALSE); |
| if (h && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && h->def_regular |
| && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) |
| { |
| /* The symbol has no type if specified on the command line. */ |
| h->type = STT_OBJECT; |
| if (info->stacksize) |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: stack size specified and %s set"), |
| output_bfd, legacy_symbol); |
| else if (h->root.u.def.section != bfd_abs_section_ptr) |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: %s not absolute"), |
| output_bfd, legacy_symbol); |
| else |
| info->stacksize = h->root.u.def.value; |
| } |
| |
| if (!info->stacksize) |
| /* If the user didn't set a size, or explicitly inhibit the |
| size, set it now. */ |
| info->stacksize = default_size; |
| |
| /* Provide the legacy symbol, if it is referenced. */ |
| if (h && (h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak)) |
| { |
| struct bfd_link_hash_entry *bh = NULL; |
| |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, output_bfd, legacy_symbol, |
| BSF_GLOBAL, bfd_abs_section_ptr, |
| info->stacksize >= 0 ? info->stacksize : 0, |
| NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ |
| |
| struct elf_gc_sweep_symbol_info |
| { |
| struct bfd_link_info *info; |
| void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, |
| bfd_boolean); |
| }; |
| |
| static bfd_boolean |
| elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) |
| { |
| if (!h->mark |
| && (((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && !((h->def_regular || ELF_COMMON_DEF_P (h)) |
| && h->root.u.def.section->gc_mark)) |
| || h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak)) |
| { |
| struct elf_gc_sweep_symbol_info *inf; |
| |
| inf = (struct elf_gc_sweep_symbol_info *) data; |
| (*inf->hide_symbol) (inf->info, h, TRUE); |
| h->def_regular = 0; |
| h->ref_regular = 0; |
| h->ref_regular_nonweak = 0; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set up the sizes and contents of the ELF dynamic sections. This is |
| called by the ELF linker emulation before_allocation routine. We |
| must set the sizes of the sections before the linker sets the |
| addresses of the various sections. */ |
| |
| bfd_boolean |
| bfd_elf_size_dynamic_sections (bfd *output_bfd, |
| const char *soname, |
| const char *rpath, |
| const char *filter_shlib, |
| const char *audit, |
| const char *depaudit, |
| const char * const *auxiliary_filters, |
| struct bfd_link_info *info, |
| asection **sinterpptr) |
| { |
| bfd *dynobj; |
| const struct elf_backend_data *bed; |
| |
| *sinterpptr = NULL; |
| |
| if (!is_elf_hash_table (info->hash)) |
| return TRUE; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
| { |
| struct bfd_elf_version_tree *verdefs; |
| struct elf_info_failed asvinfo; |
| struct bfd_elf_version_tree *t; |
| struct bfd_elf_version_expr *d; |
| asection *s; |
| size_t soname_indx; |
| |
| /* If we are supposed to export all symbols into the dynamic symbol |
| table (this is not the normal case), then do so. */ |
| if (info->export_dynamic |
| || (bfd_link_executable (info) && info->dynamic)) |
| { |
| struct elf_info_failed eif; |
| |
| eif.info = info; |
| eif.failed = FALSE; |
| elf_link_hash_traverse (elf_hash_table (info), |
| _bfd_elf_export_symbol, |
| &eif); |
| if (eif.failed) |
| return FALSE; |
| } |
| |
| if (soname != NULL) |
| { |
| soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| soname, TRUE); |
| if (soname_indx == (size_t) -1 |
| || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) |
| return FALSE; |
| } |
| else |
| soname_indx = (size_t) -1; |
| |
| /* Make all global versions with definition. */ |
| for (t = info->version_info; t != NULL; t = t->next) |
| for (d = t->globals.list; d != NULL; d = d->next) |
| if (!d->symver && d->literal) |
| { |
| const char *verstr, *name; |
| size_t namelen, verlen, newlen; |
| char *newname, *p, leading_char; |
| struct elf_link_hash_entry *newh; |
| |
| leading_char = bfd_get_symbol_leading_char (output_bfd); |
| name = d->pattern; |
| namelen = strlen (name) + (leading_char != '\0'); |
| verstr = t->name; |
| verlen = strlen (verstr); |
| newlen = namelen + verlen + 3; |
| |
| newname = (char *) bfd_malloc (newlen); |
| if (newname == NULL) |
| return FALSE; |
| newname[0] = leading_char; |
| memcpy (newname + (leading_char != '\0'), name, namelen); |
| |
| /* Check the hidden versioned definition. */ |
| p = newname + namelen; |
| *p++ = ELF_VER_CHR; |
| memcpy (p, verstr, verlen + 1); |
| newh = elf_link_hash_lookup (elf_hash_table (info), |
| newname, FALSE, FALSE, |
| FALSE); |
| if (newh == NULL |
| || (newh->root.type != bfd_link_hash_defined |
| && newh->root.type != bfd_link_hash_defweak)) |
| { |
| /* Check the default versioned definition. */ |
| *p++ = ELF_VER_CHR; |
| memcpy (p, verstr, verlen + 1); |
| newh = elf_link_hash_lookup (elf_hash_table (info), |
| newname, FALSE, FALSE, |
| FALSE); |
| } |
| free (newname); |
| |
| /* Mark this version if there is a definition and it is |
| not defined in a shared object. */ |
| if (newh != NULL |
| && !newh->def_dynamic |
| && (newh->root.type == bfd_link_hash_defined |
| || newh->root.type == bfd_link_hash_defweak)) |
| d->symver = 1; |
| } |
| |
| /* Attach all the symbols to their version information. */ |
| asvinfo.info = info; |
| asvinfo.failed = FALSE; |
| |
| elf_link_hash_traverse (elf_hash_table (info), |
| _bfd_elf_link_assign_sym_version, |
| &asvinfo); |
| if (asvinfo.failed) |
| return FALSE; |
| |
| if (!info->allow_undefined_version) |
| { |
| /* Check if all global versions have a definition. */ |
| bfd_boolean all_defined = TRUE; |
| for (t = info->version_info; t != NULL; t = t->next) |
| for (d = t->globals.list; d != NULL; d = d->next) |
| if (d->literal && !d->symver && !d->script) |
| { |
| _bfd_error_handler |
| (_("%s: undefined version: %s"), |
| d->pattern, t->name); |
| all_defined = FALSE; |
| } |
| |
| if (!all_defined) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| /* Set up the version definition section. */ |
| s = bfd_get_linker_section (dynobj, ".gnu.version_d"); |
| BFD_ASSERT (s != NULL); |
| |
| /* We may have created additional version definitions if we are |
| just linking a regular application. */ |
| verdefs = info->version_info; |
| |
| /* Skip anonymous version tag. */ |
| if (verdefs != NULL && verdefs->vernum == 0) |
| verdefs = verdefs->next; |
| |
| if (verdefs == NULL && !info->create_default_symver) |
| s->flags |= SEC_EXCLUDE; |
| else |
| { |
| unsigned int cdefs; |
| bfd_size_type size; |
| bfd_byte *p; |
| Elf_Internal_Verdef def; |
| Elf_Internal_Verdaux defaux; |
| struct bfd_link_hash_entry *bh; |
| struct elf_link_hash_entry *h; |
| const char *name; |
| |
| cdefs = 0; |
| size = 0; |
| |
| /* Make space for the base version. */ |
| size += sizeof (Elf_External_Verdef); |
| size += sizeof (Elf_External_Verdaux); |
| ++cdefs; |
| |
| /* Make space for the default version. */ |
| if (info->create_default_symver) |
| { |
| size += sizeof (Elf_External_Verdef); |
| ++cdefs; |
| } |
| |
| for (t = verdefs; t != NULL; t = t->next) |
| { |
| struct bfd_elf_version_deps *n; |
| |
| /* Don't emit base version twice. */ |
| if (t->vernum == 0) |
| continue; |
| |
| size += sizeof (Elf_External_Verdef); |
| size += sizeof (Elf_External_Verdaux); |
| ++cdefs; |
| |
| for (n = t->deps; n != NULL; n = n->next) |
| size += sizeof (Elf_External_Verdaux); |
| } |
| |
| s->size = size; |
| s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
| if (s->contents == NULL && s->size != 0) |
| return FALSE; |
| |
| /* Fill in the version definition section. */ |
| |
| p = s->contents; |
| |
| def.vd_version = VER_DEF_CURRENT; |
| def.vd_flags = VER_FLG_BASE; |
| def.vd_ndx = 1; |
| def.vd_cnt = 1; |
| if (info->create_default_symver) |
| { |
| def.vd_aux = 2 * sizeof (Elf_External_Verdef); |
| def.vd_next = sizeof (Elf_External_Verdef); |
| } |
| else |
| { |
| def.vd_aux = sizeof (Elf_External_Verdef); |
| def.vd_next = (sizeof (Elf_External_Verdef) |
| + sizeof (Elf_External_Verdaux)); |
| } |
| |
| if (soname_indx != (size_t) -1) |
| { |
| _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
| soname_indx); |
| def.vd_hash = bfd_elf_hash (soname); |
| defaux.vda_name = soname_indx; |
| name = soname; |
| } |
| else |
| { |
| size_t indx; |
| |
| name = lbasename (bfd_get_filename (output_bfd)); |
| def.vd_hash = bfd_elf_hash (name); |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| name, FALSE); |
| if (indx == (size_t) -1) |
| return FALSE; |
| defaux.vda_name = indx; |
| } |
| defaux.vda_next = 0; |
| |
| _bfd_elf_swap_verdef_out (output_bfd, &def, |
| (Elf_External_Verdef *) p); |
| p += sizeof (Elf_External_Verdef); |
| if (info->create_default_symver) |
| { |
| /* Add a symbol representing this version. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, |
| 0, NULL, FALSE, |
| get_elf_backend_data (dynobj)->collect, &bh))) |
| return FALSE; |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| h->verinfo.vertree = NULL; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| /* Create a duplicate of the base version with the same |
| aux block, but different flags. */ |
| def.vd_flags = 0; |
| def.vd_ndx = 2; |
| def.vd_aux = sizeof (Elf_External_Verdef); |
| if (verdefs) |
| def.vd_next = (sizeof (Elf_External_Verdef) |
| + sizeof (Elf_External_Verdaux)); |
| else |
| def.vd_next = 0; |
| _bfd_elf_swap_verdef_out (output_bfd, &def, |
| (Elf_External_Verdef *) p); |
| p += sizeof (Elf_External_Verdef); |
| } |
| _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| (Elf_External_Verdaux *) p); |
| p += sizeof (Elf_External_Verdaux); |
| |
| for (t = verdefs; t != NULL; t = t->next) |
| { |
| unsigned int cdeps; |
| struct bfd_elf_version_deps *n; |
| |
| /* Don't emit the base version twice. */ |
| if (t->vernum == 0) |
| continue; |
| |
| cdeps = 0; |
| for (n = t->deps; n != NULL; n = n->next) |
| ++cdeps; |
| |
| /* Add a symbol representing this version. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, |
| 0, NULL, FALSE, |
| get_elf_backend_data (dynobj)->collect, &bh))) |
| return FALSE; |
| h = (struct elf_link_hash_entry *) bh; |
| h->non_elf = 0; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| h->verinfo.vertree = t; |
| |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| def.vd_version = VER_DEF_CURRENT; |
| def.vd_flags = 0; |
| if (t->globals.list == NULL |
| && t->locals.list == NULL |
| && ! t->used) |
| def.vd_flags |= VER_FLG_WEAK; |
| def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); |
| def.vd_cnt = cdeps + 1; |
| def.vd_hash = bfd_elf_hash (t->name); |
| def.vd_aux = sizeof (Elf_External_Verdef); |
| def.vd_next = 0; |
| |
| /* If a basever node is next, it *must* be the last node in |
| the chain, otherwise Verdef construction breaks. */ |
| if (t->next != NULL && t->next->vernum == 0) |
| BFD_ASSERT (t->next->next == NULL); |
| |
| if (t->next != NULL && t->next->vernum != 0) |
| def.vd_next = (sizeof (Elf_External_Verdef) |
| + (cdeps + 1) * sizeof (Elf_External_Verdaux)); |
| |
| _bfd_elf_swap_verdef_out (output_bfd, &def, |
| (Elf_External_Verdef *) p); |
| p += sizeof (Elf_External_Verdef); |
| |
| defaux.vda_name = h->dynstr_index; |
| _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
| h->dynstr_index); |
| defaux.vda_next = 0; |
| if (t->deps != NULL) |
| defaux.vda_next = sizeof (Elf_External_Verdaux); |
| t->name_indx = defaux.vda_name; |
| |
| _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| (Elf_External_Verdaux *) p); |
| p += sizeof (Elf_External_Verdaux); |
| |
| for (n = t->deps; n != NULL; n = n->next) |
| { |
| if (n->version_needed == NULL) |
| { |
| /* This can happen if there was an error in the |
| version script. */ |
| defaux.vda_name = 0; |
| } |
| else |
| { |
| defaux.vda_name = n->version_needed->name_indx; |
| _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, |
| defaux.vda_name); |
| } |
| if (n->next == NULL) |
| defaux.vda_next = 0; |
| else |
| defaux.vda_next = sizeof (Elf_External_Verdaux); |
| |
| _bfd_elf_swap_verdaux_out (output_bfd, &defaux, |
| (Elf_External_Verdaux *) p); |
| p += sizeof (Elf_External_Verdaux); |
| } |
| } |
| |
| elf_tdata (output_bfd)->cverdefs = cdefs; |
| } |
| } |
| |
| bed = get_elf_backend_data (output_bfd); |
| |
| if (info->gc_sections && bed->can_gc_sections) |
| { |
| struct elf_gc_sweep_symbol_info sweep_info; |
| |
| /* Remove the symbols that were in the swept sections from the |
| dynamic symbol table. */ |
| sweep_info.info = info; |
| sweep_info.hide_symbol = bed->elf_backend_hide_symbol; |
| elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, |
| &sweep_info); |
| } |
| |
| if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
| { |
| asection *s; |
| struct elf_find_verdep_info sinfo; |
| |
| /* Work out the size of the version reference section. */ |
| |
| s = bfd_get_linker_section (dynobj, ".gnu.version_r"); |
| BFD_ASSERT (s != NULL); |
| |
| sinfo.info = info; |
| sinfo.vers = elf_tdata (output_bfd)->cverdefs; |
| if (sinfo.vers == 0) |
| sinfo.vers = 1; |
| sinfo.failed = FALSE; |
| |
| elf_link_hash_traverse (elf_hash_table (info), |
| _bfd_elf_link_find_version_dependencies, |
| &sinfo); |
| if (sinfo.failed) |
| return FALSE; |
| |
| if (elf_tdata (output_bfd)->verref == NULL) |
| s->flags |= SEC_EXCLUDE; |
| else |
| { |
| Elf_Internal_Verneed *vn; |
| unsigned int size; |
| unsigned int crefs; |
| bfd_byte *p; |
| |
| /* Build the version dependency section. */ |
| size = 0; |
| crefs = 0; |
| for (vn = elf_tdata (output_bfd)->verref; |
| vn != NULL; |
| vn = vn->vn_nextref) |
| { |
| Elf_Internal_Vernaux *a; |
| |
| size += sizeof (Elf_External_Verneed); |
| ++crefs; |
| for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| size += sizeof (Elf_External_Vernaux); |
| } |
| |
| s->size = size; |
| s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| |
| p = s->contents; |
| for (vn = elf_tdata (output_bfd)->verref; |
| vn != NULL; |
| vn = vn->vn_nextref) |
| { |
| unsigned int caux; |
| Elf_Internal_Vernaux *a; |
| size_t indx; |
| |
| caux = 0; |
| for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| ++caux; |
| |
| vn->vn_version = VER_NEED_CURRENT; |
| vn->vn_cnt = caux; |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| elf_dt_name (vn->vn_bfd) != NULL |
| ? elf_dt_name (vn->vn_bfd) |
| : lbasename (bfd_get_filename |
| (vn->vn_bfd)), |
| FALSE); |
| if (indx == (size_t) -1) |
| return FALSE; |
| vn->vn_file = indx; |
| vn->vn_aux = sizeof (Elf_External_Verneed); |
| if (vn->vn_nextref == NULL) |
| vn->vn_next = 0; |
| else |
| vn->vn_next = (sizeof (Elf_External_Verneed) |
| + caux * sizeof (Elf_External_Vernaux)); |
| |
| _bfd_elf_swap_verneed_out (output_bfd, vn, |
| (Elf_External_Verneed *) p); |
| p += sizeof (Elf_External_Verneed); |
| |
| for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| { |
| a->vna_hash = bfd_elf_hash (a->vna_nodename); |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| a->vna_nodename, FALSE); |
| if (indx == (size_t) -1) |
| return FALSE; |
| a->vna_name = indx; |
| if (a->vna_nextptr == NULL) |
| a->vna_next = 0; |
| else |
| a->vna_next = sizeof (Elf_External_Vernaux); |
| |
| _bfd_elf_swap_vernaux_out (output_bfd, a, |
| (Elf_External_Vernaux *) p); |
| p += sizeof (Elf_External_Vernaux); |
| } |
| } |
| |
| elf_tdata (output_bfd)->cverrefs = crefs; |
| } |
| } |
| |
| /* Any syms created from now on start with -1 in |
| got.refcount/offset and plt.refcount/offset. */ |
| elf_hash_table (info)->init_got_refcount |
| = elf_hash_table (info)->init_got_offset; |
| elf_hash_table (info)->init_plt_refcount |
| = elf_hash_table (info)->init_plt_offset; |
| |
| if (bfd_link_relocatable (info) |
| && !_bfd_elf_size_group_sections (info)) |
| return FALSE; |
| |
| /* The backend may have to create some sections regardless of whether |
| we're dynamic or not. */ |
| if (bed->elf_backend_always_size_sections |
| && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) |
| return FALSE; |
| |
| /* Determine any GNU_STACK segment requirements, after the backend |
| has had a chance to set a default segment size. */ |
| if (info->execstack) |
| elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; |
| else if (info->noexecstack) |
| elf_stack_flags (output_bfd) = PF_R | PF_W; |
| else |
| { |
| bfd *inputobj; |
| asection *notesec = NULL; |
| int exec = 0; |
| |
| for (inputobj = info->input_bfds; |
| inputobj; |
| inputobj = inputobj->link.next) |
| { |
| asection *s; |
| |
| if (inputobj->flags |
| & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) |
| continue; |
| s = inputobj->sections; |
| if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); |
| if (s) |
| { |
| if (s->flags & SEC_CODE) |
| exec = PF_X; |
| notesec = s; |
| } |
| else if (bed->default_execstack) |
| exec = PF_X; |
| } |
| if (notesec || info->stacksize > 0) |
| elf_stack_flags (output_bfd) = PF_R | PF_W | exec; |
| if (notesec && exec && bfd_link_relocatable (info) |
| && notesec->output_section != bfd_abs_section_ptr) |
| notesec->output_section->flags |= SEC_CODE; |
| } |
| |
| if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
| { |
| struct elf_info_failed eif; |
| struct elf_link_hash_entry *h; |
| asection *dynstr; |
| asection *s; |
| |
| *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); |
| |
| if (info->symbolic) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) |
| return FALSE; |
| info->flags |= DF_SYMBOLIC; |
| } |
| |
| if (rpath != NULL) |
| { |
| size_t indx; |
| bfd_vma tag; |
| |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, |
| TRUE); |
| if (indx == (size_t) -1) |
| return FALSE; |
| |
| tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; |
| if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) |
| return FALSE; |
| } |
| |
| if (filter_shlib != NULL) |
| { |
| size_t indx; |
| |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| filter_shlib, TRUE); |
| if (indx == (size_t) -1 |
| || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) |
| return FALSE; |
| } |
| |
| if (auxiliary_filters != NULL) |
| { |
| const char * const *p; |
| |
| for (p = auxiliary_filters; *p != NULL; p++) |
| { |
| size_t indx; |
| |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, |
| *p, TRUE); |
| if (indx == (size_t) -1 |
| || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) |
| return FALSE; |
| } |
| } |
| |
| if (audit != NULL) |
| { |
| size_t indx; |
| |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, |
| TRUE); |
| if (indx == (size_t) -1 |
| || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) |
| return FALSE; |
| } |
| |
| if (depaudit != NULL) |
| { |
| size_t indx; |
| |
| indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, |
| TRUE); |
| if (indx == (size_t) -1 |
| || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) |
| return FALSE; |
| } |
| |
| eif.info = info; |
| eif.failed = FALSE; |
| |
| /* Find all symbols which were defined in a dynamic object and make |
| the backend pick a reasonable value for them. */ |
| elf_link_hash_traverse (elf_hash_table (info), |
| _bfd_elf_adjust_dynamic_symbol, |
| &eif); |
| if (eif.failed) |
| return FALSE; |
| |
| /* Add some entries to the .dynamic section. We fill in some of the |
| values later, in bfd_elf_final_link, but we must add the entries |
| now so that we know the final size of the .dynamic section. */ |
| |
| /* If there are initialization and/or finalization functions to |
| call then add the corresponding DT_INIT/DT_FINI entries. */ |
| h = (info->init_function |
| ? elf_link_hash_lookup (elf_hash_table (info), |
| info->init_function, FALSE, |
| FALSE, FALSE) |
| : NULL); |
| if (h != NULL |
| && (h->ref_regular |
| || h->def_regular)) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) |
| return FALSE; |
| } |
| h = (info->fini_function |
| ? elf_link_hash_lookup (elf_hash_table (info), |
| info->fini_function, FALSE, |
| FALSE, FALSE) |
| : NULL); |
| if (h != NULL |
| && (h->ref_regular |
| || h->def_regular)) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) |
| return FALSE; |
| } |
| |
| s = bfd_get_section_by_name (output_bfd, ".preinit_array"); |
| if (s != NULL && s->linker_has_input) |
| { |
| /* DT_PREINIT_ARRAY is not allowed in shared library. */ |
| if (! bfd_link_executable (info)) |
| { |
| bfd *sub; |
| asection *o; |
| |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| if (bfd_get_flavour (sub) == bfd_target_elf_flavour |
| && (o = sub->sections) != NULL |
| && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) |
| for (o = sub->sections; o != NULL; o = o->next) |
| if (elf_section_data (o)->this_hdr.sh_type |
| == SHT_PREINIT_ARRAY) |
| { |
| _bfd_error_handler |
| (_("%pB: .preinit_array section is not allowed in DSO"), |
| sub); |
| break; |
| } |
| |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| |
| if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) |
| return FALSE; |
| } |
| s = bfd_get_section_by_name (output_bfd, ".init_array"); |
| if (s != NULL && s->linker_has_input) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) |
| return FALSE; |
| } |
| s = bfd_get_section_by_name (output_bfd, ".fini_array"); |
| if (s != NULL && s->linker_has_input) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) |
| return FALSE; |
| } |
| |
| dynstr = bfd_get_linker_section (dynobj, ".dynstr"); |
| /* If .dynstr is excluded from the link, we don't want any of |
| these tags. Strictly, we should be checking each section |
| individually; This quick check covers for the case where |
| someone does a /DISCARD/ : { *(*) }. */ |
| if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) |
| { |
| bfd_size_type strsize; |
| |
| strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
| if ((info->emit_hash |
| && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) |
| || (info->emit_gnu_hash |
| && (bed->record_xhash_symbol == NULL |
| && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) |
| || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) |
| || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, |
| bed->s->sizeof_sym)) |
| return FALSE; |
| } |
| } |
| |
| if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) |
| return FALSE; |
| |
| /* The backend must work out the sizes of all the other dynamic |
| sections. */ |
| if (dynobj != NULL |
| && bed->elf_backend_size_dynamic_sections != NULL |
| && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) |
| return FALSE; |
| |
| if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) |
| { |
| if (elf_tdata (output_bfd)->cverdefs) |
| { |
| unsigned int crefs = elf_tdata (output_bfd)->cverdefs; |
| |
| if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) |
| return FALSE; |
| } |
| |
| if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) |
| return FALSE; |
| } |
| else if (info->flags & DF_BIND_NOW) |
| { |
| if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) |
| return FALSE; |
| } |
| |
| if (info->flags_1) |
| { |
| if (bfd_link_executable (info)) |
| info->flags_1 &= ~ (DF_1_INITFIRST |
| | DF_1_NODELETE |
| | DF_1_NOOPEN); |
| if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) |
| return FALSE; |
| } |
| |
| if (elf_tdata (output_bfd)->cverrefs) |
| { |
| unsigned int crefs = elf_tdata (output_bfd)->cverrefs; |
| |
| if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) |
| || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) |
| return FALSE; |
| } |
| |
| if ((elf_tdata (output_bfd)->cverrefs == 0 |
| && elf_tdata (output_bfd)->cverdefs == 0) |
| || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) |
| { |
| asection *s; |
| |
| s = bfd_get_linker_section (dynobj, ".gnu.version"); |
| s->flags |= SEC_EXCLUDE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Find the first non-excluded output section. We'll use its |
| section symbol for some emitted relocs. */ |
| void |
| _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| asection *s; |
| asection *found = NULL; |
| |
| for (s = output_bfd->sections; s != NULL; s = s->next) |
| if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
| && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
| { |
| found = s; |
| if ((s->flags & SEC_THREAD_LOCAL) == 0) |
| break; |
| } |
| elf_hash_table (info)->text_index_section = found; |
| } |
| |
| /* Find two non-excluded output sections, one for code, one for data. |
| We'll use their section symbols for some emitted relocs. */ |
| void |
| _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| asection *s; |
| asection *found = NULL; |
| |
| /* Data first, since setting text_index_section changes |
| _bfd_elf_omit_section_dynsym_default. */ |
| for (s = output_bfd->sections; s != NULL; s = s->next) |
| if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
| && !(s->flags & SEC_READONLY) |
| && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
| { |
| found = s; |
| if ((s->flags & SEC_THREAD_LOCAL) == 0) |
| break; |
| } |
| elf_hash_table (info)->data_index_section = found; |
| |
| for (s = output_bfd->sections; s != NULL; s = s->next) |
| if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC |
| && (s->flags & SEC_READONLY) |
| && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) |
| { |
| found = s; |
| break; |
| } |
| elf_hash_table (info)->text_index_section = found; |
| } |
| |
| #define GNU_HASH_SECTION_NAME(bed) \ |
| (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" |
| |
| bfd_boolean |
| bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed; |
| unsigned long section_sym_count; |
| bfd_size_type dynsymcount = 0; |
| |
| if (!is_elf_hash_table (info->hash)) |
| return TRUE; |
| |
| bed = get_elf_backend_data (output_bfd); |
| (*bed->elf_backend_init_index_section) (output_bfd, info); |
| |
| /* Assign dynsym indices. In a shared library we generate a section |
| symbol for each output section, which come first. Next come all |
| of the back-end allocated local dynamic syms, followed by the rest |
| of the global symbols. |
| |
| This is usually not needed for static binaries, however backends |
| can request to always do it, e.g. the MIPS backend uses dynamic |
| symbol counts to lay out GOT, which will be produced in the |
| presence of GOT relocations even in static binaries (holding fixed |
| data in that case, to satisfy those relocations). */ |
| |
| if (elf_hash_table (info)->dynamic_sections_created |
| || bed->always_renumber_dynsyms) |
| dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, |
| §ion_sym_count); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| bfd *dynobj; |
| asection *s; |
| unsigned int dtagcount; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| /* Work out the size of the symbol version section. */ |
| s = bfd_get_linker_section (dynobj, ".gnu.version"); |
| BFD_ASSERT (s != NULL); |
| if ((s->flags & SEC_EXCLUDE) == 0) |
| { |
| s->size = dynsymcount * sizeof (Elf_External_Versym); |
| s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| |
| if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) |
| return FALSE; |
| } |
| |
| /* Set the size of the .dynsym and .hash sections. We counted |
| the number of dynamic symbols in elf_link_add_object_symbols. |
| We will build the contents of .dynsym and .hash when we build |
| the final symbol table, because until then we do not know the |
| correct value to give the symbols. We built the .dynstr |
| section as we went along in elf_link_add_object_symbols. */ |
| s = elf_hash_table (info)->dynsym; |
| BFD_ASSERT (s != NULL); |
| s->size = dynsymcount * bed->s->sizeof_sym; |
| |
| s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| |
| /* The first entry in .dynsym is a dummy symbol. Clear all the |
| section syms, in case we don't output them all. */ |
| ++section_sym_count; |
| memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); |
| |
| elf_hash_table (info)->bucketcount = 0; |
| |
| /* Compute the size of the hashing table. As a side effect this |
| computes the hash values for all the names we export. */ |
| if (info->emit_hash) |
| { |
| unsigned long int *hashcodes; |
| struct hash_codes_info hashinf; |
| bfd_size_type amt; |
| unsigned long int nsyms; |
| size_t bucketcount; |
| size_t hash_entry_size; |
| |
| /* Compute the hash values for all exported symbols. At the same |
| time store the values in an array so that we could use them for |
| optimizations. */ |
| amt = dynsymcount * sizeof (unsigned long int); |
| hashcodes = (unsigned long int *) bfd_malloc (amt); |
| if (hashcodes == NULL) |
| return FALSE; |
| hashinf.hashcodes = hashcodes; |
| hashinf.error = FALSE; |
| |
| /* Put all hash values in HASHCODES. */ |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_collect_hash_codes, &hashinf); |
| if (hashinf.error) |
| { |
| free (hashcodes); |
| return FALSE; |
| } |
| |
| nsyms = hashinf.hashcodes - hashcodes; |
| bucketcount |
| = compute_bucket_count (info, hashcodes, nsyms, 0); |
| free (hashcodes); |
| |
| if (bucketcount == 0 && nsyms > 0) |
| return FALSE; |
| |
| elf_hash_table (info)->bucketcount = bucketcount; |
| |
| s = bfd_get_linker_section (dynobj, ".hash"); |
| BFD_ASSERT (s != NULL); |
| hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; |
| s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); |
| s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| |
| bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); |
| bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, |
| s->contents + hash_entry_size); |
| } |
| |
| if (info->emit_gnu_hash) |
| { |
| size_t i, cnt; |
| unsigned char *contents; |
| struct collect_gnu_hash_codes cinfo; |
| bfd_size_type amt; |
| size_t bucketcount; |
| |
| memset (&cinfo, 0, sizeof (cinfo)); |
| |
| /* Compute the hash values for all exported symbols. At the same |
| time store the values in an array so that we could use them for |
| optimizations. */ |
| amt = dynsymcount * 2 * sizeof (unsigned long int); |
| cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); |
| if (cinfo.hashcodes == NULL) |
| return FALSE; |
| |
| cinfo.hashval = cinfo.hashcodes + dynsymcount; |
| cinfo.min_dynindx = -1; |
| cinfo.output_bfd = output_bfd; |
| cinfo.bed = bed; |
| |
| /* Put all hash values in HASHCODES. */ |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_collect_gnu_hash_codes, &cinfo); |
| if (cinfo.error) |
| { |
| free (cinfo.hashcodes); |
| return FALSE; |
| } |
| |
| bucketcount |
| = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); |
| |
| if (bucketcount == 0) |
| { |
| free (cinfo.hashcodes); |
| return FALSE; |
| } |
| |
| s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); |
| BFD_ASSERT (s != NULL); |
| |
| if (cinfo.nsyms == 0) |
| { |
| /* Empty .gnu.hash or .MIPS.xhash section is special. */ |
| BFD_ASSERT (cinfo.min_dynindx == -1); |
| free (cinfo.hashcodes); |
| s->size = 5 * 4 + bed->s->arch_size / 8; |
| contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
| if (contents == NULL) |
| return FALSE; |
| s->contents = contents; |
| /* 1 empty bucket. */ |
| bfd_put_32 (output_bfd, 1, contents); |
| /* SYMIDX above the special symbol 0. */ |
| bfd_put_32 (output_bfd, 1, contents + 4); |
| /* Just one word for bitmask. */ |
| bfd_put_32 (output_bfd, 1, contents + 8); |
| /* Only hash fn bloom filter. */ |
| bfd_put_32 (output_bfd, 0, contents + 12); |
| /* No hashes are valid - empty bitmask. */ |
| bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); |
| /* No hashes in the only bucket. */ |
| bfd_put_32 (output_bfd, 0, |
| contents + 16 + bed->s->arch_size / 8); |
| } |
| else |
| { |
| unsigned long int maskwords, maskbitslog2, x; |
| BFD_ASSERT (cinfo.min_dynindx != -1); |
| |
| x = cinfo.nsyms; |
| maskbitslog2 = 1; |
| while ((x >>= 1) != 0) |
| ++maskbitslog2; |
| if (maskbitslog2 < 3) |
| maskbitslog2 = 5; |
| else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) |
| maskbitslog2 = maskbitslog2 + 3; |
| else |
| maskbitslog2 = maskbitslog2 + 2; |
| if (bed->s->arch_size == 64) |
| { |
| if (maskbitslog2 == 5) |
| maskbitslog2 = 6; |
| cinfo.shift1 = 6; |
| } |
| else |
| cinfo.shift1 = 5; |
| cinfo.mask = (1 << cinfo.shift1) - 1; |
| cinfo.shift2 = maskbitslog2; |
| cinfo.maskbits = 1 << maskbitslog2; |
| maskwords = 1 << (maskbitslog2 - cinfo.shift1); |
| amt = bucketcount * sizeof (unsigned long int) * 2; |
| amt += maskwords * sizeof (bfd_vma); |
| cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); |
| if (cinfo.bitmask == NULL) |
| { |
| free (cinfo.hashcodes); |
| return FALSE; |
| } |
| |
| cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); |
| cinfo.indx = cinfo.counts + bucketcount; |
| cinfo.symindx = dynsymcount - cinfo.nsyms; |
| memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); |
| |
| /* Determine how often each hash bucket is used. */ |
| memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); |
| for (i = 0; i < cinfo.nsyms; ++i) |
| ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; |
| |
| for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) |
| if (cinfo.counts[i] != 0) |
| { |
| cinfo.indx[i] = cnt; |
| cnt += cinfo.counts[i]; |
| } |
| BFD_ASSERT (cnt == dynsymcount); |
| cinfo.bucketcount = bucketcount; |
| cinfo.local_indx = cinfo.min_dynindx; |
| |
| s->size = (4 + bucketcount + cinfo.nsyms) * 4; |
| s->size += cinfo.maskbits / 8; |
| if (bed->record_xhash_symbol != NULL) |
| s->size += cinfo.nsyms * 4; |
| contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); |
| if (contents == NULL) |
| { |
| free (cinfo.bitmask); |
| free (cinfo.hashcodes); |
| return FALSE; |
| } |
| |
| s->contents = contents; |
| bfd_put_32 (output_bfd, bucketcount, contents); |
| bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); |
| bfd_put_32 (output_bfd, maskwords, contents + 8); |
| bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); |
| contents += 16 + cinfo.maskbits / 8; |
| |
| for (i = 0; i < bucketcount; ++i) |
| { |
| if (cinfo.counts[i] == 0) |
| bfd_put_32 (output_bfd, 0, contents); |
| else |
| bfd_put_32 (output_bfd, cinfo.indx[i], contents); |
| contents += 4; |
| } |
| |
| cinfo.contents = contents; |
| |
| cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; |
| /* Renumber dynamic symbols, if populating .gnu.hash section. |
| If using .MIPS.xhash, populate the translation table. */ |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_gnu_hash_process_symidx, &cinfo); |
| |
| contents = s->contents + 16; |
| for (i = 0; i < maskwords; ++i) |
| { |
| bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], |
| contents); |
| contents += bed->s->arch_size / 8; |
| } |
| |
| free (cinfo.bitmask); |
| free (cinfo.hashcodes); |
| } |
| } |
| |
| s = bfd_get_linker_section (dynobj, ".dynstr"); |
| BFD_ASSERT (s != NULL); |
| |
| elf_finalize_dynstr (output_bfd, info); |
| |
| s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
| |
| for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) |
| if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Make sure sec_info_type is cleared if sec_info is cleared too. */ |
| |
| static void |
| merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, |
| asection *sec) |
| { |
| BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); |
| sec->sec_info_type = SEC_INFO_TYPE_NONE; |
| } |
| |
| /* Finish SHF_MERGE section merging. */ |
| |
| bfd_boolean |
| _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) |
| { |
| bfd *ibfd; |
| asection *sec; |
| |
| if (!is_elf_hash_table (info->hash)) |
| return FALSE; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| if ((ibfd->flags & DYNAMIC) == 0 |
| && bfd_get_flavour (ibfd) == bfd_target_elf_flavour |
| && (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| == get_elf_backend_data (obfd)->s->elfclass)) |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| if ((sec->flags & SEC_MERGE) != 0 |
| && !bfd_is_abs_section (sec->output_section)) |
| { |
| struct bfd_elf_section_data *secdata; |
| |
| secdata = elf_section_data (sec); |
| if (! _bfd_add_merge_section (obfd, |
| &elf_hash_table (info)->merge_info, |
| sec, &secdata->sec_info)) |
| return FALSE; |
| else if (secdata->sec_info) |
| sec->sec_info_type = SEC_INFO_TYPE_MERGE; |
| } |
| |
| if (elf_hash_table (info)->merge_info != NULL) |
| _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, |
| merge_sections_remove_hook); |
| return TRUE; |
| } |
| |
| /* Create an entry in an ELF linker hash table. */ |
| |
| struct bfd_hash_entry * |
| _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; |
| struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; |
| |
| /* Set local fields. */ |
| ret->indx = -1; |
| ret->dynindx = -1; |
| ret->got = htab->init_got_refcount; |
| ret->plt = htab->init_plt_refcount; |
| memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) |
| - offsetof (struct elf_link_hash_entry, size))); |
| /* Assume that we have been called by a non-ELF symbol reader. |
| This flag is then reset by the code which reads an ELF input |
| file. This ensures that a symbol created by a non-ELF symbol |
| reader will have the flag set correctly. */ |
| ret->non_elf = 1; |
| } |
| |
| return entry; |
| } |
| |
| /* Copy data from an indirect symbol to its direct symbol, hiding the |
| old indirect symbol. Also used for copying flags to a weakdef. */ |
| |
| void |
| _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_link_hash_table *htab; |
| |
| if (ind->dyn_relocs != NULL) |
| { |
| if (dir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &ind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = dir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = dir->dyn_relocs; |
| } |
| |
| dir->dyn_relocs = ind->dyn_relocs; |
| ind->dyn_relocs = NULL; |
| } |
| |
| /* Copy down any references that we may have already seen to the |
| symbol which just became indirect. */ |
| |
| if (dir->versioned != versioned_hidden) |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->non_got_ref |= ind->non_got_ref; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| |
| if (ind->root.type != bfd_link_hash_indirect) |
| return; |
| |
| /* Copy over the global and procedure linkage table refcount entries. |
| These may have been already set up by a check_relocs routine. */ |
| htab = elf_hash_table (info); |
| if (ind->got.refcount > htab->init_got_refcount.refcount) |
| { |
| if (dir->got.refcount < 0) |
| dir->got.refcount = 0; |
| dir->got.refcount += ind->got.refcount; |
| ind->got.refcount = htab->init_got_refcount.refcount; |
| } |
| |
| if (ind->plt.refcount > htab->init_plt_refcount.refcount) |
| { |
| if (dir->plt.refcount < 0) |
| dir->plt.refcount = 0; |
| dir->plt.refcount += ind->plt.refcount; |
| ind->plt.refcount = htab->init_plt_refcount.refcount; |
| } |
| |
| if (ind->dynindx != -1) |
| { |
| if (dir->dynindx != -1) |
| _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); |
| dir->dynindx = ind->dynindx; |
| dir->dynstr_index = ind->dynstr_index; |
| ind->dynindx = -1; |
| ind->dynstr_index = 0; |
| } |
| } |
| |
| void |
| _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| bfd_boolean force_local) |
| { |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type != STT_GNU_IFUNC) |
| { |
| h->plt = elf_hash_table (info)->init_plt_offset; |
| h->needs_plt = 0; |
| } |
| if (force_local) |
| { |
| h->forced_local = 1; |
| if (h->dynindx != -1) |
| { |
| _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, |
| h->dynstr_index); |
| h->dynindx = -1; |
| h->dynstr_index = 0; |
| } |
| } |
| } |
| |
| /* Hide a symbol. */ |
| |
| void |
| _bfd_elf_link_hide_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct bfd_link_hash_entry *h) |
| { |
| if (is_elf_hash_table (info->hash)) |
| { |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (output_bfd); |
| struct elf_link_hash_entry *eh |
| = (struct elf_link_hash_entry *) h; |
| bed->elf_backend_hide_symbol (info, eh, TRUE); |
| eh->def_dynamic = 0; |
| eh->ref_dynamic = 0; |
| eh->dynamic_def = 0; |
| } |
| } |
| |
| /* Initialize an ELF linker hash table. *TABLE has been zeroed by our |
| caller. */ |
| |
| bfd_boolean |
| _bfd_elf_link_hash_table_init |
| (struct elf_link_hash_table *table, |
| bfd *abfd, |
| struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, |
| struct bfd_hash_table *, |
| const char *), |
| unsigned int entsize, |
| enum elf_target_id target_id) |
| { |
| bfd_boolean ret; |
| int can_refcount = get_elf_backend_data (abfd)->can_refcount; |
| |
| table->init_got_refcount.refcount = can_refcount - 1; |
| table->init_plt_refcount.refcount = can_refcount - 1; |
| table->init_got_offset.offset = -(bfd_vma) 1; |
| table->init_plt_offset.offset = -(bfd_vma) 1; |
| /* The first dynamic symbol is a dummy. */ |
| table->dynsymcount = 1; |
| |
| ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); |
| |
| table->root.type = bfd_link_elf_hash_table; |
| table->hash_table_id = target_id; |
| |
| return ret; |
| } |
| |
| /* Create an ELF linker hash table. */ |
| |
| struct bfd_link_hash_table * |
| _bfd_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_link_hash_table *ret; |
| size_t amt = sizeof (struct elf_link_hash_table); |
| |
| ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, |
| sizeof (struct elf_link_hash_entry), |
| GENERIC_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| ret->root.hash_table_free = _bfd_elf_link_hash_table_free; |
| |
| return &ret->root; |
| } |
| |
| /* Destroy an ELF linker hash table. */ |
| |
| void |
| _bfd_elf_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_link_hash_table *htab; |
| |
| htab = (struct elf_link_hash_table *) obfd->link.hash; |
| if (htab->dynstr != NULL) |
| _bfd_elf_strtab_free (htab->dynstr); |
| _bfd_merge_sections_free (htab->merge_info); |
| _bfd_generic_link_hash_table_free (obfd); |
| } |
| |
| /* This is a hook for the ELF emulation code in the generic linker to |
| tell the backend linker what file name to use for the DT_NEEDED |
| entry for a dynamic object. */ |
| |
| void |
| bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) |
| { |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| && bfd_get_format (abfd) == bfd_object) |
| elf_dt_name (abfd) = name; |
| } |
| |
| int |
| bfd_elf_get_dyn_lib_class (bfd *abfd) |
| { |
| int lib_class; |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| && bfd_get_format (abfd) == bfd_object) |
| lib_class = elf_dyn_lib_class (abfd); |
| else |
| lib_class = 0; |
| return lib_class; |
| } |
| |
| void |
| bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) |
| { |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| && bfd_get_format (abfd) == bfd_object) |
| elf_dyn_lib_class (abfd) = lib_class; |
| } |
| |
| /* Get the list of DT_NEEDED entries for a link. This is a hook for |
| the linker ELF emulation code. */ |
| |
| struct bfd_link_needed_list * |
| bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| if (! is_elf_hash_table (info->hash)) |
| return NULL; |
| return elf_hash_table (info)->needed; |
| } |
| |
| /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a |
| hook for the linker ELF emulation code. */ |
| |
| struct bfd_link_needed_list * |
| bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| if (! is_elf_hash_table (info->hash)) |
| return NULL; |
| return elf_hash_table (info)->runpath; |
| } |
| |
| /* Get the name actually used for a dynamic object for a link. This |
| is the SONAME entry if there is one. Otherwise, it is the string |
| passed to bfd_elf_set_dt_needed_name, or it is the filename. */ |
| |
| const char * |
| bfd_elf_get_dt_soname (bfd *abfd) |
| { |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour |
| && bfd_get_format (abfd) == bfd_object) |
| return elf_dt_name (abfd); |
| return NULL; |
| } |
| |
| /* Get the list of DT_NEEDED entries from a BFD. This is a hook for |
| the ELF linker emulation code. */ |
| |
| bfd_boolean |
| bfd_elf_get_bfd_needed_list (bfd *abfd, |
| struct bfd_link_needed_list **pneeded) |
| { |
| asection *s; |
| bfd_byte *dynbuf = NULL; |
| unsigned int elfsec; |
| unsigned long shlink; |
| bfd_byte *extdyn, *extdynend; |
| size_t extdynsize; |
| void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
| |
| *pneeded = NULL; |
| |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour |
| || bfd_get_format (abfd) != bfd_object) |
| return TRUE; |
| |
| s = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (s == NULL || s->size == 0) |
| return TRUE; |
| |
| if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
| goto error_return; |
| |
| elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| if (elfsec == SHN_BAD) |
| goto error_return; |
| |
| shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
| |
| extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
| swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
| |
| extdyn = dynbuf; |
| extdynend = extdyn + s->size; |
| for (; extdyn < extdynend; extdyn += extdynsize) |
| { |
| Elf_Internal_Dyn dyn; |
| |
| (*swap_dyn_in) (abfd, extdyn, &dyn); |
| |
| if (dyn.d_tag == DT_NULL) |
| break; |
| |
| if (dyn.d_tag == DT_NEEDED) |
| { |
| const char *string; |
| struct bfd_link_needed_list *l; |
| unsigned int tagv = dyn.d_un.d_val; |
| size_t amt; |
| |
| string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (string == NULL) |
| goto error_return; |
| |
| amt = sizeof *l; |
| l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); |
| if (l == NULL) |
| goto error_return; |
| |
| l->by = abfd; |
| l->name = string; |
| l->next = *pneeded; |
| *pneeded = l; |
| } |
| } |
| |
| free (dynbuf); |
| |
| return TRUE; |
| |
| error_return: |
| free (dynbuf); |
| return FALSE; |
| } |
| |
| struct elf_symbuf_symbol |
| { |
| unsigned long st_name; /* Symbol name, index in string tbl */ |
| unsigned char st_info; /* Type and binding attributes */ |
| unsigned char st_other; /* Visibilty, and target specific */ |
| }; |
| |
| struct elf_symbuf_head |
| { |
| struct elf_symbuf_symbol *ssym; |
| size_t count; |
| unsigned int st_shndx; |
| }; |
| |
| struct elf_symbol |
| { |
| union |
| { |
| Elf_Internal_Sym *isym; |
| struct elf_symbuf_symbol *ssym; |
| void *p; |
| } u; |
| const char *name; |
| }; |
| |
| /* Sort references to symbols by ascending section number. */ |
| |
| static int |
| elf_sort_elf_symbol (const void *arg1, const void *arg2) |
| { |
| const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; |
| const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; |
| |
| if (s1->st_shndx != s2->st_shndx) |
| return s1->st_shndx > s2->st_shndx ? 1 : -1; |
| /* Final sort by the address of the sym in the symbuf ensures |
| a stable sort. */ |
| if (s1 != s2) |
| return s1 > s2 ? 1 : -1; |
| return 0; |
| } |
| |
| static int |
| elf_sym_name_compare (const void *arg1, const void *arg2) |
| { |
| const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; |
| const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; |
| int ret = strcmp (s1->name, s2->name); |
| if (ret != 0) |
| return ret; |
| if (s1->u.p != s2->u.p) |
| return s1->u.p > s2->u.p ? 1 : -1; |
| return 0; |
| } |
| |
| static struct elf_symbuf_head * |
| elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) |
| { |
| Elf_Internal_Sym **ind, **indbufend, **indbuf; |
| struct elf_symbuf_symbol *ssym; |
| struct elf_symbuf_head *ssymbuf, *ssymhead; |
| size_t i, shndx_count, total_size, amt; |
| |
| amt = symcount * sizeof (*indbuf); |
| indbuf = (Elf_Internal_Sym **) bfd_malloc (amt); |
| if (indbuf == NULL) |
| return NULL; |
| |
| for (ind = indbuf, i = 0; i < symcount; i++) |
| if (isymbuf[i].st_shndx != SHN_UNDEF) |
| *ind++ = &isymbuf[i]; |
| indbufend = ind; |
| |
| qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), |
| elf_sort_elf_symbol); |
| |
| shndx_count = 0; |
| if (indbufend > indbuf) |
| for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) |
| if (ind[0]->st_shndx != ind[1]->st_shndx) |
| shndx_count++; |
| |
| total_size = ((shndx_count + 1) * sizeof (*ssymbuf) |
| + (indbufend - indbuf) * sizeof (*ssym)); |
| ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); |
| if (ssymbuf == NULL) |
| { |
| free (indbuf); |
| return NULL; |
| } |
| |
| ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); |
| ssymbuf->ssym = NULL; |
| ssymbuf->count = shndx_count; |
| ssymbuf->st_shndx = 0; |
| for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) |
| { |
| if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) |
| { |
| ssymhead++; |
| ssymhead->ssym = ssym; |
| ssymhead->count = 0; |
| ssymhead->st_shndx = (*ind)->st_shndx; |
| } |
| ssym->st_name = (*ind)->st_name; |
| ssym->st_info = (*ind)->st_info; |
| ssym->st_other = (*ind)->st_other; |
| ssymhead->count++; |
| } |
| BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count |
| && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) |
| == total_size)); |
| |
| free (indbuf); |
| return ssymbuf; |
| } |
| |
| /* Check if 2 sections define the same set of local and global |
| symbols. */ |
| |
| static bfd_boolean |
| bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, |
| struct bfd_link_info *info) |
| { |
| bfd *bfd1, *bfd2; |
| const struct elf_backend_data *bed1, *bed2; |
| Elf_Internal_Shdr *hdr1, *hdr2; |
| size_t symcount1, symcount2; |
| Elf_Internal_Sym *isymbuf1, *isymbuf2; |
| struct elf_symbuf_head *ssymbuf1, *ssymbuf2; |
| Elf_Internal_Sym *isym, *isymend; |
| struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; |
| size_t count1, count2, i; |
| unsigned int shndx1, shndx2; |
| bfd_boolean result; |
| |
| bfd1 = sec1->owner; |
| bfd2 = sec2->owner; |
| |
| /* Both sections have to be in ELF. */ |
| if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour |
| || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) |
| return FALSE; |
| |
| if (elf_section_type (sec1) != elf_section_type (sec2)) |
| return FALSE; |
| |
| shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); |
| shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); |
| if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) |
| return FALSE; |
| |
| bed1 = get_elf_backend_data (bfd1); |
| bed2 = get_elf_backend_data (bfd2); |
| hdr1 = &elf_tdata (bfd1)->symtab_hdr; |
| symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; |
| hdr2 = &elf_tdata (bfd2)->symtab_hdr; |
| symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; |
| |
| if (symcount1 == 0 || symcount2 == 0) |
| return FALSE; |
| |
| result = FALSE; |
| isymbuf1 = NULL; |
| isymbuf2 = NULL; |
| ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; |
| ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; |
| |
| if (ssymbuf1 == NULL) |
| { |
| isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, |
| NULL, NULL, NULL); |
| if (isymbuf1 == NULL) |
| goto done; |
| |
| if (!info->reduce_memory_overheads) |
| { |
| ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); |
| elf_tdata (bfd1)->symbuf = ssymbuf1; |
| } |
| } |
| |
| if (ssymbuf1 == NULL || ssymbuf2 == NULL) |
| { |
| isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, |
| NULL, NULL, NULL); |
| if (isymbuf2 == NULL) |
| goto done; |
| |
| if (ssymbuf1 != NULL && !info->reduce_memory_overheads) |
| { |
| ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); |
| elf_tdata (bfd2)->symbuf = ssymbuf2; |
| } |
| } |
| |
| if (ssymbuf1 != NULL && ssymbuf2 != NULL) |
| { |
| /* Optimized faster version. */ |
| size_t lo, hi, mid; |
| struct elf_symbol *symp; |
| struct elf_symbuf_symbol *ssym, *ssymend; |
| |
| lo = 0; |
| hi = ssymbuf1->count; |
| ssymbuf1++; |
| count1 = 0; |
| while (lo < hi) |
| { |
| mid = (lo + hi) / 2; |
| if (shndx1 < ssymbuf1[mid].st_shndx) |
| hi = mid; |
| else if (shndx1 > ssymbuf1[mid].st_shndx) |
| lo = mid + 1; |
| else |
| { |
| count1 = ssymbuf1[mid].count; |
| ssymbuf1 += mid; |
| break; |
| } |
| } |
| |
| lo = 0; |
| hi = ssymbuf2->count; |
| ssymbuf2++; |
| count2 = 0; |
| while (lo < hi) |
| { |
| mid = (lo + hi) / 2; |
| if (shndx2 < ssymbuf2[mid].st_shndx) |
| hi = mid; |
| else if (shndx2 > ssymbuf2[mid].st_shndx) |
| lo = mid + 1; |
| else |
| { |
| count2 = ssymbuf2[mid].count; |
| ssymbuf2 += mid; |
| break; |
| } |
| } |
| |
| if (count1 == 0 || count2 == 0 || count1 != count2) |
| goto done; |
| |
| symtable1 |
| = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); |
| symtable2 |
| = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); |
| if (symtable1 == NULL || symtable2 == NULL) |
| goto done; |
| |
| symp = symtable1; |
| for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; |
| ssym < ssymend; ssym++, symp++) |
| { |
| symp->u.ssym = ssym; |
| symp->name = bfd_elf_string_from_elf_section (bfd1, |
| hdr1->sh_link, |
| ssym->st_name); |
| } |
| |
| symp = symtable2; |
| for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; |
| ssym < ssymend; ssym++, symp++) |
| { |
| symp->u.ssym = ssym; |
| symp->name = bfd_elf_string_from_elf_section (bfd2, |
| hdr2->sh_link, |
| ssym->st_name); |
| } |
| |
| /* Sort symbol by name. */ |
| qsort (symtable1, count1, sizeof (struct elf_symbol), |
| elf_sym_name_compare); |
| qsort (symtable2, count1, sizeof (struct elf_symbol), |
| elf_sym_name_compare); |
| |
| for (i = 0; i < count1; i++) |
| /* Two symbols must have the same binding, type and name. */ |
| if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info |
| || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other |
| || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) |
| goto done; |
| |
| result = TRUE; |
| goto done; |
| } |
| |
| symtable1 = (struct elf_symbol *) |
| bfd_malloc (symcount1 * sizeof (struct elf_symbol)); |
| symtable2 = (struct elf_symbol *) |
| bfd_malloc (symcount2 * sizeof (struct elf_symbol)); |
| if (symtable1 == NULL || symtable2 == NULL) |
| goto done; |
| |
| /* Count definitions in the section. */ |
| count1 = 0; |
| for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) |
| if (isym->st_shndx == shndx1) |
| symtable1[count1++].u.isym = isym; |
| |
| count2 = 0; |
| for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) |
| if (isym->st_shndx == shndx2) |
| symtable2[count2++].u.isym = isym; |
| |
| if (count1 == 0 || count2 == 0 || count1 != count2) |
| goto done; |
| |
| for (i = 0; i < count1; i++) |
| symtable1[i].name |
| = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, |
| symtable1[i].u.isym->st_name); |
| |
| for (i = 0; i < count2; i++) |
| symtable2[i].name |
| = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, |
| symtable2[i].u.isym->st_name); |
| |
| /* Sort symbol by name. */ |
| qsort (symtable1, count1, sizeof (struct elf_symbol), |
| elf_sym_name_compare); |
| qsort (symtable2, count1, sizeof (struct elf_symbol), |
| elf_sym_name_compare); |
| |
| for (i = 0; i < count1; i++) |
| /* Two symbols must have the same binding, type and name. */ |
| if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info |
| || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other |
| || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) |
| goto done; |
| |
| result = TRUE; |
| |
| done: |
| free (symtable1); |
| free (symtable2); |
| free (isymbuf1); |
| free (isymbuf2); |
| |
| return result; |
| } |
| |
| /* Return TRUE if 2 section types are compatible. */ |
| |
| bfd_boolean |
| _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, |
| bfd *bbfd, const asection *bsec) |
| { |
| if (asec == NULL |
| || bsec == NULL |
| || abfd->xvec->flavour != bfd_target_elf_flavour |
| || bbfd->xvec->flavour != bfd_target_elf_flavour) |
| return TRUE; |
| |
| return elf_section_type (asec) == elf_section_type (bsec); |
| } |
| |
| /* Final phase of ELF linker. */ |
| |
| /* A structure we use to avoid passing large numbers of arguments. */ |
| |
| struct elf_final_link_info |
| { |
| /* General link information. */ |
| struct bfd_link_info *info; |
| /* Output BFD. */ |
| bfd *output_bfd; |
| /* Symbol string table. */ |
| struct elf_strtab_hash *symstrtab; |
| /* .hash section. */ |
| asection *hash_sec; |
| /* symbol version section (.gnu.version). */ |
| asection *symver_sec; |
| /* Buffer large enough to hold contents of any section. */ |
| bfd_byte *contents; |
| /* Buffer large enough to hold external relocs of any section. */ |
| void *external_relocs; |
| /* Buffer large enough to hold internal relocs of any section. */ |
| Elf_Internal_Rela *internal_relocs; |
| /* Buffer large enough to hold external local symbols of any input |
| BFD. */ |
| bfd_byte *external_syms; |
| /* And a buffer for symbol section indices. */ |
| Elf_External_Sym_Shndx *locsym_shndx; |
| /* Buffer large enough to hold internal local symbols of any input |
| BFD. */ |
| Elf_Internal_Sym *internal_syms; |
| /* Array large enough to hold a symbol index for each local symbol |
| of any input BFD. */ |
| long *indices; |
| /* Array large enough to hold a section pointer for each local |
| symbol of any input BFD. */ |
| asection **sections; |
| /* Buffer for SHT_SYMTAB_SHNDX section. */ |
| Elf_External_Sym_Shndx *symshndxbuf; |
| /* Number of STT_FILE syms seen. */ |
| size_t filesym_count; |
| }; |
| |
| /* This struct is used to pass information to elf_link_output_extsym. */ |
| |
| struct elf_outext_info |
| { |
| bfd_boolean failed; |
| bfd_boolean localsyms; |
| bfd_boolean file_sym_done; |
| struct elf_final_link_info *flinfo; |
| }; |
| |
| |
| /* Support for evaluating a complex relocation. |
| |
| Complex relocations are generalized, self-describing relocations. The |
| implementation of them consists of two parts: complex symbols, and the |
| relocations themselves. |
| |
| The relocations are use a reserved elf-wide relocation type code (R_RELC |
| external / BFD_RELOC_RELC internal) and an encoding of relocation field |
| information (start bit, end bit, word width, etc) into the addend. This |
| information is extracted from CGEN-generated operand tables within gas. |
| |
| Complex symbols are mangled symbols (BSF_RELC external / STT_RELC |
| internal) representing prefix-notation expressions, including but not |
| limited to those sorts of expressions normally encoded as addends in the |
| addend field. The symbol mangling format is: |
| |
| <node> := <literal> |
| | <unary-operator> ':' <node> |
| | <binary-operator> ':' <node> ':' <node> |
| ; |
| |
| <literal> := 's' <digits=N> ':' <N character symbol name> |
| | 'S' <digits=N> ':' <N character section name> |
| | '#' <hexdigits> |
| ; |
| |
| <binary-operator> := as in C |
| <unary-operator> := as in C, plus "0-" for unambiguous negation. */ |
| |
| static void |
| set_symbol_value (bfd *bfd_with_globals, |
| Elf_Internal_Sym *isymbuf, |
| size_t locsymcount, |
| size_t symidx, |
| bfd_vma val) |
| { |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry *h; |
| size_t extsymoff = locsymcount; |
| |
| if (symidx < locsymcount) |
| { |
| Elf_Internal_Sym *sym; |
| |
| sym = isymbuf + symidx; |
| if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) |
| { |
| /* It is a local symbol: move it to the |
| "absolute" section and give it a value. */ |
| sym->st_shndx = SHN_ABS; |
| sym->st_value = val; |
| return; |
| } |
| BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); |
| extsymoff = 0; |
| } |
| |
| /* It is a global symbol: set its link type |
| to "defined" and give it a value. */ |
| |
| sym_hashes = elf_sym_hashes (bfd_with_globals); |
| h = sym_hashes [symidx - extsymoff]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.value = val; |
| h->root.u.def.section = bfd_abs_section_ptr; |
| } |
| |
| static bfd_boolean |
| resolve_symbol (const char *name, |
| bfd *input_bfd, |
| struct elf_final_link_info *flinfo, |
| bfd_vma *result, |
| Elf_Internal_Sym *isymbuf, |
| size_t locsymcount) |
| { |
| Elf_Internal_Sym *sym; |
| struct bfd_link_hash_entry *global_entry; |
| const char *candidate = NULL; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t i; |
| |
| symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; |
| |
| for (i = 0; i < locsymcount; ++ i) |
| { |
| sym = isymbuf + i; |
| |
| if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) |
| continue; |
| |
| candidate = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| #ifdef DEBUG |
| printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", |
| name, candidate, (unsigned long) sym->st_value); |
| #endif |
| if (candidate && strcmp (candidate, name) == 0) |
| { |
| asection *sec = flinfo->sections [i]; |
| |
| *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); |
| *result += sec->output_offset + sec->output_section->vma; |
| #ifdef DEBUG |
| printf ("Found symbol with value %8.8lx\n", |
| (unsigned long) *result); |
| #endif |
| return TRUE; |
| } |
| } |
| |
| /* Hmm, haven't found it yet. perhaps it is a global. */ |
| global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, |
| FALSE, FALSE, TRUE); |
| if (!global_entry) |
| return FALSE; |
| |
| if (global_entry->type == bfd_link_hash_defined |
| || global_entry->type == bfd_link_hash_defweak) |
| { |
| *result = (global_entry->u.def.value |
| + global_entry->u.def.section->output_section->vma |
| + global_entry->u.def.section->output_offset); |
| #ifdef DEBUG |
| printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", |
| global_entry->root.string, (unsigned long) *result); |
| #endif |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in |
| bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section |
| names like "foo.end" which is the end address of section "foo". */ |
| |
| static bfd_boolean |
| resolve_section (const char *name, |
| asection *sections, |
| bfd_vma *result, |
| bfd * abfd) |
| { |
| asection *curr; |
| unsigned int len; |
| |
| for (curr = sections; curr; curr = curr->next) |
| if (strcmp (curr->name, name) == 0) |
| { |
| *result = curr->vma; |
| return TRUE; |
| } |
| |
| /* Hmm. still haven't found it. try pseudo-section names. */ |
| /* FIXME: This could be coded more efficiently... */ |
| for (curr = sections; curr; curr = curr->next) |
| { |
| len = strlen (curr->name); |
| if (len > strlen (name)) |
| continue; |
| |
| if (strncmp (curr->name, name, len) == 0) |
| { |
| if (strncmp (".end", name + len, 4) == 0) |
| { |
| *result = (curr->vma |
| + curr->size / bfd_octets_per_byte (abfd, curr)); |
| return TRUE; |
| } |
| |
| /* Insert more pseudo-section names here, if you like. */ |
| } |
| } |
| |
| return FALSE; |
| } |
| |
| static void |
| undefined_reference (const char *reftype, const char *name) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), |
| reftype, name); |
| } |
| |
| static bfd_boolean |
| eval_symbol (bfd_vma *result, |
| const char **symp, |
| bfd *input_bfd, |
| struct elf_final_link_info *flinfo, |
| bfd_vma dot, |
| Elf_Internal_Sym *isymbuf, |
| size_t locsymcount, |
| int signed_p) |
| { |
| size_t len; |
| size_t symlen; |
| bfd_vma a; |
| bfd_vma b; |
| char symbuf[4096]; |
| const char *sym = *symp; |
| const char *symend; |
| bfd_boolean symbol_is_section = FALSE; |
| |
| len = strlen (sym); |
| symend = sym + len; |
| |
| if (len < 1 || len > sizeof (symbuf)) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| |
| switch (* sym) |
| { |
| case '.': |
| *result = dot; |
| *symp = sym + 1; |
| return TRUE; |
| |
| case '#': |
| ++sym; |
| *result = strtoul (sym, (char **) symp, 16); |
| return TRUE; |
| |
| case 'S': |
| symbol_is_section = TRUE; |
| /* Fall through. */ |
| case 's': |
| ++sym; |
| symlen = strtol (sym, (char **) symp, 10); |
| sym = *symp + 1; /* Skip the trailing ':'. */ |
| |
| if (symend < sym || symlen + 1 > sizeof (symbuf)) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| |
| memcpy (symbuf, sym, symlen); |
| symbuf[symlen] = '\0'; |
| *symp = sym + symlen; |
| |
| /* Is it always possible, with complex symbols, that gas "mis-guessed" |
| the symbol as a section, or vice-versa. so we're pretty liberal in our |
| interpretation here; section means "try section first", not "must be a |
| section", and likewise with symbol. */ |
| |
| if (symbol_is_section) |
| { |
| if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) |
| && !resolve_symbol (symbuf, input_bfd, flinfo, result, |
| isymbuf, locsymcount)) |
| { |
| undefined_reference ("section", symbuf); |
| return FALSE; |
| } |
| } |
| else |
| { |
| if (!resolve_symbol (symbuf, input_bfd, flinfo, result, |
| isymbuf, locsymcount) |
| && !resolve_section (symbuf, flinfo->output_bfd->sections, |
| result, input_bfd)) |
| { |
| undefined_reference ("symbol", symbuf); |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| |
| /* All that remains are operators. */ |
| |
| #define UNARY_OP(op) \ |
| if (strncmp (sym, #op, strlen (#op)) == 0) \ |
| { \ |
| sym += strlen (#op); \ |
| if (*sym == ':') \ |
| ++sym; \ |
| *symp = sym; \ |
| if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
| isymbuf, locsymcount, signed_p)) \ |
| return FALSE; \ |
| if (signed_p) \ |
| *result = op ((bfd_signed_vma) a); \ |
| else \ |
| *result = op a; \ |
| return TRUE; \ |
| } |
| |
| #define BINARY_OP(op) \ |
| if (strncmp (sym, #op, strlen (#op)) == 0) \ |
| { \ |
| sym += strlen (#op); \ |
| if (*sym == ':') \ |
| ++sym; \ |
| *symp = sym; \ |
| if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ |
| isymbuf, locsymcount, signed_p)) \ |
| return FALSE; \ |
| ++*symp; \ |
| if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ |
| isymbuf, locsymcount, signed_p)) \ |
| return FALSE; \ |
| if (signed_p) \ |
| *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ |
| else \ |
| *result = a op b; \ |
| return TRUE; \ |
| } |
| |
| default: |
| UNARY_OP (0-); |
| BINARY_OP (<<); |
| BINARY_OP (>>); |
| BINARY_OP (==); |
| BINARY_OP (!=); |
| BINARY_OP (<=); |
| BINARY_OP (>=); |
| BINARY_OP (&&); |
| BINARY_OP (||); |
| UNARY_OP (~); |
| UNARY_OP (!); |
| BINARY_OP (*); |
| BINARY_OP (/); |
| BINARY_OP (%); |
| BINARY_OP (^); |
| BINARY_OP (|); |
| BINARY_OP (&); |
| BINARY_OP (+); |
| BINARY_OP (-); |
| BINARY_OP (<); |
| BINARY_OP (>); |
| #undef UNARY_OP |
| #undef BINARY_OP |
| _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| } |
| |
| static void |
| put_value (bfd_vma size, |
| unsigned long chunksz, |
| bfd *input_bfd, |
| bfd_vma x, |
| bfd_byte *location) |
| { |
| location += (size - chunksz); |
| |
| for (; size; size -= chunksz, location -= chunksz) |
| { |
| switch (chunksz) |
| { |
| case 1: |
| bfd_put_8 (input_bfd, x, location); |
| x >>= 8; |
| break; |
| case 2: |
| bfd_put_16 (input_bfd, x, location); |
| x >>= 16; |
| break; |
| case 4: |
| bfd_put_32 (input_bfd, x, location); |
| /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ |
| x >>= 16; |
| x >>= 16; |
| break; |
| #ifdef BFD64 |
| case 8: |
| bfd_put_64 (input_bfd, x, location); |
| /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ |
| x >>= 32; |
| x >>= 32; |
| break; |
| #endif |
| default: |
| abort (); |
| break; |
| } |
| } |
| } |
| |
| static bfd_vma |
| get_value (bfd_vma size, |
| unsigned long chunksz, |
| bfd *input_bfd, |
| bfd_byte *location) |
| { |
| int shift; |
| bfd_vma x = 0; |
| |
| /* Sanity checks. */ |
| BFD_ASSERT (chunksz <= sizeof (x) |
| && size >= chunksz |
| && chunksz != 0 |
| && (size % chunksz) == 0 |
| && input_bfd != NULL |
| && location != NULL); |
| |
| if (chunksz == sizeof (x)) |
| { |
| BFD_ASSERT (size == chunksz); |
| |
| /* Make sure that we do not perform an undefined shift operation. |
| We know that size == chunksz so there will only be one iteration |
| of the loop below. */ |
| shift = 0; |
| } |
| else |
| shift = 8 * chunksz; |
| |
| for (; size; size -= chunksz, location += chunksz) |
| { |
| switch (chunksz) |
| { |
| case 1: |
| x = (x << shift) | bfd_get_8 (input_bfd, location); |
| break; |
| case 2: |
| x = (x << shift) | bfd_get_16 (input_bfd, location); |
| break; |
| case 4: |
| x = (x << shift) | bfd_get_32 (input_bfd, location); |
| break; |
| #ifdef BFD64 |
| case 8: |
| x = (x << shift) | bfd_get_64 (input_bfd, location); |
| break; |
| #endif |
| default: |
| abort (); |
| } |
| } |
| return x; |
| } |
| |
| static void |
| decode_complex_addend (unsigned long *start, /* in bits */ |
| unsigned long *oplen, /* in bits */ |
| unsigned long *len, /* in bits */ |
| unsigned long *wordsz, /* in bytes */ |
| unsigned long *chunksz, /* in bytes */ |
| unsigned long *lsb0_p, |
| unsigned long *signed_p, |
| unsigned long *trunc_p, |
| unsigned long encoded) |
| { |
| * start = encoded & 0x3F; |
| * len = (encoded >> 6) & 0x3F; |
| * oplen = (encoded >> 12) & 0x3F; |
| * wordsz = (encoded >> 18) & 0xF; |
| * chunksz = (encoded >> 22) & 0xF; |
| * lsb0_p = (encoded >> 27) & 1; |
| * signed_p = (encoded >> 28) & 1; |
| * trunc_p = (encoded >> 29) & 1; |
| } |
| |
| bfd_reloc_status_type |
| bfd_elf_perform_complex_relocation (bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *rel, |
| bfd_vma relocation) |
| { |
| bfd_vma shift, x, mask; |
| unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; |
| bfd_reloc_status_type r; |
| bfd_size_type octets; |
| |
| /* Perform this reloc, since it is complex. |
| (this is not to say that it necessarily refers to a complex |
| symbol; merely that it is a self-describing CGEN based reloc. |
| i.e. the addend has the complete reloc information (bit start, end, |
| word size, etc) encoded within it.). */ |
| |
| decode_complex_addend (&start, &oplen, &len, &wordsz, |
| &chunksz, &lsb0_p, &signed_p, |
| &trunc_p, rel->r_addend); |
| |
| mask = (((1L << (len - 1)) - 1) << 1) | 1; |
| |
| if (lsb0_p) |
| shift = (start + 1) - len; |
| else |
| shift = (8 * wordsz) - (start + len); |
| |
| octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); |
| x = get_value (wordsz, chunksz, input_bfd, contents + octets); |
| |
| #ifdef DEBUG |
| printf ("Doing complex reloc: " |
| "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " |
| "chunksz %ld, start %ld, len %ld, oplen %ld\n" |
| " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", |
| lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, |
| oplen, (unsigned long) x, (unsigned long) mask, |
| (unsigned long) relocation); |
| #endif |
| |
| r = bfd_reloc_ok; |
| if (! trunc_p) |
| /* Now do an overflow check. */ |
| r = bfd_check_overflow ((signed_p |
| ? complain_overflow_signed |
| : complain_overflow_unsigned), |
| len, 0, (8 * wordsz), |
| relocation); |
| |
| /* Do the deed. */ |
| x = (x & ~(mask << shift)) | ((relocation & mask) << shift); |
| |
| #ifdef DEBUG |
| printf (" relocation: %8.8lx\n" |
| " shifted mask: %8.8lx\n" |
| " shifted/masked reloc: %8.8lx\n" |
| " result: %8.8lx\n", |
| (unsigned long) relocation, (unsigned long) (mask << shift), |
| (unsigned long) ((relocation & mask) << shift), (unsigned long) x); |
| #endif |
| put_value (wordsz, chunksz, input_bfd, x, contents + octets); |
| return r; |
| } |
| |
| /* Functions to read r_offset from external (target order) reloc |
| entry. Faster than bfd_getl32 et al, because we let the compiler |
| know the value is aligned. */ |
| |
| static bfd_vma |
| ext32l_r_offset (const void *p) |
| { |
| union aligned32 |
| { |
| uint32_t v; |
| unsigned char c[4]; |
| }; |
| const union aligned32 *a |
| = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; |
| |
| uint32_t aval = ( (uint32_t) a->c[0] |
| | (uint32_t) a->c[1] << 8 |
| | (uint32_t) a->c[2] << 16 |
| | (uint32_t) a->c[3] << 24); |
| return aval; |
| } |
| |
| static bfd_vma |
| ext32b_r_offset (const void *p) |
| { |
| union aligned32 |
| { |
| uint32_t v; |
| unsigned char c[4]; |
| }; |
| const union aligned32 *a |
| = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; |
| |
| uint32_t aval = ( (uint32_t) a->c[0] << 24 |
| | (uint32_t) a->c[1] << 16 |
| | (uint32_t) a->c[2] << 8 |
| | (uint32_t) a->c[3]); |
| return aval; |
| } |
| |
| #ifdef BFD_HOST_64_BIT |
| static bfd_vma |
| ext64l_r_offset (const void *p) |
| { |
| union aligned64 |
| { |
| uint64_t v; |
| unsigned char c[8]; |
| }; |
| const union aligned64 *a |
| = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; |
| |
| uint64_t aval = ( (uint64_t) a->c[0] |
| | (uint64_t) a->c[1] << 8 |
| | (uint64_t) a->c[2] << 16 |
| | (uint64_t) a->c[3] << 24 |
| | (uint64_t) a->c[4] << 32 |
| | (uint64_t) a->c[5] << 40 |
| | (uint64_t) a->c[6] << 48 |
| | (uint64_t) a->c[7] << 56); |
| return aval; |
| } |
| |
| static bfd_vma |
| ext64b_r_offset (const void *p) |
| { |
| union aligned64 |
| { |
| uint64_t v; |
| unsigned char c[8]; |
| }; |
| const union aligned64 *a |
| = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; |
| |
| uint64_t aval = ( (uint64_t) a->c[0] << 56 |
| | (uint64_t) a->c[1] << 48 |
| | (uint64_t) a->c[2] << 40 |
| | (uint64_t) a->c[3] << 32 |
| | (uint64_t) a->c[4] << 24 |
| | (uint64_t) a->c[5] << 16 |
| | (uint64_t) a->c[6] << 8 |
| | (uint64_t) a->c[7]); |
| return aval; |
| } |
| #endif |
| |
| /* When performing a relocatable link, the input relocations are |
| preserved. But, if they reference global symbols, the indices |
| referenced must be updated. Update all the relocations found in |
| RELDATA. */ |
| |
| static bfd_boolean |
| elf_link_adjust_relocs (bfd *abfd, |
| asection *sec, |
| struct bfd_elf_section_reloc_data *reldata, |
| bfd_boolean sort, |
| struct bfd_link_info *info) |
| { |
| unsigned int i; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bfd_byte *erela; |
| void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
| void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
| bfd_vma r_type_mask; |
| int r_sym_shift; |
| unsigned int count = reldata->count; |
| struct elf_link_hash_entry **rel_hash = reldata->hashes; |
| |
| if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) |
| { |
| swap_in = bed->s->swap_reloc_in; |
| swap_out = bed->s->swap_reloc_out; |
| } |
| else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) |
| { |
| swap_in = bed->s->swap_reloca_in; |
| swap_out = bed->s->swap_reloca_out; |
| } |
| else |
| abort (); |
| |
| if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) |
| abort (); |
| |
| if (bed->s->arch_size == 32) |
| { |
| r_type_mask = 0xff; |
| r_sym_shift = 8; |
| } |
| else |
| { |
| r_type_mask = 0xffffffff; |
| r_sym_shift = 32; |
| } |
| |
| erela = reldata->hdr->contents; |
| for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) |
| { |
| Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; |
| unsigned int j; |
| |
| if (*rel_hash == NULL) |
| continue; |
| |
| if ((*rel_hash)->indx == -2 |
| && info->gc_sections |
| && ! info->gc_keep_exported) |
| { |
| /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ |
| _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), |
| abfd, sec, |
| (*rel_hash)->root.root.string); |
| _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), |
| abfd, sec); |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| BFD_ASSERT ((*rel_hash)->indx >= 0); |
| |
| (*swap_in) (abfd, erela, irela); |
| for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) |
| irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift |
| | (irela[j].r_info & r_type_mask)); |
| (*swap_out) (abfd, irela, erela); |
| } |
| |
| if (bed->elf_backend_update_relocs) |
| (*bed->elf_backend_update_relocs) (sec, reldata); |
| |
| if (sort && count != 0) |
| { |
| bfd_vma (*ext_r_off) (const void *); |
| bfd_vma r_off; |
| size_t elt_size; |
| bfd_byte *base, *end, *p, *loc; |
| bfd_byte *buf = NULL; |
| |
| if (bed->s->arch_size == 32) |
| { |
| if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) |
| ext_r_off = ext32l_r_offset; |
| else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) |
| ext_r_off = ext32b_r_offset; |
| else |
| abort (); |
| } |
| else |
| { |
| #ifdef BFD_HOST_64_BIT |
| if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) |
| ext_r_off = ext64l_r_offset; |
| else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) |
| ext_r_off = ext64b_r_offset; |
| else |
| #endif |
| abort (); |
| } |
| |
| /* Must use a stable sort here. A modified insertion sort, |
| since the relocs are mostly sorted already. */ |
| elt_size = reldata->hdr->sh_entsize; |
| base = reldata->hdr->contents; |
| end = base + count * elt_size; |
| if (elt_size > sizeof (Elf64_External_Rela)) |
| abort (); |
| |
| /* Ensure the first element is lowest. This acts as a sentinel, |
| speeding the main loop below. */ |
| r_off = (*ext_r_off) (base); |
| for (p = loc = base; (p += elt_size) < end; ) |
| { |
| bfd_vma r_off2 = (*ext_r_off) (p); |
| if (r_off > r_off2) |
| { |
| r_off = r_off2; |
| loc = p; |
| } |
| } |
| if (loc != base) |
| { |
| /* Don't just swap *base and *loc as that changes the order |
| of the original base[0] and base[1] if they happen to |
| have the same r_offset. */ |
| bfd_byte onebuf[sizeof (Elf64_External_Rela)]; |
| memcpy (onebuf, loc, elt_size); |
| memmove (base + elt_size, base, loc - base); |
| memcpy (base, onebuf, elt_size); |
| } |
| |
| for (p = base + elt_size; (p += elt_size) < end; ) |
| { |
| /* base to p is sorted, *p is next to insert. */ |
| r_off = (*ext_r_off) (p); |
| /* Search the sorted region for location to insert. */ |
| loc = p - elt_size; |
| while (r_off < (*ext_r_off) (loc)) |
| loc -= elt_size; |
| loc += elt_size; |
| if (loc != p) |
| { |
| /* Chances are there is a run of relocs to insert here, |
| from one of more input files. Files are not always |
| linked in order due to the way elf_link_input_bfd is |
| called. See pr17666. */ |
| size_t sortlen = p - loc; |
| bfd_vma r_off2 = (*ext_r_off) (loc); |
| size_t runlen = elt_size; |
| size_t buf_size = 96 * 1024; |
| while (p + runlen < end |
| && (sortlen <= buf_size |
| || runlen + elt_size <= buf_size) |
| && r_off2 > (*ext_r_off) (p + runlen)) |
| runlen += elt_size; |
| if (buf == NULL) |
| { |
| buf = bfd_malloc (buf_size); |
| if (buf == NULL) |
| return FALSE; |
| } |
| if (runlen < sortlen) |
| { |
| memcpy (buf, p, runlen); |
| memmove (loc + runlen, loc, sortlen); |
| memcpy (loc, buf, runlen); |
| } |
| else |
| { |
| memcpy (buf, loc, sortlen); |
| memmove (loc, p, runlen); |
| memcpy (loc + runlen, buf, sortlen); |
| } |
| p += runlen - elt_size; |
| } |
| } |
| /* Hashes are no longer valid. */ |
| free (reldata->hashes); |
| reldata->hashes = NULL; |
| free (buf); |
| } |
| return TRUE; |
| } |
| |
| struct elf_link_sort_rela |
| { |
| union { |
| bfd_vma offset; |
| bfd_vma sym_mask; |
| } u; |
| enum elf_reloc_type_class type; |
| /* We use this as an array of size int_rels_per_ext_rel. */ |
| Elf_Internal_Rela rela[1]; |
| }; |
| |
| /* qsort stability here and for cmp2 is only an issue if multiple |
| dynamic relocations are emitted at the same address. But targets |
| that apply a series of dynamic relocations each operating on the |
| result of the prior relocation can't use -z combreloc as |
| implemented anyway. Such schemes tend to be broken by sorting on |
| symbol index. That leaves dynamic NONE relocs as the only other |
| case where ld might emit multiple relocs at the same address, and |
| those are only emitted due to target bugs. */ |
| |
| static int |
| elf_link_sort_cmp1 (const void *A, const void *B) |
| { |
| const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
| const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; |
| int relativea, relativeb; |
| |
| relativea = a->type == reloc_class_relative; |
| relativeb = b->type == reloc_class_relative; |
| |
| if (relativea < relativeb) |
| return 1; |
| if (relativea > relativeb) |
| return -1; |
| if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) |
| return -1; |
| if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) |
| return 1; |
| if (a->rela->r_offset < b->rela->r_offset) |
| return -1; |
| if (a->rela->r_offset > b->rela->r_offset) |
| return 1; |
| return 0; |
| } |
| |
| static int |
| elf_link_sort_cmp2 (const void *A, const void *B) |
| { |
| const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; |
| const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; |
| |
| if (a->type < b->type) |
| return -1; |
| if (a->type > b->type) |
| return 1; |
| if (a->u.offset < b->u.offset) |
| return -1; |
| if (a->u.offset > b->u.offset) |
| return 1; |
| if (a->rela->r_offset < b->rela->r_offset) |
| return -1; |
| if (a->rela->r_offset > b->rela->r_offset) |
| return 1; |
| return 0; |
| } |
| |
| static size_t |
| elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) |
| { |
| asection *dynamic_relocs; |
| asection *rela_dyn; |
| asection *rel_dyn; |
| bfd_size_type count, size; |
| size_t i, ret, sort_elt, ext_size; |
| bfd_byte *sort, *s_non_relative, *p; |
| struct elf_link_sort_rela *sq; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| int i2e = bed->s->int_rels_per_ext_rel; |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); |
| void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); |
| struct bfd_link_order *lo; |
| bfd_vma r_sym_mask; |
| bfd_boolean use_rela; |
| |
| /* Find a dynamic reloc section. */ |
| rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); |
| rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); |
| if (rela_dyn != NULL && rela_dyn->size > 0 |
| && rel_dyn != NULL && rel_dyn->size > 0) |
| { |
| bfd_boolean use_rela_initialised = FALSE; |
| |
| /* This is just here to stop gcc from complaining. |
| Its initialization checking code is not perfect. */ |
| use_rela = TRUE; |
| |
| /* Both sections are present. Examine the sizes |
| of the indirect sections to help us choose. */ |
| for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) |
| if (lo->type == bfd_indirect_link_order) |
| { |
| asection *o = lo->u.indirect.section; |
| |
| if ((o->size % bed->s->sizeof_rela) == 0) |
| { |
| if ((o->size % bed->s->sizeof_rel) == 0) |
| /* Section size is divisible by both rel and rela sizes. |
| It is of no help to us. */ |
| ; |
| else |
| { |
| /* Section size is only divisible by rela. */ |
| if (use_rela_initialised && !use_rela) |
| { |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are in more than one size"), |
| abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| else |
| { |
| use_rela = TRUE; |
| use_rela_initialised = TRUE; |
| } |
| } |
| } |
| else if ((o->size % bed->s->sizeof_rel) == 0) |
| { |
| /* Section size is only divisible by rel. */ |
| if (use_rela_initialised && use_rela) |
| { |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are in more than one size"), |
| abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| else |
| { |
| use_rela = FALSE; |
| use_rela_initialised = TRUE; |
| } |
| } |
| else |
| { |
| /* The section size is not divisible by either - |
| something is wrong. */ |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are of an unknown size"), abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| } |
| |
| for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) |
| if (lo->type == bfd_indirect_link_order) |
| { |
| asection *o = lo->u.indirect.section; |
| |
| if ((o->size % bed->s->sizeof_rela) == 0) |
| { |
| if ((o->size % bed->s->sizeof_rel) == 0) |
| /* Section size is divisible by both rel and rela sizes. |
| It is of no help to us. */ |
| ; |
| else |
| { |
| /* Section size is only divisible by rela. */ |
| if (use_rela_initialised && !use_rela) |
| { |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are in more than one size"), |
| abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| else |
| { |
| use_rela = TRUE; |
| use_rela_initialised = TRUE; |
| } |
| } |
| } |
| else if ((o->size % bed->s->sizeof_rel) == 0) |
| { |
| /* Section size is only divisible by rel. */ |
| if (use_rela_initialised && use_rela) |
| { |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are in more than one size"), |
| abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| else |
| { |
| use_rela = FALSE; |
| use_rela_initialised = TRUE; |
| } |
| } |
| else |
| { |
| /* The section size is not divisible by either - |
| something is wrong. */ |
| _bfd_error_handler (_("%pB: unable to sort relocs - " |
| "they are of an unknown size"), abfd); |
| bfd_set_error (bfd_error_invalid_operation); |
| return 0; |
| } |
| } |
| |
| if (! use_rela_initialised) |
| /* Make a guess. */ |
| use_rela = TRUE; |
| } |
| else if (rela_dyn != NULL && rela_dyn->size > 0) |
| use_rela = TRUE; |
| else if (rel_dyn != NULL && rel_dyn->size > 0) |
| use_rela = FALSE; |
| else |
| return 0; |
| |
| if (use_rela) |
| { |
| dynamic_relocs = rela_dyn; |
| ext_size = bed->s->sizeof_rela; |
| swap_in = bed->s->swap_reloca_in; |
| swap_out = bed->s->swap_reloca_out; |
| } |
| else |
| { |
| dynamic_relocs = rel_dyn; |
| ext_size = bed->s->sizeof_rel; |
| swap_in = bed->s->swap_reloc_in; |
| swap_out = bed->s->swap_reloc_out; |
| } |
| |
| size = 0; |
| for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
| if (lo->type == bfd_indirect_link_order) |
| size += lo->u.indirect.section->size; |
| |
| if (size != dynamic_relocs->size) |
| return 0; |
| |
| sort_elt = (sizeof (struct elf_link_sort_rela) |
| + (i2e - 1) * sizeof (Elf_Internal_Rela)); |
| |
| count = dynamic_relocs->size / ext_size; |
| if (count == 0) |
| return 0; |
| sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); |
| |
| if (sort == NULL) |
| { |
| (*info->callbacks->warning) |
| (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); |
| return 0; |
| } |
| |
| if (bed->s->arch_size == 32) |
| r_sym_mask = ~(bfd_vma) 0xff; |
| else |
| r_sym_mask = ~(bfd_vma) 0xffffffff; |
| |
| for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
| if (lo->type == bfd_indirect_link_order) |
| { |
| bfd_byte *erel, *erelend; |
| asection *o = lo->u.indirect.section; |
| |
| if (o->contents == NULL && o->size != 0) |
| { |
| /* This is a reloc section that is being handled as a normal |
| section. See bfd_section_from_shdr. We can't combine |
| relocs in this case. */ |
| free (sort); |
| return 0; |
| } |
| erel = o->contents; |
| erelend = o->contents + o->size; |
| p = sort + o->output_offset * opb / ext_size * sort_elt; |
| |
| while (erel < erelend) |
| { |
| struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
| |
| (*swap_in) (abfd, erel, s->rela); |
| s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); |
| s->u.sym_mask = r_sym_mask; |
| p += sort_elt; |
| erel += ext_size; |
| } |
| } |
| |
| qsort (sort, count, sort_elt, elf_link_sort_cmp1); |
| |
| for (i = 0, p = sort; i < count; i++, p += sort_elt) |
| { |
| struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
| if (s->type != reloc_class_relative) |
| break; |
| } |
| ret = i; |
| s_non_relative = p; |
| |
| sq = (struct elf_link_sort_rela *) s_non_relative; |
| for (; i < count; i++, p += sort_elt) |
| { |
| struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; |
| if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) |
| sq = sp; |
| sp->u.offset = sq->rela->r_offset; |
| } |
| |
| qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); |
| |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) |
| { |
| /* We have plt relocs in .rela.dyn. */ |
| sq = (struct elf_link_sort_rela *) sort; |
| for (i = 0; i < count; i++) |
| if (sq[count - i - 1].type != reloc_class_plt) |
| break; |
| if (i != 0 && htab->srelplt->size == i * ext_size) |
| { |
| struct bfd_link_order **plo; |
| /* Put srelplt link_order last. This is so the output_offset |
| set in the next loop is correct for DT_JMPREL. */ |
| for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) |
| if ((*plo)->type == bfd_indirect_link_order |
| && (*plo)->u.indirect.section == htab->srelplt) |
| { |
| lo = *plo; |
| *plo = lo->next; |
| } |
| else |
| plo = &(*plo)->next; |
| *plo = lo; |
| lo->next = NULL; |
| dynamic_relocs->map_tail.link_order = lo; |
| } |
| } |
| |
| p = sort; |
| for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) |
| if (lo->type == bfd_indirect_link_order) |
| { |
| bfd_byte *erel, *erelend; |
| asection *o = lo->u.indirect.section; |
| |
| erel = o->contents; |
| erelend = o->contents + o->size; |
| o->output_offset = (p - sort) / sort_elt * ext_size / opb; |
| while (erel < erelend) |
| { |
| struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; |
| (*swap_out) (abfd, s->rela, erel); |
| p += sort_elt; |
| erel += ext_size; |
| } |
| } |
| |
| free (sort); |
| *psec = dynamic_relocs; |
| return ret; |
| } |
| |
| /* Add a symbol to the output symbol string table. */ |
| |
| static int |
| elf_link_output_symstrtab (struct elf_final_link_info *flinfo, |
| const char *name, |
| Elf_Internal_Sym *elfsym, |
| asection *input_sec, |
| struct elf_link_hash_entry *h) |
| { |
| int (*output_symbol_hook) |
| (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, |
| struct elf_link_hash_entry *); |
| struct elf_link_hash_table *hash_table; |
| const struct elf_backend_data *bed; |
| bfd_size_type strtabsize; |
| |
| BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); |
| |
| bed = get_elf_backend_data (flinfo->output_bfd); |
| output_symbol_hook = bed->elf_backend_link_output_symbol_hook; |
| if (output_symbol_hook != NULL) |
| { |
| int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); |
| if (ret != 1) |
| return ret; |
| } |
| |
| if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) |
| elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; |
| if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) |
| elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; |
| |
| if (name == NULL |
| || *name == '\0' |
| || (input_sec->flags & SEC_EXCLUDE)) |
| elfsym->st_name = (unsigned long) -1; |
| else |
| { |
| /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize |
| to get the final offset for st_name. */ |
| elfsym->st_name |
| = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, |
| name, FALSE); |
| if (elfsym->st_name == (unsigned long) -1) |
| return 0; |
| } |
| |
| hash_table = elf_hash_table (flinfo->info); |
| strtabsize = hash_table->strtabsize; |
| if (strtabsize <= hash_table->strtabcount) |
| { |
| strtabsize += strtabsize; |
| hash_table->strtabsize = strtabsize; |
| strtabsize *= sizeof (*hash_table->strtab); |
| hash_table->strtab |
| = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, |
| strtabsize); |
| if (hash_table->strtab == NULL) |
| return 0; |
| } |
| hash_table->strtab[hash_table->strtabcount].sym = *elfsym; |
| hash_table->strtab[hash_table->strtabcount].dest_index |
| = hash_table->strtabcount; |
| hash_table->strtab[hash_table->strtabcount].destshndx_index |
| = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0; |
| |
| flinfo->output_bfd->symcount += 1; |
| hash_table->strtabcount += 1; |
| |
| return 1; |
| } |
| |
| /* Swap symbols out to the symbol table and flush the output symbols to |
| the file. */ |
| |
| static bfd_boolean |
| elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) |
| { |
| struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); |
| size_t amt; |
| size_t i; |
| const struct elf_backend_data *bed; |
| bfd_byte *symbuf; |
| Elf_Internal_Shdr *hdr; |
| file_ptr pos; |
| bfd_boolean ret; |
| |
| if (!hash_table->strtabcount) |
| return TRUE; |
| |
| BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); |
| |
| bed = get_elf_backend_data (flinfo->output_bfd); |
| |
| amt = bed->s->sizeof_sym * hash_table->strtabcount; |
| symbuf = (bfd_byte *) bfd_malloc (amt); |
| if (symbuf == NULL) |
| return FALSE; |
| |
| if (flinfo->symshndxbuf) |
| { |
| amt = sizeof (Elf_External_Sym_Shndx); |
| amt *= bfd_get_symcount (flinfo->output_bfd); |
| flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); |
| if (flinfo->symshndxbuf == NULL) |
| { |
| free (symbuf); |
| return FALSE; |
| } |
| } |
| |
| for (i = 0; i < hash_table->strtabcount; i++) |
| { |
| struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; |
| if (elfsym->sym.st_name == (unsigned long) -1) |
| elfsym->sym.st_name = 0; |
| else |
| elfsym->sym.st_name |
| = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, |
| elfsym->sym.st_name); |
| bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, |
| ((bfd_byte *) symbuf |
| + (elfsym->dest_index |
| * bed->s->sizeof_sym)), |
| (flinfo->symshndxbuf |
| + elfsym->destshndx_index)); |
| } |
| |
| /* Allow the linker to examine the strtab and symtab now they are |
| populated. */ |
| |
| if (flinfo->info->callbacks->examine_strtab) |
| flinfo->info->callbacks->examine_strtab (hash_table->strtab, |
| hash_table->strtabcount, |
| flinfo->symstrtab); |
| |
| hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; |
| pos = hdr->sh_offset + hdr->sh_size; |
| amt = hash_table->strtabcount * bed->s->sizeof_sym; |
| if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 |
| && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) |
| { |
| hdr->sh_size += amt; |
| ret = TRUE; |
| } |
| else |
| ret = FALSE; |
| |
| free (symbuf); |
| |
| free (hash_table->strtab); |
| hash_table->strtab = NULL; |
| |
| return ret; |
| } |
| |
| /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ |
| |
| static bfd_boolean |
| check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) |
| { |
| if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) |
| && sym->st_shndx < SHN_LORESERVE) |
| { |
| /* The gABI doesn't support dynamic symbols in output sections |
| beyond 64k. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: too many sections: %d (>= %d)"), |
| abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in |
| allowing an unsatisfied unversioned symbol in the DSO to match a |
| versioned symbol that would normally require an explicit version. |
| We also handle the case that a DSO references a hidden symbol |
| which may be satisfied by a versioned symbol in another DSO. */ |
| |
| static bfd_boolean |
| elf_link_check_versioned_symbol (struct bfd_link_info *info, |
| const struct elf_backend_data *bed, |
| struct elf_link_hash_entry *h) |
| { |
| bfd *abfd; |
| struct elf_link_loaded_list *loaded; |
| |
| if (!is_elf_hash_table (info->hash)) |
| return FALSE; |
| |
| /* Check indirect symbol. */ |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| switch (h->root.type) |
| { |
| default: |
| abfd = NULL; |
| break; |
| |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| abfd = h->root.u.undef.abfd; |
| if (abfd == NULL |
| || (abfd->flags & DYNAMIC) == 0 |
| || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) |
| return FALSE; |
| break; |
| |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| abfd = h->root.u.def.section->owner; |
| break; |
| |
| case bfd_link_hash_common: |
| abfd = h->root.u.c.p->section->owner; |
| break; |
| } |
| BFD_ASSERT (abfd != NULL); |
| |
| for (loaded = elf_hash_table (info)->dyn_loaded; |
| loaded != NULL; |
| loaded = loaded->next) |
| { |
| bfd *input; |
| Elf_Internal_Shdr *hdr; |
| size_t symcount; |
| size_t extsymcount; |
| size_t extsymoff; |
| Elf_Internal_Shdr *versymhdr; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| Elf_Internal_Sym *isymbuf; |
| Elf_External_Versym *ever; |
| Elf_External_Versym *extversym; |
| |
| input = loaded->abfd; |
| |
| /* We check each DSO for a possible hidden versioned definition. */ |
| if (input == abfd |
| || elf_dynversym (input) == 0) |
| continue; |
| |
| hdr = &elf_tdata (input)->dynsymtab_hdr; |
| |
| symcount = hdr->sh_size / bed->s->sizeof_sym; |
| if (elf_bad_symtab (input)) |
| { |
| extsymcount = symcount; |
| extsymoff = 0; |
| } |
| else |
| { |
| extsymcount = symcount - hdr->sh_info; |
| extsymoff = hdr->sh_info; |
| } |
| |
| if (extsymcount == 0) |
| continue; |
| |
| isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| return FALSE; |
| |
| /* Read in any version definitions. */ |
| versymhdr = &elf_tdata (input)->dynversym_hdr; |
| if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 |
| || (extversym = (Elf_External_Versym *) |
| _bfd_malloc_and_read (input, versymhdr->sh_size, |
| versymhdr->sh_size)) == NULL) |
| { |
| free (isymbuf); |
| return FALSE; |
| } |
| |
| ever = extversym + extsymoff; |
| isymend = isymbuf + extsymcount; |
| for (isym = isymbuf; isym < isymend; isym++, ever++) |
| { |
| const char *name; |
| Elf_Internal_Versym iver; |
| unsigned short version_index; |
| |
| if (ELF_ST_BIND (isym->st_info) == STB_LOCAL |
| || isym->st_shndx == SHN_UNDEF) |
| continue; |
| |
| name = bfd_elf_string_from_elf_section (input, |
| hdr->sh_link, |
| isym->st_name); |
| if (strcmp (name, h->root.root.string) != 0) |
| continue; |
| |
| _bfd_elf_swap_versym_in (input, ever, &iver); |
| |
| if ((iver.vs_vers & VERSYM_HIDDEN) == 0 |
| && !(h->def_regular |
| && h->forced_local)) |
| { |
| /* If we have a non-hidden versioned sym, then it should |
| have provided a definition for the undefined sym unless |
| it is defined in a non-shared object and forced local. |
| */ |
| abort (); |
| } |
| |
| version_index = iver.vs_vers & VERSYM_VERSION; |
| if (version_index == 1 || version_index == 2) |
| { |
| /* This is the base or first version. We can use it. */ |
| free (extversym); |
| free (isymbuf); |
| return TRUE; |
| } |
| } |
| |
| free (extversym); |
| free (isymbuf); |
| } |
| |
| return FALSE; |
| } |
| |
| /* Convert ELF common symbol TYPE. */ |
| |
| static int |
| elf_link_convert_common_type (struct bfd_link_info *info, int type) |
| { |
| /* Commom symbol can only appear in relocatable link. */ |
| if (!bfd_link_relocatable (info)) |
| abort (); |
| switch (info->elf_stt_common) |
| { |
| case unchanged: |
| break; |
| case elf_stt_common: |
| type = STT_COMMON; |
| break; |
| case no_elf_stt_common: |
| type = STT_OBJECT; |
| break; |
| } |
| return type; |
| } |
| |
| /* Add an external symbol to the symbol table. This is called from |
| the hash table traversal routine. When generating a shared object, |
| we go through the symbol table twice. The first time we output |
| anything that might have been forced to local scope in a version |
| script. The second time we output the symbols that are still |
| global symbols. */ |
| |
| static bfd_boolean |
| elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) |
| { |
| struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; |
| struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; |
| struct elf_final_link_info *flinfo = eoinfo->flinfo; |
| bfd_boolean strip; |
| Elf_Internal_Sym sym; |
| asection *input_sec; |
| const struct elf_backend_data *bed; |
| long indx; |
| int ret; |
| unsigned int type; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| { |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| if (h->root.type == bfd_link_hash_new) |
| return TRUE; |
| } |
| |
| /* Decide whether to output this symbol in this pass. */ |
| if (eoinfo->localsyms) |
| { |
| if (!h->forced_local) |
| return TRUE; |
| } |
| else |
| { |
| if (h->forced_local) |
| return TRUE; |
| } |
| |
| bed = get_elf_backend_data (flinfo->output_bfd); |
| |
| if (h->root.type == bfd_link_hash_undefined) |
| { |
| /* If we have an undefined symbol reference here then it must have |
| come from a shared library that is being linked in. (Undefined |
| references in regular files have already been handled unless |
| they are in unreferenced sections which are removed by garbage |
| collection). */ |
| bfd_boolean ignore_undef = FALSE; |
| |
| /* Some symbols may be special in that the fact that they're |
| undefined can be safely ignored - let backend determine that. */ |
| if (bed->elf_backend_ignore_undef_symbol) |
| ignore_undef = bed->elf_backend_ignore_undef_symbol (h); |
| |
| /* If we are reporting errors for this situation then do so now. */ |
| if (!ignore_undef |
| && h->ref_dynamic_nonweak |
| && (!h->ref_regular || flinfo->info->gc_sections) |
| && !elf_link_check_versioned_symbol (flinfo->info, bed, h) |
| && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) |
| { |
| flinfo->info->callbacks->undefined_symbol |
| (flinfo->info, h->root.root.string, |
| h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0, |
| flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE |
| && !flinfo->info->warn_unresolved_syms); |
| } |
| |
| /* Strip a global symbol defined in a discarded section. */ |
| if (h->indx == -3) |
| return TRUE; |
| } |
| |
| /* We should also warn if a forced local symbol is referenced from |
| shared libraries. */ |
| if (bfd_link_executable (flinfo->info) |
| && h->forced_local |
| && h->ref_dynamic |
| && h->def_regular |
| && !h->dynamic_def |
| && h->ref_dynamic_nonweak |
| && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) |
| { |
| bfd *def_bfd; |
| const char *msg; |
| struct elf_link_hash_entry *hi = h; |
| |
| /* Check indirect symbol. */ |
| while (hi->root.type == bfd_link_hash_indirect) |
| hi = (struct elf_link_hash_entry *) hi->root.u.i.link; |
| |
| if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) |
| /* xgettext:c-format */ |
| msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); |
| else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) |
| /* xgettext:c-format */ |
| msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); |
| else |
| /* xgettext:c-format */ |
| msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); |
| def_bfd = flinfo->output_bfd; |
| if (hi->root.u.def.section != bfd_abs_section_ptr) |
| def_bfd = hi->root.u.def.section->owner; |
| _bfd_error_handler (msg, flinfo->output_bfd, |
| h->root.root.string, def_bfd); |
| bfd_set_error (bfd_error_bad_value); |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| /* We don't want to output symbols that have never been mentioned by |
| a regular file, or that we have been told to strip. However, if |
| h->indx is set to -2, the symbol is used by a reloc and we must |
| output it. */ |
| strip = FALSE; |
| if (h->indx == -2) |
| ; |
| else if ((h->def_dynamic |
| || h->ref_dynamic |
| || h->root.type == bfd_link_hash_new) |
| && !h->def_regular |
| && !h->ref_regular) |
| strip = TRUE; |
| else if (flinfo->info->strip == strip_all) |
| strip = TRUE; |
| else if (flinfo->info->strip == strip_some |
| && bfd_hash_lookup (flinfo->info->keep_hash, |
| h->root.root.string, FALSE, FALSE) == NULL) |
| strip = TRUE; |
| else if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && ((flinfo->info->strip_discarded |
| && discarded_section (h->root.u.def.section)) |
| || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 |
| && h->root.u.def.section->owner != NULL |
| && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) |
| strip = TRUE; |
| else if ((h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak) |
| && h->root.u.undef.abfd != NULL |
| && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) |
| strip = TRUE; |
| |
| type = h->type; |
| |
| /* If we're stripping it, and it's not a dynamic symbol, there's |
| nothing else to do. However, if it is a forced local symbol or |
| an ifunc symbol we need to give the backend finish_dynamic_symbol |
| function a chance to make it dynamic. */ |
| if (strip |
| && h->dynindx == -1 |
| && type != STT_GNU_IFUNC |
| && !h->forced_local) |
| return TRUE; |
| |
| sym.st_value = 0; |
| sym.st_size = h->size; |
| sym.st_other = h->other; |
| switch (h->root.type) |
| { |
| default: |
| case bfd_link_hash_new: |
| case bfd_link_hash_warning: |
| abort (); |
| return FALSE; |
| |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| input_sec = bfd_und_section_ptr; |
| sym.st_shndx = SHN_UNDEF; |
| break; |
| |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| { |
| input_sec = h->root.u.def.section; |
| if (input_sec->output_section != NULL) |
| { |
| sym.st_shndx = |
| _bfd_elf_section_from_bfd_section (flinfo->output_bfd, |
| input_sec->output_section); |
| if (sym.st_shndx == SHN_BAD) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: could not find output section %pA for input section %pA"), |
| flinfo->output_bfd, input_sec->output_section, input_sec); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| /* ELF symbols in relocatable files are section relative, |
| but in nonrelocatable files they are virtual |
| addresses. */ |
| sym.st_value = h->root.u.def.value + input_sec->output_offset; |
| if (!bfd_link_relocatable (flinfo->info)) |
| { |
| sym.st_value += input_sec->output_section->vma; |
| if (h->type == STT_TLS) |
| { |
| asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; |
| if (tls_sec != NULL) |
| sym.st_value -= tls_sec->vma; |
| } |
| } |
| } |
| else |
| { |
| BFD_ASSERT (input_sec->owner == NULL |
| || (input_sec->owner->flags & DYNAMIC) != 0); |
| sym.st_shndx = SHN_UNDEF; |
| input_sec = bfd_und_section_ptr; |
| } |
| } |
| break; |
| |
| case bfd_link_hash_common: |
| input_sec = h->root.u.c.p->section; |
| sym.st_shndx = bed->common_section_index (input_sec); |
| sym.st_value = 1 << h->root.u.c.p->alignment_power; |
| break; |
| |
| case bfd_link_hash_indirect: |
| /* These symbols are created by symbol versioning. They point |
| to the decorated version of the name. For example, if the |
| symbol foo@@GNU_1.2 is the default, which should be used when |
| foo is used with no version, then we add an indirect symbol |
| foo which points to foo@@GNU_1.2. We ignore these symbols, |
| since the indirected symbol is already in the hash table. */ |
| return TRUE; |
| } |
| |
| if (type == STT_COMMON || type == STT_OBJECT) |
| switch (h->root.type) |
| { |
| case bfd_link_hash_common: |
| type = elf_link_convert_common_type (flinfo->info, type); |
| break; |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| if (bed->common_definition (&sym)) |
| type = elf_link_convert_common_type (flinfo->info, type); |
| else |
| type = STT_OBJECT; |
| break; |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| break; |
| default: |
| abort (); |
| } |
| |
| if (h->forced_local) |
| { |
| sym.st_info = ELF_ST_INFO (STB_LOCAL, type); |
| /* Turn off visibility on local symbol. */ |
| sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
| } |
| /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ |
| else if (h->unique_global && h->def_regular) |
| sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); |
| else if (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_defweak) |
| sym.st_info = ELF_ST_INFO (STB_WEAK, type); |
| else |
| sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); |
| sym.st_target_internal = h->target_internal; |
| |
| /* Give the processor backend a chance to tweak the symbol value, |
| and also to finish up anything that needs to be done for this |
| symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for |
| forced local syms when non-shared is due to a historical quirk. |
| STT_GNU_IFUNC symbol must go through PLT. */ |
| if ((h->type == STT_GNU_IFUNC |
| && h->def_regular |
| && !bfd_link_relocatable (flinfo->info)) |
| || ((h->dynindx != -1 |
| || h->forced_local) |
| && ((bfd_link_pic (flinfo->info) |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| || !h->forced_local) |
| && elf_hash_table (flinfo->info)->dynamic_sections_created)) |
| { |
| if (! ((*bed->elf_backend_finish_dynamic_symbol) |
| (flinfo->output_bfd, flinfo->info, h, &sym))) |
| { |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| } |
| |
| /* If we are marking the symbol as undefined, and there are no |
| non-weak references to this symbol from a regular object, then |
| mark the symbol as weak undefined; if there are non-weak |
| references, mark the symbol as strong. We can't do this earlier, |
| because it might not be marked as undefined until the |
| finish_dynamic_symbol routine gets through with it. */ |
| if (sym.st_shndx == SHN_UNDEF |
| && h->ref_regular |
| && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL |
| || ELF_ST_BIND (sym.st_info) == STB_WEAK)) |
| { |
| int bindtype; |
| type = ELF_ST_TYPE (sym.st_info); |
| |
| /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ |
| if (type == STT_GNU_IFUNC) |
| type = STT_FUNC; |
| |
| if (h->ref_regular_nonweak) |
| bindtype = STB_GLOBAL; |
| else |
| bindtype = STB_WEAK; |
| sym.st_info = ELF_ST_INFO (bindtype, type); |
| } |
| |
| /* If this is a symbol defined in a dynamic library, don't use the |
| symbol size from the dynamic library. Relinking an executable |
| against a new library may introduce gratuitous changes in the |
| executable's symbols if we keep the size. */ |
| if (sym.st_shndx == SHN_UNDEF |
| && !h->def_regular |
| && h->def_dynamic) |
| sym.st_size = 0; |
| |
| /* If a non-weak symbol with non-default visibility is not defined |
| locally, it is a fatal error. */ |
| if (!bfd_link_relocatable (flinfo->info) |
| && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT |
| && ELF_ST_BIND (sym.st_info) != STB_WEAK |
| && h->root.type == bfd_link_hash_undefined |
| && !h->def_regular) |
| { |
| const char *msg; |
| |
| if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) |
| /* xgettext:c-format */ |
| msg = _("%pB: protected symbol `%s' isn't defined"); |
| else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) |
| /* xgettext:c-format */ |
| msg = _("%pB: internal symbol `%s' isn't defined"); |
| else |
| /* xgettext:c-format */ |
| msg = _("%pB: hidden symbol `%s' isn't defined"); |
| _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| /* If this symbol should be put in the .dynsym section, then put it |
| there now. We already know the symbol index. We also fill in |
| the entry in the .hash section. */ |
| if (h->dynindx != -1 |
| && elf_hash_table (flinfo->info)->dynamic_sections_created |
| && elf_hash_table (flinfo->info)->dynsym != NULL |
| && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) |
| { |
| bfd_byte *esym; |
| |
| /* Since there is no version information in the dynamic string, |
| if there is no version info in symbol version section, we will |
| have a run-time problem if not linking executable, referenced |
| by shared library, or not bound locally. */ |
| if (h->verinfo.verdef == NULL |
| && (!bfd_link_executable (flinfo->info) |
| || h->ref_dynamic |
| || !h->def_regular)) |
| { |
| char *p = strrchr (h->root.root.string, ELF_VER_CHR); |
| |
| if (p && p [1] != '\0') |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: no symbol version section for versioned symbol `%s'"), |
| flinfo->output_bfd, h->root.root.string); |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| } |
| |
| sym.st_name = h->dynstr_index; |
| esym = (elf_hash_table (flinfo->info)->dynsym->contents |
| + h->dynindx * bed->s->sizeof_sym); |
| if (!check_dynsym (flinfo->output_bfd, &sym)) |
| { |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); |
| |
| if (flinfo->hash_sec != NULL) |
| { |
| size_t hash_entry_size; |
| bfd_byte *bucketpos; |
| bfd_vma chain; |
| size_t bucketcount; |
| size_t bucket; |
| |
| bucketcount = elf_hash_table (flinfo->info)->bucketcount; |
| bucket = h->u.elf_hash_value % bucketcount; |
| |
| hash_entry_size |
| = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; |
| bucketpos = ((bfd_byte *) flinfo->hash_sec->contents |
| + (bucket + 2) * hash_entry_size); |
| chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); |
| bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, |
| bucketpos); |
| bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, |
| ((bfd_byte *) flinfo->hash_sec->contents |
| + (bucketcount + 2 + h->dynindx) * hash_entry_size)); |
| } |
| |
| if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) |
| { |
| Elf_Internal_Versym iversym; |
| Elf_External_Versym *eversym; |
| |
| if (!h->def_regular && !ELF_COMMON_DEF_P (h)) |
| { |
| if (h->verinfo.verdef == NULL |
| || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) |
| & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) |
| iversym.vs_vers = 0; |
| else |
| iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; |
| } |
| else |
| { |
| if (h->verinfo.vertree == NULL) |
| iversym.vs_vers = 1; |
| else |
| iversym.vs_vers = h->verinfo.vertree->vernum + 1; |
| if (flinfo->info->create_default_symver) |
| iversym.vs_vers++; |
| } |
| |
| /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is |
| defined locally. */ |
| if (h->versioned == versioned_hidden && h->def_regular) |
| iversym.vs_vers |= VERSYM_HIDDEN; |
| |
| eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; |
| eversym += h->dynindx; |
| _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); |
| } |
| } |
| |
| /* If the symbol is undefined, and we didn't output it to .dynsym, |
| strip it from .symtab too. Obviously we can't do this for |
| relocatable output or when needed for --emit-relocs. */ |
| else if (input_sec == bfd_und_section_ptr |
| && h->indx != -2 |
| /* PR 22319 Do not strip global undefined symbols marked as being needed. */ |
| && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) |
| && !bfd_link_relocatable (flinfo->info)) |
| return TRUE; |
| |
| /* Also strip others that we couldn't earlier due to dynamic symbol |
| processing. */ |
| if (strip) |
| return TRUE; |
| if ((input_sec->flags & SEC_EXCLUDE) != 0) |
| return TRUE; |
| |
| /* Output a FILE symbol so that following locals are not associated |
| with the wrong input file. We need one for forced local symbols |
| if we've seen more than one FILE symbol or when we have exactly |
| one FILE symbol but global symbols are present in a file other |
| than the one with the FILE symbol. We also need one if linker |
| defined symbols are present. In practice these conditions are |
| always met, so just emit the FILE symbol unconditionally. */ |
| if (eoinfo->localsyms |
| && !eoinfo->file_sym_done |
| && eoinfo->flinfo->filesym_count != 0) |
| { |
| Elf_Internal_Sym fsym; |
| |
| memset (&fsym, 0, sizeof (fsym)); |
| fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
| fsym.st_shndx = SHN_ABS; |
| if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, |
| bfd_und_section_ptr, NULL)) |
| return FALSE; |
| |
| eoinfo->file_sym_done = TRUE; |
| } |
| |
| indx = bfd_get_symcount (flinfo->output_bfd); |
| ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, |
| input_sec, h); |
| if (ret == 0) |
| { |
| eoinfo->failed = TRUE; |
| return FALSE; |
| } |
| else if (ret == 1) |
| h->indx = indx; |
| else if (h->indx == -2) |
| abort(); |
| |
| return TRUE; |
| } |
| |
| /* Return TRUE if special handling is done for relocs in SEC against |
| symbols defined in discarded sections. */ |
| |
| static bfd_boolean |
| elf_section_ignore_discarded_relocs (asection *sec) |
| { |
| const struct elf_backend_data *bed; |
| |
| switch (sec->sec_info_type) |
| { |
| case SEC_INFO_TYPE_STABS: |
| case SEC_INFO_TYPE_EH_FRAME: |
| case SEC_INFO_TYPE_EH_FRAME_ENTRY: |
| return TRUE; |
| default: |
| break; |
| } |
| |
| bed = get_elf_backend_data (sec->owner); |
| if (bed->elf_backend_ignore_discarded_relocs != NULL |
| && (*bed->elf_backend_ignore_discarded_relocs) (sec)) |
| return TRUE; |
| |
| return FALSE; |
| } |
| |
| /* Return a mask saying how ld should treat relocations in SEC against |
| symbols defined in discarded sections. If this function returns |
| COMPLAIN set, ld will issue a warning message. If this function |
| returns PRETEND set, and the discarded section was link-once and the |
| same size as the kept link-once section, ld will pretend that the |
| symbol was actually defined in the kept section. Otherwise ld will |
| zero the reloc (at least that is the intent, but some cooperation by |
| the target dependent code is needed, particularly for REL targets). */ |
| |
| unsigned int |
| _bfd_elf_default_action_discarded (asection *sec) |
| { |
| if (sec->flags & SEC_DEBUGGING) |
| return PRETEND; |
| |
| if (strcmp (".eh_frame", sec->name) == 0) |
| return 0; |
| |
| if (strcmp (".gcc_except_table", sec->name) == 0) |
| return 0; |
| |
| return COMPLAIN | PRETEND; |
| } |
| |
| /* Find a match between a section and a member of a section group. */ |
| |
| static asection * |
| match_group_member (asection *sec, asection *group, |
| struct bfd_link_info *info) |
| { |
| asection *first = elf_next_in_group (group); |
| asection *s = first; |
| |
| while (s != NULL) |
| { |
| if (bfd_elf_match_symbols_in_sections (s, sec, info)) |
| return s; |
| |
| s = elf_next_in_group (s); |
| if (s == first) |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| /* Check if the kept section of a discarded section SEC can be used |
| to replace it. Return the replacement if it is OK. Otherwise return |
| NULL. */ |
| |
| asection * |
| _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) |
| { |
| asection *kept; |
| |
| kept = sec->kept_section; |
| if (kept != NULL) |
| { |
| if ((kept->flags & SEC_GROUP) != 0) |
| kept = match_group_member (sec, kept, info); |
| if (kept != NULL |
| && ((sec->rawsize != 0 ? sec->rawsize : sec->size) |
| != (kept->rawsize != 0 ? kept->rawsize : kept->size))) |
| kept = NULL; |
| sec->kept_section = kept; |
| } |
| return kept; |
| } |
| |
| /* Link an input file into the linker output file. This function |
| handles all the sections and relocations of the input file at once. |
| This is so that we only have to read the local symbols once, and |
| don't have to keep them in memory. */ |
| |
| static bfd_boolean |
| elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) |
| { |
| int (*relocate_section) |
| (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
| Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); |
| bfd *output_bfd; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t locsymcount; |
| size_t extsymoff; |
| Elf_Internal_Sym *isymbuf; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| long *pindex; |
| asection **ppsection; |
| asection *o; |
| const struct elf_backend_data *bed; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_size_type address_size; |
| bfd_vma r_type_mask; |
| int r_sym_shift; |
| bfd_boolean have_file_sym = FALSE; |
| |
| output_bfd = flinfo->output_bfd; |
| bed = get_elf_backend_data (output_bfd); |
| relocate_section = bed->elf_backend_relocate_section; |
| |
| /* If this is a dynamic object, we don't want to do anything here: |
| we don't want the local symbols, and we don't want the section |
| contents. */ |
| if ((input_bfd->flags & DYNAMIC) != 0) |
| return TRUE; |
| |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| if (elf_bad_symtab (input_bfd)) |
| { |
| locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
| extsymoff = 0; |
| } |
| else |
| { |
| locsymcount = symtab_hdr->sh_info; |
| extsymoff = symtab_hdr->sh_info; |
| } |
| |
| /* Read the local symbols. */ |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL && locsymcount != 0) |
| { |
| isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, |
| flinfo->internal_syms, |
| flinfo->external_syms, |
| flinfo->locsym_shndx); |
| if (isymbuf == NULL) |
| return FALSE; |
| } |
| |
| /* Find local symbol sections and adjust values of symbols in |
| SEC_MERGE sections. Write out those local symbols we know are |
| going into the output file. */ |
| isymend = isymbuf + locsymcount; |
| for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; |
| isym < isymend; |
| isym++, pindex++, ppsection++) |
| { |
| asection *isec; |
| const char *name; |
| Elf_Internal_Sym osym; |
| long indx; |
| int ret; |
| |
| *pindex = -1; |
| |
| if (elf_bad_symtab (input_bfd)) |
| { |
| if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) |
| { |
| *ppsection = NULL; |
| continue; |
| } |
| } |
| |
| if (isym->st_shndx == SHN_UNDEF) |
| isec = bfd_und_section_ptr; |
| else if (isym->st_shndx == SHN_ABS) |
| isec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| isec = bfd_com_section_ptr; |
| else |
| { |
| isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); |
| if (isec == NULL) |
| { |
| /* Don't attempt to output symbols with st_shnx in the |
| reserved range other than SHN_ABS and SHN_COMMON. */ |
| isec = bfd_und_section_ptr; |
| } |
| else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE |
| && ELF_ST_TYPE (isym->st_info) != STT_SECTION) |
| isym->st_value = |
| _bfd_merged_section_offset (output_bfd, &isec, |
| elf_section_data (isec)->sec_info, |
| isym->st_value); |
| } |
| |
| *ppsection = isec; |
| |
| /* Don't output the first, undefined, symbol. In fact, don't |
| output any undefined local symbol. */ |
| if (isec == bfd_und_section_ptr) |
| continue; |
| |
| if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) |
| { |
| /* We never output section symbols. Instead, we use the |
| section symbol of the corresponding section in the output |
| file. */ |
| continue; |
| } |
| |
| /* If we are stripping all symbols, we don't want to output this |
| one. */ |
| if (flinfo->info->strip == strip_all) |
| continue; |
| |
| /* If we are discarding all local symbols, we don't want to |
| output this one. If we are generating a relocatable output |
| file, then some of the local symbols may be required by |
| relocs; we output them below as we discover that they are |
| needed. */ |
| if (flinfo->info->discard == discard_all) |
| continue; |
| |
| /* If this symbol is defined in a section which we are |
| discarding, we don't need to keep it. */ |
| if (isym->st_shndx != SHN_UNDEF |
| && isym->st_shndx < SHN_LORESERVE |
| && isec->output_section == NULL |
| && flinfo->info->non_contiguous_regions |
| && flinfo->info->non_contiguous_regions_warnings) |
| { |
| _bfd_error_handler (_("warning: --enable-non-contiguous-regions " |
| "discards section `%s' from '%s'\n"), |
| isec->name, bfd_get_filename (isec->owner)); |
| continue; |
| } |
| |
| if (isym->st_shndx != SHN_UNDEF |
| && isym->st_shndx < SHN_LORESERVE |
| && bfd_section_removed_from_list (output_bfd, |
| isec->output_section)) |
| continue; |
| |
| /* Get the name of the symbol. */ |
| name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, |
| isym->st_name); |
| if (name == NULL) |
| return FALSE; |
| |
| /* See if we are discarding symbols with this name. */ |
| if ((flinfo->info->strip == strip_some |
| && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE) |
| == NULL)) |
| || (((flinfo->info->discard == discard_sec_merge |
| && (isec->flags & SEC_MERGE) |
| && !bfd_link_relocatable (flinfo->info)) |
| || flinfo->info->discard == discard_l) |
| && bfd_is_local_label_name (input_bfd, name))) |
| continue; |
| |
| if (ELF_ST_TYPE (isym->st_info) == STT_FILE) |
| { |
| if (input_bfd->lto_output) |
| /* -flto puts a temp file name here. This means builds |
| are not reproducible. Discard the symbol. */ |
| continue; |
| have_file_sym = TRUE; |
| flinfo->filesym_count += 1; |
| } |
| if (!have_file_sym) |
| { |
| /* In the absence of debug info, bfd_find_nearest_line uses |
| FILE symbols to determine the source file for local |
| function symbols. Provide a FILE symbol here if input |
| files lack such, so that their symbols won't be |
| associated with a previous input file. It's not the |
| source file, but the best we can do. */ |
| have_file_sym = TRUE; |
| flinfo->filesym_count += 1; |
| memset (&osym, 0, sizeof (osym)); |
| osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
| osym.st_shndx = SHN_ABS; |
| if (!elf_link_output_symstrtab (flinfo, |
| (input_bfd->lto_output ? NULL |
| : bfd_get_filename (input_bfd)), |
| &osym, bfd_abs_section_ptr, |
| NULL)) |
| return FALSE; |
| } |
| |
| osym = *isym; |
| |
| /* Adjust the section index for the output file. */ |
| osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, |
| isec->output_section); |
| if (osym.st_shndx == SHN_BAD) |
| return FALSE; |
| |
| /* ELF symbols in relocatable files are section relative, but |
| in executable files they are virtual addresses. Note that |
| this code assumes that all ELF sections have an associated |
| BFD section with a reasonable value for output_offset; below |
| we assume that they also have a reasonable value for |
| output_section. Any special sections must be set up to meet |
| these requirements. */ |
| osym.st_value += isec->output_offset; |
| if (!bfd_link_relocatable (flinfo->info)) |
| { |
| osym.st_value += isec->output_section->vma; |
| if (ELF_ST_TYPE (osym.st_info) == STT_TLS) |
| { |
| /* STT_TLS symbols are relative to PT_TLS segment base. */ |
| if (elf_hash_table (flinfo->info)->tls_sec != NULL) |
| osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; |
| else |
| osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), |
| STT_NOTYPE); |
| } |
| } |
| |
| indx = bfd_get_symcount (output_bfd); |
| ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); |
| if (ret == 0) |
| return FALSE; |
| else if (ret == 1) |
| *pindex = indx; |
| } |
| |
| if (bed->s->arch_size == 32) |
| { |
| r_type_mask = 0xff; |
| r_sym_shift = 8; |
| address_size = 4; |
| } |
| else |
| { |
| r_type_mask = 0xffffffff; |
| r_sym_shift = 32; |
| address_size = 8; |
| } |
| |
| /* Relocate the contents of each section. */ |
| sym_hashes = elf_sym_hashes (input_bfd); |
| for (o = input_bfd->sections; o != NULL; o = o->next) |
| { |
| bfd_byte *contents; |
| |
| if (! o->linker_mark) |
| { |
| /* This section was omitted from the link. */ |
| continue; |
| } |
| |
| if (!flinfo->info->resolve_section_groups |
| && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) |
| { |
| /* Deal with the group signature symbol. */ |
| struct bfd_elf_section_data *sec_data = elf_section_data (o); |
| unsigned long symndx = sec_data->this_hdr.sh_info; |
| asection *osec = o->output_section; |
| |
| BFD_ASSERT (bfd_link_relocatable (flinfo->info)); |
| if (symndx >= locsymcount |
| || (elf_bad_symtab (input_bfd) |
| && flinfo->sections[symndx] == NULL)) |
| { |
| struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| /* Arrange for symbol to be output. */ |
| h->indx = -2; |
| elf_section_data (osec)->this_hdr.sh_info = -2; |
| } |
| else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) |
| { |
| /* We'll use the output section target_index. */ |
| asection *sec = flinfo->sections[symndx]->output_section; |
| elf_section_data (osec)->this_hdr.sh_info = sec->target_index; |
| } |
| else |
| { |
| if (flinfo->indices[symndx] == -1) |
| { |
| /* Otherwise output the local symbol now. */ |
| Elf_Internal_Sym sym = isymbuf[symndx]; |
| asection *sec = flinfo->sections[symndx]->output_section; |
| const char *name; |
| long indx; |
| int ret; |
| |
| name = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym.st_name); |
| if (name == NULL) |
| return FALSE; |
| |
| sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, |
| sec); |
| if (sym.st_shndx == SHN_BAD) |
| return FALSE; |
| |
| sym.st_value += o->output_offset; |
| |
| indx = bfd_get_symcount (output_bfd); |
| ret = elf_link_output_symstrtab (flinfo, name, &sym, o, |
| NULL); |
| if (ret == 0) |
| return FALSE; |
| else if (ret == 1) |
| flinfo->indices[symndx] = indx; |
| else |
| abort (); |
| } |
| elf_section_data (osec)->this_hdr.sh_info |
| = flinfo->indices[symndx]; |
| } |
| } |
| |
| if ((o->flags & SEC_HAS_CONTENTS) == 0 |
| || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) |
| continue; |
| |
| if ((o->flags & SEC_LINKER_CREATED) != 0) |
| { |
| /* Section was created by _bfd_elf_link_create_dynamic_sections |
| or somesuch. */ |
| continue; |
| } |
| |
| /* Get the contents of the section. They have been cached by a |
| relaxation routine. Note that o is a section in an input |
| file, so the contents field will not have been set by any of |
| the routines which work on output files. */ |
| if (elf_section_data (o)->this_hdr.contents != NULL) |
| { |
| contents = elf_section_data (o)->this_hdr.contents; |
| if (bed->caches_rawsize |
| && o->rawsize != 0 |
| && o->rawsize < o->size) |
| { |
| memcpy (flinfo->contents, contents, o->rawsize); |
| contents = flinfo->contents; |
| } |
| } |
| else |
| { |
| contents = flinfo->contents; |
| if (! bfd_get_full_section_contents (input_bfd, o, &contents)) |
| return FALSE; |
| } |
| |
| if ((o->flags & SEC_RELOC) != 0) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *rel, *relend; |
| int action_discarded; |
| int ret; |
| |
| /* Get the swapped relocs. */ |
| internal_relocs |
| = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs, |
| flinfo->internal_relocs, FALSE); |
| if (internal_relocs == NULL |
| && o->reloc_count > 0) |
| return FALSE; |
| |
| /* We need to reverse-copy input .ctors/.dtors sections if |
| they are placed in .init_array/.finit_array for output. */ |
| if (o->size > address_size |
| && ((strncmp (o->name, ".ctors", 6) == 0 |
| && strcmp (o->output_section->name, |
| ".init_array") == 0) |
| || (strncmp (o->name, ".dtors", 6) == 0 |
| && strcmp (o->output_section->name, |
| ".fini_array") == 0)) |
| && (o->name[6] == 0 || o->name[6] == '.')) |
| { |
| if (o->size * bed->s->int_rels_per_ext_rel |
| != o->reloc_count * address_size) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("error: %pB: size of section %pA is not " |
| "multiple of address size"), |
| input_bfd, o); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| o->flags |= SEC_ELF_REVERSE_COPY; |
| } |
| |
| action_discarded = -1; |
| if (!elf_section_ignore_discarded_relocs (o)) |
| action_discarded = (*bed->action_discarded) (o); |
| |
| /* Run through the relocs evaluating complex reloc symbols and |
| looking for relocs against symbols from discarded sections |
| or section symbols from removed link-once sections. |
| Complain about relocs against discarded sections. Zero |
| relocs against removed link-once sections. */ |
| |
| rel = internal_relocs; |
| relend = rel + o->reloc_count; |
| for ( ; rel < relend; rel++) |
| { |
| unsigned long r_symndx = rel->r_info >> r_sym_shift; |
| unsigned int s_type; |
| asection **ps, *sec; |
| struct elf_link_hash_entry *h = NULL; |
| const char *sym_name; |
| |
| if (r_symndx == STN_UNDEF) |
| continue; |
| |
| if (r_symndx >= locsymcount |
| || (elf_bad_symtab (input_bfd) |
| && flinfo->sections[r_symndx] == NULL)) |
| { |
| h = sym_hashes[r_symndx - extsymoff]; |
| |
| /* Badly formatted input files can contain relocs that |
| reference non-existant symbols. Check here so that |
| we do not seg fault. */ |
| if (h == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA " |
| "that references a non-existent global symbol"), |
| input_bfd, (uint64_t) rel->r_info, o); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| s_type = h->type; |
| |
| /* If a plugin symbol is referenced from a non-IR file, |
| mark the symbol as undefined. Note that the |
| linker may attach linker created dynamic sections |
| to the plugin bfd. Symbols defined in linker |
| created sections are not plugin symbols. */ |
| if ((h->root.non_ir_ref_regular |
| || h->root.non_ir_ref_dynamic) |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && (h->root.u.def.section->flags |
| & SEC_LINKER_CREATED) == 0 |
| && h->root.u.def.section->owner != NULL |
| && (h->root.u.def.section->owner->flags |
| & BFD_PLUGIN) != 0) |
| { |
| h->root.type = bfd_link_hash_undefined; |
| h->root.u.undef.abfd = h->root.u.def.section->owner; |
| } |
| |
| ps = NULL; |
| if (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| ps = &h->root.u.def.section; |
| |
| sym_name = h->root.root.string; |
| } |
| else |
| { |
| Elf_Internal_Sym *sym = isymbuf + r_symndx; |
| |
| s_type = ELF_ST_TYPE (sym->st_info); |
| ps = &flinfo->sections[r_symndx]; |
| sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, |
| sym, *ps); |
| } |
| |
| if ((s_type == STT_RELC || s_type == STT_SRELC) |
| && !bfd_link_relocatable (flinfo->info)) |
| { |
| bfd_vma val; |
| bfd_vma dot = (rel->r_offset |
| + o->output_offset + o->output_section->vma); |
| #ifdef DEBUG |
| printf ("Encountered a complex symbol!"); |
| printf (" (input_bfd %s, section %s, reloc %ld\n", |
| bfd_get_filename (input_bfd), o->name, |
| (long) (rel - internal_relocs)); |
| printf (" symbol: idx %8.8lx, name %s\n", |
| r_symndx, sym_name); |
| printf (" reloc : info %8.8lx, addr %8.8lx\n", |
| (unsigned long) rel->r_info, |
| (unsigned long) rel->r_offset); |
| #endif |
| if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, |
| isymbuf, locsymcount, s_type == STT_SRELC)) |
| return FALSE; |
| |
| /* Symbol evaluated OK. Update to absolute value. */ |
| set_symbol_value (input_bfd, isymbuf, locsymcount, |
| r_symndx, val); |
| continue; |
| } |
| |
| if (action_discarded != -1 && ps != NULL) |
| { |
| /* Complain if the definition comes from a |
| discarded section. */ |
| if ((sec = *ps) != NULL && discarded_section (sec)) |
| { |
| BFD_ASSERT (r_symndx != STN_UNDEF); |
| if (action_discarded & COMPLAIN) |
| (*flinfo->info->callbacks->einfo) |
| /* xgettext:c-format */ |
| (_("%X`%s' referenced in section `%pA' of %pB: " |
| "defined in discarded section `%pA' of %pB\n"), |
| sym_name, o, input_bfd, sec, sec->owner); |
| |
| /* Try to do the best we can to support buggy old |
| versions of gcc. Pretend that the symbol is |
| really defined in the kept linkonce section. |
| FIXME: This is quite broken. Modifying the |
| symbol here means we will be changing all later |
| uses of the symbol, not just in this section. */ |
| if (action_discarded & PRETEND) |
| { |
| asection *kept; |
| |
| kept = _bfd_elf_check_kept_section (sec, |
| flinfo->info); |
| if (kept != NULL) |
| { |
| *ps = kept; |
| continue; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Relocate the section by invoking a back end routine. |
| |
| The back end routine is responsible for adjusting the |
| section contents as necessary, and (if using Rela relocs |
| and generating a relocatable output file) adjusting the |
| reloc addend as necessary. |
| |
| The back end routine does not have to worry about setting |
| the reloc address or the reloc symbol index. |
| |
| The back end routine is given a pointer to the swapped in |
| internal symbols, and can access the hash table entries |
| for the external symbols via elf_sym_hashes (input_bfd). |
| |
| When generating relocatable output, the back end routine |
| must handle STB_LOCAL/STT_SECTION symbols specially. The |
| output symbol is going to be a section symbol |
| corresponding to the output section, which will require |
| the addend to be adjusted. */ |
| |
| ret = (*relocate_section) (output_bfd, flinfo->info, |
| input_bfd, o, contents, |
| internal_relocs, |
| isymbuf, |
| flinfo->sections); |
| if (!ret) |
| return FALSE; |
| |
| if (ret == 2 |
| || bfd_link_relocatable (flinfo->info) |
| || flinfo->info->emitrelocations) |
| { |
| Elf_Internal_Rela *irela; |
| Elf_Internal_Rela *irelaend, *irelamid; |
| bfd_vma last_offset; |
| struct elf_link_hash_entry **rel_hash; |
| struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; |
| Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; |
| unsigned int next_erel; |
| bfd_boolean rela_normal; |
| struct bfd_elf_section_data *esdi, *esdo; |
| |
| esdi = elf_section_data (o); |
| esdo = elf_section_data (o->output_section); |
| rela_normal = FALSE; |
| |
| /* Adjust the reloc addresses and symbol indices. */ |
| |
| irela = internal_relocs; |
| irelaend = irela + o->reloc_count; |
| rel_hash = esdo->rel.hashes + esdo->rel.count; |
| /* We start processing the REL relocs, if any. When we reach |
| IRELAMID in the loop, we switch to the RELA relocs. */ |
| irelamid = irela; |
| if (esdi->rel.hdr != NULL) |
| irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) |
| * bed->s->int_rels_per_ext_rel); |
| rel_hash_list = rel_hash; |
| rela_hash_list = NULL; |
| last_offset = o->output_offset; |
| if (!bfd_link_relocatable (flinfo->info)) |
| last_offset += o->output_section->vma; |
| for (next_erel = 0; irela < irelaend; irela++, next_erel++) |
| { |
| unsigned long r_symndx; |
| asection *sec; |
| Elf_Internal_Sym sym; |
| |
| if (next_erel == bed->s->int_rels_per_ext_rel) |
| { |
| rel_hash++; |
| next_erel = 0; |
| } |
| |
| if (irela == irelamid) |
| { |
| rel_hash = esdo->rela.hashes + esdo->rela.count; |
| rela_hash_list = rel_hash; |
| rela_normal = bed->rela_normal; |
| } |
| |
| irela->r_offset = _bfd_elf_section_offset (output_bfd, |
| flinfo->info, o, |
| irela->r_offset); |
| if (irela->r_offset >= (bfd_vma) -2) |
| { |
| /* This is a reloc for a deleted entry or somesuch. |
| Turn it into an R_*_NONE reloc, at the same |
| offset as the last reloc. elf_eh_frame.c and |
| bfd_elf_discard_info rely on reloc offsets |
| being ordered. */ |
| irela->r_offset = last_offset; |
| irela->r_info = 0; |
| irela->r_addend = 0; |
| continue; |
| } |
| |
| irela->r_offset += o->output_offset; |
| |
| /* Relocs in an executable have to be virtual addresses. */ |
| if (!bfd_link_relocatable (flinfo->info)) |
| irela->r_offset += o->output_section->vma; |
| |
| last_offset = irela->r_offset; |
| |
| r_symndx = irela->r_info >> r_sym_shift; |
| if (r_symndx == STN_UNDEF) |
| continue; |
| |
| if (r_symndx >= locsymcount |
| || (elf_bad_symtab (input_bfd) |
| && flinfo->sections[r_symndx] == NULL)) |
| { |
| struct elf_link_hash_entry *rh; |
| unsigned long indx; |
| |
| /* This is a reloc against a global symbol. We |
| have not yet output all the local symbols, so |
| we do not know the symbol index of any global |
| symbol. We set the rel_hash entry for this |
| reloc to point to the global hash table entry |
| for this symbol. The symbol index is then |
| set at the end of bfd_elf_final_link. */ |
| indx = r_symndx - extsymoff; |
| rh = elf_sym_hashes (input_bfd)[indx]; |
| while (rh->root.type == bfd_link_hash_indirect |
| || rh->root.type == bfd_link_hash_warning) |
| rh = (struct elf_link_hash_entry *) rh->root.u.i.link; |
| |
| /* Setting the index to -2 tells |
| elf_link_output_extsym that this symbol is |
| used by a reloc. */ |
| BFD_ASSERT (rh->indx < 0); |
| rh->indx = -2; |
| *rel_hash = rh; |
| |
| continue; |
| } |
| |
| /* This is a reloc against a local symbol. */ |
| |
| *rel_hash = NULL; |
| sym = isymbuf[r_symndx]; |
| sec = flinfo->sections[r_symndx]; |
| if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) |
| { |
| /* I suppose the backend ought to fill in the |
| section of any STT_SECTION symbol against a |
| processor specific section. */ |
| r_symndx = STN_UNDEF; |
| if (bfd_is_abs_section (sec)) |
| ; |
| else if (sec == NULL || sec->owner == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else |
| { |
| asection *osec = sec->output_section; |
| |
| /* If we have discarded a section, the output |
| section will be the absolute section. In |
| case of discarded SEC_MERGE sections, use |
| the kept section. relocate_section should |
| have already handled discarded linkonce |
| sections. */ |
| if (bfd_is_abs_section (osec) |
| && sec->kept_section != NULL |
| && sec->kept_section->output_section != NULL) |
| { |
| osec = sec->kept_section->output_section; |
| irela->r_addend -= osec->vma; |
| } |
| |
| if (!bfd_is_abs_section (osec)) |
| { |
| r_symndx = osec->target_index; |
| if (r_symndx == STN_UNDEF) |
| { |
| irela->r_addend += osec->vma; |
| osec = _bfd_nearby_section (output_bfd, osec, |
| osec->vma); |
| irela->r_addend -= osec->vma; |
| r_symndx = osec->target_index; |
| } |
| } |
| } |
| |
| /* Adjust the addend according to where the |
| section winds up in the output section. */ |
| if (rela_normal) |
| irela->r_addend += sec->output_offset; |
| } |
| else |
| { |
| if (flinfo->indices[r_symndx] == -1) |
| { |
| unsigned long shlink; |
| const char *name; |
| asection *osec; |
| long indx; |
| |
| if (flinfo->info->strip == strip_all) |
| { |
| /* You can't do ld -r -s. */ |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| } |
| |
| /* This symbol was skipped earlier, but |
| since it is needed by a reloc, we |
| must output it now. */ |
| shlink = symtab_hdr->sh_link; |
| name = (bfd_elf_string_from_elf_section |
| (input_bfd, shlink, sym.st_name)); |
| if (name == NULL) |
| return FALSE; |
| |
| osec = sec->output_section; |
| sym.st_shndx = |
| _bfd_elf_section_from_bfd_section (output_bfd, |
| osec); |
| if (sym.st_shndx == SHN_BAD) |
| return FALSE; |
| |
| sym.st_value += sec->output_offset; |
| if (!bfd_link_relocatable (flinfo->info)) |
| { |
| sym.st_value += osec->vma; |
| if (ELF_ST_TYPE (sym.st_info) == STT_TLS) |
| { |
| struct elf_link_hash_table *htab |
| = elf_hash_table (flinfo->info); |
| |
| /* STT_TLS symbols are relative to PT_TLS |
| segment base. */ |
| if (htab->tls_sec != NULL) |
| sym.st_value -= htab->tls_sec->vma; |
| else |
| sym.st_info |
| = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), |
| STT_NOTYPE); |
| } |
| } |
| |
| indx = bfd_get_symcount (output_bfd); |
| ret = elf_link_output_symstrtab (flinfo, name, |
| &sym, sec, |
| NULL); |
| if (ret == 0) |
| return FALSE; |
| else if (ret == 1) |
| flinfo->indices[r_symndx] = indx; |
| else |
| abort (); |
| } |
| |
| r_symndx = flinfo->indices[r_symndx]; |
| } |
| |
| irela->r_info = ((bfd_vma) r_symndx << r_sym_shift |
| | (irela->r_info & r_type_mask)); |
| } |
| |
| /* Swap out the relocs. */ |
| input_rel_hdr = esdi->rel.hdr; |
| if (input_rel_hdr && input_rel_hdr->sh_size != 0) |
| { |
| if (!bed->elf_backend_emit_relocs (output_bfd, o, |
| input_rel_hdr, |
| internal_relocs, |
| rel_hash_list)) |
| return FALSE; |
| internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) |
| * bed->s->int_rels_per_ext_rel); |
| rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); |
| } |
| |
| input_rela_hdr = esdi->rela.hdr; |
| if (input_rela_hdr && input_rela_hdr->sh_size != 0) |
| { |
| if (!bed->elf_backend_emit_relocs (output_bfd, o, |
| input_rela_hdr, |
| internal_relocs, |
| rela_hash_list)) |
| return FALSE; |
| } |
| } |
| } |
| |
| /* Write out the modified section contents. */ |
| if (bed->elf_backend_write_section |
| && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, |
| contents)) |
| { |
| /* Section written out. */ |
| } |
| else switch (o->sec_info_type) |
| { |
| case SEC_INFO_TYPE_STABS: |
| if (! (_bfd_write_section_stabs |
| (output_bfd, |
| &elf_hash_table (flinfo->info)->stab_info, |
| o, &elf_section_data (o)->sec_info, contents))) |
| return FALSE; |
| break; |
| case SEC_INFO_TYPE_MERGE: |
| if (! _bfd_write_merged_section (output_bfd, o, |
| elf_section_data (o)->sec_info)) |
| return FALSE; |
| break; |
| case SEC_INFO_TYPE_EH_FRAME: |
| { |
| if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, |
| o, contents)) |
| return FALSE; |
| } |
| break; |
| case SEC_INFO_TYPE_EH_FRAME_ENTRY: |
| { |
| if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, |
| flinfo->info, |
| o, contents)) |
| return FALSE; |
| } |
| break; |
| default: |
| { |
| if (! (o->flags & SEC_EXCLUDE)) |
| { |
| file_ptr offset = (file_ptr) o->output_offset; |
| bfd_size_type todo = o->size; |
| |
| offset *= bfd_octets_per_byte (output_bfd, o); |
| |
| if ((o->flags & SEC_ELF_REVERSE_COPY)) |
| { |
| /* Reverse-copy input section to output. */ |
| do |
| { |
| todo -= address_size; |
| if (! bfd_set_section_contents (output_bfd, |
| o->output_section, |
| contents + todo, |
| offset, |
| address_size)) |
| return FALSE; |
| if (todo == 0) |
| break; |
| offset += address_size; |
| } |
| while (1); |
| } |
| else if (! bfd_set_section_contents (output_bfd, |
| o->output_section, |
| contents, |
| offset, todo)) |
| return FALSE; |
| } |
| } |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Generate a reloc when linking an ELF file. This is a reloc |
| requested by the linker, and does not come from any input file. This |
| is used to build constructor and destructor tables when linking |
| with -Ur. */ |
| |
| static bfd_boolean |
| elf_reloc_link_order (bfd *output_bfd, |
| struct bfd_link_info *info, |
| asection *output_section, |
| struct bfd_link_order *link_order) |
| { |
| reloc_howto_type *howto; |
| long indx; |
| bfd_vma offset; |
| bfd_vma addend; |
| struct bfd_elf_section_reloc_data *reldata; |
| struct elf_link_hash_entry **rel_hash_ptr; |
| Elf_Internal_Shdr *rel_hdr; |
| const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); |
| Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; |
| bfd_byte *erel; |
| unsigned int i; |
| struct bfd_elf_section_data *esdo = elf_section_data (output_section); |
| |
| howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); |
| if (howto == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| addend = link_order->u.reloc.p->addend; |
| |
| if (esdo->rel.hdr) |
| reldata = &esdo->rel; |
| else if (esdo->rela.hdr) |
| reldata = &esdo->rela; |
| else |
| { |
| reldata = NULL; |
| BFD_ASSERT (0); |
| } |
| |
| /* Figure out the symbol index. */ |
| rel_hash_ptr = reldata->hashes + reldata->count; |
| if (link_order->type == bfd_section_reloc_link_order) |
| { |
| indx = link_order->u.reloc.p->u.section->target_index; |
| BFD_ASSERT (indx != 0); |
| *rel_hash_ptr = NULL; |
| } |
| else |
| { |
| struct elf_link_hash_entry *h; |
| |
| /* Treat a reloc against a defined symbol as though it were |
| actually against the section. */ |
| h = ((struct elf_link_hash_entry *) |
| bfd_wrapped_link_hash_lookup (output_bfd, info, |
| link_order->u.reloc.p->u.name, |
| FALSE, FALSE, TRUE)); |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| asection *section; |
| |
| section = h->root.u.def.section; |
| indx = section->output_section->target_index; |
| *rel_hash_ptr = NULL; |
| /* It seems that we ought to add the symbol value to the |
| addend here, but in practice it has already been added |
| because it was passed to constructor_callback. */ |
| addend += section->output_section->vma + section->output_offset; |
| } |
| else if (h != NULL) |
| { |
| /* Setting the index to -2 tells elf_link_output_extsym that |
| this symbol is used by a reloc. */ |
| h->indx = -2; |
| *rel_hash_ptr = h; |
| indx = 0; |
| } |
| else |
| { |
| (*info->callbacks->unattached_reloc) |
| (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); |
| indx = 0; |
| } |
| } |
| |
| /* If this is an inplace reloc, we must write the addend into the |
| object file. */ |
| if (howto->partial_inplace && addend != 0) |
| { |
| bfd_size_type size; |
| bfd_reloc_status_type rstat; |
| bfd_byte *buf; |
| bfd_boolean ok; |
| const char *sym_name; |
| bfd_size_type octets; |
| |
| size = (bfd_size_type) bfd_get_reloc_size (howto); |
| buf = (bfd_byte *) bfd_zmalloc (size); |
| if (buf == NULL && size != 0) |
| return FALSE; |
| rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); |
| switch (rstat) |
| { |
| case bfd_reloc_ok: |
| break; |
| |
| default: |
| case bfd_reloc_outofrange: |
| abort (); |
| |
| case bfd_reloc_overflow: |
| if (link_order->type == bfd_section_reloc_link_order) |
| sym_name = bfd_section_name (link_order->u.reloc.p->u.section); |
| else |
| sym_name = link_order->u.reloc.p->u.name; |
| (*info->callbacks->reloc_overflow) (info, NULL, sym_name, |
| howto->name, addend, NULL, NULL, |
| (bfd_vma) 0); |
| break; |
| } |
| |
| octets = link_order->offset * bfd_octets_per_byte (output_bfd, |
| output_section); |
| ok = bfd_set_section_contents (output_bfd, output_section, buf, |
| octets, size); |
| free (buf); |
| if (! ok) |
| return FALSE; |
| } |
| |
| /* The address of a reloc is relative to the section in a |
| relocatable file, and is a virtual address in an executable |
| file. */ |
| offset = link_order->offset; |
| if (! bfd_link_relocatable (info)) |
| offset += output_section->vma; |
| |
| for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) |
| { |
| irel[i].r_offset = offset; |
| irel[i].r_info = 0; |
| irel[i].r_addend = 0; |
| } |
| if (bed->s->arch_size == 32) |
| irel[0].r_info = ELF32_R_INFO (indx, howto->type); |
| else |
| irel[0].r_info = ELF64_R_INFO (indx, howto->type); |
| |
| rel_hdr = reldata->hdr; |
| erel = rel_hdr->contents; |
| if (rel_hdr->sh_type == SHT_REL) |
| { |
| erel += reldata->count * bed->s->sizeof_rel; |
| (*bed->s->swap_reloc_out) (output_bfd, irel, erel); |
| } |
| else |
| { |
| irel[0].r_addend = addend; |
| erel += reldata->count * bed->s->sizeof_rela; |
| (*bed->s->swap_reloca_out) (output_bfd, irel, erel); |
| } |
| |
| ++reldata->count; |
| |
| return TRUE; |
| } |
| |
| |
| /* Compare two sections based on the locations of the sections they are |
| linked to. Used by elf_fixup_link_order. */ |
| |
| static int |
| compare_link_order (const void *a, const void *b) |
| { |
| const struct bfd_link_order *alo = *(const struct bfd_link_order **) a; |
| const struct bfd_link_order *blo = *(const struct bfd_link_order **) b; |
| asection *asec = elf_linked_to_section (alo->u.indirect.section); |
| asection *bsec = elf_linked_to_section (blo->u.indirect.section); |
| bfd_vma apos = asec->output_section->lma + asec->output_offset; |
| bfd_vma bpos = bsec->output_section->lma + bsec->output_offset; |
| |
| if (apos < bpos) |
| return -1; |
| if (apos > bpos) |
| return 1; |
| |
| /* The only way we should get matching LMAs is when the first of two |
| sections has zero size. */ |
| if (asec->size < bsec->size) |
| return -1; |
| if (asec->size > bsec->size) |
| return 1; |
| |
| /* If they are both zero size then they almost certainly have the same |
| VMA and thus are not ordered with respect to each other. Test VMA |
| anyway, and fall back to id to make the result reproducible across |
| qsort implementations. */ |
| apos = asec->output_section->vma + asec->output_offset; |
| bpos = bsec->output_section->vma + bsec->output_offset; |
| if (apos < bpos) |
| return -1; |
| if (apos > bpos) |
| return 1; |
| |
| return asec->id - bsec->id; |
| } |
| |
| |
| /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same |
| order as their linked sections. Returns false if this could not be done |
| because an output section includes both ordered and unordered |
| sections. Ideally we'd do this in the linker proper. */ |
| |
| static bfd_boolean |
| elf_fixup_link_order (bfd *abfd, asection *o) |
| { |
| size_t seen_linkorder; |
| size_t seen_other; |
| size_t n; |
| struct bfd_link_order *p; |
| bfd *sub; |
| struct bfd_link_order **sections; |
| asection *other_sec, *linkorder_sec; |
| bfd_vma offset; /* Octets. */ |
| |
| other_sec = NULL; |
| linkorder_sec = NULL; |
| seen_other = 0; |
| seen_linkorder = 0; |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| if (p->type == bfd_indirect_link_order) |
| { |
| asection *s = p->u.indirect.section; |
| sub = s->owner; |
| if ((s->flags & SEC_LINKER_CREATED) == 0 |
| && bfd_get_flavour (sub) == bfd_target_elf_flavour |
| && elf_section_data (s) != NULL |
| && elf_linked_to_section (s) != NULL) |
| { |
| seen_linkorder++; |
| linkorder_sec = s; |
| } |
| else |
| { |
| seen_other++; |
| other_sec = s; |
| } |
| } |
| else |
| seen_other++; |
| |
| if (seen_other && seen_linkorder) |
| { |
| if (other_sec && linkorder_sec) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pA has both ordered [`%pA' in %pB] " |
| "and unordered [`%pA' in %pB] sections"), |
| o, linkorder_sec, linkorder_sec->owner, |
| other_sec, other_sec->owner); |
| else |
| _bfd_error_handler |
| (_("%pA has both ordered and unordered sections"), o); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| if (!seen_linkorder) |
| return TRUE; |
| |
| sections = bfd_malloc (seen_linkorder * sizeof (*sections)); |
| if (sections == NULL) |
| return FALSE; |
| |
| seen_linkorder = 0; |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| sections[seen_linkorder++] = p; |
| |
| /* Sort the input sections in the order of their linked section. */ |
| qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order); |
| |
| /* Change the offsets of the sections. */ |
| offset = 0; |
| for (n = 0; n < seen_linkorder; n++) |
| { |
| bfd_vma mask; |
| asection *s = sections[n]->u.indirect.section; |
| unsigned int opb = bfd_octets_per_byte (abfd, s); |
| |
| mask = ~(bfd_vma) 0 << s->alignment_power * opb; |
| offset = (offset + ~mask) & mask; |
| sections[n]->offset = s->output_offset = offset / opb; |
| offset += sections[n]->size; |
| } |
| |
| free (sections); |
| return TRUE; |
| } |
| |
| /* Generate an import library in INFO->implib_bfd from symbols in ABFD. |
| Returns TRUE upon success, FALSE otherwise. */ |
| |
| static bfd_boolean |
| elf_output_implib (bfd *abfd, struct bfd_link_info *info) |
| { |
| bfd_boolean ret = FALSE; |
| bfd *implib_bfd; |
| const struct elf_backend_data *bed; |
| flagword flags; |
| enum bfd_architecture arch; |
| unsigned int mach; |
| asymbol **sympp = NULL; |
| long symsize; |
| long symcount; |
| long src_count; |
| elf_symbol_type *osymbuf; |
| size_t amt; |
| |
| implib_bfd = info->out_implib_bfd; |
| bed = get_elf_backend_data (abfd); |
| |
| if (!bfd_set_format (implib_bfd, bfd_object)) |
| return FALSE; |
| |
| /* Use flag from executable but make it a relocatable object. */ |
| flags = bfd_get_file_flags (abfd); |
| flags &= ~HAS_RELOC; |
| if (!bfd_set_start_address (implib_bfd, 0) |
| || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) |
| return FALSE; |
| |
| /* Copy architecture of output file to import library file. */ |
| arch = bfd_get_arch (abfd); |
| mach = bfd_get_mach (abfd); |
| if (!bfd_set_arch_mach (implib_bfd, arch, mach) |
| && (abfd->target_defaulted |
| || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) |
| return FALSE; |
| |
| /* Get symbol table size. */ |
| symsize = bfd_get_symtab_upper_bound (abfd); |
| if (symsize < 0) |
| return FALSE; |
| |
| /* Read in the symbol table. */ |
| sympp = (asymbol **) bfd_malloc (symsize); |
| if (sympp == NULL) |
| return FALSE; |
| |
| symcount = bfd_canonicalize_symtab (abfd, sympp); |
| if (symcount < 0) |
| goto free_sym_buf; |
| |
| /* Allow the BFD backend to copy any private header data it |
| understands from the output BFD to the import library BFD. */ |
| if (! bfd_copy_private_header_data (abfd, implib_bfd)) |
| goto free_sym_buf; |
| |
| /* Filter symbols to appear in the import library. */ |
| if (bed->elf_backend_filter_implib_symbols) |
| symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, |
| symcount); |
| else |
| symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); |
| if (symcount == 0) |
| { |
| bfd_set_error (bfd_error_no_symbols); |
| _bfd_error_handler (_("%pB: no symbol found for import library"), |
| implib_bfd); |
| goto free_sym_buf; |
| } |
| |
| |
| /* Make symbols absolute. */ |
| amt = symcount * sizeof (*osymbuf); |
| osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt); |
| if (osymbuf == NULL) |
| goto free_sym_buf; |
| |
| for (src_count = 0; src_count < symcount; src_count++) |
| { |
| memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], |
| sizeof (*osymbuf)); |
| osymbuf[src_count].symbol.section = bfd_abs_section_ptr; |
| osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; |
| osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; |
| osymbuf[src_count].internal_elf_sym.st_value = |
| osymbuf[src_count].symbol.value; |
| sympp[src_count] = &osymbuf[src_count].symbol; |
| } |
| |
| bfd_set_symtab (implib_bfd, sympp, symcount); |
| |
| /* Allow the BFD backend to copy any private data it understands |
| from the output BFD to the import library BFD. This is done last |
| to permit the routine to look at the filtered symbol table. */ |
| if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) |
| goto free_sym_buf; |
| |
| if (!bfd_close (implib_bfd)) |
| goto free_sym_buf; |
| |
| ret = TRUE; |
| |
| free_sym_buf: |
| free (sympp); |
| return ret; |
| } |
| |
| static void |
| elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) |
| { |
| asection *o; |
| |
| if (flinfo->symstrtab != NULL) |
| _bfd_elf_strtab_free (flinfo->symstrtab); |
| free (flinfo->contents); |
| free (flinfo->external_relocs); |
| free (flinfo->internal_relocs); |
| free (flinfo->external_syms); |
| free (flinfo->locsym_shndx); |
| free (flinfo->internal_syms); |
| free (flinfo->indices); |
| free (flinfo->sections); |
| if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) |
| free (flinfo->symshndxbuf); |
| for (o = obfd->sections; o != NULL; o = o->next) |
| { |
| struct bfd_elf_section_data *esdo = elf_section_data (o); |
| free (esdo->rel.hashes); |
| free (esdo->rela.hashes); |
| } |
| } |
| |
| /* Do the final step of an ELF link. */ |
| |
| bfd_boolean |
| bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) |
| { |
| bfd_boolean dynamic; |
| bfd_boolean emit_relocs; |
| bfd *dynobj; |
| struct elf_final_link_info flinfo; |
| asection *o; |
| struct bfd_link_order *p; |
| bfd *sub; |
| bfd_size_type max_contents_size; |
| bfd_size_type max_external_reloc_size; |
| bfd_size_type max_internal_reloc_count; |
| bfd_size_type max_sym_count; |
| bfd_size_type max_sym_shndx_count; |
| Elf_Internal_Sym elfsym; |
| unsigned int i; |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Shdr *symtab_shndx_hdr; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_outext_info eoinfo; |
| bfd_boolean merged; |
| size_t relativecount = 0; |
| asection *reldyn = 0; |
| bfd_size_type amt; |
| asection *attr_section = NULL; |
| bfd_vma attr_size = 0; |
| const char *std_attrs_section; |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| bfd_boolean sections_removed; |
| |
| if (!is_elf_hash_table (htab)) |
| return FALSE; |
| |
| if (bfd_link_pic (info)) |
| abfd->flags |= DYNAMIC; |
| |
| dynamic = htab->dynamic_sections_created; |
| dynobj = htab->dynobj; |
| |
| emit_relocs = (bfd_link_relocatable (info) |
| || info->emitrelocations); |
| |
| flinfo.info = info; |
| flinfo.output_bfd = abfd; |
| flinfo.symstrtab = _bfd_elf_strtab_init (); |
| if (flinfo.symstrtab == NULL) |
| return FALSE; |
| |
| if (! dynamic) |
| { |
| flinfo.hash_sec = NULL; |
| flinfo.symver_sec = NULL; |
| } |
| else |
| { |
| flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); |
| /* Note that dynsym_sec can be NULL (on VMS). */ |
| flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); |
| /* Note that it is OK if symver_sec is NULL. */ |
| } |
| |
| flinfo.contents = NULL; |
| flinfo.external_relocs = NULL; |
| flinfo.internal_relocs = NULL; |
| flinfo.external_syms = NULL; |
| flinfo.locsym_shndx = NULL; |
| flinfo.internal_syms = NULL; |
| flinfo.indices = NULL; |
| flinfo.sections = NULL; |
| flinfo.symshndxbuf = NULL; |
| flinfo.filesym_count = 0; |
| |
| /* The object attributes have been merged. Remove the input |
| sections from the link, and set the contents of the output |
| section. */ |
| sections_removed = FALSE; |
| std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| bfd_boolean remove_section = FALSE; |
| |
| if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) |
| || strcmp (o->name, ".gnu.attributes") == 0) |
| { |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| asection *input_section; |
| |
| if (p->type != bfd_indirect_link_order) |
| continue; |
| input_section = p->u.indirect.section; |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| attr_size = bfd_elf_obj_attr_size (abfd); |
| bfd_set_section_size (o, attr_size); |
| /* Skip this section later on. */ |
| o->map_head.link_order = NULL; |
| if (attr_size) |
| attr_section = o; |
| else |
| remove_section = TRUE; |
| } |
| else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) |
| { |
| /* Remove empty group section from linker output. */ |
| remove_section = TRUE; |
| } |
| if (remove_section) |
| { |
| o->flags |= SEC_EXCLUDE; |
| bfd_section_list_remove (abfd, o); |
| abfd->section_count--; |
| sections_removed = TRUE; |
| } |
| } |
| if (sections_removed) |
| _bfd_fix_excluded_sec_syms (abfd, info); |
| |
| /* Count up the number of relocations we will output for each output |
| section, so that we know the sizes of the reloc sections. We |
| also figure out some maximum sizes. */ |
| max_contents_size = 0; |
| max_external_reloc_size = 0; |
| max_internal_reloc_count = 0; |
| max_sym_count = 0; |
| max_sym_shndx_count = 0; |
| merged = FALSE; |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| struct bfd_elf_section_data *esdo = elf_section_data (o); |
| o->reloc_count = 0; |
| |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| unsigned int reloc_count = 0; |
| unsigned int additional_reloc_count = 0; |
| struct bfd_elf_section_data *esdi = NULL; |
| |
| if (p->type == bfd_section_reloc_link_order |
| || p->type == bfd_symbol_reloc_link_order) |
| reloc_count = 1; |
| else if (p->type == bfd_indirect_link_order) |
| { |
| asection *sec; |
| |
| sec = p->u.indirect.section; |
| |
| /* Mark all sections which are to be included in the |
| link. This will normally be every section. We need |
| to do this so that we can identify any sections which |
| the linker has decided to not include. */ |
| sec->linker_mark = TRUE; |
| |
| if (sec->flags & SEC_MERGE) |
| merged = TRUE; |
| |
| if (sec->rawsize > max_contents_size) |
| max_contents_size = sec->rawsize; |
| if (sec->size > max_contents_size) |
| max_contents_size = sec->size; |
| |
| if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour |
| && (sec->owner->flags & DYNAMIC) == 0) |
| { |
| size_t sym_count; |
| |
| /* We are interested in just local symbols, not all |
| symbols. */ |
| if (elf_bad_symtab (sec->owner)) |
| sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size |
| / bed->s->sizeof_sym); |
| else |
| sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; |
| |
| if (sym_count > max_sym_count) |
| max_sym_count = sym_count; |
| |
| if (sym_count > max_sym_shndx_count |
| && elf_symtab_shndx_list (sec->owner) != NULL) |
| max_sym_shndx_count = sym_count; |
| |
| if (esdo->this_hdr.sh_type == SHT_REL |
| || esdo->this_hdr.sh_type == SHT_RELA) |
| /* Some backends use reloc_count in relocation sections |
| to count particular types of relocs. Of course, |
| reloc sections themselves can't have relocations. */ |
| ; |
| else if (emit_relocs) |
| { |
| reloc_count = sec->reloc_count; |
| if (bed->elf_backend_count_additional_relocs) |
| { |
| int c; |
| c = (*bed->elf_backend_count_additional_relocs) (sec); |
| additional_reloc_count += c; |
| } |
| } |
| else if (bed->elf_backend_count_relocs) |
| reloc_count = (*bed->elf_backend_count_relocs) (info, sec); |
| |
| esdi = elf_section_data (sec); |
| |
| if ((sec->flags & SEC_RELOC) != 0) |
| { |
| size_t ext_size = 0; |
| |
| if (esdi->rel.hdr != NULL) |
| ext_size = esdi->rel.hdr->sh_size; |
| if (esdi->rela.hdr != NULL) |
| ext_size += esdi->rela.hdr->sh_size; |
| |
| if (ext_size > max_external_reloc_size) |
| max_external_reloc_size = ext_size; |
| if (sec->reloc_count > max_internal_reloc_count) |
| max_internal_reloc_count = sec->reloc_count; |
| } |
| } |
| } |
| |
| if (reloc_count == 0) |
| continue; |
| |
| reloc_count += additional_reloc_count; |
| o->reloc_count += reloc_count; |
| |
| if (p->type == bfd_indirect_link_order && emit_relocs) |
| { |
| if (esdi->rel.hdr) |
| { |
| esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); |
| esdo->rel.count += additional_reloc_count; |
| } |
| if (esdi->rela.hdr) |
| { |
| esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); |
| esdo->rela.count += additional_reloc_count; |
| } |
| } |
| else |
| { |
| if (o->use_rela_p) |
| esdo->rela.count += reloc_count; |
| else |
| esdo->rel.count += reloc_count; |
| } |
| } |
| |
| if (o->reloc_count > 0) |
| o->flags |= SEC_RELOC; |
| else |
| { |
| /* Explicitly clear the SEC_RELOC flag. The linker tends to |
| set it (this is probably a bug) and if it is set |
| assign_section_numbers will create a reloc section. */ |
| o->flags &=~ SEC_RELOC; |
| } |
| |
| /* If the SEC_ALLOC flag is not set, force the section VMA to |
| zero. This is done in elf_fake_sections as well, but forcing |
| the VMA to 0 here will ensure that relocs against these |
| sections are handled correctly. */ |
| if ((o->flags & SEC_ALLOC) == 0 |
| && ! o->user_set_vma) |
| o->vma = 0; |
| } |
| |
| if (! bfd_link_relocatable (info) && merged) |
| elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); |
| |
| /* Figure out the file positions for everything but the symbol table |
| and the relocs. We set symcount to force assign_section_numbers |
| to create a symbol table. */ |
| abfd->symcount = info->strip != strip_all || emit_relocs; |
| BFD_ASSERT (! abfd->output_has_begun); |
| if (! _bfd_elf_compute_section_file_positions (abfd, info)) |
| goto error_return; |
| |
| /* Set sizes, and assign file positions for reloc sections. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| struct bfd_elf_section_data *esdo = elf_section_data (o); |
| if ((o->flags & SEC_RELOC) != 0) |
| { |
| if (esdo->rel.hdr |
| && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) |
| goto error_return; |
| |
| if (esdo->rela.hdr |
| && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) |
| goto error_return; |
| } |
| |
| /* _bfd_elf_compute_section_file_positions makes temporary use |
| of target_index. Reset it. */ |
| o->target_index = 0; |
| |
| /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them |
| to count upwards while actually outputting the relocations. */ |
| esdo->rel.count = 0; |
| esdo->rela.count = 0; |
| |
| if ((esdo->this_hdr.sh_offset == (file_ptr) -1) |
| && !bfd_section_is_ctf (o)) |
| { |
| /* Cache the section contents so that they can be compressed |
| later. Use bfd_malloc since it will be freed by |
| bfd_compress_section_contents. */ |
| unsigned char *contents = esdo->this_hdr.contents; |
| if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL) |
| abort (); |
| contents |
| = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); |
| if (contents == NULL) |
| goto error_return; |
| esdo->this_hdr.contents = contents; |
| } |
| } |
| |
| /* We have now assigned file positions for all the sections except .symtab, |
| .strtab, and non-loaded reloc and compressed debugging sections. We start |
| the .symtab section at the current file position, and write directly to it. |
| We build the .strtab section in memory. */ |
| abfd->symcount = 0; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| /* sh_name is set in prep_headers. */ |
| symtab_hdr->sh_type = SHT_SYMTAB; |
| /* sh_flags, sh_addr and sh_size all start off zero. */ |
| symtab_hdr->sh_entsize = bed->s->sizeof_sym; |
| /* sh_link is set in assign_section_numbers. */ |
| /* sh_info is set below. */ |
| /* sh_offset is set just below. */ |
| symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
| |
| if (max_sym_count < 20) |
| max_sym_count = 20; |
| htab->strtabsize = max_sym_count; |
| amt = max_sym_count * sizeof (struct elf_sym_strtab); |
| htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); |
| if (htab->strtab == NULL) |
| goto error_return; |
| /* The real buffer will be allocated in elf_link_swap_symbols_out. */ |
| flinfo.symshndxbuf |
| = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) |
| ? (Elf_External_Sym_Shndx *) -1 : NULL); |
| |
| if (info->strip != strip_all || emit_relocs) |
| { |
| file_ptr off = elf_next_file_pos (abfd); |
| |
| _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); |
| |
| /* Note that at this point elf_next_file_pos (abfd) is |
| incorrect. We do not yet know the size of the .symtab section. |
| We correct next_file_pos below, after we do know the size. */ |
| |
| /* Start writing out the symbol table. The first symbol is always a |
| dummy symbol. */ |
| elfsym.st_value = 0; |
| elfsym.st_size = 0; |
| elfsym.st_info = 0; |
| elfsym.st_other = 0; |
| elfsym.st_shndx = SHN_UNDEF; |
| elfsym.st_target_internal = 0; |
| if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, |
| bfd_und_section_ptr, NULL) != 1) |
| goto error_return; |
| |
| /* Output a symbol for each section. We output these even if we are |
| discarding local symbols, since they are used for relocs. These |
| symbols have no names. We store the index of each one in the |
| index field of the section, so that we can find it again when |
| outputting relocs. */ |
| |
| elfsym.st_size = 0; |
| elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| elfsym.st_other = 0; |
| elfsym.st_value = 0; |
| elfsym.st_target_internal = 0; |
| for (i = 1; i < elf_numsections (abfd); i++) |
| { |
| o = bfd_section_from_elf_index (abfd, i); |
| if (o != NULL) |
| { |
| o->target_index = bfd_get_symcount (abfd); |
| elfsym.st_shndx = i; |
| if (!bfd_link_relocatable (info)) |
| elfsym.st_value = o->vma; |
| if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o, |
| NULL) != 1) |
| goto error_return; |
| } |
| } |
| } |
| |
| /* Allocate some memory to hold information read in from the input |
| files. */ |
| if (max_contents_size != 0) |
| { |
| flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); |
| if (flinfo.contents == NULL) |
| goto error_return; |
| } |
| |
| if (max_external_reloc_size != 0) |
| { |
| flinfo.external_relocs = bfd_malloc (max_external_reloc_size); |
| if (flinfo.external_relocs == NULL) |
| goto error_return; |
| } |
| |
| if (max_internal_reloc_count != 0) |
| { |
| amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); |
| flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); |
| if (flinfo.internal_relocs == NULL) |
| goto error_return; |
| } |
| |
| if (max_sym_count != 0) |
| { |
| amt = max_sym_count * bed->s->sizeof_sym; |
| flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); |
| if (flinfo.external_syms == NULL) |
| goto error_return; |
| |
| amt = max_sym_count * sizeof (Elf_Internal_Sym); |
| flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); |
| if (flinfo.internal_syms == NULL) |
| goto error_return; |
| |
| amt = max_sym_count * sizeof (long); |
| flinfo.indices = (long int *) bfd_malloc (amt); |
| if (flinfo.indices == NULL) |
| goto error_return; |
| |
| amt = max_sym_count * sizeof (asection *); |
| flinfo.sections = (asection **) bfd_malloc (amt); |
| if (flinfo.sections == NULL) |
| goto error_return; |
| } |
| |
| if (max_sym_shndx_count != 0) |
| { |
| amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); |
| flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); |
| if (flinfo.locsym_shndx == NULL) |
| goto error_return; |
| } |
| |
| if (htab->tls_sec) |
| { |
| bfd_vma base, end = 0; /* Both bytes. */ |
| asection *sec; |
| |
| for (sec = htab->tls_sec; |
| sec && (sec->flags & SEC_THREAD_LOCAL); |
| sec = sec->next) |
| { |
| bfd_size_type size = sec->size; |
| unsigned int opb = bfd_octets_per_byte (abfd, sec); |
| |
| if (size == 0 |
| && (sec->flags & SEC_HAS_CONTENTS) == 0) |
| { |
| struct bfd_link_order *ord = sec->map_tail.link_order; |
| |
| if (ord != NULL) |
| size = ord->offset * opb + ord->size; |
| } |
| end = sec->vma + size / opb; |
| } |
| base = htab->tls_sec->vma; |
| /* Only align end of TLS section if static TLS doesn't have special |
| alignment requirements. */ |
| if (bed->static_tls_alignment == 1) |
| end = align_power (end, htab->tls_sec->alignment_power); |
| htab->tls_size = end - base; |
| } |
| |
| /* Reorder SHF_LINK_ORDER sections. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| if (!elf_fixup_link_order (abfd, o)) |
| return FALSE; |
| } |
| |
| if (!_bfd_elf_fixup_eh_frame_hdr (info)) |
| return FALSE; |
| |
| /* Since ELF permits relocations to be against local symbols, we |
| must have the local symbols available when we do the relocations. |
| Since we would rather only read the local symbols once, and we |
| would rather not keep them in memory, we handle all the |
| relocations for a single input file at the same time. |
| |
| Unfortunately, there is no way to know the total number of local |
| symbols until we have seen all of them, and the local symbol |
| indices precede the global symbol indices. This means that when |
| we are generating relocatable output, and we see a reloc against |
| a global symbol, we can not know the symbol index until we have |
| finished examining all the local symbols to see which ones we are |
| going to output. To deal with this, we keep the relocations in |
| memory, and don't output them until the end of the link. This is |
| an unfortunate waste of memory, but I don't see a good way around |
| it. Fortunately, it only happens when performing a relocatable |
| link, which is not the common case. FIXME: If keep_memory is set |
| we could write the relocs out and then read them again; I don't |
| know how bad the memory loss will be. */ |
| |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| sub->output_has_begun = FALSE; |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| for (p = o->map_head.link_order; p != NULL; p = p->next) |
| { |
| if (p->type == bfd_indirect_link_order |
| && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) |
| == bfd_target_elf_flavour) |
| && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) |
| { |
| if (! sub->output_has_begun) |
| { |
| if (! elf_link_input_bfd (&flinfo, sub)) |
| goto error_return; |
| sub->output_has_begun = TRUE; |
| } |
| } |
| else if (p->type == bfd_section_reloc_link_order |
| || p->type == bfd_symbol_reloc_link_order) |
| { |
| if (! elf_reloc_link_order (abfd, info, o, p)) |
| goto error_return; |
| } |
| else |
| { |
| if (! _bfd_default_link_order (abfd, info, o, p)) |
| { |
| if (p->type == bfd_indirect_link_order |
| && (bfd_get_flavour (sub) |
| == bfd_target_elf_flavour) |
| && (elf_elfheader (sub)->e_ident[EI_CLASS] |
| != bed->s->elfclass)) |
| { |
| const char *iclass, *oclass; |
| |
| switch (bed->s->elfclass) |
| { |
| case ELFCLASS64: oclass = "ELFCLASS64"; break; |
| case ELFCLASS32: oclass = "ELFCLASS32"; break; |
| case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; |
| default: abort (); |
| } |
| |
| switch (elf_elfheader (sub)->e_ident[EI_CLASS]) |
| { |
| case ELFCLASS64: iclass = "ELFCLASS64"; break; |
| case ELFCLASS32: iclass = "ELFCLASS32"; break; |
| case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; |
| default: abort (); |
| } |
| |
| bfd_set_error (bfd_error_wrong_format); |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: file class %s incompatible with %s"), |
| sub, iclass, oclass); |
| } |
| |
| goto error_return; |
| } |
| } |
| } |
| } |
| |
| /* Free symbol buffer if needed. */ |
| if (!info->reduce_memory_overheads) |
| { |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| if (bfd_get_flavour (sub) == bfd_target_elf_flavour) |
| { |
| free (elf_tdata (sub)->symbuf); |
| elf_tdata (sub)->symbuf = NULL; |
| } |
| } |
| |
| /* Output any global symbols that got converted to local in a |
| version script or due to symbol visibility. We do this in a |
| separate step since ELF requires all local symbols to appear |
| prior to any global symbols. FIXME: We should only do this if |
| some global symbols were, in fact, converted to become local. |
| FIXME: Will this work correctly with the Irix 5 linker? */ |
| eoinfo.failed = FALSE; |
| eoinfo.flinfo = &flinfo; |
| eoinfo.localsyms = TRUE; |
| eoinfo.file_sym_done = FALSE; |
| bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
| if (eoinfo.failed) |
| return FALSE; |
| |
| /* If backend needs to output some local symbols not present in the hash |
| table, do it now. */ |
| if (bed->elf_backend_output_arch_local_syms |
| && (info->strip != strip_all || emit_relocs)) |
| { |
| typedef int (*out_sym_func) |
| (void *, const char *, Elf_Internal_Sym *, asection *, |
| struct elf_link_hash_entry *); |
| |
| if (! ((*bed->elf_backend_output_arch_local_syms) |
| (abfd, info, &flinfo, |
| (out_sym_func) elf_link_output_symstrtab))) |
| return FALSE; |
| } |
| |
| /* That wrote out all the local symbols. Finish up the symbol table |
| with the global symbols. Even if we want to strip everything we |
| can, we still need to deal with those global symbols that got |
| converted to local in a version script. */ |
| |
| /* The sh_info field records the index of the first non local symbol. */ |
| symtab_hdr->sh_info = bfd_get_symcount (abfd); |
| |
| if (dynamic |
| && htab->dynsym != NULL |
| && htab->dynsym->output_section != bfd_abs_section_ptr) |
| { |
| Elf_Internal_Sym sym; |
| bfd_byte *dynsym = htab->dynsym->contents; |
| |
| o = htab->dynsym->output_section; |
| elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; |
| |
| /* Write out the section symbols for the output sections. */ |
| if (bfd_link_pic (info) |
| || htab->is_relocatable_executable) |
| { |
| asection *s; |
| |
| sym.st_size = 0; |
| sym.st_name = 0; |
| sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| sym.st_other = 0; |
| sym.st_target_internal = 0; |
| |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| int indx; |
| bfd_byte *dest; |
| long dynindx; |
| |
| dynindx = elf_section_data (s)->dynindx; |
| if (dynindx <= 0) |
| continue; |
| indx = elf_section_data (s)->this_idx; |
| BFD_ASSERT (indx > 0); |
| sym.st_shndx = indx; |
| if (! check_dynsym (abfd, &sym)) |
| return FALSE; |
| sym.st_value = s->vma; |
| dest = dynsym + dynindx * bed->s->sizeof_sym; |
| bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
| } |
| } |
| |
| /* Write out the local dynsyms. */ |
| if (htab->dynlocal) |
| { |
| struct elf_link_local_dynamic_entry *e; |
| for (e = htab->dynlocal; e ; e = e->next) |
| { |
| asection *s; |
| bfd_byte *dest; |
| |
| /* Copy the internal symbol and turn off visibility. |
| Note that we saved a word of storage and overwrote |
| the original st_name with the dynstr_index. */ |
| sym = e->isym; |
| sym.st_other &= ~ELF_ST_VISIBILITY (-1); |
| |
| s = bfd_section_from_elf_index (e->input_bfd, |
| e->isym.st_shndx); |
| if (s != NULL) |
| { |
| sym.st_shndx = |
| elf_section_data (s->output_section)->this_idx; |
| if (! check_dynsym (abfd, &sym)) |
| return FALSE; |
| sym.st_value = (s->output_section->vma |
| + s->output_offset |
| + e->isym.st_value); |
| } |
| |
| dest = dynsym + e->dynindx * bed->s->sizeof_sym; |
| bed->s->swap_symbol_out (abfd, &sym, dest, 0); |
| } |
| } |
| } |
| |
| /* We get the global symbols from the hash table. */ |
| eoinfo.failed = FALSE; |
| eoinfo.localsyms = FALSE; |
| eoinfo.flinfo = &flinfo; |
| bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); |
| if (eoinfo.failed) |
| return FALSE; |
| |
| /* If backend needs to output some symbols not present in the hash |
| table, do it now. */ |
| if (bed->elf_backend_output_arch_syms |
| && (info->strip != strip_all || emit_relocs)) |
| { |
| typedef int (*out_sym_func) |
| (void *, const char *, Elf_Internal_Sym *, asection *, |
| struct elf_link_hash_entry *); |
| |
| if (! ((*bed->elf_backend_output_arch_syms) |
| (abfd, info, &flinfo, |
| (out_sym_func) elf_link_output_symstrtab))) |
| return FALSE; |
| } |
| |
| /* Finalize the .strtab section. */ |
| _bfd_elf_strtab_finalize (flinfo.symstrtab); |
| |
| /* Swap out the .strtab section. */ |
| if (!elf_link_swap_symbols_out (&flinfo)) |
| return FALSE; |
| |
| /* Now we know the size of the symtab section. */ |
| if (bfd_get_symcount (abfd) > 0) |
| { |
| /* Finish up and write out the symbol string table (.strtab) |
| section. */ |
| Elf_Internal_Shdr *symstrtab_hdr = NULL; |
| file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; |
| |
| if (elf_symtab_shndx_list (abfd)) |
| { |
| symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; |
| |
| if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) |
| { |
| symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; |
| symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); |
| symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); |
| amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); |
| symtab_shndx_hdr->sh_size = amt; |
| |
| off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, |
| off, TRUE); |
| |
| if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 |
| || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) |
| return FALSE; |
| } |
| } |
| |
| symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
| /* sh_name was set in prep_headers. */ |
| symstrtab_hdr->sh_type = SHT_STRTAB; |
| symstrtab_hdr->sh_flags = bed->elf_strtab_flags; |
| symstrtab_hdr->sh_addr = 0; |
| symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); |
| symstrtab_hdr->sh_entsize = 0; |
| symstrtab_hdr->sh_link = 0; |
| symstrtab_hdr->sh_info = 0; |
| /* sh_offset is set just below. */ |
| symstrtab_hdr->sh_addralign = 1; |
| |
| off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, |
| off, TRUE); |
| elf_next_file_pos (abfd) = off; |
| |
| if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 |
| || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) |
| return FALSE; |
| } |
| |
| if (info->out_implib_bfd && !elf_output_implib (abfd, info)) |
| { |
| _bfd_error_handler (_("%pB: failed to generate import library"), |
| info->out_implib_bfd); |
| return FALSE; |
| } |
| |
| /* Adjust the relocs to have the correct symbol indices. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| struct bfd_elf_section_data *esdo = elf_section_data (o); |
| bfd_boolean sort; |
| |
| if ((o->flags & SEC_RELOC) == 0) |
| continue; |
| |
| sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); |
| if (esdo->rel.hdr != NULL |
| && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) |
| return FALSE; |
| if (esdo->rela.hdr != NULL |
| && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) |
| return FALSE; |
| |
| /* Set the reloc_count field to 0 to prevent write_relocs from |
| trying to swap the relocs out itself. */ |
| o->reloc_count = 0; |
| } |
| |
| if (dynamic && info->combreloc && dynobj != NULL) |
| relativecount = elf_link_sort_relocs (abfd, info, &reldyn); |
| |
| /* If we are linking against a dynamic object, or generating a |
| shared library, finish up the dynamic linking information. */ |
| if (dynamic) |
| { |
| bfd_byte *dyncon, *dynconend; |
| |
| /* Fix up .dynamic entries. */ |
| o = bfd_get_linker_section (dynobj, ".dynamic"); |
| BFD_ASSERT (o != NULL); |
| |
| dyncon = o->contents; |
| dynconend = o->contents + o->size; |
| for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| const char *name; |
| unsigned int type; |
| bfd_size_type sh_size; |
| bfd_vma sh_addr; |
| |
| bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| continue; |
| case DT_NULL: |
| if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) |
| { |
| switch (elf_section_data (reldyn)->this_hdr.sh_type) |
| { |
| case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; |
| case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; |
| default: continue; |
| } |
| dyn.d_un.d_val = relativecount; |
| relativecount = 0; |
| break; |
| } |
| continue; |
| |
| case DT_INIT: |
| name = info->init_function; |
| goto get_sym; |
| case DT_FINI: |
| name = info->fini_function; |
| get_sym: |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak)) |
| { |
| dyn.d_un.d_ptr = h->root.u.def.value; |
| o = h->root.u.def.section; |
| if (o->output_section != NULL) |
| dyn.d_un.d_ptr += (o->output_section->vma |
| + o->output_offset); |
| else |
| { |
| /* The symbol is imported from another shared |
| library and does not apply to this one. */ |
| dyn.d_un.d_ptr = 0; |
| } |
| break; |
| } |
| } |
| continue; |
| |
| case DT_PREINIT_ARRAYSZ: |
| name = ".preinit_array"; |
| goto get_out_size; |
| case DT_INIT_ARRAYSZ: |
| name = ".init_array"; |
| goto get_out_size; |
| case DT_FINI_ARRAYSZ: |
| name = ".fini_array"; |
| get_out_size: |
| o = bfd_get_section_by_name (abfd, name); |
| if (o == NULL) |
| { |
| _bfd_error_handler |
| (_("could not find section %s"), name); |
| goto error_return; |
| } |
| if (o->size == 0) |
| _bfd_error_handler |
| (_("warning: %s section has zero size"), name); |
| dyn.d_un.d_val = o->size; |
| break; |
| |
| case DT_PREINIT_ARRAY: |
| name = ".preinit_array"; |
| goto get_out_vma; |
| case DT_INIT_ARRAY: |
| name = ".init_array"; |
| goto get_out_vma; |
| case DT_FINI_ARRAY: |
| name = ".fini_array"; |
| get_out_vma: |
| o = bfd_get_section_by_name (abfd, name); |
| goto do_vma; |
| |
| case DT_HASH: |
| name = ".hash"; |
| goto get_vma; |
| case DT_GNU_HASH: |
| name = ".gnu.hash"; |
| goto get_vma; |
| case DT_STRTAB: |
| name = ".dynstr"; |
| goto get_vma; |
| case DT_SYMTAB: |
| name = ".dynsym"; |
| goto get_vma; |
| case DT_VERDEF: |
| name = ".gnu.version_d"; |
| goto get_vma; |
| case DT_VERNEED: |
| name = ".gnu.version_r"; |
| goto get_vma; |
| case DT_VERSYM: |
| name = ".gnu.version"; |
| get_vma: |
| o = bfd_get_linker_section (dynobj, name); |
| do_vma: |
| if (o == NULL || bfd_is_abs_section (o->output_section)) |
| { |
| _bfd_error_handler |
| (_("could not find section %s"), name); |
| goto error_return; |
| } |
| if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) |
| { |
| _bfd_error_handler |
| (_("warning: section '%s' is being made into a note"), name); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| goto error_return; |
| } |
| dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; |
| break; |
| |
| case DT_REL: |
| case DT_RELA: |
| case DT_RELSZ: |
| case DT_RELASZ: |
| if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) |
| type = SHT_REL; |
| else |
| type = SHT_RELA; |
| sh_size = 0; |
| sh_addr = 0; |
| for (i = 1; i < elf_numsections (abfd); i++) |
| { |
| Elf_Internal_Shdr *hdr; |
| |
| hdr = elf_elfsections (abfd)[i]; |
| if (hdr->sh_type == type |
| && (hdr->sh_flags & SHF_ALLOC) != 0) |
| { |
| sh_size += hdr->sh_size; |
| if (sh_addr == 0 |
| || sh_addr > hdr->sh_addr) |
| sh_addr = hdr->sh_addr; |
| } |
| } |
| |
| if (bed->dtrel_excludes_plt && htab->srelplt != NULL) |
| { |
| unsigned int opb = bfd_octets_per_byte (abfd, o); |
| |
| /* Don't count procedure linkage table relocs in the |
| overall reloc count. */ |
| sh_size -= htab->srelplt->size; |
| if (sh_size == 0) |
| /* If the size is zero, make the address zero too. |
| This is to avoid a glibc bug. If the backend |
| emits DT_RELA/DT_RELASZ even when DT_RELASZ is |
| zero, then we'll put DT_RELA at the end of |
| DT_JMPREL. glibc will interpret the end of |
| DT_RELA matching the end of DT_JMPREL as the |
| case where DT_RELA includes DT_JMPREL, and for |
| LD_BIND_NOW will decide that processing DT_RELA |
| will process the PLT relocs too. Net result: |
| No PLT relocs applied. */ |
| sh_addr = 0; |
| |
| /* If .rela.plt is the first .rela section, exclude |
| it from DT_RELA. */ |
| else if (sh_addr == (htab->srelplt->output_section->vma |
| + htab->srelplt->output_offset) * opb) |
| sh_addr += htab->srelplt->size; |
| } |
| |
| if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) |
| dyn.d_un.d_val = sh_size; |
| else |
| dyn.d_un.d_ptr = sh_addr; |
| break; |
| } |
| bed->s->swap_dyn_out (dynobj, &dyn, dyncon); |
| } |
| } |
| |
| /* If we have created any dynamic sections, then output them. */ |
| if (dynobj != NULL) |
| { |
| if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) |
| goto error_return; |
| |
| /* Check for DT_TEXTREL (late, in case the backend removes it). */ |
| if (bfd_link_textrel_check (info) |
| && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL) |
| { |
| bfd_byte *dyncon, *dynconend; |
| |
| dyncon = o->contents; |
| dynconend = o->contents + o->size; |
| for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) |
| { |
| Elf_Internal_Dyn dyn; |
| |
| bed->s->swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| if (dyn.d_tag == DT_TEXTREL) |
| { |
| if (info->textrel_check == textrel_check_error) |
| info->callbacks->einfo |
| (_("%P%X: read-only segment has dynamic relocations\n")); |
| else if (bfd_link_dll (info)) |
| info->callbacks->einfo |
| (_("%P: warning: creating DT_TEXTREL in a shared object\n")); |
| else |
| info->callbacks->einfo |
| (_("%P: warning: creating DT_TEXTREL in a PIE\n")); |
| break; |
| } |
| } |
| } |
| |
| for (o = dynobj->sections; o != NULL; o = o->next) |
| { |
| if ((o->flags & SEC_HAS_CONTENTS) == 0 |
| || o->size == 0 |
| || o->output_section == bfd_abs_section_ptr) |
| continue; |
| if ((o->flags & SEC_LINKER_CREATED) == 0) |
| { |
| /* At this point, we are only interested in sections |
| created by _bfd_elf_link_create_dynamic_sections. */ |
| continue; |
| } |
| if (htab->stab_info.stabstr == o) |
| continue; |
| if (htab->eh_info.hdr_sec == o) |
| continue; |
| if (strcmp (o->name, ".dynstr") != 0) |
| { |
| bfd_size_type octets = ((file_ptr) o->output_offset |
| * bfd_octets_per_byte (abfd, o)); |
| if (!bfd_set_section_contents (abfd, o->output_section, |
| o->contents, octets, o->size)) |
| goto error_return; |
| } |
| else |
| { |
| /* The contents of the .dynstr section are actually in a |
| stringtab. */ |
| file_ptr off; |
| |
| off = elf_section_data (o->output_section)->this_hdr.sh_offset; |
| if (bfd_seek (abfd, off, SEEK_SET) != 0 |
| || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) |
| goto error_return; |
| } |
| } |
| } |
| |
| if (!info->resolve_section_groups) |
| { |
| bfd_boolean failed = FALSE; |
| |
| BFD_ASSERT (bfd_link_relocatable (info)); |
| bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); |
| if (failed) |
| goto error_return; |
| } |
| |
| /* If we have optimized stabs strings, output them. */ |
| if (htab->stab_info.stabstr != NULL) |
| { |
| if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) |
| goto error_return; |
| } |
| |
| if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) |
| goto error_return; |
| |
| if (info->callbacks->emit_ctf) |
| info->callbacks->emit_ctf (); |
| |
| elf_final_link_free (abfd, &flinfo); |
| |
| if (attr_section) |
| { |
| bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); |
| if (contents == NULL) |
| return FALSE; /* Bail out and fail. */ |
| bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); |
| bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); |
| free (contents); |
| } |
| |
| return TRUE; |
| |
| error_return: |
| elf_final_link_free (abfd, &flinfo); |
| return FALSE; |
| } |
| |
| /* Initialize COOKIE for input bfd ABFD. */ |
| |
| static bfd_boolean |
| init_reloc_cookie (struct elf_reloc_cookie *cookie, |
| struct bfd_link_info *info, bfd *abfd) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (abfd); |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| cookie->abfd = abfd; |
| cookie->sym_hashes = elf_sym_hashes (abfd); |
| cookie->bad_symtab = elf_bad_symtab (abfd); |
| if (cookie->bad_symtab) |
| { |
| cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
| cookie->extsymoff = 0; |
| } |
| else |
| { |
| cookie->locsymcount = symtab_hdr->sh_info; |
| cookie->extsymoff = symtab_hdr->sh_info; |
| } |
| |
| if (bed->s->arch_size == 32) |
| cookie->r_sym_shift = 8; |
| else |
| cookie->r_sym_shift = 32; |
| |
| cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (cookie->locsyms == NULL && cookie->locsymcount != 0) |
| { |
| cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| cookie->locsymcount, 0, |
| NULL, NULL, NULL); |
| if (cookie->locsyms == NULL) |
| { |
| info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); |
| return FALSE; |
| } |
| if (info->keep_memory) |
| symtab_hdr->contents = (bfd_byte *) cookie->locsyms; |
| } |
| return TRUE; |
| } |
| |
| /* Free the memory allocated by init_reloc_cookie, if appropriate. */ |
| |
| static void |
| fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| if (symtab_hdr->contents != (unsigned char *) cookie->locsyms) |
| free (cookie->locsyms); |
| } |
| |
| /* Initialize the relocation information in COOKIE for input section SEC |
| of input bfd ABFD. */ |
| |
| static bfd_boolean |
| init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, |
| struct bfd_link_info *info, bfd *abfd, |
| asection *sec) |
| { |
| if (sec->reloc_count == 0) |
| { |
| cookie->rels = NULL; |
| cookie->relend = NULL; |
| } |
| else |
| { |
| cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, |
| info->keep_memory); |
| if (cookie->rels == NULL) |
| return FALSE; |
| cookie->rel = cookie->rels; |
| cookie->relend = cookie->rels + sec->reloc_count; |
| } |
| cookie->rel = cookie->rels; |
| return TRUE; |
| } |
| |
| /* Free the memory allocated by init_reloc_cookie_rels, |
| if appropriate. */ |
| |
| static void |
| fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, |
| asection *sec) |
| { |
| if (elf_section_data (sec)->relocs != cookie->rels) |
| free (cookie->rels); |
| } |
| |
| /* Initialize the whole of COOKIE for input section SEC. */ |
| |
| static bfd_boolean |
| init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, |
| struct bfd_link_info *info, |
| asection *sec) |
| { |
| if (!init_reloc_cookie (cookie, info, sec->owner)) |
| goto error1; |
| if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) |
| goto error2; |
| return TRUE; |
| |
| error2: |
| fini_reloc_cookie (cookie, sec->owner); |
| error1: |
| return FALSE; |
| } |
| |
| /* Free the memory allocated by init_reloc_cookie_for_section, |
| if appropriate. */ |
| |
| static void |
| fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, |
| asection *sec) |
| { |
| fini_reloc_cookie_rels (cookie, sec); |
| fini_reloc_cookie (cookie, sec->owner); |
| } |
| |
| /* Garbage collect unused sections. */ |
| |
| /* Default gc_mark_hook. */ |
| |
| asection * |
| _bfd_elf_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| { |
| switch (h->root.type) |
| { |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| return h->root.u.def.section; |
| |
| case bfd_link_hash_common: |
| return h->root.u.c.p->section; |
| |
| default: |
| break; |
| } |
| } |
| else |
| return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
| |
| return NULL; |
| } |
| |
| /* Return the debug definition section. */ |
| |
| static asection * |
| elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| { |
| /* Return the global debug definition section. */ |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) |
| return h->root.u.def.section; |
| } |
| else |
| { |
| /* Return the local debug definition section. */ |
| asection *isec = bfd_section_from_elf_index (sec->owner, |
| sym->st_shndx); |
| if ((isec->flags & SEC_DEBUGGING) != 0) |
| return isec; |
| } |
| |
| return NULL; |
| } |
| |
| /* COOKIE->rel describes a relocation against section SEC, which is |
| a section we've decided to keep. Return the section that contains |
| the relocation symbol, or NULL if no section contains it. */ |
| |
| asection * |
| _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, |
| elf_gc_mark_hook_fn gc_mark_hook, |
| struct elf_reloc_cookie *cookie, |
| bfd_boolean *start_stop) |
| { |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h, *hw; |
| |
| r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; |
| if (r_symndx == STN_UNDEF) |
| return NULL; |
| |
| if (r_symndx >= cookie->locsymcount |
| || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) |
| { |
| h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; |
| if (h == NULL) |
| { |
| info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"), |
| sec->owner); |
| return NULL; |
| } |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| h->mark = 1; |
| /* Keep all aliases of the symbol too. If an object symbol |
| needs to be copied into .dynbss then all of its aliases |
| should be present as dynamic symbols, not just the one used |
| on the copy relocation. */ |
| hw = h; |
| while (hw->is_weakalias) |
| { |
| hw = hw->u.alias; |
| hw->mark = 1; |
| } |
| |
| if (start_stop != NULL) |
| { |
| /* To work around a glibc bug, mark XXX input sections |
| when there is a reference to __start_XXX or __stop_XXX |
| symbols. */ |
| if (h->start_stop) |
| { |
| asection *s = h->u2.start_stop_section; |
| *start_stop = !s->gc_mark; |
| return s; |
| } |
| } |
| |
| return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); |
| } |
| |
| return (*gc_mark_hook) (sec, info, cookie->rel, NULL, |
| &cookie->locsyms[r_symndx]); |
| } |
| |
| /* COOKIE->rel describes a relocation against section SEC, which is |
| a section we've decided to keep. Mark the section that contains |
| the relocation symbol. */ |
| |
| bfd_boolean |
| _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, |
| asection *sec, |
| elf_gc_mark_hook_fn gc_mark_hook, |
| struct elf_reloc_cookie *cookie) |
| { |
| asection *rsec; |
| bfd_boolean start_stop = FALSE; |
| |
| rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); |
| while (rsec != NULL) |
| { |
| if (!rsec->gc_mark) |
| { |
| if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour |
| || (rsec->owner->flags & DYNAMIC) != 0) |
| rsec->gc_mark = 1; |
| else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) |
| return FALSE; |
| } |
| if (!start_stop) |
| break; |
| rsec = bfd_get_next_section_by_name (rsec->owner, rsec); |
| } |
| return TRUE; |
| } |
| |
| /* The mark phase of garbage collection. For a given section, mark |
| it and any sections in this section's group, and all the sections |
| which define symbols to which it refers. */ |
| |
| bfd_boolean |
| _bfd_elf_gc_mark (struct bfd_link_info *info, |
| asection *sec, |
| elf_gc_mark_hook_fn gc_mark_hook) |
| { |
| bfd_boolean ret; |
| asection *group_sec, *eh_frame; |
| |
| sec->gc_mark = 1; |
| |
| /* Mark all the sections in the group. */ |
| group_sec = elf_section_data (sec)->next_in_group; |
| if (group_sec && !group_sec->gc_mark) |
| if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) |
| return FALSE; |
| |
| /* Look through the section relocs. */ |
| ret = TRUE; |
| eh_frame = elf_eh_frame_section (sec->owner); |
| if ((sec->flags & SEC_RELOC) != 0 |
| && sec->reloc_count > 0 |
| && sec != eh_frame) |
| { |
| struct elf_reloc_cookie cookie; |
| |
| if (!init_reloc_cookie_for_section (&cookie, info, sec)) |
| ret = FALSE; |
| else |
| { |
| for (; cookie.rel < cookie.relend; cookie.rel++) |
| if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) |
| { |
| ret = FALSE; |
| break; |
| } |
| fini_reloc_cookie_for_section (&cookie, sec); |
| } |
| } |
| |
| if (ret && eh_frame && elf_fde_list (sec)) |
| { |
| struct elf_reloc_cookie cookie; |
| |
| if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) |
| ret = FALSE; |
| else |
| { |
| if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, |
| gc_mark_hook, &cookie)) |
| ret = FALSE; |
| fini_reloc_cookie_for_section (&cookie, eh_frame); |
| } |
| } |
| |
| eh_frame = elf_section_eh_frame_entry (sec); |
| if (ret && eh_frame && !eh_frame->gc_mark) |
| if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) |
| ret = FALSE; |
| |
| return ret; |
| } |
| |
| /* Scan and mark sections in a special or debug section group. */ |
| |
| static void |
| _bfd_elf_gc_mark_debug_special_section_group (asection *grp) |
| { |
| /* Point to first section of section group. */ |
| asection *ssec; |
| /* Used to iterate the section group. */ |
| asection *msec; |
| |
| bfd_boolean is_special_grp = TRUE; |
| bfd_boolean is_debug_grp = TRUE; |
| |
| /* First scan to see if group contains any section other than debug |
| and special section. */ |
| ssec = msec = elf_next_in_group (grp); |
| do |
| { |
| if ((msec->flags & SEC_DEBUGGING) == 0) |
| is_debug_grp = FALSE; |
| |
| if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) |
| is_special_grp = FALSE; |
| |
| msec = elf_next_in_group (msec); |
| } |
| while (msec != ssec); |
| |
| /* If this is a pure debug section group or pure special section group, |
| keep all sections in this group. */ |
| if (is_debug_grp || is_special_grp) |
| { |
| do |
| { |
| msec->gc_mark = 1; |
| msec = elf_next_in_group (msec); |
| } |
| while (msec != ssec); |
| } |
| } |
| |
| /* Keep debug and special sections. */ |
| |
| bfd_boolean |
| _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, |
| elf_gc_mark_hook_fn mark_hook) |
| { |
| bfd *ibfd; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| asection *isec; |
| bfd_boolean some_kept; |
| bfd_boolean debug_frag_seen; |
| bfd_boolean has_kept_debug_info; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| continue; |
| isec = ibfd->sections; |
| if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| /* Ensure all linker created sections are kept, |
| see if any other section is already marked, |
| and note if we have any fragmented debug sections. */ |
| debug_frag_seen = some_kept = has_kept_debug_info = FALSE; |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| { |
| if ((isec->flags & SEC_LINKER_CREATED) != 0) |
| isec->gc_mark = 1; |
| else if (isec->gc_mark |
| && (isec->flags & SEC_ALLOC) != 0 |
| && elf_section_type (isec) != SHT_NOTE) |
| some_kept = TRUE; |
| else |
| { |
| /* Since all sections, except for backend specific ones, |
| have been garbage collected, call mark_hook on this |
| section if any of its linked-to sections is marked. */ |
| asection *linked_to_sec = elf_linked_to_section (isec); |
| for (; linked_to_sec != NULL; |
| linked_to_sec = elf_linked_to_section (linked_to_sec)) |
| if (linked_to_sec->gc_mark) |
| { |
| if (!_bfd_elf_gc_mark (info, isec, mark_hook)) |
| return FALSE; |
| break; |
| } |
| } |
| |
| if (!debug_frag_seen |
| && (isec->flags & SEC_DEBUGGING) |
| && CONST_STRNEQ (isec->name, ".debug_line.")) |
| debug_frag_seen = TRUE; |
| else if (strcmp (bfd_section_name (isec), |
| "__patchable_function_entries") == 0 |
| && elf_linked_to_section (isec) == NULL) |
| info->callbacks->einfo (_("%F%P: %pB(%pA): error: " |
| "need linked-to section " |
| "for --gc-sections\n"), |
| isec->owner, isec); |
| } |
| |
| /* If no non-note alloc section in this file will be kept, then |
| we can toss out the debug and special sections. */ |
| if (!some_kept) |
| continue; |
| |
| /* Keep debug and special sections like .comment when they are |
| not part of a group. Also keep section groups that contain |
| just debug sections or special sections. NB: Sections with |
| linked-to section has been handled above. */ |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| { |
| if ((isec->flags & SEC_GROUP) != 0) |
| _bfd_elf_gc_mark_debug_special_section_group (isec); |
| else if (((isec->flags & SEC_DEBUGGING) != 0 |
| || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) |
| && elf_next_in_group (isec) == NULL |
| && elf_linked_to_section (isec) == NULL) |
| isec->gc_mark = 1; |
| if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) |
| has_kept_debug_info = TRUE; |
| } |
| |
| /* Look for CODE sections which are going to be discarded, |
| and find and discard any fragmented debug sections which |
| are associated with that code section. */ |
| if (debug_frag_seen) |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| if ((isec->flags & SEC_CODE) != 0 |
| && isec->gc_mark == 0) |
| { |
| unsigned int ilen; |
| asection *dsec; |
| |
| ilen = strlen (isec->name); |
| |
| /* Association is determined by the name of the debug |
| section containing the name of the code section as |
| a suffix. For example .debug_line.text.foo is a |
| debug section associated with .text.foo. */ |
| for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) |
| { |
| unsigned int dlen; |
| |
| if (dsec->gc_mark == 0 |
| || (dsec->flags & SEC_DEBUGGING) == 0) |
| continue; |
| |
| dlen = strlen (dsec->name); |
| |
| if (dlen > ilen |
| && strncmp (dsec->name + (dlen - ilen), |
| isec->name, ilen) == 0) |
| dsec->gc_mark = 0; |
| } |
| } |
| |
| /* Mark debug sections referenced by kept debug sections. */ |
| if (has_kept_debug_info) |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| if (isec->gc_mark |
| && (isec->flags & SEC_DEBUGGING) != 0) |
| if (!_bfd_elf_gc_mark (info, isec, |
| elf_gc_mark_debug_section)) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) |
| { |
| bfd *sub; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| { |
| asection *o; |
| |
| if (bfd_get_flavour (sub) != bfd_target_elf_flavour |
| || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) |
| || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) |
| continue; |
| o = sub->sections; |
| if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| for (o = sub->sections; o != NULL; o = o->next) |
| { |
| /* When any section in a section group is kept, we keep all |
| sections in the section group. If the first member of |
| the section group is excluded, we will also exclude the |
| group section. */ |
| if (o->flags & SEC_GROUP) |
| { |
| asection *first = elf_next_in_group (o); |
| o->gc_mark = first->gc_mark; |
| } |
| |
| if (o->gc_mark) |
| continue; |
| |
| /* Skip sweeping sections already excluded. */ |
| if (o->flags & SEC_EXCLUDE) |
| continue; |
| |
| /* Since this is early in the link process, it is simple |
| to remove a section from the output. */ |
| o->flags |= SEC_EXCLUDE; |
| |
| if (info->print_gc_sections && o->size != 0) |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), |
| o, sub); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Propagate collected vtable information. This is called through |
| elf_link_hash_traverse. */ |
| |
| static bfd_boolean |
| elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) |
| { |
| /* Those that are not vtables. */ |
| if (h->start_stop |
| || h->u2.vtable == NULL |
| || h->u2.vtable->parent == NULL) |
| return TRUE; |
| |
| /* Those vtables that do not have parents, we cannot merge. */ |
| if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) |
| return TRUE; |
| |
| /* If we've already been done, exit. */ |
| if (h->u2.vtable->used && h->u2.vtable->used[-1]) |
| return TRUE; |
| |
| /* Make sure the parent's table is up to date. */ |
| elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); |
| |
| if (h->u2.vtable->used == NULL) |
| { |
| /* None of this table's entries were referenced. Re-use the |
| parent's table. */ |
| h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; |
| h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; |
| } |
| else |
| { |
| size_t n; |
| bfd_boolean *cu, *pu; |
| |
| /* Or the parent's entries into ours. */ |
| cu = h->u2.vtable->used; |
| cu[-1] = TRUE; |
| pu = h->u2.vtable->parent->u2.vtable->used; |
| if (pu != NULL) |
| { |
| const struct elf_backend_data *bed; |
| unsigned int log_file_align; |
| |
| bed = get_elf_backend_data (h->root.u.def.section->owner); |
| log_file_align = bed->s->log_file_align; |
| n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; |
| while (n--) |
| { |
| if (*pu) |
| *cu = TRUE; |
| pu++; |
| cu++; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) |
| { |
| asection *sec; |
| bfd_vma hstart, hend; |
| Elf_Internal_Rela *relstart, *relend, *rel; |
| const struct elf_backend_data *bed; |
| unsigned int log_file_align; |
| |
| /* Take care of both those symbols that do not describe vtables as |
| well as those that are not loaded. */ |
| if (h->start_stop |
| || h->u2.vtable == NULL |
| || h->u2.vtable->parent == NULL) |
| return TRUE; |
| |
| BFD_ASSERT (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak); |
| |
| sec = h->root.u.def.section; |
| hstart = h->root.u.def.value; |
| hend = hstart + h->size; |
| |
| relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); |
| if (!relstart) |
| return *(bfd_boolean *) okp = FALSE; |
| bed = get_elf_backend_data (sec->owner); |
| log_file_align = bed->s->log_file_align; |
| |
| relend = relstart + sec->reloc_count; |
| |
| for (rel = relstart; rel < relend; ++rel) |
| if (rel->r_offset >= hstart && rel->r_offset < hend) |
| { |
| /* If the entry is in use, do nothing. */ |
| if (h->u2.vtable->used |
| && (rel->r_offset - hstart) < h->u2.vtable->size) |
| { |
| bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; |
| if (h->u2.vtable->used[entry]) |
| continue; |
| } |
| /* Otherwise, kill it. */ |
| rel->r_offset = rel->r_info = rel->r_addend = 0; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Mark sections containing dynamically referenced symbols. When |
| building shared libraries, we must assume that any visible symbol is |
| referenced. */ |
| |
| bfd_boolean |
| bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| struct bfd_elf_dynamic_list *d = info->dynamic_list; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && ((h->ref_dynamic && !h->forced_local) |
| || ((h->def_regular || ELF_COMMON_DEF_P (h)) |
| && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL |
| && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN |
| && (!bfd_link_executable (info) |
| || info->gc_keep_exported |
| || info->export_dynamic |
| || (h->dynamic |
| && d != NULL |
| && (*d->match) (&d->head, NULL, h->root.root.string))) |
| && (h->versioned >= versioned |
| || !bfd_hide_sym_by_version (info->version_info, |
| h->root.root.string))))) |
| h->root.u.def.section->flags |= SEC_KEEP; |
| |
| return TRUE; |
| } |
| |
| /* Keep all sections containing symbols undefined on the command-line, |
| and the section containing the entry symbol. */ |
| |
| void |
| _bfd_elf_gc_keep (struct bfd_link_info *info) |
| { |
| struct bfd_sym_chain *sym; |
| |
| for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), sym->name, |
| FALSE, FALSE, FALSE); |
| |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && !bfd_is_abs_section (h->root.u.def.section) |
| && !bfd_is_und_section (h->root.u.def.section)) |
| h->root.u.def.section->flags |= SEC_KEEP; |
| } |
| } |
| |
| bfd_boolean |
| bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| bfd *ibfd = info->input_bfds; |
| |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| asection *sec; |
| struct elf_reloc_cookie cookie; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| continue; |
| sec = ibfd->sections; |
| if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| if (!init_reloc_cookie (&cookie, info, ibfd)) |
| return FALSE; |
| |
| for (sec = ibfd->sections; sec; sec = sec->next) |
| { |
| if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry") |
| && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) |
| { |
| _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); |
| fini_reloc_cookie_rels (&cookie, sec); |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Do mark and sweep of unused sections. */ |
| |
| bfd_boolean |
| bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| bfd_boolean ok = TRUE; |
| bfd *sub; |
| elf_gc_mark_hook_fn gc_mark_hook; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_link_hash_table *htab; |
| |
| if (!bed->can_gc_sections |
| || !is_elf_hash_table (info->hash)) |
| { |
| _bfd_error_handler(_("warning: gc-sections option ignored")); |
| return TRUE; |
| } |
| |
| bed->gc_keep (info); |
| htab = elf_hash_table (info); |
| |
| /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section |
| at the .eh_frame section if we can mark the FDEs individually. */ |
| for (sub = info->input_bfds; |
| info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; |
| sub = sub->link.next) |
| { |
| asection *sec; |
| struct elf_reloc_cookie cookie; |
| |
| sec = sub->sections; |
| if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| sec = bfd_get_section_by_name (sub, ".eh_frame"); |
| while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) |
| { |
| _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); |
| if (elf_section_data (sec)->sec_info |
| && (sec->flags & SEC_LINKER_CREATED) == 0) |
| elf_eh_frame_section (sub) = sec; |
| fini_reloc_cookie_for_section (&cookie, sec); |
| sec = bfd_get_next_section_by_name (NULL, sec); |
| } |
| } |
| |
| /* Apply transitive closure to the vtable entry usage info. */ |
| elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); |
| if (!ok) |
| return FALSE; |
| |
| /* Kill the vtable relocations that were not used. */ |
| elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok); |
| if (!ok) |
| return FALSE; |
| |
| /* Mark dynamically referenced symbols. */ |
| if (htab->dynamic_sections_created || info->gc_keep_exported) |
| elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); |
| |
| /* Grovel through relocs to find out who stays ... */ |
| gc_mark_hook = bed->gc_mark_hook; |
| for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) |
| { |
| asection *o; |
| |
| if (bfd_get_flavour (sub) != bfd_target_elf_flavour |
| || elf_object_id (sub) != elf_hash_table_id (htab) |
| || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) |
| continue; |
| |
| o = sub->sections; |
| if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). |
| Also treat note sections as a root, if the section is not part |
| of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as |
| well as FINI_ARRAY sections for ld -r. */ |
| for (o = sub->sections; o != NULL; o = o->next) |
| if (!o->gc_mark |
| && (o->flags & SEC_EXCLUDE) == 0 |
| && ((o->flags & SEC_KEEP) != 0 |
| || (bfd_link_relocatable (info) |
| && ((elf_section_data (o)->this_hdr.sh_type |
| == SHT_PREINIT_ARRAY) |
| || (elf_section_data (o)->this_hdr.sh_type |
| == SHT_INIT_ARRAY) |
| || (elf_section_data (o)->this_hdr.sh_type |
| == SHT_FINI_ARRAY))) |
| || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE |
| && elf_next_in_group (o) == NULL ))) |
| { |
| if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) |
| return FALSE; |
| } |
| } |
| |
| /* Allow the backend to mark additional target specific sections. */ |
| bed->gc_mark_extra_sections (info, gc_mark_hook); |
| |
| /* ... and mark SEC_EXCLUDE for those that go. */ |
| return elf_gc_sweep (abfd, info); |
| } |
| |
| /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ |
| |
| bfd_boolean |
| bfd_elf_gc_record_vtinherit (bfd *abfd, |
| asection *sec, |
| struct elf_link_hash_entry *h, |
| bfd_vma offset) |
| { |
| struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; |
| struct elf_link_hash_entry **search, *child; |
| size_t extsymcount; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| /* The sh_info field of the symtab header tells us where the |
| external symbols start. We don't care about the local symbols at |
| this point. */ |
| extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; |
| if (!elf_bad_symtab (abfd)) |
| extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; |
| |
| sym_hashes = elf_sym_hashes (abfd); |
| sym_hashes_end = sym_hashes + extsymcount; |
| |
| /* Hunt down the child symbol, which is in this section at the same |
| offset as the relocation. */ |
| for (search = sym_hashes; search != sym_hashes_end; ++search) |
| { |
| if ((child = *search) != NULL |
| && (child->root.type == bfd_link_hash_defined |
| || child->root.type == bfd_link_hash_defweak) |
| && child->root.u.def.section == sec |
| && child->root.u.def.value == offset) |
| goto win; |
| } |
| |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), |
| abfd, sec, (uint64_t) offset); |
| bfd_set_error (bfd_error_invalid_operation); |
| return FALSE; |
| |
| win: |
| if (!child->u2.vtable) |
| { |
| child->u2.vtable = ((struct elf_link_virtual_table_entry *) |
| bfd_zalloc (abfd, sizeof (*child->u2.vtable))); |
| if (!child->u2.vtable) |
| return FALSE; |
| } |
| if (!h) |
| { |
| /* This *should* only be the absolute section. It could potentially |
| be that someone has defined a non-global vtable though, which |
| would be bad. It isn't worth paging in the local symbols to be |
| sure though; that case should simply be handled by the assembler. */ |
| |
| child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; |
| } |
| else |
| child->u2.vtable->parent = h; |
| |
| return TRUE; |
| } |
| |
| /* Called from check_relocs to record the existence of a VTENTRY reloc. */ |
| |
| bfd_boolean |
| bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, |
| struct elf_link_hash_entry *h, |
| bfd_vma addend) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| unsigned int log_file_align = bed->s->log_file_align; |
| |
| if (!h) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), |
| abfd, sec); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| if (!h->u2.vtable) |
| { |
| h->u2.vtable = ((struct elf_link_virtual_table_entry *) |
| bfd_zalloc (abfd, sizeof (*h->u2.vtable))); |
| if (!h->u2.vtable) |
| return FALSE; |
| } |
| |
| if (addend >= h->u2.vtable->size) |
| { |
| size_t size, bytes, file_align; |
| bfd_boolean *ptr = h->u2.vtable->used; |
| |
| /* While the symbol is undefined, we have to be prepared to handle |
| a zero size. */ |
| file_align = 1 << log_file_align; |
| if (h->root.type == bfd_link_hash_undefined) |
| size = addend + file_align; |
| else |
| { |
| size = h->size; |
| if (addend >= size) |
| { |
| /* Oops! We've got a reference past the defined end of |
| the table. This is probably a bug -- shall we warn? */ |
| size = addend + file_align; |
| } |
| } |
| size = (size + file_align - 1) & -file_align; |
| |
| /* Allocate one extra entry for use as a "done" flag for the |
| consolidation pass. */ |
| bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); |
| |
| if (ptr) |
| { |
| ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); |
| |
| if (ptr != NULL) |
| { |
| size_t oldbytes; |
| |
| oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) |
| * sizeof (bfd_boolean)); |
| memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); |
| } |
| } |
| else |
| ptr = (bfd_boolean *) bfd_zmalloc (bytes); |
| |
| if (ptr == NULL) |
| return FALSE; |
| |
| /* And arrange for that done flag to be at index -1. */ |
| h->u2.vtable->used = ptr + 1; |
| h->u2.vtable->size = size; |
| } |
| |
| h->u2.vtable->used[addend >> log_file_align] = TRUE; |
| |
| return TRUE; |
| } |
| |
| /* Map an ELF section header flag to its corresponding string. */ |
| typedef struct |
| { |
| char *flag_name; |
| flagword flag_value; |
| } elf_flags_to_name_table; |
| |
| static elf_flags_to_name_table elf_flags_to_names [] = |
| { |
| { "SHF_WRITE", SHF_WRITE }, |
| { "SHF_ALLOC", SHF_ALLOC }, |
| { "SHF_EXECINSTR", SHF_EXECINSTR }, |
| { "SHF_MERGE", SHF_MERGE }, |
| { "SHF_STRINGS", SHF_STRINGS }, |
| { "SHF_INFO_LINK", SHF_INFO_LINK}, |
| { "SHF_LINK_ORDER", SHF_LINK_ORDER}, |
| { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, |
| { "SHF_GROUP", SHF_GROUP }, |
| { "SHF_TLS", SHF_TLS }, |
| { "SHF_MASKOS", SHF_MASKOS }, |
| { "SHF_EXCLUDE", SHF_EXCLUDE }, |
| }; |
| |
| /* Returns TRUE if the section is to be included, otherwise FALSE. */ |
| bfd_boolean |
| bfd_elf_lookup_section_flags (struct bfd_link_info *info, |
| struct flag_info *flaginfo, |
| asection *section) |
| { |
| const bfd_vma sh_flags = elf_section_flags (section); |
| |
| if (!flaginfo->flags_initialized) |
| { |
| bfd *obfd = info->output_bfd; |
| const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
| struct flag_info_list *tf = flaginfo->flag_list; |
| int with_hex = 0; |
| int without_hex = 0; |
| |
| for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) |
| { |
| unsigned i; |
| flagword (*lookup) (char *); |
| |
| lookup = bed->elf_backend_lookup_section_flags_hook; |
| if (lookup != NULL) |
| { |
| flagword hexval = (*lookup) ((char *) tf->name); |
| |
| if (hexval != 0) |
| { |
| if (tf->with == with_flags) |
| with_hex |= hexval; |
| else if (tf->with == without_flags) |
| without_hex |= hexval; |
| tf->valid = TRUE; |
| continue; |
| } |
| } |
| for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) |
| { |
| if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) |
| { |
| if (tf->with == with_flags) |
| with_hex |= elf_flags_to_names[i].flag_value; |
| else if (tf->with == without_flags) |
| without_hex |= elf_flags_to_names[i].flag_value; |
| tf->valid = TRUE; |
| break; |
| } |
| } |
| if (!tf->valid) |
| { |
| info->callbacks->einfo |
| (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); |
| return FALSE; |
| } |
| } |
| flaginfo->flags_initialized = TRUE; |
| flaginfo->only_with_flags |= with_hex; |
| flaginfo->not_with_flags |= without_hex; |
| } |
| |
| if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) |
| return FALSE; |
| |
| if ((flaginfo->not_with_flags & sh_flags) != 0) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| struct alloc_got_off_arg { |
| bfd_vma gotoff; |
| struct bfd_link_info *info; |
| }; |
| |
| /* We need a special top-level link routine to convert got reference counts |
| to real got offsets. */ |
| |
| static bfd_boolean |
| elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) |
| { |
| struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; |
| bfd *obfd = gofarg->info->output_bfd; |
| const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
| |
| if (h->got.refcount > 0) |
| { |
| h->got.offset = gofarg->gotoff; |
| gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| return TRUE; |
| } |
| |
| /* And an accompanying bit to work out final got entry offsets once |
| we're done. Should be called from final_link. */ |
| |
| bfd_boolean |
| bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, |
| struct bfd_link_info *info) |
| { |
| bfd *i; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bfd_vma gotoff; |
| struct alloc_got_off_arg gofarg; |
| |
| BFD_ASSERT (abfd == info->output_bfd); |
| |
| if (! is_elf_hash_table (info->hash)) |
| return FALSE; |
| |
| /* The GOT offset is relative to the .got section, but the GOT header is |
| put into the .got.plt section, if the backend uses it. */ |
| if (bed->want_got_plt) |
| gotoff = 0; |
| else |
| gotoff = bed->got_header_size; |
| |
| /* Do the local .got entries first. */ |
| for (i = info->input_bfds; i; i = i->link.next) |
| { |
| bfd_signed_vma *local_got; |
| size_t j, locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| if (bfd_get_flavour (i) != bfd_target_elf_flavour) |
| continue; |
| |
| local_got = elf_local_got_refcounts (i); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_tdata (i)->symtab_hdr; |
| if (elf_bad_symtab (i)) |
| locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; |
| else |
| locsymcount = symtab_hdr->sh_info; |
| |
| for (j = 0; j < locsymcount; ++j) |
| { |
| if (local_got[j] > 0) |
| { |
| local_got[j] = gotoff; |
| gotoff += bed->got_elt_size (abfd, info, NULL, i, j); |
| } |
| else |
| local_got[j] = (bfd_vma) -1; |
| } |
| } |
| |
| /* Then the global .got entries. .plt refcounts are handled by |
| adjust_dynamic_symbol */ |
| gofarg.gotoff = gotoff; |
| gofarg.info = info; |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_gc_allocate_got_offsets, |
| &gofarg); |
| return TRUE; |
| } |
| |
| /* Many folk need no more in the way of final link than this, once |
| got entry reference counting is enabled. */ |
| |
| bfd_boolean |
| bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) |
| { |
| if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) |
| return FALSE; |
| |
| /* Invoke the regular ELF backend linker to do all the work. */ |
| return bfd_elf_final_link (abfd, info); |
| } |
| |
| bfd_boolean |
| bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) |
| { |
| struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; |
| |
| if (rcookie->bad_symtab) |
| rcookie->rel = rcookie->rels; |
| |
| for (; rcookie->rel < rcookie->relend; rcookie->rel++) |
| { |
| unsigned long r_symndx; |
| |
| if (! rcookie->bad_symtab) |
| if (rcookie->rel->r_offset > offset) |
| return FALSE; |
| if (rcookie->rel->r_offset != offset) |
| continue; |
| |
| r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; |
| if (r_symndx == STN_UNDEF) |
| return TRUE; |
| |
| if (r_symndx >= rcookie->locsymcount |
| || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; |
| |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| if ((h->root.type == bfd_link_hash_defined |
| || h->root.type == bfd_link_hash_defweak) |
| && (h->root.u.def.section->owner != rcookie->abfd |
| || h->root.u.def.section->kept_section != NULL |
| || discarded_section (h->root.u.def.section))) |
| return TRUE; |
| } |
| else |
| { |
| /* It's not a relocation against a global symbol, |
| but it could be a relocation against a local |
| symbol for a discarded section. */ |
| asection *isec; |
| Elf_Internal_Sym *isym; |
| |
| /* Need to: get the symbol; get the section. */ |
| isym = &rcookie->locsyms[r_symndx]; |
| isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); |
| if (isec != NULL |
| && (isec->kept_section != NULL |
| || discarded_section (isec))) |
| return TRUE; |
| } |
| return FALSE; |
| } |
| return FALSE; |
| } |
| |
| /* Discard unneeded references to discarded sections. |
| Returns -1 on error, 1 if any section's size was changed, 0 if |
| nothing changed. This function assumes that the relocations are in |
| sorted order, which is true for all known assemblers. */ |
| |
| int |
| bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| struct elf_reloc_cookie cookie; |
| asection *o; |
| bfd *abfd; |
| int changed = 0; |
| |
| if (info->traditional_format |
| || !is_elf_hash_table (info->hash)) |
| return 0; |
| |
| o = bfd_get_section_by_name (output_bfd, ".stab"); |
| if (o != NULL) |
| { |
| asection *i; |
| |
| for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
| { |
| if (i->size == 0 |
| || i->reloc_count == 0 |
| || i->sec_info_type != SEC_INFO_TYPE_STABS) |
| continue; |
| |
| abfd = i->owner; |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| continue; |
| |
| if (!init_reloc_cookie_for_section (&cookie, info, i)) |
| return -1; |
| |
| if (_bfd_discard_section_stabs (abfd, i, |
| elf_section_data (i)->sec_info, |
| bfd_elf_reloc_symbol_deleted_p, |
| &cookie)) |
| changed = 1; |
| |
| fini_reloc_cookie_for_section (&cookie, i); |
| } |
| } |
| |
| o = NULL; |
| if (info->eh_frame_hdr_type != COMPACT_EH_HDR) |
| o = bfd_get_section_by_name (output_bfd, ".eh_frame"); |
| if (o != NULL) |
| { |
| asection *i; |
| int eh_changed = 0; |
| unsigned int eh_alignment; /* Octets. */ |
| |
| for (i = o->map_head.s; i != NULL; i = i->map_head.s) |
| { |
| if (i->size == 0) |
| continue; |
| |
| abfd = i->owner; |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| continue; |
| |
| if (!init_reloc_cookie_for_section (&cookie, info, i)) |
| return -1; |
| |
| _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); |
| if (_bfd_elf_discard_section_eh_frame (abfd, info, i, |
| bfd_elf_reloc_symbol_deleted_p, |
| &cookie)) |
| { |
| eh_changed = 1; |
| if (i->size != i->rawsize) |
| changed = 1; |
| } |
| |
| fini_reloc_cookie_for_section (&cookie, i); |
| } |
| |
| eh_alignment = ((1 << o->alignment_power) |
| * bfd_octets_per_byte (output_bfd, o)); |
| /* Skip over zero terminator, and prevent empty sections from |
| adding alignment padding at the end. */ |
| for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) |
| if (i->size == 0) |
| i->flags |= SEC_EXCLUDE; |
| else if (i->size > 4) |
| break; |
| /* The last non-empty eh_frame section doesn't need padding. */ |
| if (i != NULL) |
| i = i->map_tail.s; |
| /* Any prior sections must pad the last FDE out to the output |
| section alignment. Otherwise we might have zero padding |
| between sections, which would be seen as a terminator. */ |
| for (; i != NULL; i = i->map_tail.s) |
| if (i->size == 4) |
| /* All but the last zero terminator should have been removed. */ |
| BFD_FAIL (); |
| else |
| { |
| bfd_size_type size |
| = (i->size + eh_alignment - 1) & -eh_alignment; |
| if (i->size != size) |
| { |
| i->size = size; |
| changed = 1; |
| eh_changed = 1; |
| } |
| } |
| if (eh_changed) |
| elf_link_hash_traverse (elf_hash_table (info), |
| _bfd_elf_adjust_eh_frame_global_symbol, NULL); |
| } |
| |
| for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) |
| { |
| const struct elf_backend_data *bed; |
| asection *s; |
| |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| continue; |
| s = abfd->sections; |
| if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) |
| continue; |
| |
| bed = get_elf_backend_data (abfd); |
| |
| if (bed->elf_backend_discard_info != NULL) |
| { |
| if (!init_reloc_cookie (&cookie, info, abfd)) |
| return -1; |
| |
| if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) |
| changed = 1; |
| |
| fini_reloc_cookie (&cookie, abfd); |
| } |
| } |
| |
| if (info->eh_frame_hdr_type == COMPACT_EH_HDR) |
| _bfd_elf_end_eh_frame_parsing (info); |
| |
| if (info->eh_frame_hdr_type |
| && !bfd_link_relocatable (info) |
| && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) |
| changed = 1; |
| |
| return changed; |
| } |
| |
| bfd_boolean |
| _bfd_elf_section_already_linked (bfd *abfd, |
| asection *sec, |
| struct bfd_link_info *info) |
| { |
| flagword flags; |
| const char *name, *key; |
| struct bfd_section_already_linked *l; |
| struct bfd_section_already_linked_hash_entry *already_linked_list; |
| |
| if (sec->output_section == bfd_abs_section_ptr) |
| return FALSE; |
| |
| flags = sec->flags; |
| |
| /* Return if it isn't a linkonce section. A comdat group section |
| also has SEC_LINK_ONCE set. */ |
| if ((flags & SEC_LINK_ONCE) == 0) |
| return FALSE; |
| |
| /* Don't put group member sections on our list of already linked |
| sections. They are handled as a group via their group section. */ |
| if (elf_sec_group (sec) != NULL) |
| return FALSE; |
| |
| /* For a SHT_GROUP section, use the group signature as the key. */ |
| name = sec->name; |
| if ((flags & SEC_GROUP) != 0 |
| && elf_next_in_group (sec) != NULL |
| && elf_group_name (elf_next_in_group (sec)) != NULL) |
| key = elf_group_name (elf_next_in_group (sec)); |
| else |
| { |
| /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ |
| if (CONST_STRNEQ (name, ".gnu.linkonce.") |
| && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) |
| key++; |
| else |
| /* Must be a user linkonce section that doesn't follow gcc's |
| naming convention. In this case we won't be matching |
| single member groups. */ |
| key = name; |
| } |
| |
| already_linked_list = bfd_section_already_linked_table_lookup (key); |
| |
| for (l = already_linked_list->entry; l != NULL; l = l->next) |
| { |
| /* We may have 2 different types of sections on the list: group |
| sections with a signature of <key> (<key> is some string), |
| and linkonce sections named .gnu.linkonce.<type>.<key>. |
| Match like sections. LTO plugin sections are an exception. |
| They are always named .gnu.linkonce.t.<key> and match either |
| type of section. */ |
| if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) |
| && ((flags & SEC_GROUP) != 0 |
| || strcmp (name, l->sec->name) == 0)) |
| || (l->sec->owner->flags & BFD_PLUGIN) != 0) |
| { |
| /* The section has already been linked. See if we should |
| issue a warning. */ |
| if (!_bfd_handle_already_linked (sec, l, info)) |
| return FALSE; |
| |
| if (flags & SEC_GROUP) |
| { |
| asection *first = elf_next_in_group (sec); |
| asection *s = first; |
| |
| while (s != NULL) |
| { |
| s->output_section = bfd_abs_section_ptr; |
| /* Record which group discards it. */ |
| s->kept_section = l->sec; |
| s = elf_next_in_group (s); |
| /* These lists are circular. */ |
| if (s == first) |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| } |
| |
| /* A single member comdat group section may be discarded by a |
| linkonce section and vice versa. */ |
| if ((flags & SEC_GROUP) != 0) |
| { |
| asection *first = elf_next_in_group (sec); |
| |
| if (first != NULL && elf_next_in_group (first) == first) |
| /* Check this single member group against linkonce sections. */ |
| for (l = already_linked_list->entry; l != NULL; l = l->next) |
| if ((l->sec->flags & SEC_GROUP) == 0 |
| && bfd_elf_match_symbols_in_sections (l->sec, first, info)) |
| { |
| first->output_section = bfd_abs_section_ptr; |
| first->kept_section = l->sec; |
| sec->output_section = bfd_abs_section_ptr; |
| break; |
| } |
| } |
| else |
| /* Check this linkonce section against single member groups. */ |
| for (l = already_linked_list->entry; l != NULL; l = l->next) |
| if (l->sec->flags & SEC_GROUP) |
| { |
| asection *first = elf_next_in_group (l->sec); |
| |
| if (first != NULL |
| && elf_next_in_group (first) == first |
| && bfd_elf_match_symbols_in_sections (first, sec, info)) |
| { |
| sec->output_section = bfd_abs_section_ptr; |
| sec->kept_section = first; |
| break; |
| } |
| } |
| |
| /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' |
| referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 |
| specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' |
| prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its |
| matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded |
| but its `.gnu.linkonce.t.F' is discarded means we chose one-only |
| `.gnu.linkonce.t.F' section from a different bfd not requiring any |
| `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. |
| The reverse order cannot happen as there is never a bfd with only the |
| `.gnu.linkonce.r.F' section. The order of sections in a bfd does not |
| matter as here were are looking only for cross-bfd sections. */ |
| |
| if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) |
| for (l = already_linked_list->entry; l != NULL; l = l->next) |
| if ((l->sec->flags & SEC_GROUP) == 0 |
| && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) |
| { |
| if (abfd != l->sec->owner) |
| sec->output_section = bfd_abs_section_ptr; |
| break; |
| } |
| |
| /* This is the first section with this name. Record it. */ |
| if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) |
| info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); |
| return sec->output_section == bfd_abs_section_ptr; |
| } |
| |
| bfd_boolean |
| _bfd_elf_common_definition (Elf_Internal_Sym *sym) |
| { |
| return sym->st_shndx == SHN_COMMON; |
| } |
| |
| unsigned int |
| _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) |
| { |
| return SHN_COMMON; |
| } |
| |
| asection * |
| _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) |
| { |
| return bfd_com_section_ptr; |
| } |
| |
| bfd_vma |
| _bfd_elf_default_got_elt_size (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, |
| bfd *ibfd ATTRIBUTE_UNUSED, |
| unsigned long symndx ATTRIBUTE_UNUSED) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| return bed->s->arch_size / 8; |
| } |
| |
| /* Routines to support the creation of dynamic relocs. */ |
| |
| /* Returns the name of the dynamic reloc section associated with SEC. */ |
| |
| static const char * |
| get_dynamic_reloc_section_name (bfd * abfd, |
| asection * sec, |
| bfd_boolean is_rela) |
| { |
| char *name; |
| const char *old_name = bfd_section_name (sec); |
| const char *prefix = is_rela ? ".rela" : ".rel"; |
| |
| if (old_name == NULL) |
| return NULL; |
| |
| name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); |
| sprintf (name, "%s%s", prefix, old_name); |
| |
| return name; |
| } |
| |
| /* Returns the dynamic reloc section associated with SEC. |
| If necessary compute the name of the dynamic reloc section based |
| on SEC's name (looked up in ABFD's string table) and the setting |
| of IS_RELA. */ |
| |
| asection * |
| _bfd_elf_get_dynamic_reloc_section (bfd * abfd, |
| asection * sec, |
| bfd_boolean is_rela) |
| { |
| asection * reloc_sec = elf_section_data (sec)->sreloc; |
| |
| if (reloc_sec == NULL) |
| { |
| const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); |
| |
| if (name != NULL) |
| { |
| reloc_sec = bfd_get_linker_section (abfd, name); |
| |
| if (reloc_sec != NULL) |
| elf_section_data (sec)->sreloc = reloc_sec; |
| } |
| } |
| |
| return reloc_sec; |
| } |
| |
| /* Returns the dynamic reloc section associated with SEC. If the |
| section does not exist it is created and attached to the DYNOBJ |
| bfd and stored in the SRELOC field of SEC's elf_section_data |
| structure. |
| |
| ALIGNMENT is the alignment for the newly created section and |
| IS_RELA defines whether the name should be .rela.<SEC's name> |
| or .rel.<SEC's name>. The section name is looked up in the |
| string table associated with ABFD. */ |
| |
| asection * |
| _bfd_elf_make_dynamic_reloc_section (asection *sec, |
| bfd *dynobj, |
| unsigned int alignment, |
| bfd *abfd, |
| bfd_boolean is_rela) |
| { |
| asection * reloc_sec = elf_section_data (sec)->sreloc; |
| |
| if (reloc_sec == NULL) |
| { |
| const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); |
| |
| if (name == NULL) |
| return NULL; |
| |
| reloc_sec = bfd_get_linker_section (dynobj, name); |
| |
| if (reloc_sec == NULL) |
| { |
| flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY |
| | SEC_IN_MEMORY | SEC_LINKER_CREATED); |
| if ((sec->flags & SEC_ALLOC) != 0) |
| flags |= SEC_ALLOC | SEC_LOAD; |
| |
| reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); |
| if (reloc_sec != NULL) |
| { |
| /* _bfd_elf_get_sec_type_attr chooses a section type by |
| name. Override as it may be wrong, eg. for a user |
| section named "auto" we'll get ".relauto" which is |
| seen to be a .rela section. */ |
| elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; |
| if (!bfd_set_section_alignment (reloc_sec, alignment)) |
| reloc_sec = NULL; |
| } |
| } |
| |
| elf_section_data (sec)->sreloc = reloc_sec; |
| } |
| |
| return reloc_sec; |
| } |
| |
| /* Copy the ELF symbol type and other attributes for a linker script |
| assignment from HSRC to HDEST. Generally this should be treated as |
| if we found a strong non-dynamic definition for HDEST (except that |
| ld ignores multiple definition errors). */ |
| void |
| _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, |
| struct bfd_link_hash_entry *hdest, |
| struct bfd_link_hash_entry *hsrc) |
| { |
| struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; |
| struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; |
| Elf_Internal_Sym isym; |
| |
| ehdest->type = ehsrc->type; |
| ehdest->target_internal = ehsrc->target_internal; |
| |
| isym.st_other = ehsrc->other; |
| elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE); |
| } |
| |
| /* Append a RELA relocation REL to section S in BFD. */ |
| |
| void |
| elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); |
| BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); |
| bed->s->swap_reloca_out (abfd, rel, loc); |
| } |
| |
| /* Append a REL relocation REL to section S in BFD. */ |
| |
| void |
| elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); |
| BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); |
| bed->s->swap_reloc_out (abfd, rel, loc); |
| } |
| |
| /* Define __start, __stop, .startof. or .sizeof. symbol. */ |
| |
| struct bfd_link_hash_entry * |
| bfd_elf_define_start_stop (struct bfd_link_info *info, |
| const char *symbol, asection *sec) |
| { |
| struct elf_link_hash_entry *h; |
| |
| h = elf_link_hash_lookup (elf_hash_table (info), symbol, |
| FALSE, FALSE, TRUE); |
| if (h != NULL |
| && (h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak |
| || ((h->ref_regular || h->def_dynamic) && !h->def_regular))) |
| { |
| bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic; |
| h->root.type = bfd_link_hash_defined; |
| h->root.u.def.section = sec; |
| h->root.u.def.value = 0; |
| h->def_regular = 1; |
| h->def_dynamic = 0; |
| h->start_stop = 1; |
| h->u2.start_stop_section = sec; |
| if (symbol[0] == '.') |
| { |
| /* .startof. and .sizeof. symbols are local. */ |
| const struct elf_backend_data *bed; |
| bed = get_elf_backend_data (info->output_bfd); |
| (*bed->elf_backend_hide_symbol) (info, h, TRUE); |
| } |
| else |
| { |
| if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) |
| h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED; |
| if (was_dynamic) |
| bfd_elf_link_record_dynamic_symbol (info, h); |
| } |
| return &h->root; |
| } |
| return NULL; |
| } |
| |
| /* Find dynamic relocs for H that apply to read-only sections. */ |
| |
| asection * |
| _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = h->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| return p->sec; |
| } |
| return NULL; |
| } |
| |
| /* Set DF_TEXTREL if we find any dynamic relocs that apply to |
| read-only sections. */ |
| |
| bfd_boolean |
| _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf) |
| { |
| asection *sec; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| sec = _bfd_elf_readonly_dynrelocs (h); |
| if (sec != NULL) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| info->flags |= DF_TEXTREL; |
| /* xgettext:c-format */ |
| info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' " |
| "in read-only section `%pA'\n"), |
| sec->owner, h->root.root.string, sec); |
| |
| if (bfd_link_textrel_check (info)) |
| /* xgettext:c-format */ |
| info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' " |
| "in read-only section `%pA'\n"), |
| sec->owner, h->root.root.string, sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| return TRUE; |
| } |