| // resolve.cc -- symbol resolution for gold |
| |
| // Copyright (C) 2006-2021 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include "elfcpp.h" |
| #include "target.h" |
| #include "object.h" |
| #include "symtab.h" |
| #include "plugin.h" |
| |
| namespace gold |
| { |
| |
| // Symbol methods used in this file. |
| |
| // This symbol is being overridden by another symbol whose version is |
| // VERSION. Update the VERSION_ field accordingly. |
| |
| inline void |
| Symbol::override_version(const char* version) |
| { |
| if (version == NULL) |
| { |
| // This is the case where this symbol is NAME/VERSION, and the |
| // version was not marked as hidden. That makes it the default |
| // version, so we create NAME/NULL. Later we see another symbol |
| // NAME/NULL, and that symbol is overriding this one. In this |
| // case, since NAME/VERSION is the default, we make NAME/NULL |
| // override NAME/VERSION as well. They are already the same |
| // Symbol structure. Setting the VERSION_ field to NULL ensures |
| // that it will be output with the correct, empty, version. |
| this->version_ = version; |
| } |
| else |
| { |
| // This is the case where this symbol is NAME/VERSION_ONE, and |
| // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is |
| // overriding NAME. If VERSION_ONE and VERSION_TWO are |
| // different, then this can only happen when VERSION_ONE is NULL |
| // and VERSION_TWO is not hidden. |
| gold_assert(this->version_ == version || this->version_ == NULL); |
| this->version_ = version; |
| } |
| } |
| |
| // This symbol is being overidden by another symbol whose visibility |
| // is VISIBILITY. Updated the VISIBILITY_ field accordingly. |
| |
| inline void |
| Symbol::override_visibility(elfcpp::STV visibility) |
| { |
| // The rule for combining visibility is that we always choose the |
| // most constrained visibility. In order of increasing constraint, |
| // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse |
| // of the numeric values, so the effect is that we always want the |
| // smallest non-zero value. |
| if (visibility != elfcpp::STV_DEFAULT) |
| { |
| if (this->visibility_ == elfcpp::STV_DEFAULT) |
| this->visibility_ = visibility; |
| else if (this->visibility_ > visibility) |
| this->visibility_ = visibility; |
| } |
| } |
| |
| // Override the fields in Symbol. |
| |
| template<int size, bool big_endian> |
| void |
| Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym, |
| unsigned int st_shndx, bool is_ordinary, |
| Object* object, const char* version) |
| { |
| gold_assert(this->source_ == FROM_OBJECT); |
| this->u1_.object = object; |
| this->override_version(version); |
| this->u2_.shndx = st_shndx; |
| this->is_ordinary_shndx_ = is_ordinary; |
| // Don't override st_type from plugin placeholder symbols. |
| if (object->pluginobj() == NULL) |
| this->type_ = sym.get_st_type(); |
| this->binding_ = sym.get_st_bind(); |
| this->override_visibility(sym.get_st_visibility()); |
| this->nonvis_ = sym.get_st_nonvis(); |
| if (object->is_dynamic()) |
| this->in_dyn_ = true; |
| else |
| this->in_reg_ = true; |
| } |
| |
| // Override the fields in Sized_symbol. |
| |
| template<int size> |
| template<bool big_endian> |
| void |
| Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym, |
| unsigned st_shndx, bool is_ordinary, |
| Object* object, const char* version) |
| { |
| this->override_base(sym, st_shndx, is_ordinary, object, version); |
| this->value_ = sym.get_st_value(); |
| this->symsize_ = sym.get_st_size(); |
| } |
| |
| // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version |
| // VERSION. This handles all aliases of TOSYM. |
| |
| template<int size, bool big_endian> |
| void |
| Symbol_table::override(Sized_symbol<size>* tosym, |
| const elfcpp::Sym<size, big_endian>& fromsym, |
| unsigned int st_shndx, bool is_ordinary, |
| Object* object, const char* version) |
| { |
| tosym->override(fromsym, st_shndx, is_ordinary, object, version); |
| if (tosym->has_alias()) |
| { |
| Symbol* sym = this->weak_aliases_[tosym]; |
| gold_assert(sym != NULL); |
| Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym); |
| do |
| { |
| ssym->override(fromsym, st_shndx, is_ordinary, object, version); |
| sym = this->weak_aliases_[ssym]; |
| gold_assert(sym != NULL); |
| ssym = this->get_sized_symbol<size>(sym); |
| } |
| while (ssym != tosym); |
| } |
| } |
| |
| // The resolve functions build a little code for each symbol. |
| // Bit 0: 0 for global, 1 for weak. |
| // Bit 1: 0 for regular object, 1 for shared object |
| // Bits 2-3: 0 for normal, 1 for undefined, 2 for common |
| // This gives us values from 0 to 11. |
| |
| static const int global_or_weak_shift = 0; |
| static const unsigned int global_flag = 0 << global_or_weak_shift; |
| static const unsigned int weak_flag = 1 << global_or_weak_shift; |
| |
| static const int regular_or_dynamic_shift = 1; |
| static const unsigned int regular_flag = 0 << regular_or_dynamic_shift; |
| static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift; |
| |
| static const int def_undef_or_common_shift = 2; |
| static const unsigned int def_flag = 0 << def_undef_or_common_shift; |
| static const unsigned int undef_flag = 1 << def_undef_or_common_shift; |
| static const unsigned int common_flag = 2 << def_undef_or_common_shift; |
| |
| // This convenience function combines all the flags based on facts |
| // about the symbol. |
| |
| static unsigned int |
| symbol_to_bits(elfcpp::STB binding, bool is_dynamic, |
| unsigned int shndx, bool is_ordinary) |
| { |
| unsigned int bits; |
| |
| switch (binding) |
| { |
| case elfcpp::STB_GLOBAL: |
| case elfcpp::STB_GNU_UNIQUE: |
| bits = global_flag; |
| break; |
| |
| case elfcpp::STB_WEAK: |
| bits = weak_flag; |
| break; |
| |
| case elfcpp::STB_LOCAL: |
| // We should only see externally visible symbols in the symbol |
| // table. |
| gold_error(_("invalid STB_LOCAL symbol in external symbols")); |
| bits = global_flag; |
| break; |
| |
| default: |
| // Any target which wants to handle STB_LOOS, etc., needs to |
| // define a resolve method. |
| gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding)); |
| bits = global_flag; |
| } |
| |
| if (is_dynamic) |
| bits |= dynamic_flag; |
| else |
| bits |= regular_flag; |
| |
| switch (shndx) |
| { |
| case elfcpp::SHN_UNDEF: |
| bits |= undef_flag; |
| break; |
| |
| case elfcpp::SHN_COMMON: |
| if (!is_ordinary) |
| bits |= common_flag; |
| break; |
| |
| default: |
| if (!is_ordinary && Symbol::is_common_shndx(shndx)) |
| bits |= common_flag; |
| else |
| bits |= def_flag; |
| break; |
| } |
| |
| return bits; |
| } |
| |
| // Resolve a symbol. This is called the second and subsequent times |
| // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the |
| // section index for SYM, possibly adjusted for many sections. |
| // IS_ORDINARY is whether ST_SHNDX is a normal section index rather |
| // than a special code. ORIG_ST_SHNDX is the original section index, |
| // before any munging because of discarded sections, except that all |
| // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is |
| // the version of SYM. |
| |
| template<int size, bool big_endian> |
| void |
| Symbol_table::resolve(Sized_symbol<size>* to, |
| const elfcpp::Sym<size, big_endian>& sym, |
| unsigned int st_shndx, bool is_ordinary, |
| unsigned int orig_st_shndx, |
| Object* object, const char* version, |
| bool is_default_version) |
| { |
| bool to_is_ordinary; |
| const unsigned int to_shndx = to->shndx(&to_is_ordinary); |
| |
| // It's possible for a symbol to be defined in an object file |
| // using .symver to give it a version, and for there to also be |
| // a linker script giving that symbol the same version. We |
| // don't want to give a multiple-definition error for this |
| // harmless redefinition. |
| if (to->source() == Symbol::FROM_OBJECT |
| && to->object() == object |
| && to->is_defined() |
| && is_ordinary |
| && to_is_ordinary |
| && to_shndx == st_shndx |
| && to->value() == sym.get_st_value()) |
| return; |
| |
| // Likewise for an absolute symbol defined twice with the same value. |
| if (!is_ordinary |
| && st_shndx == elfcpp::SHN_ABS |
| && !to_is_ordinary |
| && to_shndx == elfcpp::SHN_ABS |
| && to->value() == sym.get_st_value()) |
| return; |
| |
| if (parameters->target().has_resolve()) |
| { |
| Sized_target<size, big_endian>* sized_target; |
| sized_target = parameters->sized_target<size, big_endian>(); |
| if (sized_target->resolve(to, sym, object, version)) |
| return; |
| } |
| |
| if (!object->is_dynamic()) |
| { |
| if (sym.get_st_type() == elfcpp::STT_COMMON |
| && (is_ordinary || !Symbol::is_common_shndx(st_shndx))) |
| { |
| gold_warning(_("STT_COMMON symbol '%s' in %s " |
| "is not in a common section"), |
| to->demangled_name().c_str(), |
| to->object()->name().c_str()); |
| return; |
| } |
| // Record that we've seen this symbol in a regular object. |
| to->set_in_reg(); |
| } |
| else if (st_shndx == elfcpp::SHN_UNDEF |
| && (to->visibility() == elfcpp::STV_HIDDEN |
| || to->visibility() == elfcpp::STV_INTERNAL)) |
| { |
| // The symbol is hidden, so a reference from a shared object |
| // cannot bind to it. We tried issuing a warning in this case, |
| // but that produces false positives when the symbol is |
| // actually resolved in a different shared object (PR 15574). |
| return; |
| } |
| else |
| { |
| // Record that we've seen this symbol in a dynamic object. |
| to->set_in_dyn(); |
| } |
| |
| // Record if we've seen this symbol in a real ELF object (i.e., the |
| // symbol is referenced from outside the world known to the plugin). |
| if (object->pluginobj() == NULL && !object->is_dynamic()) |
| to->set_in_real_elf(); |
| |
| // If we're processing replacement files, allow new symbols to override |
| // the placeholders from the plugin objects. |
| // Treat common symbols specially since it is possible that an ELF |
| // file increased the size of the alignment. |
| if (to->source() == Symbol::FROM_OBJECT) |
| { |
| Pluginobj* obj = to->object()->pluginobj(); |
| if (obj != NULL |
| && parameters->options().plugins()->in_replacement_phase()) |
| { |
| bool adjust_common = false; |
| typename Sized_symbol<size>::Size_type tosize = 0; |
| typename Sized_symbol<size>::Value_type tovalue = 0; |
| if (to->is_common() |
| && !is_ordinary && Symbol::is_common_shndx(st_shndx)) |
| { |
| adjust_common = true; |
| tosize = to->symsize(); |
| tovalue = to->value(); |
| } |
| this->override(to, sym, st_shndx, is_ordinary, object, version); |
| if (adjust_common) |
| { |
| if (tosize > to->symsize()) |
| to->set_symsize(tosize); |
| if (tovalue > to->value()) |
| to->set_value(tovalue); |
| } |
| return; |
| } |
| } |
| |
| // A new weak undefined reference, merging with an old weak |
| // reference, could be a One Definition Rule (ODR) violation -- |
| // especially if the types or sizes of the references differ. We'll |
| // store such pairs and look them up later to make sure they |
| // actually refer to the same lines of code. We also check |
| // combinations of weak and strong, which might occur if one case is |
| // inline and the other is not. (Note: not all ODR violations can |
| // be found this way, and not everything this finds is an ODR |
| // violation. But it's helpful to warn about.) |
| if (parameters->options().detect_odr_violations() |
| && (sym.get_st_bind() == elfcpp::STB_WEAK |
| || to->binding() == elfcpp::STB_WEAK) |
| && orig_st_shndx != elfcpp::SHN_UNDEF |
| && to_is_ordinary |
| && to_shndx != elfcpp::SHN_UNDEF |
| && sym.get_st_size() != 0 // Ignore weird 0-sized symbols. |
| && to->symsize() != 0 |
| && (sym.get_st_type() != to->type() |
| || sym.get_st_size() != to->symsize()) |
| // C does not have a concept of ODR, so we only need to do this |
| // on C++ symbols. These have (mangled) names starting with _Z. |
| && to->name()[0] == '_' && to->name()[1] == 'Z') |
| { |
| Symbol_location fromloc |
| = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) }; |
| Symbol_location toloc = { to->object(), to_shndx, |
| static_cast<off_t>(to->value()) }; |
| this->candidate_odr_violations_[to->name()].insert(fromloc); |
| this->candidate_odr_violations_[to->name()].insert(toloc); |
| } |
| |
| // Plugins don't provide a symbol type, so adopt the existing type |
| // if the FROM symbol is from a plugin. |
| elfcpp::STT fromtype = (object->pluginobj() != NULL |
| ? to->type() |
| : sym.get_st_type()); |
| unsigned int frombits = symbol_to_bits(sym.get_st_bind(), |
| object->is_dynamic(), |
| st_shndx, is_ordinary); |
| |
| bool adjust_common_sizes; |
| bool adjust_dyndef; |
| typename Sized_symbol<size>::Size_type tosize = to->symsize(); |
| if (Symbol_table::should_override(to, frombits, fromtype, OBJECT, |
| object, &adjust_common_sizes, |
| &adjust_dyndef, is_default_version)) |
| { |
| elfcpp::STB orig_tobinding = to->binding(); |
| typename Sized_symbol<size>::Value_type tovalue = to->value(); |
| this->override(to, sym, st_shndx, is_ordinary, object, version); |
| if (adjust_common_sizes) |
| { |
| if (tosize > to->symsize()) |
| to->set_symsize(tosize); |
| if (tovalue > to->value()) |
| to->set_value(tovalue); |
| } |
| if (adjust_dyndef) |
| { |
| // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF. |
| // Remember which kind of UNDEF it was for future reference. |
| to->set_undef_binding(orig_tobinding); |
| } |
| } |
| else |
| { |
| if (adjust_common_sizes) |
| { |
| if (sym.get_st_size() > tosize) |
| to->set_symsize(sym.get_st_size()); |
| if (sym.get_st_value() > to->value()) |
| to->set_value(sym.get_st_value()); |
| } |
| if (adjust_dyndef) |
| { |
| // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF. |
| // Remember which kind of UNDEF it was. |
| to->set_undef_binding(sym.get_st_bind()); |
| } |
| // The ELF ABI says that even for a reference to a symbol we |
| // merge the visibility. |
| to->override_visibility(sym.get_st_visibility()); |
| } |
| |
| // If we have a non-WEAK reference from a regular object to a |
| // dynamic object, mark the dynamic object as needed. |
| if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak()) |
| to->object()->set_is_needed(); |
| |
| if (adjust_common_sizes && parameters->options().warn_common()) |
| { |
| if (tosize > sym.get_st_size()) |
| Symbol_table::report_resolve_problem(false, |
| _("common of '%s' overriding " |
| "smaller common"), |
| to, OBJECT, object); |
| else if (tosize < sym.get_st_size()) |
| Symbol_table::report_resolve_problem(false, |
| _("common of '%s' overidden by " |
| "larger common"), |
| to, OBJECT, object); |
| else |
| Symbol_table::report_resolve_problem(false, |
| _("multiple common of '%s'"), |
| to, OBJECT, object); |
| } |
| } |
| |
| // Handle the core of symbol resolution. This is called with the |
| // existing symbol, TO, and a bitflag describing the new symbol. This |
| // returns true if we should override the existing symbol with the new |
| // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to |
| // true if we should set the symbol size to the maximum of the TO and |
| // FROM sizes. It handles error conditions. |
| |
| bool |
| Symbol_table::should_override(const Symbol* to, unsigned int frombits, |
| elfcpp::STT fromtype, Defined defined, |
| Object* object, bool* adjust_common_sizes, |
| bool* adjust_dyndef, bool is_default_version) |
| { |
| *adjust_common_sizes = false; |
| *adjust_dyndef = false; |
| |
| unsigned int tobits; |
| if (to->source() == Symbol::IS_UNDEFINED) |
| tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true); |
| else if (to->source() != Symbol::FROM_OBJECT) |
| tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false); |
| else |
| { |
| bool is_ordinary; |
| unsigned int shndx = to->shndx(&is_ordinary); |
| tobits = symbol_to_bits(to->binding(), |
| to->object()->is_dynamic(), |
| shndx, |
| is_ordinary); |
| } |
| |
| if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS) |
| && !to->is_placeholder()) |
| Symbol_table::report_resolve_problem(true, |
| _("symbol '%s' used as both __thread " |
| "and non-__thread"), |
| to, defined, object); |
| |
| // We use a giant switch table for symbol resolution. This code is |
| // unwieldy, but: 1) it is efficient; 2) we definitely handle all |
| // cases; 3) it is easy to change the handling of a particular case. |
| // The alternative would be a series of conditionals, but it is easy |
| // to get the ordering wrong. This could also be done as a table, |
| // but that is no easier to understand than this large switch |
| // statement. |
| |
| // These are the values generated by the bit codes. |
| enum |
| { |
| DEF = global_flag | regular_flag | def_flag, |
| WEAK_DEF = weak_flag | regular_flag | def_flag, |
| DYN_DEF = global_flag | dynamic_flag | def_flag, |
| DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag, |
| UNDEF = global_flag | regular_flag | undef_flag, |
| WEAK_UNDEF = weak_flag | regular_flag | undef_flag, |
| DYN_UNDEF = global_flag | dynamic_flag | undef_flag, |
| DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag, |
| COMMON = global_flag | regular_flag | common_flag, |
| WEAK_COMMON = weak_flag | regular_flag | common_flag, |
| DYN_COMMON = global_flag | dynamic_flag | common_flag, |
| DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag |
| }; |
| |
| switch (tobits * 16 + frombits) |
| { |
| case DEF * 16 + DEF: |
| // Two definitions of the same symbol. |
| |
| // If either symbol is defined by an object included using |
| // --just-symbols, then don't warn. This is for compatibility |
| // with the GNU linker. FIXME: This is a hack. |
| if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols()) |
| || (object != NULL && object->just_symbols())) |
| return false; |
| |
| if (!parameters->options().muldefs()) |
| Symbol_table::report_resolve_problem(true, |
| _("multiple definition of '%s'"), |
| to, defined, object); |
| return false; |
| |
| case WEAK_DEF * 16 + DEF: |
| // We've seen a weak definition, and now we see a strong |
| // definition. In the original SVR4 linker, this was treated as |
| // a multiple definition error. In the Solaris linker and the |
| // GNU linker, a weak definition followed by a regular |
| // definition causes the weak definition to be overridden. We |
| // are currently compatible with the GNU linker. In the future |
| // we should add a target specific option to change this. |
| // FIXME. |
| return true; |
| |
| case DYN_DEF * 16 + DEF: |
| case DYN_WEAK_DEF * 16 + DEF: |
| // We've seen a definition in a dynamic object, and now we see a |
| // definition in a regular object. The definition in the |
| // regular object overrides the definition in the dynamic |
| // object. |
| return true; |
| |
| case UNDEF * 16 + DEF: |
| case WEAK_UNDEF * 16 + DEF: |
| case DYN_UNDEF * 16 + DEF: |
| case DYN_WEAK_UNDEF * 16 + DEF: |
| // We've seen an undefined reference, and now we see a |
| // definition. We use the definition. |
| return true; |
| |
| case COMMON * 16 + DEF: |
| case WEAK_COMMON * 16 + DEF: |
| case DYN_COMMON * 16 + DEF: |
| case DYN_WEAK_COMMON * 16 + DEF: |
| // We've seen a common symbol and now we see a definition. The |
| // definition overrides. |
| if (parameters->options().warn_common()) |
| Symbol_table::report_resolve_problem(false, |
| _("definition of '%s' overriding " |
| "common"), |
| to, defined, object); |
| return true; |
| |
| case DEF * 16 + WEAK_DEF: |
| case WEAK_DEF * 16 + WEAK_DEF: |
| // We've seen a definition and now we see a weak definition. We |
| // ignore the new weak definition. |
| return false; |
| |
| case DYN_DEF * 16 + WEAK_DEF: |
| case DYN_WEAK_DEF * 16 + WEAK_DEF: |
| // We've seen a dynamic definition and now we see a regular weak |
| // definition. The regular weak definition overrides. |
| return true; |
| |
| case UNDEF * 16 + WEAK_DEF: |
| case WEAK_UNDEF * 16 + WEAK_DEF: |
| case DYN_UNDEF * 16 + WEAK_DEF: |
| case DYN_WEAK_UNDEF * 16 + WEAK_DEF: |
| // A weak definition of a currently undefined symbol. |
| return true; |
| |
| case COMMON * 16 + WEAK_DEF: |
| case WEAK_COMMON * 16 + WEAK_DEF: |
| // A weak definition does not override a common definition. |
| return false; |
| |
| case DYN_COMMON * 16 + WEAK_DEF: |
| case DYN_WEAK_COMMON * 16 + WEAK_DEF: |
| // A weak definition does override a definition in a dynamic |
| // object. |
| if (parameters->options().warn_common()) |
| Symbol_table::report_resolve_problem(false, |
| _("definition of '%s' overriding " |
| "dynamic common definition"), |
| to, defined, object); |
| return true; |
| |
| case DEF * 16 + DYN_DEF: |
| case WEAK_DEF * 16 + DYN_DEF: |
| // Ignore a dynamic definition if we already have a definition. |
| return false; |
| |
| case DYN_DEF * 16 + DYN_DEF: |
| case DYN_WEAK_DEF * 16 + DYN_DEF: |
| // Ignore a dynamic definition if we already have a definition, |
| // unless the existing definition is an unversioned definition |
| // in the same dynamic object, and the new definition is a |
| // default version. |
| if (to->object() == object |
| && to->version() == NULL |
| && is_default_version) |
| return true; |
| // Or, if the existing definition is in an unused --as-needed library, |
| // and the reference is weak, let the new definition override. |
| if (to->in_reg() |
| && to->is_undef_binding_weak() |
| && to->object()->as_needed() |
| && !to->object()->is_needed()) |
| return true; |
| return false; |
| |
| case UNDEF * 16 + DYN_DEF: |
| case DYN_UNDEF * 16 + DYN_DEF: |
| case DYN_WEAK_UNDEF * 16 + DYN_DEF: |
| // Use a dynamic definition if we have a reference. |
| return true; |
| |
| case WEAK_UNDEF * 16 + DYN_DEF: |
| // When overriding a weak undef by a dynamic definition, |
| // we need to remember that the original undef was weak. |
| *adjust_dyndef = true; |
| return true; |
| |
| case COMMON * 16 + DYN_DEF: |
| case WEAK_COMMON * 16 + DYN_DEF: |
| // Ignore a dynamic definition if we already have a common |
| // definition. |
| return false; |
| |
| case DEF * 16 + DYN_WEAK_DEF: |
| case WEAK_DEF * 16 + DYN_WEAK_DEF: |
| // Ignore a weak dynamic definition if we already have a |
| // definition. |
| return false; |
| |
| case UNDEF * 16 + DYN_WEAK_DEF: |
| // When overriding an undef by a dynamic weak definition, |
| // we need to remember that the original undef was not weak. |
| *adjust_dyndef = true; |
| return true; |
| |
| case DYN_UNDEF * 16 + DYN_WEAK_DEF: |
| case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF: |
| // Use a weak dynamic definition if we have a reference. |
| return true; |
| |
| case WEAK_UNDEF * 16 + DYN_WEAK_DEF: |
| // When overriding a weak undef by a dynamic definition, |
| // we need to remember that the original undef was weak. |
| *adjust_dyndef = true; |
| return true; |
| |
| case COMMON * 16 + DYN_WEAK_DEF: |
| case WEAK_COMMON * 16 + DYN_WEAK_DEF: |
| // Ignore a weak dynamic definition if we already have a common |
| // definition. |
| return false; |
| |
| case DYN_COMMON * 16 + DYN_DEF: |
| case DYN_WEAK_COMMON * 16 + DYN_DEF: |
| case DYN_DEF * 16 + DYN_WEAK_DEF: |
| case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF: |
| case DYN_COMMON * 16 + DYN_WEAK_DEF: |
| case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF: |
| // If the existing definition is in an unused --as-needed library, |
| // and the reference is weak, let a new dynamic definition override. |
| if (to->in_reg() |
| && to->is_undef_binding_weak() |
| && to->object()->as_needed() |
| && !to->object()->is_needed()) |
| return true; |
| return false; |
| |
| case DEF * 16 + UNDEF: |
| case WEAK_DEF * 16 + UNDEF: |
| case UNDEF * 16 + UNDEF: |
| // A new undefined reference tells us nothing. |
| return false; |
| |
| case DYN_DEF * 16 + UNDEF: |
| case DYN_WEAK_DEF * 16 + UNDEF: |
| // For a dynamic def, we need to remember which kind of undef we see. |
| *adjust_dyndef = true; |
| return false; |
| |
| case WEAK_UNDEF * 16 + UNDEF: |
| case DYN_UNDEF * 16 + UNDEF: |
| case DYN_WEAK_UNDEF * 16 + UNDEF: |
| // A strong undef overrides a dynamic or weak undef. |
| return true; |
| |
| case COMMON * 16 + UNDEF: |
| case WEAK_COMMON * 16 + UNDEF: |
| case DYN_COMMON * 16 + UNDEF: |
| case DYN_WEAK_COMMON * 16 + UNDEF: |
| // A new undefined reference tells us nothing. |
| return false; |
| |
| case DEF * 16 + WEAK_UNDEF: |
| case WEAK_DEF * 16 + WEAK_UNDEF: |
| case UNDEF * 16 + WEAK_UNDEF: |
| case WEAK_UNDEF * 16 + WEAK_UNDEF: |
| case DYN_UNDEF * 16 + WEAK_UNDEF: |
| case COMMON * 16 + WEAK_UNDEF: |
| case WEAK_COMMON * 16 + WEAK_UNDEF: |
| case DYN_COMMON * 16 + WEAK_UNDEF: |
| case DYN_WEAK_COMMON * 16 + WEAK_UNDEF: |
| // A new weak undefined reference tells us nothing unless the |
| // exisiting symbol is a dynamic weak reference. |
| return false; |
| |
| case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF: |
| // A new weak reference overrides an existing dynamic weak reference. |
| // This is necessary because a dynamic weak reference remembers |
| // the old binding, which may not be weak. If we keeps the existing |
| // dynamic weak reference, the weakness may be dropped in the output. |
| return true; |
| |
| case DYN_DEF * 16 + WEAK_UNDEF: |
| case DYN_WEAK_DEF * 16 + WEAK_UNDEF: |
| // For a dynamic def, we need to remember which kind of undef we see. |
| *adjust_dyndef = true; |
| return false; |
| |
| case DEF * 16 + DYN_UNDEF: |
| case WEAK_DEF * 16 + DYN_UNDEF: |
| case DYN_DEF * 16 + DYN_UNDEF: |
| case DYN_WEAK_DEF * 16 + DYN_UNDEF: |
| case UNDEF * 16 + DYN_UNDEF: |
| case WEAK_UNDEF * 16 + DYN_UNDEF: |
| case DYN_UNDEF * 16 + DYN_UNDEF: |
| case DYN_WEAK_UNDEF * 16 + DYN_UNDEF: |
| case COMMON * 16 + DYN_UNDEF: |
| case WEAK_COMMON * 16 + DYN_UNDEF: |
| case DYN_COMMON * 16 + DYN_UNDEF: |
| case DYN_WEAK_COMMON * 16 + DYN_UNDEF: |
| // A new dynamic undefined reference tells us nothing. |
| return false; |
| |
| case DEF * 16 + DYN_WEAK_UNDEF: |
| case WEAK_DEF * 16 + DYN_WEAK_UNDEF: |
| case DYN_DEF * 16 + DYN_WEAK_UNDEF: |
| case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF: |
| case UNDEF * 16 + DYN_WEAK_UNDEF: |
| case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: |
| case DYN_UNDEF * 16 + DYN_WEAK_UNDEF: |
| case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: |
| case COMMON * 16 + DYN_WEAK_UNDEF: |
| case WEAK_COMMON * 16 + DYN_WEAK_UNDEF: |
| case DYN_COMMON * 16 + DYN_WEAK_UNDEF: |
| case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF: |
| // A new weak dynamic undefined reference tells us nothing. |
| return false; |
| |
| case DEF * 16 + COMMON: |
| // A common symbol does not override a definition. |
| if (parameters->options().warn_common()) |
| Symbol_table::report_resolve_problem(false, |
| _("common '%s' overridden by " |
| "previous definition"), |
| to, defined, object); |
| return false; |
| |
| case WEAK_DEF * 16 + COMMON: |
| case DYN_DEF * 16 + COMMON: |
| case DYN_WEAK_DEF * 16 + COMMON: |
| // A common symbol does override a weak definition or a dynamic |
| // definition. |
| return true; |
| |
| case UNDEF * 16 + COMMON: |
| case WEAK_UNDEF * 16 + COMMON: |
| case DYN_UNDEF * 16 + COMMON: |
| case DYN_WEAK_UNDEF * 16 + COMMON: |
| // A common symbol is a definition for a reference. |
| return true; |
| |
| case COMMON * 16 + COMMON: |
| // Set the size to the maximum. |
| *adjust_common_sizes = true; |
| return false; |
| |
| case WEAK_COMMON * 16 + COMMON: |
| // I'm not sure just what a weak common symbol means, but |
| // presumably it can be overridden by a regular common symbol. |
| return true; |
| |
| case DYN_COMMON * 16 + COMMON: |
| case DYN_WEAK_COMMON * 16 + COMMON: |
| // Use the real common symbol, but adjust the size if necessary. |
| *adjust_common_sizes = true; |
| return true; |
| |
| case DEF * 16 + WEAK_COMMON: |
| case WEAK_DEF * 16 + WEAK_COMMON: |
| case DYN_DEF * 16 + WEAK_COMMON: |
| case DYN_WEAK_DEF * 16 + WEAK_COMMON: |
| // Whatever a weak common symbol is, it won't override a |
| // definition. |
| return false; |
| |
| case UNDEF * 16 + WEAK_COMMON: |
| case WEAK_UNDEF * 16 + WEAK_COMMON: |
| case DYN_UNDEF * 16 + WEAK_COMMON: |
| case DYN_WEAK_UNDEF * 16 + WEAK_COMMON: |
| // A weak common symbol is better than an undefined symbol. |
| return true; |
| |
| case COMMON * 16 + WEAK_COMMON: |
| case WEAK_COMMON * 16 + WEAK_COMMON: |
| case DYN_COMMON * 16 + WEAK_COMMON: |
| case DYN_WEAK_COMMON * 16 + WEAK_COMMON: |
| // Ignore a weak common symbol in the presence of a real common |
| // symbol. |
| return false; |
| |
| case DEF * 16 + DYN_COMMON: |
| case WEAK_DEF * 16 + DYN_COMMON: |
| case DYN_DEF * 16 + DYN_COMMON: |
| case DYN_WEAK_DEF * 16 + DYN_COMMON: |
| // Ignore a dynamic common symbol in the presence of a |
| // definition. |
| return false; |
| |
| case UNDEF * 16 + DYN_COMMON: |
| case WEAK_UNDEF * 16 + DYN_COMMON: |
| case DYN_UNDEF * 16 + DYN_COMMON: |
| case DYN_WEAK_UNDEF * 16 + DYN_COMMON: |
| // A dynamic common symbol is a definition of sorts. |
| return true; |
| |
| case COMMON * 16 + DYN_COMMON: |
| case WEAK_COMMON * 16 + DYN_COMMON: |
| case DYN_COMMON * 16 + DYN_COMMON: |
| case DYN_WEAK_COMMON * 16 + DYN_COMMON: |
| // Set the size to the maximum. |
| *adjust_common_sizes = true; |
| return false; |
| |
| case DEF * 16 + DYN_WEAK_COMMON: |
| case WEAK_DEF * 16 + DYN_WEAK_COMMON: |
| case DYN_DEF * 16 + DYN_WEAK_COMMON: |
| case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON: |
| // A common symbol is ignored in the face of a definition. |
| return false; |
| |
| case UNDEF * 16 + DYN_WEAK_COMMON: |
| case WEAK_UNDEF * 16 + DYN_WEAK_COMMON: |
| case DYN_UNDEF * 16 + DYN_WEAK_COMMON: |
| case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON: |
| // I guess a weak common symbol is better than a definition. |
| return true; |
| |
| case COMMON * 16 + DYN_WEAK_COMMON: |
| case WEAK_COMMON * 16 + DYN_WEAK_COMMON: |
| case DYN_COMMON * 16 + DYN_WEAK_COMMON: |
| case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON: |
| // Set the size to the maximum. |
| *adjust_common_sizes = true; |
| return false; |
| |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| // Issue an error or warning due to symbol resolution. IS_ERROR |
| // indicates an error rather than a warning. MSG is the error |
| // message; it is expected to have a %s for the symbol name. TO is |
| // the existing symbol. DEFINED/OBJECT is where the new symbol was |
| // found. |
| |
| // FIXME: We should have better location information here. When the |
| // symbol is defined, we should be able to pull the location from the |
| // debug info if there is any. |
| |
| void |
| Symbol_table::report_resolve_problem(bool is_error, const char* msg, |
| const Symbol* to, Defined defined, |
| Object* object) |
| { |
| std::string demangled(to->demangled_name()); |
| size_t len = strlen(msg) + demangled.length() + 10; |
| char* buf = new char[len]; |
| snprintf(buf, len, msg, demangled.c_str()); |
| |
| const char* objname; |
| switch (defined) |
| { |
| case OBJECT: |
| objname = object->name().c_str(); |
| break; |
| case COPY: |
| objname = _("COPY reloc"); |
| break; |
| case DEFSYM: |
| case UNDEFINED: |
| objname = _("command line"); |
| break; |
| case SCRIPT: |
| objname = _("linker script"); |
| break; |
| case PREDEFINED: |
| case INCREMENTAL_BASE: |
| objname = _("linker defined"); |
| break; |
| default: |
| gold_unreachable(); |
| } |
| |
| if (is_error) |
| gold_error("%s: %s", objname, buf); |
| else |
| gold_warning("%s: %s", objname, buf); |
| |
| delete[] buf; |
| |
| if (to->source() == Symbol::FROM_OBJECT) |
| objname = to->object()->name().c_str(); |
| else |
| objname = _("command line"); |
| gold_info("%s: %s: previous definition here", program_name, objname); |
| } |
| |
| // Completely override existing symbol. Everything bar name_, |
| // version_, and is_forced_local_ flag are copied. version_ is |
| // cleared if from->version_ is clear. Returns true if this symbol |
| // should be forced local. |
| bool |
| Symbol::clone(const Symbol* from) |
| { |
| // Don't allow cloning after dynamic linking info is attached to symbols. |
| // We aren't prepared to merge such. |
| gold_assert(!this->has_symtab_index() && !from->has_symtab_index()); |
| gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index()); |
| gold_assert(this->got_offset_list() == NULL |
| && from->got_offset_list() == NULL); |
| gold_assert(!this->has_plt_offset() && !from->has_plt_offset()); |
| |
| if (!from->version_) |
| this->version_ = from->version_; |
| this->u1_ = from->u1_; |
| this->u2_ = from->u2_; |
| this->type_ = from->type_; |
| this->binding_ = from->binding_; |
| this->visibility_ = from->visibility_; |
| this->nonvis_ = from->nonvis_; |
| this->source_ = from->source_; |
| this->is_def_ = from->is_def_; |
| this->is_forwarder_ = from->is_forwarder_; |
| this->has_alias_ = from->has_alias_; |
| this->needs_dynsym_entry_ = from->needs_dynsym_entry_; |
| this->in_reg_ = from->in_reg_; |
| this->in_dyn_ = from->in_dyn_; |
| this->needs_dynsym_value_ = from->needs_dynsym_value_; |
| this->has_warning_ = from->has_warning_; |
| this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_; |
| this->is_ordinary_shndx_ = from->is_ordinary_shndx_; |
| this->in_real_elf_ = from->in_real_elf_; |
| this->is_defined_in_discarded_section_ |
| = from->is_defined_in_discarded_section_; |
| this->undef_binding_set_ = from->undef_binding_set_; |
| this->undef_binding_weak_ = from->undef_binding_weak_; |
| this->is_predefined_ = from->is_predefined_; |
| this->is_protected_ = from->is_protected_; |
| this->non_zero_localentry_ = from->non_zero_localentry_; |
| |
| return !this->is_forced_local_ && from->is_forced_local_; |
| } |
| |
| template <int size> |
| bool |
| Sized_symbol<size>::clone(const Sized_symbol<size>* from) |
| { |
| this->value_ = from->value_; |
| this->symsize_ = from->symsize_; |
| return Symbol::clone(from); |
| } |
| |
| // A special case of should_override which is only called for a strong |
| // defined symbol from a regular object file. This is used when |
| // defining special symbols. |
| |
| bool |
| Symbol_table::should_override_with_special(const Symbol* to, |
| elfcpp::STT fromtype, |
| Defined defined) |
| { |
| bool adjust_common_sizes; |
| bool adjust_dyn_def; |
| unsigned int frombits = global_flag | regular_flag | def_flag; |
| bool ret = Symbol_table::should_override(to, frombits, fromtype, defined, |
| NULL, &adjust_common_sizes, |
| &adjust_dyn_def, false); |
| gold_assert(!adjust_common_sizes && !adjust_dyn_def); |
| return ret; |
| } |
| |
| // Override symbol base with a special symbol. |
| |
| void |
| Symbol::override_base_with_special(const Symbol* from) |
| { |
| bool same_name = this->name_ == from->name_; |
| gold_assert(same_name || this->has_alias()); |
| |
| // If we are overriding an undef, remember the original binding. |
| if (this->is_undefined()) |
| this->set_undef_binding(this->binding_); |
| |
| this->source_ = from->source_; |
| switch (from->source_) |
| { |
| case FROM_OBJECT: |
| case IN_OUTPUT_DATA: |
| case IN_OUTPUT_SEGMENT: |
| this->u1_ = from->u1_; |
| this->u2_ = from->u2_; |
| break; |
| case IS_CONSTANT: |
| case IS_UNDEFINED: |
| break; |
| default: |
| gold_unreachable(); |
| break; |
| } |
| |
| if (same_name) |
| { |
| // When overriding a versioned symbol with a special symbol, we |
| // may be changing the version. This will happen if we see a |
| // special symbol such as "_end" defined in a shared object with |
| // one version (from a version script), but we want to define it |
| // here with a different version (from a different version |
| // script). |
| this->version_ = from->version_; |
| } |
| this->type_ = from->type_; |
| this->binding_ = from->binding_; |
| this->override_visibility(from->visibility_); |
| this->nonvis_ = from->nonvis_; |
| |
| // Special symbols are always considered to be regular symbols. |
| this->in_reg_ = true; |
| |
| if (from->needs_dynsym_entry_) |
| this->needs_dynsym_entry_ = true; |
| if (from->needs_dynsym_value_) |
| this->needs_dynsym_value_ = true; |
| |
| this->is_predefined_ = from->is_predefined_; |
| |
| // We shouldn't see these flags. If we do, we need to handle them |
| // somehow. |
| gold_assert(!from->is_forwarder_); |
| gold_assert(!from->has_plt_offset()); |
| gold_assert(!from->has_warning_); |
| gold_assert(!from->is_copied_from_dynobj_); |
| gold_assert(!from->is_forced_local_); |
| } |
| |
| // Override a symbol with a special symbol. |
| |
| template<int size> |
| void |
| Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from) |
| { |
| this->override_base_with_special(from); |
| this->value_ = from->value_; |
| this->symsize_ = from->symsize_; |
| } |
| |
| // Override TOSYM with the special symbol FROMSYM. This handles all |
| // aliases of TOSYM. |
| |
| template<int size> |
| void |
| Symbol_table::override_with_special(Sized_symbol<size>* tosym, |
| const Sized_symbol<size>* fromsym) |
| { |
| tosym->override_with_special(fromsym); |
| if (tosym->has_alias()) |
| { |
| Symbol* sym = this->weak_aliases_[tosym]; |
| gold_assert(sym != NULL); |
| Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym); |
| do |
| { |
| ssym->override_with_special(fromsym); |
| sym = this->weak_aliases_[ssym]; |
| gold_assert(sym != NULL); |
| ssym = this->get_sized_symbol<size>(sym); |
| } |
| while (ssym != tosym); |
| } |
| if (tosym->binding() == elfcpp::STB_LOCAL |
| || ((tosym->visibility() == elfcpp::STV_HIDDEN |
| || tosym->visibility() == elfcpp::STV_INTERNAL) |
| && (tosym->binding() == elfcpp::STB_GLOBAL |
| || tosym->binding() == elfcpp::STB_GNU_UNIQUE |
| || tosym->binding() == elfcpp::STB_WEAK) |
| && !parameters->options().relocatable())) |
| this->force_local(tosym); |
| } |
| |
| // Instantiate the templates we need. We could use the configure |
| // script to restrict this to only the ones needed for implemented |
| // targets. |
| |
| // We have to instantiate both big and little endian versions because |
| // these are used by other templates that depends on size only. |
| |
| #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) |
| template |
| void |
| Symbol_table::resolve<32, false>( |
| Sized_symbol<32>* to, |
| const elfcpp::Sym<32, false>& sym, |
| unsigned int st_shndx, |
| bool is_ordinary, |
| unsigned int orig_st_shndx, |
| Object* object, |
| const char* version, |
| bool is_default_version); |
| |
| template |
| void |
| Symbol_table::resolve<32, true>( |
| Sized_symbol<32>* to, |
| const elfcpp::Sym<32, true>& sym, |
| unsigned int st_shndx, |
| bool is_ordinary, |
| unsigned int orig_st_shndx, |
| Object* object, |
| const char* version, |
| bool is_default_version); |
| #endif |
| |
| #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) |
| template |
| void |
| Symbol_table::resolve<64, false>( |
| Sized_symbol<64>* to, |
| const elfcpp::Sym<64, false>& sym, |
| unsigned int st_shndx, |
| bool is_ordinary, |
| unsigned int orig_st_shndx, |
| Object* object, |
| const char* version, |
| bool is_default_version); |
| |
| template |
| void |
| Symbol_table::resolve<64, true>( |
| Sized_symbol<64>* to, |
| const elfcpp::Sym<64, true>& sym, |
| unsigned int st_shndx, |
| bool is_ordinary, |
| unsigned int orig_st_shndx, |
| Object* object, |
| const char* version, |
| bool is_default_version); |
| #endif |
| |
| #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) |
| template |
| void |
| Symbol_table::override_with_special<32>(Sized_symbol<32>*, |
| const Sized_symbol<32>*); |
| #endif |
| |
| #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) |
| template |
| void |
| Symbol_table::override_with_special<64>(Sized_symbol<64>*, |
| const Sized_symbol<64>*); |
| #endif |
| |
| template |
| bool |
| Sized_symbol<32>::clone(const Sized_symbol<32>*); |
| |
| template |
| bool |
| Sized_symbol<64>::clone(const Sized_symbol<64>*); |
| } // End namespace gold. |