|  | /* Simulator for the FT32 processor | 
|  |  | 
|  | Copyright (C) 2008-2023 Free Software Foundation, Inc. | 
|  | Contributed by FTDI <support@ftdichip.com> | 
|  |  | 
|  | This file is part of simulators. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* This must come before any other includes.  */ | 
|  | #include "defs.h" | 
|  |  | 
|  | #include <fcntl.h> | 
|  | #include <signal.h> | 
|  | #include <stdlib.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include "bfd.h" | 
|  | #include "sim/callback.h" | 
|  | #include "libiberty.h" | 
|  | #include "sim/sim.h" | 
|  |  | 
|  | #include "sim-main.h" | 
|  | #include "sim-options.h" | 
|  | #include "sim-signal.h" | 
|  |  | 
|  | #include "opcode/ft32.h" | 
|  |  | 
|  | #include "ft32-sim.h" | 
|  |  | 
|  | /* | 
|  | * FT32 is a Harvard architecture: RAM and code occupy | 
|  | * different address spaces. | 
|  | * | 
|  | * sim and gdb model FT32 memory by adding 0x800000 to RAM | 
|  | * addresses. This means that sim/gdb can treat all addresses | 
|  | * similarly. | 
|  | * | 
|  | * The address space looks like: | 
|  | * | 
|  | *    00000   start of code memory | 
|  | *    3ffff   end of code memory | 
|  | *   800000   start of RAM | 
|  | *   80ffff   end of RAM | 
|  | */ | 
|  |  | 
|  | #define RAM_BIAS  0x800000  /* Bias added to RAM addresses.  */ | 
|  |  | 
|  | static unsigned long | 
|  | ft32_extract_unsigned_integer (const unsigned char *addr, int len) | 
|  | { | 
|  | unsigned long retval; | 
|  | unsigned char *p; | 
|  | unsigned char *startaddr = (unsigned char *) addr; | 
|  | unsigned char *endaddr = startaddr + len; | 
|  |  | 
|  | /* Start at the most significant end of the integer, and work towards | 
|  | the least significant.  */ | 
|  | retval = 0; | 
|  |  | 
|  | for (p = endaddr; p > startaddr;) | 
|  | retval = (retval << 8) | * -- p; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ft32_store_unsigned_integer (unsigned char *addr, int len, unsigned long val) | 
|  | { | 
|  | unsigned char *p; | 
|  | unsigned char *startaddr = (unsigned char *)addr; | 
|  | unsigned char *endaddr = startaddr + len; | 
|  |  | 
|  | for (p = startaddr; p < endaddr; p++) | 
|  | { | 
|  | *p = val & 0xff; | 
|  | val >>= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Align EA according to its size DW. | 
|  | * The FT32 ignores the low bit of a 16-bit addresss, | 
|  | * and the low two bits of a 32-bit address. | 
|  | */ | 
|  | static uint32_t ft32_align (uint32_t dw, uint32_t ea) | 
|  | { | 
|  | switch (dw) | 
|  | { | 
|  | case 1: | 
|  | ea &= ~1; | 
|  | break; | 
|  | case 2: | 
|  | ea &= ~3; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ea; | 
|  | } | 
|  |  | 
|  | /* Read an item from memory address EA, sized DW.  */ | 
|  | static uint32_t | 
|  | ft32_read_item (SIM_DESC sd, int dw, uint32_t ea) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | address_word cia = CPU_PC_GET (cpu); | 
|  | uint8_t byte[4]; | 
|  | uint32_t r; | 
|  |  | 
|  | ea = ft32_align (dw, ea); | 
|  |  | 
|  | switch (dw) { | 
|  | case 0: | 
|  | return sim_core_read_aligned_1 (cpu, cia, read_map, ea); | 
|  | case 1: | 
|  | return sim_core_read_aligned_2 (cpu, cia, read_map, ea); | 
|  | case 2: | 
|  | return sim_core_read_aligned_4 (cpu, cia, read_map, ea); | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write item V to memory address EA, sized DW.  */ | 
|  | static void | 
|  | ft32_write_item (SIM_DESC sd, int dw, uint32_t ea, uint32_t v) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | address_word cia = CPU_PC_GET (cpu); | 
|  | uint8_t byte[4]; | 
|  |  | 
|  | ea = ft32_align (dw, ea); | 
|  |  | 
|  | switch (dw) { | 
|  | case 0: | 
|  | sim_core_write_aligned_1 (cpu, cia, write_map, ea, v); | 
|  | break; | 
|  | case 1: | 
|  | sim_core_write_aligned_2 (cpu, cia, write_map, ea, v); | 
|  | break; | 
|  | case 2: | 
|  | sim_core_write_aligned_4 (cpu, cia, write_map, ea, v); | 
|  | break; | 
|  | default: | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ILLEGAL() \ | 
|  | sim_engine_halt (sd, cpu, NULL, insnpc, sim_signalled, SIM_SIGILL) | 
|  |  | 
|  | static uint32_t cpu_mem_read (SIM_DESC sd, uint32_t dw, uint32_t ea) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | uint32_t insnpc = ft32_cpu->pc; | 
|  | uint32_t r; | 
|  | uint8_t byte[4]; | 
|  |  | 
|  | ea &= 0x1ffff; | 
|  | if (ea & ~0xffff) | 
|  | { | 
|  | /* Simulate some IO devices */ | 
|  | switch (ea) | 
|  | { | 
|  | case 0x10000: | 
|  | return getchar (); | 
|  | case 0x1fff4: | 
|  | /* Read the simulator cycle timer.  */ | 
|  | return ft32_cpu->cycles / 100; | 
|  | default: | 
|  | sim_io_eprintf (sd, "Illegal IO read address %08x, pc %#x\n", | 
|  | ea, insnpc); | 
|  | ILLEGAL (); | 
|  | } | 
|  | } | 
|  | return ft32_read_item (sd, dw, RAM_BIAS + ea); | 
|  | } | 
|  |  | 
|  | static void cpu_mem_write (SIM_DESC sd, uint32_t dw, uint32_t ea, uint32_t d) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | ea &= 0x1ffff; | 
|  | if (ea & 0x10000) | 
|  | { | 
|  | /* Simulate some IO devices */ | 
|  | switch (ea) | 
|  | { | 
|  | case 0x10000: | 
|  | /* Console output */ | 
|  | putchar (d & 0xff); | 
|  | break; | 
|  | case 0x1fc80: | 
|  | /* Unlock the PM write port */ | 
|  | ft32_cpu->pm_unlock = (d == 0x1337f7d1); | 
|  | break; | 
|  | case 0x1fc84: | 
|  | /* Set the PM write address register */ | 
|  | ft32_cpu->pm_addr = d; | 
|  | break; | 
|  | case 0x1fc88: | 
|  | if (ft32_cpu->pm_unlock) | 
|  | { | 
|  | /* Write to PM.  */ | 
|  | ft32_write_item (sd, dw, ft32_cpu->pm_addr, d); | 
|  | ft32_cpu->pm_addr += 4; | 
|  | } | 
|  | break; | 
|  | case 0x1fffc: | 
|  | /* Normal exit.  */ | 
|  | sim_engine_halt (sd, cpu, NULL, ft32_cpu->pc, sim_exited, ft32_cpu->regs[0]); | 
|  | break; | 
|  | case 0x1fff8: | 
|  | sim_io_printf (sd, "Debug write %08x\n", d); | 
|  | break; | 
|  | default: | 
|  | sim_io_eprintf (sd, "Unknown IO write %08x to to %08x\n", d, ea); | 
|  | } | 
|  | } | 
|  | else | 
|  | ft32_write_item (sd, dw, RAM_BIAS + ea, d); | 
|  | } | 
|  |  | 
|  | #define GET_BYTE(ea)    cpu_mem_read (sd, 0, (ea)) | 
|  | #define PUT_BYTE(ea, d) cpu_mem_write (sd, 0, (ea), (d)) | 
|  |  | 
|  | /* LSBS (n) is a mask of the least significant N bits.  */ | 
|  | #define LSBS(n) ((1U << (n)) - 1) | 
|  |  | 
|  | static void ft32_push (SIM_DESC sd, uint32_t v) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | ft32_cpu->regs[FT32_HARD_SP] -= 4; | 
|  | ft32_cpu->regs[FT32_HARD_SP] &= 0xffff; | 
|  | cpu_mem_write (sd, 2, ft32_cpu->regs[FT32_HARD_SP], v); | 
|  | } | 
|  |  | 
|  | static uint32_t ft32_pop (SIM_DESC sd) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | uint32_t r = cpu_mem_read (sd, 2, ft32_cpu->regs[FT32_HARD_SP]); | 
|  | ft32_cpu->regs[FT32_HARD_SP] += 4; | 
|  | ft32_cpu->regs[FT32_HARD_SP] &= 0xffff; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* Extract the low SIZ bits of N as an unsigned number.  */ | 
|  | static int nunsigned (int siz, int n) | 
|  | { | 
|  | return n & LSBS (siz); | 
|  | } | 
|  |  | 
|  | /* Extract the low SIZ bits of N as a signed number.  */ | 
|  | static int nsigned (int siz, int n) | 
|  | { | 
|  | int shift = (sizeof (int) * 8) - siz; | 
|  | return (n << shift) >> shift; | 
|  | } | 
|  |  | 
|  | /* Signed division N / D, matching hw behavior for (MIN_INT, -1).  */ | 
|  | static uint32_t ft32sdiv (uint32_t n, uint32_t d) | 
|  | { | 
|  | if (n == 0x80000000UL && d == 0xffffffffUL) | 
|  | return 0x80000000UL; | 
|  | else | 
|  | return (uint32_t)((int)n / (int)d); | 
|  | } | 
|  |  | 
|  | /* Signed modulus N % D, matching hw behavior for (MIN_INT, -1).  */ | 
|  | static uint32_t ft32smod (uint32_t n, uint32_t d) | 
|  | { | 
|  | if (n == 0x80000000UL && d == 0xffffffffUL) | 
|  | return 0; | 
|  | else | 
|  | return (uint32_t)((int)n % (int)d); | 
|  | } | 
|  |  | 
|  | /* Circular rotate right N by B bits.  */ | 
|  | static uint32_t ror (uint32_t n, uint32_t b) | 
|  | { | 
|  | b &= 31; | 
|  | return (n >> b) | (n << (32 - b)); | 
|  | } | 
|  |  | 
|  | /* Implement the BINS machine instruction. | 
|  | See FT32 Programmer's Reference for details.  */ | 
|  | static uint32_t bins (uint32_t d, uint32_t f, uint32_t len, uint32_t pos) | 
|  | { | 
|  | uint32_t bitmask = LSBS (len) << pos; | 
|  | return (d & ~bitmask) | ((f << pos) & bitmask); | 
|  | } | 
|  |  | 
|  | /* Implement the FLIP machine instruction. | 
|  | See FT32 Programmer's Reference for details.  */ | 
|  | static uint32_t flip (uint32_t x, uint32_t b) | 
|  | { | 
|  | if (b & 1) | 
|  | x = (x & 0x55555555) <<  1 | (x & 0xAAAAAAAA) >>  1; | 
|  | if (b & 2) | 
|  | x = (x & 0x33333333) <<  2 | (x & 0xCCCCCCCC) >>  2; | 
|  | if (b & 4) | 
|  | x = (x & 0x0F0F0F0F) <<  4 | (x & 0xF0F0F0F0) >>  4; | 
|  | if (b & 8) | 
|  | x = (x & 0x00FF00FF) <<  8 | (x & 0xFF00FF00) >>  8; | 
|  | if (b & 16) | 
|  | x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static void | 
|  | step_once (SIM_DESC sd) | 
|  | { | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | address_word cia = CPU_PC_GET (cpu); | 
|  | uint32_t inst; | 
|  | uint32_t dw; | 
|  | uint32_t cb; | 
|  | uint32_t r_d; | 
|  | uint32_t cr; | 
|  | uint32_t cv; | 
|  | uint32_t bt; | 
|  | uint32_t r_1; | 
|  | uint32_t rimm; | 
|  | uint32_t r_2; | 
|  | uint32_t k20; | 
|  | uint32_t pa; | 
|  | uint32_t aa; | 
|  | uint32_t k16; | 
|  | uint32_t k15; | 
|  | uint32_t al; | 
|  | uint32_t r_1v; | 
|  | uint32_t rimmv; | 
|  | uint32_t bit_pos; | 
|  | uint32_t bit_len; | 
|  | uint32_t upper; | 
|  | uint32_t insnpc; | 
|  | unsigned int sc[2]; | 
|  | int isize; | 
|  |  | 
|  | inst = ft32_read_item (sd, 2, ft32_cpu->pc); | 
|  | ft32_cpu->cycles += 1; | 
|  |  | 
|  | if ((STATE_ARCHITECTURE (sd)->mach == bfd_mach_ft32b) | 
|  | && ft32_decode_shortcode (ft32_cpu->pc, inst, sc)) | 
|  | { | 
|  | if ((ft32_cpu->pc & 3) == 0) | 
|  | inst = sc[0]; | 
|  | else | 
|  | inst = sc[1]; | 
|  | isize = 2; | 
|  | } | 
|  | else | 
|  | isize = 4; | 
|  |  | 
|  | /* Handle "call 8" (which is FT32's "break" equivalent) here.  */ | 
|  | if (inst == 0x00340002) | 
|  | { | 
|  | sim_engine_halt (sd, cpu, NULL, | 
|  | ft32_cpu->pc, | 
|  | sim_stopped, SIM_SIGTRAP); | 
|  | goto escape; | 
|  | } | 
|  |  | 
|  | dw   =              (inst >> FT32_FLD_DW_BIT) & LSBS (FT32_FLD_DW_SIZ); | 
|  | cb   =              (inst >> FT32_FLD_CB_BIT) & LSBS (FT32_FLD_CB_SIZ); | 
|  | r_d  =              (inst >> FT32_FLD_R_D_BIT) & LSBS (FT32_FLD_R_D_SIZ); | 
|  | cr   =              (inst >> FT32_FLD_CR_BIT) & LSBS (FT32_FLD_CR_SIZ); | 
|  | cv   =              (inst >> FT32_FLD_CV_BIT) & LSBS (FT32_FLD_CV_SIZ); | 
|  | bt   =              (inst >> FT32_FLD_BT_BIT) & LSBS (FT32_FLD_BT_SIZ); | 
|  | r_1  =              (inst >> FT32_FLD_R_1_BIT) & LSBS (FT32_FLD_R_1_SIZ); | 
|  | rimm =              (inst >> FT32_FLD_RIMM_BIT) & LSBS (FT32_FLD_RIMM_SIZ); | 
|  | r_2  =              (inst >> FT32_FLD_R_2_BIT) & LSBS (FT32_FLD_R_2_SIZ); | 
|  | k20  = nsigned (20, (inst >> FT32_FLD_K20_BIT) & LSBS (FT32_FLD_K20_SIZ)); | 
|  | pa   =              (inst >> FT32_FLD_PA_BIT) & LSBS (FT32_FLD_PA_SIZ); | 
|  | aa   =              (inst >> FT32_FLD_AA_BIT) & LSBS (FT32_FLD_AA_SIZ); | 
|  | k16  =              (inst >> FT32_FLD_K16_BIT) & LSBS (FT32_FLD_K16_SIZ); | 
|  | k15  =              (inst >> FT32_FLD_K15_BIT) & LSBS (FT32_FLD_K15_SIZ); | 
|  | if (k15 & 0x80) | 
|  | k15 ^= 0x7f00; | 
|  | if (k15 & 0x4000) | 
|  | k15 -= 0x8000; | 
|  | al   =              (inst >> FT32_FLD_AL_BIT) & LSBS (FT32_FLD_AL_SIZ); | 
|  |  | 
|  | r_1v = ft32_cpu->regs[r_1]; | 
|  | rimmv = (rimm & 0x400) ? nsigned (10, rimm) : ft32_cpu->regs[rimm & 0x1f]; | 
|  |  | 
|  | bit_pos = rimmv & 31; | 
|  | bit_len = 0xf & (rimmv >> 5); | 
|  | if (bit_len == 0) | 
|  | bit_len = 16; | 
|  |  | 
|  | upper = (inst >> 27); | 
|  |  | 
|  | insnpc = ft32_cpu->pc; | 
|  | ft32_cpu->pc += isize; | 
|  | switch (upper) | 
|  | { | 
|  | case FT32_PAT_TOC: | 
|  | case FT32_PAT_TOCI: | 
|  | { | 
|  | int take = (cr == 3) || ((1 & (ft32_cpu->regs[28 + cr] >> cb)) == cv); | 
|  | if (take) | 
|  | { | 
|  | ft32_cpu->cycles += 1; | 
|  | if (bt) | 
|  | ft32_push (sd, ft32_cpu->pc); /* this is a call.  */ | 
|  | if (upper == FT32_PAT_TOC) | 
|  | ft32_cpu->pc = pa << 2; | 
|  | else | 
|  | ft32_cpu->pc = ft32_cpu->regs[r_2]; | 
|  | if (ft32_cpu->pc == 0x8) | 
|  | goto escape; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_ALUOP: | 
|  | case FT32_PAT_CMPOP: | 
|  | { | 
|  | uint32_t result; | 
|  | switch (al) | 
|  | { | 
|  | case 0x0: result = r_1v + rimmv; break; | 
|  | case 0x1: result = ror (r_1v, rimmv); break; | 
|  | case 0x2: result = r_1v - rimmv; break; | 
|  | case 0x3: result = (r_1v << 10) | (1023 & rimmv); break; | 
|  | case 0x4: result = r_1v & rimmv; break; | 
|  | case 0x5: result = r_1v | rimmv; break; | 
|  | case 0x6: result = r_1v ^ rimmv; break; | 
|  | case 0x7: result = ~(r_1v ^ rimmv); break; | 
|  | case 0x8: result = r_1v << rimmv; break; | 
|  | case 0x9: result = r_1v >> rimmv; break; | 
|  | case 0xa: result = (int32_t)r_1v >> rimmv; break; | 
|  | case 0xb: result = bins (r_1v, rimmv >> 10, bit_len, bit_pos); break; | 
|  | case 0xc: result = nsigned (bit_len, r_1v >> bit_pos); break; | 
|  | case 0xd: result = nunsigned (bit_len, r_1v >> bit_pos); break; | 
|  | case 0xe: result = flip (r_1v, rimmv); break; | 
|  | default: | 
|  | sim_io_eprintf (sd, "Unhandled alu %#x\n", al); | 
|  | ILLEGAL (); | 
|  | } | 
|  | if (upper == FT32_PAT_ALUOP) | 
|  | ft32_cpu->regs[r_d] = result; | 
|  | else | 
|  | { | 
|  | uint32_t dwmask = 0; | 
|  | int dwsiz = 0; | 
|  | int zero; | 
|  | int sign; | 
|  | int ahi; | 
|  | int bhi; | 
|  | int overflow; | 
|  | int carry; | 
|  | int bit; | 
|  | uint64_t ra; | 
|  | uint64_t rb; | 
|  | int above; | 
|  | int greater; | 
|  | int greatereq; | 
|  |  | 
|  | switch (dw) | 
|  | { | 
|  | case 0: dwsiz = 7;  dwmask = 0xffU; break; | 
|  | case 1: dwsiz = 15; dwmask = 0xffffU; break; | 
|  | case 2: dwsiz = 31; dwmask = 0xffffffffU; break; | 
|  | } | 
|  |  | 
|  | zero = (0 == (result & dwmask)); | 
|  | sign = 1 & (result >> dwsiz); | 
|  | ahi = 1 & (r_1v >> dwsiz); | 
|  | bhi = 1 & (rimmv >> dwsiz); | 
|  | overflow = (sign != ahi) & (ahi == !bhi); | 
|  | bit = (dwsiz + 1); | 
|  | ra = r_1v & dwmask; | 
|  | rb = rimmv & dwmask; | 
|  | switch (al) | 
|  | { | 
|  | case 0x0: carry = 1 & ((ra + rb) >> bit); break; | 
|  | case 0x2: carry = 1 & ((ra - rb) >> bit); break; | 
|  | default:  carry = 0; break; | 
|  | } | 
|  | above = (!carry & !zero); | 
|  | greater = (sign == overflow) & !zero; | 
|  | greatereq = (sign == overflow); | 
|  |  | 
|  | ft32_cpu->regs[r_d] = ( | 
|  | (above << 6) | | 
|  | (greater << 5) | | 
|  | (greatereq << 4) | | 
|  | (sign << 3) | | 
|  | (overflow << 2) | | 
|  | (carry << 1) | | 
|  | (zero << 0)); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LDK: | 
|  | ft32_cpu->regs[r_d] = k20; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LPM: | 
|  | ft32_cpu->regs[r_d] = ft32_read_item (sd, dw, pa << 2); | 
|  | ft32_cpu->cycles += 1; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LPMI: | 
|  | ft32_cpu->regs[r_d] = ft32_read_item (sd, dw, ft32_cpu->regs[r_1] + k15); | 
|  | ft32_cpu->cycles += 1; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_STA: | 
|  | cpu_mem_write (sd, dw, aa, ft32_cpu->regs[r_d]); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_STI: | 
|  | cpu_mem_write (sd, dw, ft32_cpu->regs[r_d] + k15, ft32_cpu->regs[r_1]); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LDA: | 
|  | ft32_cpu->regs[r_d] = cpu_mem_read (sd, dw, aa); | 
|  | ft32_cpu->cycles += 1; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LDI: | 
|  | ft32_cpu->regs[r_d] = cpu_mem_read (sd, dw, ft32_cpu->regs[r_1] + k15); | 
|  | ft32_cpu->cycles += 1; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_EXA: | 
|  | { | 
|  | uint32_t tmp; | 
|  | tmp = cpu_mem_read (sd, dw, aa); | 
|  | cpu_mem_write (sd, dw, aa, ft32_cpu->regs[r_d]); | 
|  | ft32_cpu->regs[r_d] = tmp; | 
|  | ft32_cpu->cycles += 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_EXI: | 
|  | { | 
|  | uint32_t tmp; | 
|  | tmp = cpu_mem_read (sd, dw, ft32_cpu->regs[r_1] + k15); | 
|  | cpu_mem_write (sd, dw, ft32_cpu->regs[r_1] + k15, ft32_cpu->regs[r_d]); | 
|  | ft32_cpu->regs[r_d] = tmp; | 
|  | ft32_cpu->cycles += 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_PUSH: | 
|  | ft32_push (sd, r_1v); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_LINK: | 
|  | ft32_push (sd, ft32_cpu->regs[r_d]); | 
|  | ft32_cpu->regs[r_d] = ft32_cpu->regs[FT32_HARD_SP]; | 
|  | ft32_cpu->regs[FT32_HARD_SP] -= k16; | 
|  | ft32_cpu->regs[FT32_HARD_SP] &= 0xffff; | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_UNLINK: | 
|  | ft32_cpu->regs[FT32_HARD_SP] = ft32_cpu->regs[r_d]; | 
|  | ft32_cpu->regs[FT32_HARD_SP] &= 0xffff; | 
|  | ft32_cpu->regs[r_d] = ft32_pop (sd); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_POP: | 
|  | ft32_cpu->cycles += 1; | 
|  | ft32_cpu->regs[r_d] = ft32_pop (sd); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_RETURN: | 
|  | ft32_cpu->pc = ft32_pop (sd); | 
|  | break; | 
|  |  | 
|  | case FT32_PAT_FFUOP: | 
|  | switch (al) | 
|  | { | 
|  | case 0x0: | 
|  | ft32_cpu->regs[r_d] = r_1v / rimmv; | 
|  | break; | 
|  | case 0x1: | 
|  | ft32_cpu->regs[r_d] = r_1v % rimmv; | 
|  | break; | 
|  | case 0x2: | 
|  | ft32_cpu->regs[r_d] = ft32sdiv (r_1v, rimmv); | 
|  | break; | 
|  | case 0x3: | 
|  | ft32_cpu->regs[r_d] = ft32smod (r_1v, rimmv); | 
|  | break; | 
|  |  | 
|  | case 0x4: | 
|  | { | 
|  | /* strcmp instruction.  */ | 
|  | uint32_t a = r_1v; | 
|  | uint32_t b = rimmv; | 
|  | uint32_t i = 0; | 
|  | while ((GET_BYTE (a + i) != 0) && | 
|  | (GET_BYTE (a + i) == GET_BYTE (b + i))) | 
|  | i++; | 
|  | ft32_cpu->regs[r_d] = GET_BYTE (a + i) - GET_BYTE (b + i); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 0x5: | 
|  | { | 
|  | /* memcpy instruction.  */ | 
|  | uint32_t src = r_1v; | 
|  | uint32_t dst = ft32_cpu->regs[r_d]; | 
|  | uint32_t i; | 
|  | for (i = 0; i < (rimmv & 0x7fff); i++) | 
|  | PUT_BYTE (dst + i, GET_BYTE (src + i)); | 
|  | } | 
|  | break; | 
|  | case 0x6: | 
|  | { | 
|  | /* strlen instruction.  */ | 
|  | uint32_t src = r_1v; | 
|  | uint32_t i; | 
|  | for (i = 0; GET_BYTE (src + i) != 0; i++) | 
|  | ; | 
|  | ft32_cpu->regs[r_d] = i; | 
|  | } | 
|  | break; | 
|  | case 0x7: | 
|  | { | 
|  | /* memset instruction.  */ | 
|  | uint32_t dst = ft32_cpu->regs[r_d]; | 
|  | uint32_t i; | 
|  | for (i = 0; i < (rimmv & 0x7fff); i++) | 
|  | PUT_BYTE (dst + i, r_1v); | 
|  | } | 
|  | break; | 
|  | case 0x8: | 
|  | ft32_cpu->regs[r_d] = r_1v * rimmv; | 
|  | break; | 
|  | case 0x9: | 
|  | ft32_cpu->regs[r_d] = ((uint64_t)r_1v * (uint64_t)rimmv) >> 32; | 
|  | break; | 
|  | case 0xa: | 
|  | { | 
|  | /* stpcpy instruction.  */ | 
|  | uint32_t src = r_1v; | 
|  | uint32_t dst = ft32_cpu->regs[r_d]; | 
|  | uint32_t i; | 
|  | for (i = 0; GET_BYTE (src + i) != 0; i++) | 
|  | PUT_BYTE (dst + i, GET_BYTE (src + i)); | 
|  | PUT_BYTE (dst + i, 0); | 
|  | ft32_cpu->regs[r_d] = dst + i; | 
|  | } | 
|  | break; | 
|  | case 0xe: | 
|  | { | 
|  | /* streamout instruction.  */ | 
|  | uint32_t i; | 
|  | uint32_t src = ft32_cpu->regs[r_1]; | 
|  | for (i = 0; i < rimmv; i += (1 << dw)) | 
|  | { | 
|  | cpu_mem_write (sd, | 
|  | dw, | 
|  | ft32_cpu->regs[r_d], | 
|  | cpu_mem_read (sd, dw, src)); | 
|  | src += (1 << dw); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | sim_io_eprintf (sd, "Unhandled ffu %#x at %08x\n", al, insnpc); | 
|  | ILLEGAL (); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | sim_io_eprintf (sd, "Unhandled pattern %d at %08x\n", upper, insnpc); | 
|  | ILLEGAL (); | 
|  | } | 
|  | ft32_cpu->num_i++; | 
|  |  | 
|  | escape: | 
|  | ; | 
|  | } | 
|  |  | 
|  | void | 
|  | sim_engine_run (SIM_DESC sd, | 
|  | int next_cpu_nr,  /* ignore  */ | 
|  | int nr_cpus,      /* ignore  */ | 
|  | int siggnal)      /* ignore  */ | 
|  | { | 
|  | sim_cpu *cpu; | 
|  |  | 
|  | SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); | 
|  |  | 
|  | cpu = STATE_CPU (sd, 0); | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | step_once (sd); | 
|  | if (sim_events_tick (sd)) | 
|  | sim_events_process (sd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint32_t * | 
|  | ft32_lookup_register (SIM_CPU *cpu, int nr) | 
|  | { | 
|  | /* Handle the register number translation here. | 
|  | * Sim registers are 0-31. | 
|  | * Other tools (gcc, gdb) use: | 
|  | * 0 - fp | 
|  | * 1 - sp | 
|  | * 2 - r0 | 
|  | * 31 - cc | 
|  | */ | 
|  |  | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  |  | 
|  | if ((nr < 0) || (nr > 32)) | 
|  | { | 
|  | sim_io_eprintf (CPU_STATE (cpu), "unknown register %i\n", nr); | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | switch (nr) | 
|  | { | 
|  | case FT32_FP_REGNUM: | 
|  | return &ft32_cpu->regs[FT32_HARD_FP]; | 
|  | case FT32_SP_REGNUM: | 
|  | return &ft32_cpu->regs[FT32_HARD_SP]; | 
|  | case FT32_CC_REGNUM: | 
|  | return &ft32_cpu->regs[FT32_HARD_CC]; | 
|  | case FT32_PC_REGNUM: | 
|  | return &ft32_cpu->pc; | 
|  | default: | 
|  | return &ft32_cpu->regs[nr - 2]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | ft32_reg_store (SIM_CPU *cpu, | 
|  | int rn, | 
|  | const void *memory, | 
|  | int length) | 
|  | { | 
|  | if (0 <= rn && rn <= 32) | 
|  | { | 
|  | if (length == 4) | 
|  | *ft32_lookup_register (cpu, rn) = ft32_extract_unsigned_integer (memory, 4); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | ft32_reg_fetch (SIM_CPU *cpu, | 
|  | int rn, | 
|  | void *memory, | 
|  | int length) | 
|  | { | 
|  | if (0 <= rn && rn <= 32) | 
|  | { | 
|  | if (length == 4) | 
|  | ft32_store_unsigned_integer (memory, 4, *ft32_lookup_register (cpu, rn)); | 
|  |  | 
|  | return 4; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static sim_cia | 
|  | ft32_pc_get (SIM_CPU *cpu) | 
|  | { | 
|  | return FT32_SIM_CPU (cpu)->pc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | ft32_pc_set (SIM_CPU *cpu, sim_cia newpc) | 
|  | { | 
|  | FT32_SIM_CPU (cpu)->pc = newpc; | 
|  | } | 
|  |  | 
|  | /* Cover function of sim_state_free to free the cpu buffers as well.  */ | 
|  |  | 
|  | static void | 
|  | free_state (SIM_DESC sd) | 
|  | { | 
|  | if (STATE_MODULES (sd) != NULL) | 
|  | sim_module_uninstall (sd); | 
|  | sim_cpu_free_all (sd); | 
|  | sim_state_free (sd); | 
|  | } | 
|  |  | 
|  | SIM_DESC | 
|  | sim_open (SIM_OPEN_KIND kind, | 
|  | host_callback *cb, | 
|  | struct bfd *abfd, | 
|  | char * const *argv) | 
|  | { | 
|  | char c; | 
|  | size_t i; | 
|  | SIM_DESC sd = sim_state_alloc (kind, cb); | 
|  |  | 
|  | /* Set default options before parsing user options.  */ | 
|  | current_alignment = STRICT_ALIGNMENT; | 
|  | current_target_byte_order = BFD_ENDIAN_LITTLE; | 
|  |  | 
|  | /* The cpu data is kept in a separately allocated chunk of memory.  */ | 
|  | if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct ft32_cpu_state)) | 
|  | != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The parser will print an error message for us, so we silently return.  */ | 
|  | if (sim_parse_args (sd, argv) != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate external memory if none specified by user. | 
|  | Use address 4 here in case the user wanted address 0 unmapped.  */ | 
|  | if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0) | 
|  | { | 
|  | sim_do_command (sd, "memory region 0x00000000,0x40000"); | 
|  | sim_do_command (sd, "memory region 0x800000,0x10000"); | 
|  | } | 
|  |  | 
|  | /* Check for/establish the reference program image.  */ | 
|  | if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Configure/verify the target byte order and other runtime | 
|  | configuration options.  */ | 
|  | if (sim_config (sd) != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (sim_post_argv_init (sd) != SIM_RC_OK) | 
|  | { | 
|  | free_state (sd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* CPU specific initialization.  */ | 
|  | for (i = 0; i < MAX_NR_PROCESSORS; ++i) | 
|  | { | 
|  | SIM_CPU *cpu = STATE_CPU (sd, i); | 
|  |  | 
|  | CPU_REG_FETCH (cpu) = ft32_reg_fetch; | 
|  | CPU_REG_STORE (cpu) = ft32_reg_store; | 
|  | CPU_PC_FETCH (cpu) = ft32_pc_get; | 
|  | CPU_PC_STORE (cpu) = ft32_pc_set; | 
|  | } | 
|  |  | 
|  | return sd; | 
|  | } | 
|  |  | 
|  | SIM_RC | 
|  | sim_create_inferior (SIM_DESC sd, | 
|  | struct bfd *abfd, | 
|  | char * const *argv, | 
|  | char * const *env) | 
|  | { | 
|  | uint32_t addr; | 
|  | sim_cpu *cpu = STATE_CPU (sd, 0); | 
|  | struct ft32_cpu_state *ft32_cpu = FT32_SIM_CPU (cpu); | 
|  | host_callback *cb = STATE_CALLBACK (sd); | 
|  |  | 
|  | /* Set the PC.  */ | 
|  | if (abfd != NULL) | 
|  | addr = bfd_get_start_address (abfd); | 
|  | else | 
|  | addr = 0; | 
|  |  | 
|  | /* Standalone mode (i.e. `run`) will take care of the argv for us in | 
|  | sim_open() -> sim_parse_args().  But in debug mode (i.e. 'target sim' | 
|  | with `gdb`), we need to handle it because the user can change the | 
|  | argv on the fly via gdb's 'run'.  */ | 
|  | if (STATE_PROG_ARGV (sd) != argv) | 
|  | { | 
|  | freeargv (STATE_PROG_ARGV (sd)); | 
|  | STATE_PROG_ARGV (sd) = dupargv (argv); | 
|  | } | 
|  |  | 
|  | if (STATE_PROG_ENVP (sd) != env) | 
|  | { | 
|  | freeargv (STATE_PROG_ENVP (sd)); | 
|  | STATE_PROG_ENVP (sd) = dupargv (env); | 
|  | } | 
|  |  | 
|  | cb->argv = STATE_PROG_ARGV (sd); | 
|  | cb->envp = STATE_PROG_ENVP (sd); | 
|  |  | 
|  | ft32_cpu->regs[FT32_HARD_SP] = addr; | 
|  | ft32_cpu->num_i = 0; | 
|  | ft32_cpu->cycles = 0; | 
|  | ft32_cpu->next_tick_cycle = 100000; | 
|  |  | 
|  | return SIM_RC_OK; | 
|  | } |