| /* Target-dependent code for FT32. | 
 |  | 
 |    Copyright (C) 2009-2024 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "extract-store-integer.h" | 
 | #include "frame.h" | 
 | #include "frame-unwind.h" | 
 | #include "frame-base.h" | 
 | #include "symtab.h" | 
 | #include "gdbtypes.h" | 
 | #include "cli/cli-cmds.h" | 
 | #include "gdbcore.h" | 
 | #include "value.h" | 
 | #include "inferior.h" | 
 | #include "symfile.h" | 
 | #include "objfiles.h" | 
 | #include "osabi.h" | 
 | #include "language.h" | 
 | #include "arch-utils.h" | 
 | #include "regcache.h" | 
 | #include "trad-frame.h" | 
 | #include "dis-asm.h" | 
 | #include "record.h" | 
 |  | 
 | #include "opcode/ft32.h" | 
 |  | 
 | #include "ft32-tdep.h" | 
 | #include "sim/sim-ft32.h" | 
 | #include <algorithm> | 
 |  | 
 | #define RAM_BIAS  0x800000  /* Bias added to RAM addresses.  */ | 
 |  | 
 | /* Use an invalid address -1 as 'not available' marker.  */ | 
 | enum { REG_UNAVAIL = (CORE_ADDR) (-1) }; | 
 |  | 
 | struct ft32_frame_cache | 
 | { | 
 |   /* Base address of the frame */ | 
 |   CORE_ADDR base; | 
 |   /* Function this frame belongs to */ | 
 |   CORE_ADDR pc; | 
 |   /* Total size of this frame */ | 
 |   LONGEST framesize; | 
 |   /* Saved registers in this frame */ | 
 |   CORE_ADDR saved_regs[FT32_NUM_REGS]; | 
 |   /* Saved SP in this frame */ | 
 |   CORE_ADDR saved_sp; | 
 |   /* Has the new frame been LINKed.  */ | 
 |   bfd_boolean established; | 
 | }; | 
 |  | 
 | /* Implement the "frame_align" gdbarch method.  */ | 
 |  | 
 | static CORE_ADDR | 
 | ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
 | { | 
 |   /* Align to the size of an instruction (so that they can safely be | 
 |      pushed onto the stack.  */ | 
 |   return sp & ~1; | 
 | } | 
 |  | 
 |  | 
 | constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 }; | 
 |  | 
 | typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint; | 
 |  | 
 | /* FT32 register names.  */ | 
 |  | 
 | static const char *const ft32_register_names[] = | 
 | { | 
 |     "fp", "sp", | 
 |     "r0", "r1", "r2", "r3",  "r4", "r5", "r6", "r7", | 
 |     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
 |     "r16", "r17", "r18", "r19",  "r20", "r21", "r22", "r23", | 
 |     "r24", "r25", "r26", "r27", "r28", "cc", | 
 |     "pc" | 
 | }; | 
 |  | 
 | /* Implement the "register_name" gdbarch method.  */ | 
 |  | 
 | static const char * | 
 | ft32_register_name (struct gdbarch *gdbarch, int reg_nr) | 
 | { | 
 |   static_assert (ARRAY_SIZE (ft32_register_names) == FT32_NUM_REGS); | 
 |   return ft32_register_names[reg_nr]; | 
 | } | 
 |  | 
 | /* Implement the "register_type" gdbarch method.  */ | 
 |  | 
 | static struct type * | 
 | ft32_register_type (struct gdbarch *gdbarch, int reg_nr) | 
 | { | 
 |   if (reg_nr == FT32_PC_REGNUM) | 
 |     { | 
 |       ft32_gdbarch_tdep *tdep = gdbarch_tdep<ft32_gdbarch_tdep> (gdbarch); | 
 |       return tdep->pc_type; | 
 |     } | 
 |   else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_data_ptr; | 
 |   else | 
 |     return builtin_type (gdbarch)->builtin_int32; | 
 | } | 
 |  | 
 | /* Write into appropriate registers a function return value | 
 |    of type TYPE, given in virtual format.  */ | 
 |  | 
 | static void | 
 | ft32_store_return_value (struct type *type, struct regcache *regcache, | 
 | 			 const gdb_byte *valbuf) | 
 | { | 
 |   struct gdbarch *gdbarch = regcache->arch (); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR regval; | 
 |   int len = type->length (); | 
 |  | 
 |   /* Things always get returned in RET1_REGNUM, RET2_REGNUM.  */ | 
 |   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); | 
 |   regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval); | 
 |   if (len > 4) | 
 |     { | 
 |       regval = extract_unsigned_integer (valbuf + 4, | 
 | 					 len - 4, byte_order); | 
 |       regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval); | 
 |     } | 
 | } | 
 |  | 
 | /* Fetch a single 32-bit instruction from address a. If memory contains | 
 |    a compressed instruction pair, return the expanded instruction.  */ | 
 |  | 
 | static ULONGEST | 
 | ft32_fetch_instruction (CORE_ADDR a, int *isize, | 
 | 			enum bfd_endian byte_order) | 
 | { | 
 |   unsigned int sc[2]; | 
 |   ULONGEST inst; | 
 |  | 
 |   CORE_ADDR a4 = a & ~3; | 
 |   inst = read_code_unsigned_integer (a4, 4, byte_order); | 
 |   *isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4; | 
 |   if (*isize == 2) | 
 |     return sc[1 & (a >> 1)]; | 
 |   else | 
 |     return inst; | 
 | } | 
 |  | 
 | /* Decode the instructions within the given address range.  Decide | 
 |    when we must have reached the end of the function prologue.  If a | 
 |    frame_info pointer is provided, fill in its saved_regs etc. | 
 |  | 
 |    Returns the address of the first instruction after the prologue.  */ | 
 |  | 
 | static CORE_ADDR | 
 | ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr, | 
 | 		       struct ft32_frame_cache *cache, | 
 | 		       struct gdbarch *gdbarch) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR next_addr; | 
 |   ULONGEST inst; | 
 |   int isize = 0; | 
 |   int regnum, pushreg; | 
 |   const int first_saved_reg = 13;	/* The first saved register.  */ | 
 |  | 
 |   /* PROLOGS are addresses of the subroutine prologs, PROLOGS[n] | 
 |      is the address of __prolog_$rN. | 
 |      __prolog_$rN pushes registers from 13 through n inclusive. | 
 |      So for example CALL __prolog_$r15 is equivalent to: | 
 |        PUSH $r13  | 
 |        PUSH $r14  | 
 |        PUSH $r15  | 
 |      Note that PROLOGS[0] through PROLOGS[12] are unused.  */ | 
 |   CORE_ADDR prologs[32]; | 
 |  | 
 |   cache->saved_regs[FT32_PC_REGNUM] = 0; | 
 |   cache->framesize = 0; | 
 |  | 
 |   for (regnum = first_saved_reg; regnum < 32; regnum++) | 
 |     { | 
 |       char prolog_symbol[32]; | 
 |  | 
 |       snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d", | 
 | 		regnum); | 
 |       bound_minimal_symbol msymbol | 
 | 	= lookup_minimal_symbol (current_program_space, prolog_symbol); | 
 |       if (msymbol.minsym) | 
 | 	prologs[regnum] = msymbol.value_address (); | 
 |       else | 
 | 	prologs[regnum] = 0; | 
 |     } | 
 |  | 
 |   if (start_addr >= end_addr) | 
 |     return end_addr; | 
 |  | 
 |   cache->established = 0; | 
 |   for (next_addr = start_addr; next_addr < end_addr; next_addr += isize) | 
 |     { | 
 |       inst = ft32_fetch_instruction (next_addr, &isize, byte_order); | 
 |  | 
 |       if (FT32_IS_PUSH (inst)) | 
 | 	{ | 
 | 	  pushreg = FT32_PUSH_REG (inst); | 
 | 	  cache->framesize += 4; | 
 | 	  cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize; | 
 | 	} | 
 |       else if (FT32_IS_CALL (inst)) | 
 | 	{ | 
 | 	  for (regnum = first_saved_reg; regnum < 32; regnum++) | 
 | 	    { | 
 | 	      if ((4 * (inst & 0x3ffff)) == prologs[regnum]) | 
 | 		{ | 
 | 		  for (pushreg = first_saved_reg; pushreg <= regnum; | 
 | 		       pushreg++) | 
 | 		    { | 
 | 		      cache->framesize += 4; | 
 | 		      cache->saved_regs[FT32_R0_REGNUM + pushreg] = | 
 | 			cache->framesize; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  break; | 
 | 	} | 
 |       else | 
 | 	break; | 
 |     } | 
 |   for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) | 
 |     { | 
 |       if (cache->saved_regs[regnum] != REG_UNAVAIL) | 
 | 	cache->saved_regs[regnum] = | 
 | 	  cache->framesize - cache->saved_regs[regnum]; | 
 |     } | 
 |   cache->saved_regs[FT32_PC_REGNUM] = cache->framesize; | 
 |  | 
 |   /* It is a LINK?  */ | 
 |   if (next_addr < end_addr) | 
 |     { | 
 |       inst = ft32_fetch_instruction (next_addr, &isize, byte_order); | 
 |       if (FT32_IS_LINK (inst)) | 
 | 	{ | 
 | 	  cache->established = 1; | 
 | 	  for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++) | 
 | 	    { | 
 | 	      if (cache->saved_regs[regnum] != REG_UNAVAIL) | 
 | 		cache->saved_regs[regnum] += 4; | 
 | 	    } | 
 | 	  cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4; | 
 | 	  cache->saved_regs[FT32_FP_REGNUM] = 0; | 
 | 	  cache->framesize += FT32_LINK_SIZE (inst); | 
 | 	  next_addr += isize; | 
 | 	} | 
 |     } | 
 |  | 
 |   return next_addr; | 
 | } | 
 |  | 
 | /* Find the end of function prologue.  */ | 
 |  | 
 | static CORE_ADDR | 
 | ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
 | { | 
 |   CORE_ADDR func_addr = 0, func_end = 0; | 
 |   const char *func_name; | 
 |  | 
 |   /* See if we can determine the end of the prologue via the symbol table. | 
 |      If so, then return either PC, or the PC after the prologue, whichever | 
 |      is greater.  */ | 
 |   if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end)) | 
 |     { | 
 |       CORE_ADDR post_prologue_pc | 
 | 	= skip_prologue_using_sal (gdbarch, func_addr); | 
 |       if (post_prologue_pc != 0) | 
 | 	return std::max (pc, post_prologue_pc); | 
 |       else | 
 | 	{ | 
 | 	  /* Can't determine prologue from the symbol table, need to examine | 
 | 	     instructions.  */ | 
 | 	  struct symtab_and_line sal; | 
 | 	  struct symbol *sym; | 
 | 	  struct ft32_frame_cache cache; | 
 | 	  CORE_ADDR plg_end; | 
 |  | 
 | 	  memset (&cache, 0, sizeof cache); | 
 |  | 
 | 	  plg_end = ft32_analyze_prologue (func_addr, | 
 | 					   func_end, &cache, gdbarch); | 
 | 	  /* Found a function.  */ | 
 | 	  sym = lookup_symbol (func_name, nullptr, SEARCH_FUNCTION_DOMAIN, | 
 | 			       nullptr).symbol; | 
 | 	  /* Don't use line number debug info for assembly source files.  */ | 
 | 	  if ((sym != NULL) && sym->language () != language_asm) | 
 | 	    { | 
 | 	      sal = find_pc_line (func_addr, 0); | 
 | 	      if (sal.end && sal.end < func_end) | 
 | 		{ | 
 | 		  /* Found a line number, use it as end of prologue.  */ | 
 | 		  return sal.end; | 
 | 		} | 
 | 	    } | 
 | 	  /* No useable line symbol.  Use result of prologue parsing method.  */ | 
 | 	  return plg_end; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* No function symbol -- just return the PC.  */ | 
 |   return pc; | 
 | } | 
 |  | 
 | /* Implementation of `pointer_to_address' gdbarch method. | 
 |  | 
 |    On FT32 address space zero is RAM, address space 1 is flash. | 
 |    RAM appears at address RAM_BIAS, flash at address 0.  */ | 
 |  | 
 | static CORE_ADDR | 
 | ft32_pointer_to_address (struct gdbarch *gdbarch, | 
 | 			 struct type *type, const gdb_byte *buf) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR addr | 
 |     = extract_unsigned_integer (buf, type->length (), byte_order); | 
 |  | 
 |   if (TYPE_ADDRESS_CLASS_1 (type)) | 
 |     return addr; | 
 |   else | 
 |     return addr | RAM_BIAS; | 
 | } | 
 |  | 
 | /* Implementation of `address_class_type_flags' gdbarch method. | 
 |  | 
 |    This method maps DW_AT_address_class attributes to a | 
 |    type_instance_flag_value.  */ | 
 |  | 
 | static type_instance_flags | 
 | ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class) | 
 | { | 
 |   /* The value 1 of the DW_AT_address_class attribute corresponds to the | 
 |      __flash__ qualifier, meaning pointer to data in FT32 program memory. | 
 |    */ | 
 |   if (dwarf2_addr_class == 1) | 
 |     return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Implementation of `address_class_type_flags_to_name' gdbarch method. | 
 |  | 
 |    Convert a type_instance_flag_value to an address space qualifier.  */ | 
 |  | 
 | static const char* | 
 | ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch, | 
 | 				       type_instance_flags type_flags) | 
 | { | 
 |   if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) | 
 |     return "flash"; | 
 |   else | 
 |     return NULL; | 
 | } | 
 |  | 
 | /* Implementation of `address_class_name_to_type_flags' gdbarch method. | 
 |  | 
 |    Convert an address space qualifier to a type_instance_flag_value.  */ | 
 |  | 
 | static bool | 
 | ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch, | 
 | 				       const char* name, | 
 | 				       type_instance_flags *type_flags_ptr) | 
 | { | 
 |   if (strcmp (name, "flash") == 0) | 
 |     { | 
 |       *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; | 
 |       return true; | 
 |     } | 
 |   else | 
 |     return false; | 
 | } | 
 |  | 
 | /* Given a return value in `regbuf' with a type `valtype', | 
 |    extract and copy its value into `valbuf'.  */ | 
 |  | 
 | static void | 
 | ft32_extract_return_value (struct type *type, struct regcache *regcache, | 
 | 			   gdb_byte *dst) | 
 | { | 
 |   struct gdbarch *gdbarch = regcache->arch (); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   bfd_byte *valbuf = dst; | 
 |   int len = type->length (); | 
 |   ULONGEST tmp; | 
 |  | 
 |   /* By using store_unsigned_integer we avoid having to do | 
 |      anything special for small big-endian values.  */ | 
 |   regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp); | 
 |   store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); | 
 |  | 
 |   /* Ignore return values more than 8 bytes in size because the ft32 | 
 |      returns anything more than 8 bytes in the stack.  */ | 
 |   if (len > 4) | 
 |     { | 
 |       regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp); | 
 |       store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); | 
 |     } | 
 | } | 
 |  | 
 | /* Implement the "return_value" gdbarch method.  */ | 
 |  | 
 | static enum return_value_convention | 
 | ft32_return_value (struct gdbarch *gdbarch, struct value *function, | 
 | 		   struct type *valtype, struct regcache *regcache, | 
 | 		   gdb_byte *readbuf, const gdb_byte *writebuf) | 
 | { | 
 |   if (valtype->length () > 8) | 
 |     return RETURN_VALUE_STRUCT_CONVENTION; | 
 |   else | 
 |     { | 
 |       if (readbuf != NULL) | 
 | 	ft32_extract_return_value (valtype, regcache, readbuf); | 
 |       if (writebuf != NULL) | 
 | 	ft32_store_return_value (valtype, regcache, writebuf); | 
 |       return RETURN_VALUE_REGISTER_CONVENTION; | 
 |     } | 
 | } | 
 |  | 
 | /* Allocate and initialize a ft32_frame_cache object.  */ | 
 |  | 
 | static struct ft32_frame_cache * | 
 | ft32_alloc_frame_cache (void) | 
 | { | 
 |   struct ft32_frame_cache *cache; | 
 |   int i; | 
 |  | 
 |   cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache); | 
 |  | 
 |   for (i = 0; i < FT32_NUM_REGS; ++i) | 
 |     cache->saved_regs[i] = REG_UNAVAIL; | 
 |  | 
 |   return cache; | 
 | } | 
 |  | 
 | /* Populate a ft32_frame_cache object for this_frame.  */ | 
 |  | 
 | static struct ft32_frame_cache * | 
 | ft32_frame_cache (const frame_info_ptr &this_frame, void **this_cache) | 
 | { | 
 |   struct ft32_frame_cache *cache; | 
 |   CORE_ADDR current_pc; | 
 |   int i; | 
 |  | 
 |   if (*this_cache) | 
 |     return (struct ft32_frame_cache *) *this_cache; | 
 |  | 
 |   cache = ft32_alloc_frame_cache (); | 
 |   *this_cache = cache; | 
 |  | 
 |   cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM); | 
 |   if (cache->base == 0) | 
 |     return cache; | 
 |  | 
 |   cache->pc = get_frame_func (this_frame); | 
 |   current_pc = get_frame_pc (this_frame); | 
 |   if (cache->pc) | 
 |     { | 
 |       struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
 |  | 
 |       ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch); | 
 |       if (!cache->established) | 
 | 	cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM); | 
 |     } | 
 |  | 
 |   cache->saved_sp = cache->base - 4; | 
 |  | 
 |   for (i = 0; i < FT32_NUM_REGS; ++i) | 
 |     if (cache->saved_regs[i] != REG_UNAVAIL) | 
 |       cache->saved_regs[i] = cache->base + cache->saved_regs[i]; | 
 |  | 
 |   return cache; | 
 | } | 
 |  | 
 | /* Given a GDB frame, determine the address of the calling function's | 
 |    frame.  This will be used to create a new GDB frame struct.  */ | 
 |  | 
 | static void | 
 | ft32_frame_this_id (const frame_info_ptr &this_frame, | 
 | 		    void **this_prologue_cache, struct frame_id *this_id) | 
 | { | 
 |   struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
 | 						     this_prologue_cache); | 
 |  | 
 |   /* This marks the outermost frame.  */ | 
 |   if (cache->base == 0) | 
 |     return; | 
 |  | 
 |   *this_id = frame_id_build (cache->saved_sp, cache->pc); | 
 | } | 
 |  | 
 | /* Get the value of register regnum in the previous stack frame.  */ | 
 |  | 
 | static struct value * | 
 | ft32_frame_prev_register (const frame_info_ptr &this_frame, | 
 | 			  void **this_prologue_cache, int regnum) | 
 | { | 
 |   struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
 | 						     this_prologue_cache); | 
 |  | 
 |   gdb_assert (regnum >= 0); | 
 |  | 
 |   if (regnum == FT32_SP_REGNUM && cache->saved_sp) | 
 |     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); | 
 |  | 
 |   if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) | 
 |       return frame_unwind_got_memory (this_frame, regnum, | 
 | 				      RAM_BIAS | cache->saved_regs[regnum]); | 
 |  | 
 |   return frame_unwind_got_register (this_frame, regnum, regnum); | 
 | } | 
 |  | 
 | static const struct frame_unwind ft32_frame_unwind = | 
 | { | 
 |   "ft32 prologue", | 
 |   NORMAL_FRAME, | 
 |   default_frame_unwind_stop_reason, | 
 |   ft32_frame_this_id, | 
 |   ft32_frame_prev_register, | 
 |   NULL, | 
 |   default_frame_sniffer | 
 | }; | 
 |  | 
 | /* Return the base address of this_frame.  */ | 
 |  | 
 | static CORE_ADDR | 
 | ft32_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
 | { | 
 |   struct ft32_frame_cache *cache = ft32_frame_cache (this_frame, | 
 | 						     this_cache); | 
 |  | 
 |   return cache->base; | 
 | } | 
 |  | 
 | static const struct frame_base ft32_frame_base = | 
 | { | 
 |   &ft32_frame_unwind, | 
 |   ft32_frame_base_address, | 
 |   ft32_frame_base_address, | 
 |   ft32_frame_base_address | 
 | }; | 
 |  | 
 | /* Allocate and initialize the ft32 gdbarch object.  */ | 
 |  | 
 | static struct gdbarch * | 
 | ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
 | { | 
 |   struct type *void_type; | 
 |   struct type *func_void_type; | 
 |  | 
 |   /* If there is already a candidate, use it.  */ | 
 |   arches = gdbarch_list_lookup_by_info (arches, &info); | 
 |   if (arches != NULL) | 
 |     return arches->gdbarch; | 
 |  | 
 |   /* Allocate space for the new architecture.  */ | 
 |   gdbarch *gdbarch | 
 |     = gdbarch_alloc (&info, gdbarch_tdep_up (new ft32_gdbarch_tdep)); | 
 |   ft32_gdbarch_tdep *tdep = gdbarch_tdep<ft32_gdbarch_tdep> (gdbarch); | 
 |  | 
 |   /* Create a type for PC.  We can't use builtin types here, as they may not | 
 |      be defined.  */ | 
 |   type_allocator alloc (gdbarch); | 
 |   void_type = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); | 
 |   func_void_type = make_function_type (void_type, NULL); | 
 |   tdep->pc_type = init_pointer_type (alloc, 4 * TARGET_CHAR_BIT, NULL, | 
 | 				     func_void_type); | 
 |   tdep->pc_type->set_instance_flags (tdep->pc_type->instance_flags () | 
 | 				     | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1); | 
 |  | 
 |   set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS); | 
 |   set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM); | 
 |   set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM); | 
 |   set_gdbarch_register_name (gdbarch, ft32_register_name); | 
 |   set_gdbarch_register_type (gdbarch, ft32_register_type); | 
 |  | 
 |   set_gdbarch_return_value (gdbarch, ft32_return_value); | 
 |  | 
 |   set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address); | 
 |  | 
 |   set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue); | 
 |   set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
 |   set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc); | 
 |   set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind); | 
 |   set_gdbarch_frame_align (gdbarch, ft32_frame_align); | 
 |  | 
 |   frame_base_set_default (gdbarch, &ft32_frame_base); | 
 |  | 
 |   /* Hook in ABI-specific overrides, if they have been registered.  */ | 
 |   gdbarch_init_osabi (info, gdbarch); | 
 |  | 
 |   /* Hook in the default unwinders.  */ | 
 |   frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind); | 
 |  | 
 |   /* Support simple overlay manager.  */ | 
 |   set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | 
 |  | 
 |   set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags); | 
 |   set_gdbarch_address_class_name_to_type_flags | 
 |     (gdbarch, ft32_address_class_name_to_type_flags); | 
 |   set_gdbarch_address_class_type_flags_to_name | 
 |     (gdbarch, ft32_address_class_type_flags_to_name); | 
 |  | 
 |   return gdbarch; | 
 | } | 
 |  | 
 | /* Register this machine's init routine.  */ | 
 |  | 
 | void _initialize_ft32_tdep (); | 
 | void | 
 | _initialize_ft32_tdep () | 
 | { | 
 |   gdbarch_register (bfd_arch_ft32, ft32_gdbarch_init); | 
 | } |