| /* Generate a core file for the inferior process. | 
 |  | 
 |    Copyright (C) 2001-2024 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "elf-bfd.h" | 
 | #include "infcall.h" | 
 | #include "inferior.h" | 
 | #include "gdbcore.h" | 
 | #include "objfiles.h" | 
 | #include "solib.h" | 
 | #include "symfile.h" | 
 | #include "arch-utils.h" | 
 | #include "completer.h" | 
 | #include "gcore.h" | 
 | #include "cli/cli-decode.h" | 
 | #include <fcntl.h> | 
 | #include "regcache.h" | 
 | #include "regset.h" | 
 | #include "gdb_bfd.h" | 
 | #include "readline/tilde.h" | 
 | #include <algorithm> | 
 | #include "gdbsupport/gdb_unlinker.h" | 
 | #include "gdbsupport/byte-vector.h" | 
 | #include "gdbsupport/scope-exit.h" | 
 |  | 
 | /* To generate sparse cores, we look at the data to write in chunks of | 
 |    this size when considering whether to skip the write.  Only if we | 
 |    have a full block of this size with all zeros do we skip writing | 
 |    it.  A simpler algorithm that would try to skip all zeros would | 
 |    result in potentially many more write/lseek syscalls, as normal | 
 |    data is typically sprinkled with many small holes of zeros.  Also, | 
 |    it's much more efficient to memcmp a block of data against an | 
 |    all-zero buffer than to check each and every data byte against zero | 
 |    one by one.  */ | 
 | #define SPARSE_BLOCK_SIZE 0x1000 | 
 |  | 
 | /* The largest amount of memory to read from the target at once.  We | 
 |    must throttle it to limit the amount of memory used by GDB during | 
 |    generate-core-file for programs with large resident data.  */ | 
 | #define MAX_COPY_BYTES (256 * SPARSE_BLOCK_SIZE) | 
 |  | 
 | static const char *default_gcore_target (void); | 
 | static enum bfd_architecture default_gcore_arch (void); | 
 | static int gcore_memory_sections (bfd *); | 
 |  | 
 | /* create_gcore_bfd -- helper for gcore_command (exported). | 
 |    Open a new bfd core file for output, and return the handle.  */ | 
 |  | 
 | gdb_bfd_ref_ptr | 
 | create_gcore_bfd (const char *filename) | 
 | { | 
 |   gdb_bfd_ref_ptr obfd (gdb_bfd_openw (filename, default_gcore_target ())); | 
 |  | 
 |   if (obfd == NULL) | 
 |     error (_("Failed to open '%s' for output."), filename); | 
 |   bfd_set_format (obfd.get (), bfd_core); | 
 |   bfd_set_arch_mach (obfd.get (), default_gcore_arch (), 0); | 
 |   return obfd; | 
 | } | 
 |  | 
 | /* write_gcore_file_1 -- do the actual work of write_gcore_file.  */ | 
 |  | 
 | static void | 
 | write_gcore_file_1 (bfd *obfd) | 
 | { | 
 |   gdb::unique_xmalloc_ptr<char> note_data; | 
 |   int note_size = 0; | 
 |   asection *note_sec = NULL; | 
 |   gdbarch *arch = current_inferior ()->arch (); | 
 |  | 
 |   /* An external target method must build the notes section.  */ | 
 |   /* FIXME: uweigand/2011-10-06: All architectures that support core file | 
 |      generation should be converted to gdbarch_make_corefile_notes; at that | 
 |      point, the target vector method can be removed.  */ | 
 |   if (!gdbarch_make_corefile_notes_p (arch)) | 
 |     note_data = target_make_corefile_notes (obfd, ¬e_size); | 
 |   else | 
 |     note_data = gdbarch_make_corefile_notes (arch, obfd, ¬e_size); | 
 |  | 
 |   if (note_data == NULL || note_size == 0) | 
 |     error (_("Target does not support core file generation.")); | 
 |  | 
 |   /* Create the note section.  */ | 
 |   note_sec = bfd_make_section_anyway_with_flags (obfd, "note0", | 
 | 						 SEC_HAS_CONTENTS | 
 | 						 | SEC_READONLY | 
 | 						 | SEC_ALLOC); | 
 |   if (note_sec == NULL) | 
 |     error (_("Failed to create 'note' section for corefile: %s"), | 
 | 	   bfd_errmsg (bfd_get_error ())); | 
 |  | 
 |   bfd_set_section_vma (note_sec, 0); | 
 |   bfd_set_section_alignment (note_sec, 0); | 
 |   bfd_set_section_size (note_sec, note_size); | 
 |  | 
 |   /* Now create the memory/load sections.  Note | 
 |      gcore_memory_sections's sparse logic is assuming that we'll | 
 |      always write something afterwards, which we do: just below, we | 
 |      write the note section.  So there's no need for an ftruncate-like | 
 |      call to grow the file to the right size if the last memory | 
 |      sections were zeros and we skipped writing them.  */ | 
 |   if (gcore_memory_sections (obfd) == 0) | 
 |     error (_("gcore: failed to get corefile memory sections from target.")); | 
 |  | 
 |   /* Write out the contents of the note section.  */ | 
 |   if (!bfd_set_section_contents (obfd, note_sec, note_data.get (), 0, | 
 | 				 note_size)) | 
 |     warning (_("writing note section (%s)"), bfd_errmsg (bfd_get_error ())); | 
 | } | 
 |  | 
 | /* write_gcore_file -- helper for gcore_command (exported). | 
 |    Compose and write the corefile data to the core file.  */ | 
 |  | 
 | void | 
 | write_gcore_file (bfd *obfd) | 
 | { | 
 |   target_prepare_to_generate_core (); | 
 |   SCOPE_EXIT { target_done_generating_core (); }; | 
 |   write_gcore_file_1 (obfd); | 
 | } | 
 |  | 
 | /* gcore_command -- implements the 'gcore' command. | 
 |    Generate a core file from the inferior process.  */ | 
 |  | 
 | static void | 
 | gcore_command (const char *args, int from_tty) | 
 | { | 
 |   gdb::unique_xmalloc_ptr<char> corefilename; | 
 |  | 
 |   /* No use generating a corefile without a target process.  */ | 
 |   if (!target_has_execution ()) | 
 |     noprocess (); | 
 |  | 
 |   if (args && *args) | 
 |     corefilename.reset (tilde_expand (args)); | 
 |   else | 
 |     { | 
 |       /* Default corefile name is "core.PID".  */ | 
 |       corefilename = xstrprintf ("core.%d", inferior_ptid.pid ()); | 
 |     } | 
 |  | 
 |   if (info_verbose) | 
 |     gdb_printf ("Opening corefile '%s' for output.\n", | 
 | 		corefilename.get ()); | 
 |  | 
 |   if (target_supports_dumpcore ()) | 
 |     target_dumpcore (corefilename.get ()); | 
 |   else | 
 |     { | 
 |       /* Open the output file.  */ | 
 |       gdb_bfd_ref_ptr obfd (create_gcore_bfd (corefilename.get ())); | 
 |  | 
 |       /* Arrange to unlink the file on failure.  */ | 
 |       gdb::unlinker unlink_file (corefilename.get ()); | 
 |  | 
 |       /* Call worker function.  */ | 
 |       write_gcore_file (obfd.get ()); | 
 |  | 
 |       /* Succeeded.  */ | 
 |       unlink_file.keep (); | 
 |     } | 
 |  | 
 |   gdb_printf ("Saved corefile %s\n", corefilename.get ()); | 
 | } | 
 |  | 
 | static enum bfd_architecture | 
 | default_gcore_arch (void) | 
 | { | 
 |   const bfd_arch_info *bfdarch | 
 |     = gdbarch_bfd_arch_info (current_inferior ()->arch ()); | 
 |  | 
 |   if (bfdarch != NULL) | 
 |     return bfdarch->arch; | 
 |   if (current_program_space->exec_bfd () == NULL) | 
 |     error (_("Can't find bfd architecture for corefile (need execfile).")); | 
 |  | 
 |   return bfd_get_arch (current_program_space->exec_bfd ()); | 
 | } | 
 |  | 
 | static const char * | 
 | default_gcore_target (void) | 
 | { | 
 |   gdbarch *arch = current_inferior ()->arch (); | 
 |   /* The gdbarch may define a target to use for core files.  */ | 
 |   if (gdbarch_gcore_bfd_target_p (arch)) | 
 |     return gdbarch_gcore_bfd_target (arch); | 
 |  | 
 |   /* Otherwise, try to fall back to the exec target.  This will probably | 
 |      not work for non-ELF targets.  */ | 
 |   if (current_program_space->exec_bfd () == NULL) | 
 |     return NULL; | 
 |   else | 
 |     return bfd_get_target (current_program_space->exec_bfd ()); | 
 | } | 
 |  | 
 | /* Derive a reasonable stack segment by unwinding the target stack, | 
 |    and store its limits in *BOTTOM and *TOP.  Return non-zero if | 
 |    successful.  */ | 
 |  | 
 | static int | 
 | derive_stack_segment (bfd_vma *bottom, bfd_vma *top) | 
 | { | 
 |   frame_info_ptr fi, tmp_fi; | 
 |  | 
 |   gdb_assert (bottom); | 
 |   gdb_assert (top); | 
 |  | 
 |   /* Can't succeed without stack and registers.  */ | 
 |   if (!target_has_stack () || !target_has_registers ()) | 
 |     return 0; | 
 |  | 
 |   /* Can't succeed without current frame.  */ | 
 |   fi = get_current_frame (); | 
 |   if (fi == NULL) | 
 |     return 0; | 
 |  | 
 |   /* Save frame pointer of TOS frame.  */ | 
 |   *top = get_frame_base (fi); | 
 |   /* If current stack pointer is more "inner", use that instead.  */ | 
 |   if (gdbarch_inner_than (get_frame_arch (fi), get_frame_sp (fi), *top)) | 
 |     *top = get_frame_sp (fi); | 
 |  | 
 |   /* Find prev-most frame.  */ | 
 |   while ((tmp_fi = get_prev_frame (fi)) != NULL) | 
 |     fi = tmp_fi; | 
 |  | 
 |   /* Save frame pointer of prev-most frame.  */ | 
 |   *bottom = get_frame_base (fi); | 
 |  | 
 |   /* Now canonicalize their order, so that BOTTOM is a lower address | 
 |      (as opposed to a lower stack frame).  */ | 
 |   if (*bottom > *top) | 
 |     { | 
 |       bfd_vma tmp_vma; | 
 |  | 
 |       tmp_vma = *top; | 
 |       *top = *bottom; | 
 |       *bottom = tmp_vma; | 
 |     } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* call_target_sbrk -- | 
 |    helper function for derive_heap_segment.  */ | 
 |  | 
 | static bfd_vma | 
 | call_target_sbrk (int sbrk_arg) | 
 | { | 
 |   struct objfile *sbrk_objf; | 
 |   struct gdbarch *gdbarch; | 
 |   bfd_vma top_of_heap; | 
 |   struct value *target_sbrk_arg; | 
 |   struct value *sbrk_fn, *ret; | 
 |   bfd_vma tmp; | 
 |  | 
 |   if (lookup_minimal_symbol (current_program_space, "sbrk").minsym != nullptr) | 
 |     { | 
 |       sbrk_fn = find_function_in_inferior ("sbrk", &sbrk_objf); | 
 |       if (sbrk_fn == NULL) | 
 | 	return (bfd_vma) 0; | 
 |     } | 
 |   else if (lookup_minimal_symbol (current_program_space, "_sbrk").minsym | 
 | 	   != nullptr) | 
 |     { | 
 |       sbrk_fn = find_function_in_inferior ("_sbrk", &sbrk_objf); | 
 |       if (sbrk_fn == NULL) | 
 | 	return (bfd_vma) 0; | 
 |     } | 
 |   else | 
 |     return (bfd_vma) 0; | 
 |  | 
 |   gdbarch = sbrk_objf->arch (); | 
 |   target_sbrk_arg = value_from_longest (builtin_type (gdbarch)->builtin_int,  | 
 | 					sbrk_arg); | 
 |   gdb_assert (target_sbrk_arg); | 
 |   ret = call_function_by_hand (sbrk_fn, NULL, target_sbrk_arg); | 
 |   if (ret == NULL) | 
 |     return (bfd_vma) 0; | 
 |  | 
 |   tmp = value_as_long (ret); | 
 |   if ((LONGEST) tmp <= 0 || (LONGEST) tmp == 0xffffffff) | 
 |     return (bfd_vma) 0; | 
 |  | 
 |   top_of_heap = tmp; | 
 |   return top_of_heap; | 
 | } | 
 |  | 
 | /* Derive a reasonable heap segment for ABFD by looking at sbrk and | 
 |    the static data sections.  Store its limits in *BOTTOM and *TOP. | 
 |    Return non-zero if successful.  */ | 
 |  | 
 | static int | 
 | derive_heap_segment (bfd *abfd, bfd_vma *bottom, bfd_vma *top) | 
 | { | 
 |   bfd_vma top_of_data_memory = 0; | 
 |   bfd_vma top_of_heap = 0; | 
 |   bfd_size_type sec_size; | 
 |   bfd_vma sec_vaddr; | 
 |   asection *sec; | 
 |  | 
 |   gdb_assert (bottom); | 
 |   gdb_assert (top); | 
 |  | 
 |   /* This function depends on being able to call a function in the | 
 |      inferior.  */ | 
 |   if (!target_has_execution ()) | 
 |     return 0; | 
 |  | 
 |   /* The following code assumes that the link map is arranged as | 
 |      follows (low to high addresses): | 
 |  | 
 |      --------------------------------- | 
 |      | text sections                 | | 
 |      --------------------------------- | 
 |      | data sections (including bss) | | 
 |      --------------------------------- | 
 |      | heap                          | | 
 |      --------------------------------- */ | 
 |  | 
 |   for (sec = abfd->sections; sec; sec = sec->next) | 
 |     { | 
 |       if (bfd_section_flags (sec) & SEC_DATA | 
 | 	  || strcmp (".bss", bfd_section_name (sec)) == 0) | 
 | 	{ | 
 | 	  sec_vaddr = bfd_section_vma (sec); | 
 | 	  sec_size = bfd_section_size (sec); | 
 | 	  if (sec_vaddr + sec_size > top_of_data_memory) | 
 | 	    top_of_data_memory = sec_vaddr + sec_size; | 
 | 	} | 
 |     } | 
 |  | 
 |   top_of_heap = call_target_sbrk (0); | 
 |   if (top_of_heap == (bfd_vma) 0) | 
 |     return 0; | 
 |  | 
 |   /* Return results.  */ | 
 |   if (top_of_heap > top_of_data_memory) | 
 |     { | 
 |       *bottom = top_of_data_memory; | 
 |       *top = top_of_heap; | 
 |       return 1; | 
 |     } | 
 |  | 
 |   /* No additional heap space needs to be saved.  */ | 
 |   return 0; | 
 | } | 
 |  | 
 | static void | 
 | make_output_phdrs (bfd *obfd, asection *osec) | 
 | { | 
 |   int p_flags = 0; | 
 |   int p_type = 0; | 
 |  | 
 |   /* Memory tag segments have already been handled by the architecture, as | 
 |      those contain arch-specific information.  If we have one of those, just | 
 |      return.  */ | 
 |   if (startswith (bfd_section_name (osec), "memtag")) | 
 |     return; | 
 |  | 
 |   /* FIXME: these constants may only be applicable for ELF.  */ | 
 |   if (startswith (bfd_section_name (osec), "load")) | 
 |     p_type = PT_LOAD; | 
 |   else if (startswith (bfd_section_name (osec), "note")) | 
 |     p_type = PT_NOTE; | 
 |   else | 
 |     p_type = PT_NULL; | 
 |  | 
 |   p_flags |= PF_R;	/* Segment is readable.  */ | 
 |   if (!(bfd_section_flags (osec) & SEC_READONLY)) | 
 |     p_flags |= PF_W;	/* Segment is writable.  */ | 
 |   if (bfd_section_flags (osec) & SEC_CODE) | 
 |     p_flags |= PF_X;	/* Segment is executable.  */ | 
 |  | 
 |   bfd_record_phdr (obfd, p_type, 1, p_flags, 0, 0, 0, 0, 1, &osec); | 
 | } | 
 |  | 
 | /* find_memory_region_ftype implementation. | 
 |  | 
 |    MEMORY_TAGGED is true if the memory region contains memory tags, false | 
 |    otherwise. | 
 |  | 
 |    DATA is 'bfd *' for the core file GDB is creating.  */ | 
 |  | 
 | static int | 
 | gcore_create_callback (CORE_ADDR vaddr, unsigned long size, int read, | 
 | 		       int write, int exec, int modified, bool memory_tagged, | 
 | 		       void *data) | 
 | { | 
 |   bfd *obfd = (bfd *) data; | 
 |   asection *osec; | 
 |   flagword flags = SEC_ALLOC | SEC_HAS_CONTENTS | SEC_LOAD; | 
 |  | 
 |   /* If the memory segment has no permissions set, ignore it, otherwise | 
 |      when we later try to access it for read/write, we'll get an error | 
 |      or jam the kernel.  */ | 
 |   if (read == 0 && write == 0 && exec == 0 && modified == 0) | 
 |     { | 
 |       if (info_verbose) | 
 | 	gdb_printf ("Ignore segment, %s bytes at %s\n", | 
 | 		    plongest (size), paddress (current_inferior ()->arch (), | 
 | 		    vaddr)); | 
 |  | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (write == 0 && modified == 0 && !solib_keep_data_in_core (vaddr, size)) | 
 |     { | 
 |       /* See if this region of memory lies inside a known file on disk. | 
 | 	 If so, we can avoid copying its contents by clearing SEC_LOAD.  */ | 
 |  | 
 |       for (objfile *objfile : current_program_space->objfiles ()) | 
 | 	for (obj_section *objsec : objfile->sections ()) | 
 | 	  { | 
 | 	    bfd *abfd = objfile->obfd.get (); | 
 | 	    asection *asec = objsec->the_bfd_section; | 
 | 	    bfd_vma align = (bfd_vma) 1 << bfd_section_alignment (asec); | 
 | 	    bfd_vma start = objsec->addr () & -align; | 
 | 	    bfd_vma end = (objsec->endaddr () + align - 1) & -align; | 
 |  | 
 | 	    /* Match if either the entire memory region lies inside the | 
 | 	       section (i.e. a mapping covering some pages of a large | 
 | 	       segment) or the entire section lies inside the memory region | 
 | 	       (i.e. a mapping covering multiple small sections). | 
 |  | 
 | 	       This BFD was synthesized from reading target memory, | 
 | 	       we don't want to omit that.  */ | 
 | 	    if (objfile->separate_debug_objfile_backlink == NULL | 
 | 		&& ((vaddr >= start && vaddr + size <= end) | 
 | 		    || (start >= vaddr && end <= vaddr + size)) | 
 | 		&& !(bfd_get_file_flags (abfd) & BFD_IN_MEMORY)) | 
 | 	      { | 
 | 		flags &= ~(SEC_LOAD | SEC_HAS_CONTENTS); | 
 | 		goto keep;	/* Break out of two nested for loops.  */ | 
 | 	      } | 
 | 	  } | 
 |  | 
 |     keep:; | 
 |     } | 
 |  | 
 |   if (write == 0) | 
 |     flags |= SEC_READONLY; | 
 |  | 
 |   if (exec) | 
 |     flags |= SEC_CODE; | 
 |   else | 
 |     flags |= SEC_DATA; | 
 |  | 
 |   osec = bfd_make_section_anyway_with_flags (obfd, "load", flags); | 
 |   if (osec == NULL) | 
 |     { | 
 |       warning (_("Couldn't make gcore segment: %s"), | 
 | 	       bfd_errmsg (bfd_get_error ())); | 
 |       return 1; | 
 |     } | 
 |  | 
 |   if (info_verbose) | 
 |     gdb_printf ("Save segment, %s bytes at %s\n", | 
 | 		plongest (size), paddress (current_inferior ()->arch (), | 
 | 		vaddr)); | 
 |  | 
 |   bfd_set_section_size (osec, size); | 
 |   bfd_set_section_vma (osec, vaddr); | 
 |   bfd_set_section_lma (osec, 0); | 
 |   return 0; | 
 | } | 
 |  | 
 | /* gdbarch_find_memory_region callback for creating a memory tag section. | 
 |  | 
 |    MEMORY_TAGGED is true if the memory region contains memory tags, false | 
 |    otherwise. | 
 |  | 
 |    DATA is 'bfd *' for the core file GDB is creating.  */ | 
 |  | 
 | static int | 
 | gcore_create_memtag_section_callback (CORE_ADDR vaddr, unsigned long size, | 
 | 				      int read, int write, int exec, | 
 | 				      int modified, bool memory_tagged, | 
 | 				      void *data) | 
 | { | 
 |   /* Are there memory tags in this particular memory map entry?  */ | 
 |   if (!memory_tagged) | 
 |     return 0; | 
 |  | 
 |   bfd *obfd = (bfd *) data; | 
 |  | 
 |   /* Ask the architecture to create a memory tag section for this particular | 
 |      memory map entry.  It will be populated with contents later, as we can't | 
 |      start writing the contents before we have all the sections sorted out.  */ | 
 |   gdbarch *arch = current_inferior ()->arch (); | 
 |   asection *memtag_section | 
 |     = gdbarch_create_memtag_section (arch, obfd, vaddr, size); | 
 |  | 
 |   if (memtag_section == nullptr) | 
 |     { | 
 |       warning (_("Couldn't make gcore memory tag segment: %s"), | 
 | 	       bfd_errmsg (bfd_get_error ())); | 
 |       return 1; | 
 |     } | 
 |  | 
 |   if (info_verbose) | 
 |     { | 
 |       gdb_printf (gdb_stdout, "Saved memory tag segment, %s bytes " | 
 | 			      "at %s\n", | 
 | 		  plongest (bfd_section_size (memtag_section)), | 
 | 		  paddress (arch, vaddr)); | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int | 
 | objfile_find_memory_regions (struct target_ops *self, | 
 | 			     find_memory_region_ftype func, void *obfd) | 
 | { | 
 |   /* Use objfile data to create memory sections.  */ | 
 |   bfd_vma temp_bottom = 0, temp_top = 0; | 
 |  | 
 |   /* Call callback function for each objfile section.  */ | 
 |   for (objfile *objfile : current_program_space->objfiles ()) | 
 |     for (obj_section *objsec : objfile->sections ()) | 
 |       { | 
 | 	asection *isec = objsec->the_bfd_section; | 
 | 	flagword flags = bfd_section_flags (isec); | 
 |  | 
 | 	/* Separate debug info files are irrelevant for gcore.  */ | 
 | 	if (objfile->separate_debug_objfile_backlink != NULL) | 
 | 	  continue; | 
 |  | 
 | 	if ((flags & SEC_ALLOC) || (flags & SEC_LOAD)) | 
 | 	  { | 
 | 	    int size = bfd_section_size (isec); | 
 | 	    int ret; | 
 |  | 
 | 	    ret = (*func) (objsec->addr (), size, | 
 | 			   1, /* All sections will be readable.  */ | 
 | 			   (flags & SEC_READONLY) == 0, /* Writable.  */ | 
 | 			   (flags & SEC_CODE) != 0, /* Executable.  */ | 
 | 			   1, /* MODIFIED is unknown, pass it as true.  */ | 
 | 			   false, /* No memory tags in the object file.  */ | 
 | 			   obfd); | 
 | 	    if (ret != 0) | 
 | 	      return ret; | 
 | 	  } | 
 |       } | 
 |  | 
 |   /* Make a stack segment.  */ | 
 |   if (derive_stack_segment (&temp_bottom, &temp_top)) | 
 |     (*func) (temp_bottom, temp_top - temp_bottom, | 
 | 	     1, /* Stack section will be readable.  */ | 
 | 	     1, /* Stack section will be writable.  */ | 
 | 	     0, /* Stack section will not be executable.  */ | 
 | 	     1, /* Stack section will be modified.  */ | 
 | 	     false, /* No memory tags in the object file.  */ | 
 | 	     obfd); | 
 |  | 
 |   /* Make a heap segment.  */ | 
 |   if (derive_heap_segment (current_program_space->exec_bfd (), &temp_bottom, | 
 | 			   &temp_top)) | 
 |     (*func) (temp_bottom, temp_top - temp_bottom, | 
 | 	     1, /* Heap section will be readable.  */ | 
 | 	     1, /* Heap section will be writable.  */ | 
 | 	     0, /* Heap section will not be executable.  */ | 
 | 	     1, /* Heap section will be modified.  */ | 
 | 	     false, /* No memory tags in the object file.  */ | 
 | 	     obfd); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Check if we have a block full of zeros at DATA within the [DATA, | 
 |    DATA+SIZE) buffer.  Returns the size of the all-zero block found. | 
 |    Returns at most the minimum between SIZE and SPARSE_BLOCK_SIZE.  */ | 
 |  | 
 | static size_t | 
 | get_all_zero_block_size (const gdb_byte *data, size_t size) | 
 | { | 
 |   size = std::min (size, (size_t) SPARSE_BLOCK_SIZE); | 
 |  | 
 |   /* A memcmp of a whole block is much faster than a simple for loop. | 
 |      This makes a big difference, as with a for loop, this code would | 
 |      dominate the performance and result in doubling the time to | 
 |      generate a core, at the time of writing.  With an optimized | 
 |      memcmp, this doesn't even show up in the perf trace.  */ | 
 |   static const gdb_byte all_zero_block[SPARSE_BLOCK_SIZE] = {}; | 
 |   if (memcmp (data, all_zero_block, size) == 0) | 
 |     return size; | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Basically a named-elements pair, used as return type of | 
 |    find_next_all_zero_block.  */ | 
 |  | 
 | struct offset_and_size | 
 | { | 
 |   size_t offset; | 
 |   size_t size; | 
 | }; | 
 |  | 
 | /* Find the next all-zero block at DATA+OFFSET within the [DATA, | 
 |    DATA+SIZE) buffer.  Returns the offset and the size of the all-zero | 
 |    block if found, or zero if not found.  */ | 
 |  | 
 | static offset_and_size | 
 | find_next_all_zero_block (const gdb_byte *data, size_t offset, size_t size) | 
 | { | 
 |   for (; offset < size; offset += SPARSE_BLOCK_SIZE) | 
 |     { | 
 |       size_t zero_block_size | 
 | 	= get_all_zero_block_size (data + offset, size - offset); | 
 |       if (zero_block_size != 0) | 
 | 	return {offset, zero_block_size}; | 
 |     } | 
 |   return {0, 0}; | 
 | } | 
 |  | 
 | /* Wrapper around bfd_set_section_contents that avoids writing | 
 |    all-zero blocks to disk, so we create a sparse core file. | 
 |    SKIP_ALIGN is a recursion helper -- if true, we'll skip aligning | 
 |    the file position to SPARSE_BLOCK_SIZE.  */ | 
 |  | 
 | static bool | 
 | sparse_bfd_set_section_contents (bfd *obfd, asection *osec, | 
 | 				 const gdb_byte *data, | 
 | 				 size_t sec_offset, | 
 | 				 size_t size, | 
 | 				 bool skip_align = false) | 
 | { | 
 |   /* Note, we don't have to have special handling for the case of the | 
 |      last memory region ending with zeros, because our caller always | 
 |      writes out the note section after the memory/load sections.  If | 
 |      it didn't, we'd have to seek+write the last byte to make the file | 
 |      size correct.  (Or add an ftruncate abstraction to bfd and call | 
 |      that.)  */ | 
 |  | 
 |   if (size == 0) | 
 |     return true; | 
 |  | 
 |   size_t data_offset = 0; | 
 |  | 
 |   if (!skip_align) | 
 |     { | 
 |       /* Align the all-zero block search with SPARSE_BLOCK_SIZE, to | 
 | 	 better align with filesystem blocks.  If we find we're | 
 | 	 misaligned, then write/skip the bytes needed to make us | 
 | 	 aligned.  We do that with (one level) recursion.  */ | 
 |  | 
 |       /* We need to know the section's file offset on disk.  We can | 
 | 	 only look at it after the bfd's 'output_has_begun' flag has | 
 | 	 been set, as bfd hasn't computed the file offsets | 
 | 	 otherwise.  */ | 
 |       if (!obfd->output_has_begun) | 
 | 	{ | 
 | 	  gdb_byte dummy = 0; | 
 |  | 
 | 	  /* A write forces BFD to compute the bfd's section file | 
 | 	     positions.  Zero size works for that too.  */ | 
 | 	  if (!bfd_set_section_contents (obfd, osec, &dummy, 0, 0)) | 
 | 	    return false; | 
 |  | 
 | 	  gdb_assert (obfd->output_has_begun); | 
 | 	} | 
 |  | 
 |       /* How much after the last aligned offset are we writing at.  */ | 
 |       size_t aligned_offset_remainder | 
 | 	= (osec->filepos + sec_offset) % SPARSE_BLOCK_SIZE; | 
 |  | 
 |       /* Do we need to align?  */ | 
 |       if (aligned_offset_remainder != 0) | 
 | 	{ | 
 | 	  /* How much we need to advance in order to find the next | 
 | 	     SPARSE_BLOCK_SIZE filepos-aligned block.  */ | 
 | 	  size_t distance_to_next_aligned | 
 | 	    = SPARSE_BLOCK_SIZE - aligned_offset_remainder; | 
 |  | 
 | 	  /* How much we'll actually write in the recursion call.  The | 
 | 	     caller may want us to write fewer bytes than | 
 | 	     DISTANCE_TO_NEXT_ALIGNED.  */ | 
 | 	  size_t align_write_size = std::min (size, distance_to_next_aligned); | 
 |  | 
 | 	  /* Recurse, skipping the alignment code.  */ | 
 | 	  if (!sparse_bfd_set_section_contents (obfd, osec, data, | 
 | 						sec_offset, | 
 | 						align_write_size, true)) | 
 | 	    return false; | 
 |  | 
 | 	  /* Skip over what we've written, and proceed with | 
 | 	     assumes-aligned logic.  */ | 
 | 	  data_offset += align_write_size; | 
 | 	} | 
 |     } | 
 |  | 
 |   while (data_offset < size) | 
 |     { | 
 |       size_t all_zero_block_size | 
 | 	= get_all_zero_block_size (data + data_offset, size - data_offset); | 
 |       if (all_zero_block_size != 0) | 
 | 	{ | 
 | 	  /* Skip writing all-zero blocks.  */ | 
 | 	  data_offset += all_zero_block_size; | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* We have some non-zero data to write to file.  Find the next | 
 | 	 all-zero block within the data, and only write up to it.  */ | 
 |  | 
 |       offset_and_size next_all_zero_block | 
 | 	= find_next_all_zero_block (data, | 
 | 				    data_offset + SPARSE_BLOCK_SIZE, | 
 | 				    size); | 
 |       size_t next_data_offset = (next_all_zero_block.offset == 0 | 
 | 				 ? size | 
 | 				 : next_all_zero_block.offset); | 
 |  | 
 |       if (!bfd_set_section_contents (obfd, osec, data + data_offset, | 
 | 				     sec_offset + data_offset, | 
 | 				     next_data_offset - data_offset)) | 
 | 	return false; | 
 |  | 
 |       data_offset = next_data_offset; | 
 |  | 
 |       /* If we already know we have an all-zero block at the next | 
 | 	 offset, we can skip calling get_all_zero_block_size for | 
 | 	 it again.  */ | 
 |       if (next_all_zero_block.offset != 0) | 
 | 	data_offset += next_all_zero_block.size; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void | 
 | gcore_copy_callback (bfd *obfd, asection *osec) | 
 | { | 
 |   bfd_size_type size, total_size = bfd_section_size (osec); | 
 |   file_ptr offset = 0; | 
 |  | 
 |   /* Read-only sections are marked; we don't have to copy their contents.  */ | 
 |   if ((bfd_section_flags (osec) & SEC_LOAD) == 0) | 
 |     return; | 
 |  | 
 |   /* Only interested in "load" sections.  */ | 
 |   if (!startswith (bfd_section_name (osec), "load")) | 
 |     return; | 
 |  | 
 |   size = std::min (total_size, (bfd_size_type) MAX_COPY_BYTES); | 
 |   gdb::byte_vector memhunk (size); | 
 |  | 
 |   while (total_size > 0) | 
 |     { | 
 |       if (size > total_size) | 
 | 	size = total_size; | 
 |  | 
 |       if (target_read_memory (bfd_section_vma (osec) + offset, | 
 | 			      memhunk.data (), size) != 0) | 
 | 	{ | 
 | 	  warning (_("Memory read failed for corefile " | 
 | 		     "section, %s bytes at %s."), | 
 | 		   plongest (size), | 
 | 		   paddress (current_inferior ()->arch (), | 
 | 			     bfd_section_vma (osec))); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       if (!sparse_bfd_set_section_contents (obfd, osec, memhunk.data (), | 
 | 					    offset, size)) | 
 | 	{ | 
 | 	  warning (_("Failed to write corefile contents (%s)."), | 
 | 		   bfd_errmsg (bfd_get_error ())); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       total_size -= size; | 
 |       offset += size; | 
 |     } | 
 | } | 
 |  | 
 | /* Callback to copy contents to a particular memory tag section.  */ | 
 |  | 
 | static void | 
 | gcore_copy_memtag_section_callback (bfd *obfd, asection *osec) | 
 | { | 
 |   /* We are only interested in "memtag" sections.  */ | 
 |   if (!startswith (bfd_section_name (osec), "memtag")) | 
 |     return; | 
 |  | 
 |   /* Fill the section with memory tag contents.  */ | 
 |   if (!gdbarch_fill_memtag_section (current_inferior ()->arch (), osec)) | 
 |     error (_("Failed to fill memory tag section for core file.")); | 
 | } | 
 |  | 
 | static int | 
 | gcore_memory_sections (bfd *obfd) | 
 | { | 
 |   /* Try gdbarch method first, then fall back to target method.  */ | 
 |   gdbarch *arch = current_inferior ()->arch (); | 
 |   if (!gdbarch_find_memory_regions_p (arch) | 
 |       || gdbarch_find_memory_regions (arch, gcore_create_callback, obfd) != 0) | 
 |     { | 
 |       if (target_find_memory_regions (gcore_create_callback, obfd) != 0) | 
 | 	return 0;			/* FIXME: error return/msg?  */ | 
 |     } | 
 |  | 
 |   /* Take care of dumping memory tags, if there are any.  */ | 
 |   if (!gdbarch_find_memory_regions_p (arch) | 
 |       || gdbarch_find_memory_regions (arch, gcore_create_memtag_section_callback, | 
 | 				      obfd) != 0) | 
 |     { | 
 |       if (target_find_memory_regions (gcore_create_memtag_section_callback, | 
 | 				      obfd) != 0) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   /* Record phdrs for section-to-segment mapping.  */ | 
 |   for (asection *sect : gdb_bfd_sections (obfd)) | 
 |     make_output_phdrs (obfd, sect); | 
 |  | 
 |   /* Copy memory region and memory tag contents.  */ | 
 |   for (asection *sect : gdb_bfd_sections (obfd)) | 
 |     { | 
 |       gcore_copy_callback (obfd, sect); | 
 |       gcore_copy_memtag_section_callback (obfd, sect); | 
 |     } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* See gcore.h.  */ | 
 |  | 
 | thread_info * | 
 | gcore_find_signalled_thread () | 
 | { | 
 |   thread_info *curr_thr = inferior_thread (); | 
 |   if (curr_thr->state != THREAD_EXITED | 
 |       && curr_thr->stop_signal () != GDB_SIGNAL_0) | 
 |     return curr_thr; | 
 |  | 
 |   for (thread_info *thr : current_inferior ()->non_exited_threads ()) | 
 |     if (thr->stop_signal () != GDB_SIGNAL_0) | 
 |       return thr; | 
 |  | 
 |   /* Default to the current thread, unless it has exited.  */ | 
 |   if (curr_thr->state != THREAD_EXITED) | 
 |     return curr_thr; | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void _initialize_gcore (); | 
 | void | 
 | _initialize_gcore () | 
 | { | 
 |   cmd_list_element *generate_core_file_cmd | 
 |     = add_com ("generate-core-file", class_files, gcore_command, _("\ | 
 | Save a core file with the current state of the debugged process.\n\ | 
 | Usage: generate-core-file [FILENAME]\n\ | 
 | Argument is optional filename.  Default filename is 'core.PROCESS_ID'.")); | 
 |  | 
 |   add_com_alias ("gcore", generate_core_file_cmd, class_files, 1); | 
 | } |