| /* BFD back-end for Renesas Super-H COFF binaries. | 
 |    Copyright (C) 1993-2023 Free Software Foundation, Inc. | 
 |    Contributed by Cygnus Support. | 
 |    Written by Steve Chamberlain, <sac@cygnus.com>. | 
 |    Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>. | 
 |  | 
 |    This file is part of BFD, the Binary File Descriptor library. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program; if not, write to the Free Software | 
 |    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 |    MA 02110-1301, USA.  */ | 
 |  | 
 | #include "sysdep.h" | 
 | #include "bfd.h" | 
 | #include "libiberty.h" | 
 | #include "libbfd.h" | 
 | #include "bfdlink.h" | 
 | #include "coff/sh.h" | 
 | #include "coff/internal.h" | 
 |  | 
 | #undef  bfd_pe_print_pdata | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | #include "coff/pe.h" | 
 |  | 
 | #ifndef COFF_IMAGE_WITH_PE | 
 | static bool sh_align_load_span | 
 |   (bfd *, asection *, bfd_byte *, | 
 |    bool (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma), | 
 |    void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bool *); | 
 |  | 
 | #define _bfd_sh_align_load_span sh_align_load_span | 
 | #endif | 
 |  | 
 | #define	bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata | 
 |  | 
 | #else | 
 |  | 
 | #define	bfd_pe_print_pdata   NULL | 
 |  | 
 | #endif /* COFF_WITH_PE.  */ | 
 |  | 
 | #include "libcoff.h" | 
 |  | 
 | /* Internal functions.  */ | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | /* Can't build import tables with 2**4 alignment.  */ | 
 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2 | 
 | #else | 
 | /* Default section alignment to 2**4.  */ | 
 | #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4 | 
 | #endif | 
 |  | 
 | #ifdef COFF_IMAGE_WITH_PE | 
 | /* Align PE executables.  */ | 
 | #define COFF_PAGE_SIZE 0x1000 | 
 | #endif | 
 |  | 
 | /* Generate long file names.  */ | 
 | #define COFF_LONG_FILENAMES | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | /* Return TRUE if this relocation should | 
 |    appear in the output .reloc section.  */ | 
 |  | 
 | static bool | 
 | in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED, | 
 | 	    reloc_howto_type * howto) | 
 | { | 
 |   return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE; | 
 | } | 
 | #endif | 
 |  | 
 | static bfd_reloc_status_type | 
 | sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); | 
 | static bool | 
 | sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *, | 
 | 		     bfd_byte *, struct internal_reloc *, | 
 | 		     struct internal_syment *, asection **); | 
 | static bool | 
 | sh_align_loads (bfd *, asection *, struct internal_reloc *, | 
 | 		bfd_byte *, bool *); | 
 |  | 
 | /* The supported relocations.  There are a lot of relocations defined | 
 |    in coff/internal.h which we do not expect to ever see.  */ | 
 | static reloc_howto_type sh_coff_howtos[] = | 
 | { | 
 |   EMPTY_HOWTO (0), | 
 |   EMPTY_HOWTO (1), | 
 | #ifdef COFF_WITH_PE | 
 |   /* Windows CE */ | 
 |   HOWTO (R_SH_IMM32CE,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_imm32ce",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 | #else | 
 |   EMPTY_HOWTO (2), | 
 | #endif | 
 |   EMPTY_HOWTO (3), /* R_SH_PCREL8 */ | 
 |   EMPTY_HOWTO (4), /* R_SH_PCREL16 */ | 
 |   EMPTY_HOWTO (5), /* R_SH_HIGH8 */ | 
 |   EMPTY_HOWTO (6), /* R_SH_IMM24 */ | 
 |   EMPTY_HOWTO (7), /* R_SH_LOW16 */ | 
 |   EMPTY_HOWTO (8), | 
 |   EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */ | 
 |  | 
 |   HOWTO (R_SH_PCDISP8BY2,	/* type */ | 
 | 	 1,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 8,			/* bitsize */ | 
 | 	 true,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_signed, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_pcdisp8by2",	/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xff,			/* src_mask */ | 
 | 	 0xff,			/* dst_mask */ | 
 | 	 true),			/* pcrel_offset */ | 
 |  | 
 |   EMPTY_HOWTO (11), /* R_SH_PCDISP8 */ | 
 |  | 
 |   HOWTO (R_SH_PCDISP,		/* type */ | 
 | 	 1,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 12,			/* bitsize */ | 
 | 	 true,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_signed, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_pcdisp12by2",	/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xfff,			/* src_mask */ | 
 | 	 0xfff,			/* dst_mask */ | 
 | 	 true),			/* pcrel_offset */ | 
 |  | 
 |   EMPTY_HOWTO (13), | 
 |  | 
 |   HOWTO (R_SH_IMM32,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_imm32",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   EMPTY_HOWTO (15), | 
 | #ifdef COFF_WITH_PE | 
 |   HOWTO (R_SH_IMAGEBASE,	/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "rva32",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 | #else | 
 |   EMPTY_HOWTO (16), /* R_SH_IMM8 */ | 
 | #endif | 
 |   EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */ | 
 |   EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */ | 
 |   EMPTY_HOWTO (19), /* R_SH_IMM4 */ | 
 |   EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */ | 
 |   EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */ | 
 |  | 
 |   HOWTO (R_SH_PCRELIMM8BY2,	/* type */ | 
 | 	 1,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 8,			/* bitsize */ | 
 | 	 true,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_unsigned, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_pcrelimm8by2",	/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xff,			/* src_mask */ | 
 | 	 0xff,			/* dst_mask */ | 
 | 	 true),			/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_PCRELIMM8BY4,	/* type */ | 
 | 	 2,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 8,			/* bitsize */ | 
 | 	 true,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_unsigned, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_pcrelimm8by4",	/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xff,			/* src_mask */ | 
 | 	 0xff,			/* dst_mask */ | 
 | 	 true),			/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_IMM16,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 16,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_imm16",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffff,		/* src_mask */ | 
 | 	 0xffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_SWITCH16,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 16,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_switch16",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffff,		/* src_mask */ | 
 | 	 0xffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_SWITCH32,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_switch32",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_USES,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 2,			/* size */ | 
 | 	 16,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_uses",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffff,		/* src_mask */ | 
 | 	 0xffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_COUNT,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_count",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_ALIGN,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_align",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_CODE,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_code",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_DATA,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_data",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_LABEL,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 4,			/* size */ | 
 | 	 32,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_label",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xffffffff,		/* src_mask */ | 
 | 	 0xffffffff,		/* dst_mask */ | 
 | 	 false),		/* pcrel_offset */ | 
 |  | 
 |   HOWTO (R_SH_SWITCH8,		/* type */ | 
 | 	 0,			/* rightshift */ | 
 | 	 1,			/* size */ | 
 | 	 8,			/* bitsize */ | 
 | 	 false,			/* pc_relative */ | 
 | 	 0,			/* bitpos */ | 
 | 	 complain_overflow_bitfield, /* complain_on_overflow */ | 
 | 	 sh_reloc,		/* special_function */ | 
 | 	 "r_switch8",		/* name */ | 
 | 	 true,			/* partial_inplace */ | 
 | 	 0xff,			/* src_mask */ | 
 | 	 0xff,			/* dst_mask */ | 
 | 	 false)			/* pcrel_offset */ | 
 | }; | 
 |  | 
 | #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0]) | 
 |  | 
 | /* Check for a bad magic number.  */ | 
 | #define BADMAG(x) SHBADMAG(x) | 
 |  | 
 | /* Customize coffcode.h (this is not currently used).  */ | 
 | #define SH 1 | 
 |  | 
 | /* FIXME: This should not be set here.  */ | 
 | #define __A_MAGIC_SET__ | 
 |  | 
 | #ifndef COFF_WITH_PE | 
 | /* Swap the r_offset field in and out.  */ | 
 | #define SWAP_IN_RELOC_OFFSET  H_GET_32 | 
 | #define SWAP_OUT_RELOC_OFFSET H_PUT_32 | 
 |  | 
 | /* Swap out extra information in the reloc structure.  */ | 
 | #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\ | 
 |   do						\ | 
 |     {						\ | 
 |       dst->r_stuff[0] = 'S';			\ | 
 |       dst->r_stuff[1] = 'C';			\ | 
 |     }						\ | 
 |   while (0) | 
 | #endif | 
 |  | 
 | /* Get the value of a symbol, when performing a relocation.  */ | 
 |  | 
 | static long | 
 | get_symbol_value (asymbol *symbol) | 
 | { | 
 |   bfd_vma relocation; | 
 |  | 
 |   if (bfd_is_com_section (symbol->section)) | 
 |     relocation = 0; | 
 |   else | 
 |     relocation = (symbol->value + | 
 | 		  symbol->section->output_section->vma + | 
 | 		  symbol->section->output_offset); | 
 |  | 
 |   return relocation; | 
 | } | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | /* Convert an rtype to howto for the COFF backend linker. | 
 |    Copied from coff-i386.  */ | 
 | #define coff_rtype_to_howto coff_sh_rtype_to_howto | 
 |  | 
 |  | 
 | static reloc_howto_type * | 
 | coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED, | 
 | 			asection * sec, | 
 | 			struct internal_reloc * rel, | 
 | 			struct coff_link_hash_entry * h, | 
 | 			struct internal_syment * sym, | 
 | 			bfd_vma * addendp) | 
 | { | 
 |   reloc_howto_type * howto; | 
 |  | 
 |   howto = sh_coff_howtos + rel->r_type; | 
 |  | 
 |   *addendp = 0; | 
 |  | 
 |   if (howto->pc_relative) | 
 |     *addendp += sec->vma; | 
 |  | 
 |   if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0) | 
 |     { | 
 |       /* This is a common symbol.  The section contents include the | 
 | 	 size (sym->n_value) as an addend.  The relocate_section | 
 | 	 function will be adding in the final value of the symbol.  We | 
 | 	 need to subtract out the current size in order to get the | 
 | 	 correct result.  */ | 
 |       BFD_ASSERT (h != NULL); | 
 |     } | 
 |  | 
 |   if (howto->pc_relative) | 
 |     { | 
 |       *addendp -= 4; | 
 |  | 
 |       /* If the symbol is defined, then the generic code is going to | 
 | 	 add back the symbol value in order to cancel out an | 
 | 	 adjustment it made to the addend.  However, we set the addend | 
 | 	 to 0 at the start of this function.  We need to adjust here, | 
 | 	 to avoid the adjustment the generic code will make.  FIXME: | 
 | 	 This is getting a bit hackish.  */ | 
 |       if (sym != NULL && sym->n_scnum != 0) | 
 | 	*addendp -= sym->n_value; | 
 |     } | 
 |  | 
 |   if (rel->r_type == R_SH_IMAGEBASE) | 
 |     *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase; | 
 |  | 
 |   return howto; | 
 | } | 
 |  | 
 | #endif /* COFF_WITH_PE */ | 
 |  | 
 | /* This structure is used to map BFD reloc codes to SH PE relocs.  */ | 
 | struct shcoff_reloc_map | 
 | { | 
 |   bfd_reloc_code_real_type bfd_reloc_val; | 
 |   unsigned char shcoff_reloc_val; | 
 | }; | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | /* An array mapping BFD reloc codes to SH PE relocs.  */ | 
 | static const struct shcoff_reloc_map sh_reloc_map[] = | 
 | { | 
 |   { BFD_RELOC_32, R_SH_IMM32CE }, | 
 |   { BFD_RELOC_RVA, R_SH_IMAGEBASE }, | 
 |   { BFD_RELOC_CTOR, R_SH_IMM32CE }, | 
 | }; | 
 | #else | 
 | /* An array mapping BFD reloc codes to SH PE relocs.  */ | 
 | static const struct shcoff_reloc_map sh_reloc_map[] = | 
 | { | 
 |   { BFD_RELOC_32, R_SH_IMM32 }, | 
 |   { BFD_RELOC_CTOR, R_SH_IMM32 }, | 
 | }; | 
 | #endif | 
 |  | 
 | /* Given a BFD reloc code, return the howto structure for the | 
 |    corresponding SH PE reloc.  */ | 
 | #define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup | 
 | #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup | 
 |  | 
 | static reloc_howto_type * | 
 | sh_coff_reloc_type_lookup (bfd *abfd, | 
 | 			   bfd_reloc_code_real_type code) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = ARRAY_SIZE (sh_reloc_map); i--;) | 
 |     if (sh_reloc_map[i].bfd_reloc_val == code) | 
 |       return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val]; | 
 |  | 
 |   _bfd_error_handler (_("%pB: unsupported relocation type %#x"), | 
 | 		      abfd, (unsigned int) code); | 
 |   return NULL; | 
 | } | 
 |  | 
 | static reloc_howto_type * | 
 | sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 			   const char *r_name) | 
 | { | 
 |   unsigned int i; | 
 |  | 
 |   for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++) | 
 |     if (sh_coff_howtos[i].name != NULL | 
 | 	&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0) | 
 |       return &sh_coff_howtos[i]; | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* This macro is used in coffcode.h to get the howto corresponding to | 
 |    an internal reloc.  */ | 
 |  | 
 | #define RTYPE2HOWTO(relent, internal)		\ | 
 |   ((relent)->howto =				\ | 
 |    ((internal)->r_type < SH_COFF_HOWTO_COUNT	\ | 
 |     ? &sh_coff_howtos[(internal)->r_type]	\ | 
 |     : (reloc_howto_type *) NULL)) | 
 |  | 
 | /* This is the same as the macro in coffcode.h, except that it copies | 
 |    r_offset into reloc_entry->addend for some relocs.  */ | 
 | #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)		\ | 
 |   {								\ | 
 |     coff_symbol_type *coffsym = (coff_symbol_type *) NULL;	\ | 
 |     if (ptr && bfd_asymbol_bfd (ptr) != abfd)			\ | 
 |       coffsym = (obj_symbols (abfd)				\ | 
 | 		 + (cache_ptr->sym_ptr_ptr - symbols));		\ | 
 |     else if (ptr)						\ | 
 |       coffsym = coff_symbol_from (ptr);				\ | 
 |     if (coffsym != (coff_symbol_type *) NULL			\ | 
 | 	&& coffsym->native->u.syment.n_scnum == 0)		\ | 
 |       cache_ptr->addend = 0;					\ | 
 |     else if (ptr && bfd_asymbol_bfd (ptr) == abfd		\ | 
 | 	     && ptr->section != (asection *) NULL)		\ | 
 |       cache_ptr->addend = - (ptr->section->vma			\ | 
 | 			     + COFF_PE_ADDEND_BIAS (ptr));	\ | 
 |     else							\ | 
 |       cache_ptr->addend = 0;					\ | 
 |     if ((reloc).r_type == R_SH_SWITCH8				\ | 
 | 	|| (reloc).r_type == R_SH_SWITCH16			\ | 
 | 	|| (reloc).r_type == R_SH_SWITCH32			\ | 
 | 	|| (reloc).r_type == R_SH_USES				\ | 
 | 	|| (reloc).r_type == R_SH_COUNT				\ | 
 | 	|| (reloc).r_type == R_SH_ALIGN)			\ | 
 |       cache_ptr->addend = (reloc).r_offset;			\ | 
 |   } | 
 |  | 
 | /* This is the howto function for the SH relocations.  */ | 
 |  | 
 | static bfd_reloc_status_type | 
 | sh_reloc (bfd *      abfd, | 
 | 	  arelent *  reloc_entry, | 
 | 	  asymbol *  symbol_in, | 
 | 	  void *     data, | 
 | 	  asection * input_section, | 
 | 	  bfd *      output_bfd, | 
 | 	  char **    error_message ATTRIBUTE_UNUSED) | 
 | { | 
 |   bfd_vma insn; | 
 |   bfd_vma sym_value; | 
 |   unsigned short r_type; | 
 |   bfd_vma addr = reloc_entry->address; | 
 |   bfd_byte *hit_data = addr + (bfd_byte *) data; | 
 |  | 
 |   r_type = reloc_entry->howto->type; | 
 |  | 
 |   if (output_bfd != NULL) | 
 |     { | 
 |       /* Partial linking--do nothing.  */ | 
 |       reloc_entry->address += input_section->output_offset; | 
 |       return bfd_reloc_ok; | 
 |     } | 
 |  | 
 |   /* Almost all relocs have to do with relaxing.  If any work must be | 
 |      done for them, it has been done in sh_relax_section.  */ | 
 |   if (r_type != R_SH_IMM32 | 
 | #ifdef COFF_WITH_PE | 
 |       && r_type != R_SH_IMM32CE | 
 |       && r_type != R_SH_IMAGEBASE | 
 | #endif | 
 |       && (r_type != R_SH_PCDISP | 
 | 	  || (symbol_in->flags & BSF_LOCAL) != 0)) | 
 |     return bfd_reloc_ok; | 
 |  | 
 |   if (symbol_in != NULL | 
 |       && bfd_is_und_section (symbol_in->section)) | 
 |     return bfd_reloc_undefined; | 
 |  | 
 |   if (!bfd_reloc_offset_in_range (reloc_entry->howto, abfd, input_section, | 
 | 				  addr)) | 
 |     return bfd_reloc_outofrange; | 
 |  | 
 |   sym_value = get_symbol_value (symbol_in); | 
 |  | 
 |   switch (r_type) | 
 |     { | 
 |     case R_SH_IMM32: | 
 | #ifdef COFF_WITH_PE | 
 |     case R_SH_IMM32CE: | 
 | #endif | 
 |       insn = bfd_get_32 (abfd, hit_data); | 
 |       insn += sym_value + reloc_entry->addend; | 
 |       bfd_put_32 (abfd, insn, hit_data); | 
 |       break; | 
 | #ifdef COFF_WITH_PE | 
 |     case R_SH_IMAGEBASE: | 
 |       insn = bfd_get_32 (abfd, hit_data); | 
 |       insn += sym_value + reloc_entry->addend; | 
 |       insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | 
 |       bfd_put_32 (abfd, insn, hit_data); | 
 |       break; | 
 | #endif | 
 |     case R_SH_PCDISP: | 
 |       insn = bfd_get_16 (abfd, hit_data); | 
 |       sym_value += reloc_entry->addend; | 
 |       sym_value -= (input_section->output_section->vma | 
 | 		    + input_section->output_offset | 
 | 		    + addr | 
 | 		    + 4); | 
 |       sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; | 
 |       insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); | 
 |       bfd_put_16 (abfd, insn, hit_data); | 
 |       if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) | 
 | 	return bfd_reloc_overflow; | 
 |       break; | 
 |     default: | 
 |       abort (); | 
 |       break; | 
 |     } | 
 |  | 
 |   return bfd_reloc_ok; | 
 | } | 
 |  | 
 | #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match | 
 |  | 
 | /* We can do relaxing.  */ | 
 | #define coff_bfd_relax_section sh_relax_section | 
 |  | 
 | /* We use the special COFF backend linker.  */ | 
 | #define coff_relocate_section sh_relocate_section | 
 |  | 
 | /* When relaxing, we need to use special code to get the relocated | 
 |    section contents.  */ | 
 | #define coff_bfd_get_relocated_section_contents \ | 
 |   sh_coff_get_relocated_section_contents | 
 |  | 
 | #include "coffcode.h" | 
 |  | 
 | static bool | 
 | sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int); | 
 |  | 
 | /* This function handles relaxing on the SH. | 
 |  | 
 |    Function calls on the SH look like this: | 
 |  | 
 |        movl  L1,r0 | 
 |        ... | 
 |        jsr   @r0 | 
 |        ... | 
 |      L1: | 
 |        .long function | 
 |  | 
 |    The compiler and assembler will cooperate to create R_SH_USES | 
 |    relocs on the jsr instructions.  The r_offset field of the | 
 |    R_SH_USES reloc is the PC relative offset to the instruction which | 
 |    loads the register (the r_offset field is computed as though it | 
 |    were a jump instruction, so the offset value is actually from four | 
 |    bytes past the instruction).  The linker can use this reloc to | 
 |    determine just which function is being called, and thus decide | 
 |    whether it is possible to replace the jsr with a bsr. | 
 |  | 
 |    If multiple function calls are all based on a single register load | 
 |    (i.e., the same function is called multiple times), the compiler | 
 |    guarantees that each function call will have an R_SH_USES reloc. | 
 |    Therefore, if the linker is able to convert each R_SH_USES reloc | 
 |    which refers to that address, it can safely eliminate the register | 
 |    load. | 
 |  | 
 |    When the assembler creates an R_SH_USES reloc, it examines it to | 
 |    determine which address is being loaded (L1 in the above example). | 
 |    It then counts the number of references to that address, and | 
 |    creates an R_SH_COUNT reloc at that address.  The r_offset field of | 
 |    the R_SH_COUNT reloc will be the number of references.  If the | 
 |    linker is able to eliminate a register load, it can use the | 
 |    R_SH_COUNT reloc to see whether it can also eliminate the function | 
 |    address. | 
 |  | 
 |    SH relaxing also handles another, unrelated, matter.  On the SH, if | 
 |    a load or store instruction is not aligned on a four byte boundary, | 
 |    the memory cycle interferes with the 32 bit instruction fetch, | 
 |    causing a one cycle bubble in the pipeline.  Therefore, we try to | 
 |    align load and store instructions on four byte boundaries if we | 
 |    can, by swapping them with one of the adjacent instructions.  */ | 
 |  | 
 | static bool | 
 | sh_relax_section (bfd *abfd, | 
 | 		  asection *sec, | 
 | 		  struct bfd_link_info *link_info, | 
 | 		  bool *again) | 
 | { | 
 |   struct internal_reloc *internal_relocs; | 
 |   bool have_code; | 
 |   struct internal_reloc *irel, *irelend; | 
 |   bfd_byte *contents = NULL; | 
 |  | 
 |   *again = false; | 
 |  | 
 |   if (bfd_link_relocatable (link_info) | 
 |       || (sec->flags & SEC_HAS_CONTENTS) == 0 | 
 |       || (sec->flags & SEC_RELOC) == 0 | 
 |       || sec->reloc_count == 0) | 
 |     return true; | 
 |  | 
 |   if (coff_section_data (abfd, sec) == NULL) | 
 |     { | 
 |       size_t amt = sizeof (struct coff_section_tdata); | 
 |       sec->used_by_bfd = bfd_zalloc (abfd, amt); | 
 |       if (sec->used_by_bfd == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   internal_relocs = (_bfd_coff_read_internal_relocs | 
 | 		     (abfd, sec, link_info->keep_memory, | 
 | 		      (bfd_byte *) NULL, false, | 
 | 		      (struct internal_reloc *) NULL)); | 
 |   if (internal_relocs == NULL) | 
 |     goto error_return; | 
 |  | 
 |   have_code = false; | 
 |  | 
 |   irelend = internal_relocs + sec->reloc_count; | 
 |   for (irel = internal_relocs; irel < irelend; irel++) | 
 |     { | 
 |       bfd_vma laddr, paddr, symval; | 
 |       unsigned short insn; | 
 |       struct internal_reloc *irelfn, *irelscan, *irelcount; | 
 |       struct internal_syment sym; | 
 |       bfd_signed_vma foff; | 
 |  | 
 |       if (irel->r_type == R_SH_CODE) | 
 | 	have_code = true; | 
 |  | 
 |       if (irel->r_type != R_SH_USES) | 
 | 	continue; | 
 |  | 
 |       /* Get the section contents.  */ | 
 |       if (contents == NULL) | 
 | 	{ | 
 | 	  if (coff_section_data (abfd, sec)->contents != NULL) | 
 | 	    contents = coff_section_data (abfd, sec)->contents; | 
 | 	  else | 
 | 	    { | 
 | 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | 
 | 		goto error_return; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* The r_offset field of the R_SH_USES reloc will point us to | 
 | 	 the register load.  The 4 is because the r_offset field is | 
 | 	 computed as though it were a jump offset, which are based | 
 | 	 from 4 bytes after the jump instruction.  */ | 
 |       laddr = irel->r_vaddr - sec->vma + 4; | 
 |       /* Careful to sign extend the 32-bit offset.  */ | 
 |       laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000; | 
 |       if (laddr >= sec->size) | 
 | 	{ | 
 | 	  /* xgettext: c-format */ | 
 | 	  _bfd_error_handler | 
 | 	    (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"), | 
 | 	     abfd, (uint64_t) irel->r_vaddr); | 
 | 	  continue; | 
 | 	} | 
 |       insn = bfd_get_16 (abfd, contents + laddr); | 
 |  | 
 |       /* If the instruction is not mov.l NN,rN, we don't know what to do.  */ | 
 |       if ((insn & 0xf000) != 0xd000) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext: c-format */ | 
 | 	    (_("%pB: %#" PRIx64 ": warning: R_SH_USES points to unrecognized insn %#x"), | 
 | 	     abfd, (uint64_t) irel->r_vaddr, insn); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Get the address from which the register is being loaded.  The | 
 | 	 displacement in the mov.l instruction is quadrupled.  It is a | 
 | 	 displacement from four bytes after the movl instruction, but, | 
 | 	 before adding in the PC address, two least significant bits | 
 | 	 of the PC are cleared.  We assume that the section is aligned | 
 | 	 on a four byte boundary.  */ | 
 |       paddr = insn & 0xff; | 
 |       paddr *= 4; | 
 |       paddr += (laddr + 4) &~ (bfd_vma) 3; | 
 |       if (paddr >= sec->size) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext: c-format */ | 
 | 	    (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"), | 
 | 	     abfd, (uint64_t) irel->r_vaddr); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Get the reloc for the address from which the register is | 
 | 	 being loaded.  This reloc will tell us which function is | 
 | 	 actually being called.  */ | 
 |       paddr += sec->vma; | 
 |       for (irelfn = internal_relocs; irelfn < irelend; irelfn++) | 
 | 	if (irelfn->r_vaddr == paddr | 
 | #ifdef COFF_WITH_PE | 
 | 	    && (irelfn->r_type == R_SH_IMM32 | 
 | 		|| irelfn->r_type == R_SH_IMM32CE | 
 | 		|| irelfn->r_type == R_SH_IMAGEBASE) | 
 |  | 
 | #else | 
 | 	    && irelfn->r_type == R_SH_IMM32 | 
 | #endif | 
 | 	    ) | 
 | 	  break; | 
 |       if (irelfn >= irelend) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext: c-format */ | 
 | 	    (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"), | 
 | 	     abfd, (uint64_t) paddr); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Get the value of the symbol referred to by the reloc.  */ | 
 |       if (! _bfd_coff_get_external_symbols (abfd)) | 
 | 	goto error_return; | 
 |       bfd_coff_swap_sym_in (abfd, | 
 | 			    ((bfd_byte *) obj_coff_external_syms (abfd) | 
 | 			     + (irelfn->r_symndx | 
 | 				* bfd_coff_symesz (abfd))), | 
 | 			    &sym); | 
 |       if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext: c-format */ | 
 | 	    (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"), | 
 | 	     abfd, (uint64_t) paddr); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (sym.n_sclass != C_EXT) | 
 | 	{ | 
 | 	  symval = (sym.n_value | 
 | 		    - sec->vma | 
 | 		    + sec->output_section->vma | 
 | 		    + sec->output_offset); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  struct coff_link_hash_entry *h; | 
 |  | 
 | 	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx]; | 
 | 	  BFD_ASSERT (h != NULL); | 
 | 	  if (h->root.type != bfd_link_hash_defined | 
 | 	      && h->root.type != bfd_link_hash_defweak) | 
 | 	    { | 
 | 	      /* This appears to be a reference to an undefined | 
 | 		 symbol.  Just ignore it--it will be caught by the | 
 | 		 regular reloc processing.  */ | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  symval = (h->root.u.def.value | 
 | 		    + h->root.u.def.section->output_section->vma | 
 | 		    + h->root.u.def.section->output_offset); | 
 | 	} | 
 |  | 
 |       symval += bfd_get_32 (abfd, contents + paddr - sec->vma); | 
 |  | 
 |       /* See if this function call can be shortened.  */ | 
 |       foff = (symval | 
 | 	      - (irel->r_vaddr | 
 | 		 - sec->vma | 
 | 		 + sec->output_section->vma | 
 | 		 + sec->output_offset | 
 | 		 + 4)); | 
 |       if (foff < -0x1000 || foff >= 0x1000) | 
 | 	{ | 
 | 	  /* After all that work, we can't shorten this function call.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Shorten the function call.  */ | 
 |  | 
 |       /* For simplicity of coding, we are going to modify the section | 
 | 	 contents, the section relocs, and the BFD symbol table.  We | 
 | 	 must tell the rest of the code not to free up this | 
 | 	 information.  It would be possible to instead create a table | 
 | 	 of changes which have to be made, as is done in coff-mips.c; | 
 | 	 that would be more work, but would require less memory when | 
 | 	 the linker is run.  */ | 
 |  | 
 |       coff_section_data (abfd, sec)->relocs = internal_relocs; | 
 |       coff_section_data (abfd, sec)->contents = contents; | 
 |  | 
 |       /* Replace the jsr with a bsr.  */ | 
 |  | 
 |       /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and | 
 | 	 replace the jsr with a bsr.  */ | 
 |       irel->r_type = R_SH_PCDISP; | 
 |       irel->r_symndx = irelfn->r_symndx; | 
 |       if (sym.n_sclass != C_EXT) | 
 | 	{ | 
 | 	  /* If this needs to be changed because of future relaxing, | 
 | 	     it will be handled here like other internal PCDISP | 
 | 	     relocs.  */ | 
 | 	  bfd_put_16 (abfd, | 
 | 		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff), | 
 | 		      contents + irel->r_vaddr - sec->vma); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* We can't fully resolve this yet, because the external | 
 | 	     symbol value may be changed by future relaxing.  We let | 
 | 	     the final link phase handle it.  */ | 
 | 	  bfd_put_16 (abfd, (bfd_vma) 0xb000, | 
 | 		      contents + irel->r_vaddr - sec->vma); | 
 | 	} | 
 |  | 
 |       /* See if there is another R_SH_USES reloc referring to the same | 
 | 	 register load.  */ | 
 |       for (irelscan = internal_relocs; irelscan < irelend; irelscan++) | 
 | 	if (irelscan->r_type == R_SH_USES | 
 | 	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset) | 
 | 	  break; | 
 |       if (irelscan < irelend) | 
 | 	{ | 
 | 	  /* Some other function call depends upon this register load, | 
 | 	     and we have not yet converted that function call. | 
 | 	     Indeed, we may never be able to convert it.  There is | 
 | 	     nothing else we can do at this point.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Look for a R_SH_COUNT reloc on the location where the | 
 | 	 function address is stored.  Do this before deleting any | 
 | 	 bytes, to avoid confusion about the address.  */ | 
 |       for (irelcount = internal_relocs; irelcount < irelend; irelcount++) | 
 | 	if (irelcount->r_vaddr == paddr | 
 | 	    && irelcount->r_type == R_SH_COUNT) | 
 | 	  break; | 
 |  | 
 |       /* Delete the register load.  */ | 
 |       if (! sh_relax_delete_bytes (abfd, sec, laddr, 2)) | 
 | 	goto error_return; | 
 |  | 
 |       /* That will change things, so, just in case it permits some | 
 | 	 other function call to come within range, we should relax | 
 | 	 again.  Note that this is not required, and it may be slow.  */ | 
 |       *again = true; | 
 |  | 
 |       /* Now check whether we got a COUNT reloc.  */ | 
 |       if (irelcount >= irelend) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext: c-format */ | 
 | 	    (_("%pB: %#" PRIx64 ": warning: could not find expected COUNT reloc"), | 
 | 	     abfd, (uint64_t) paddr); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* The number of uses is stored in the r_offset field.  We've | 
 | 	 just deleted one.  */ | 
 |       if (irelcount->r_offset == 0) | 
 | 	{ | 
 | 	  /* xgettext: c-format */ | 
 | 	  _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"), | 
 | 			      abfd, (uint64_t) paddr); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       --irelcount->r_offset; | 
 |  | 
 |       /* If there are no more uses, we can delete the address.  Reload | 
 | 	 the address from irelfn, in case it was changed by the | 
 | 	 previous call to sh_relax_delete_bytes.  */ | 
 |       if (irelcount->r_offset == 0) | 
 | 	{ | 
 | 	  if (! sh_relax_delete_bytes (abfd, sec, | 
 | 				       irelfn->r_vaddr - sec->vma, 4)) | 
 | 	    goto error_return; | 
 | 	} | 
 |  | 
 |       /* We've done all we can with that function call.  */ | 
 |     } | 
 |  | 
 |   /* Look for load and store instructions that we can align on four | 
 |      byte boundaries.  */ | 
 |   if (have_code) | 
 |     { | 
 |       bool swapped; | 
 |  | 
 |       /* Get the section contents.  */ | 
 |       if (contents == NULL) | 
 | 	{ | 
 | 	  if (coff_section_data (abfd, sec)->contents != NULL) | 
 | 	    contents = coff_section_data (abfd, sec)->contents; | 
 | 	  else | 
 | 	    { | 
 | 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | 
 | 		goto error_return; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped)) | 
 | 	goto error_return; | 
 |  | 
 |       if (swapped) | 
 | 	{ | 
 | 	  coff_section_data (abfd, sec)->relocs = internal_relocs; | 
 | 	  coff_section_data (abfd, sec)->contents = contents; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (internal_relocs != NULL | 
 |       && internal_relocs != coff_section_data (abfd, sec)->relocs) | 
 |     { | 
 |       if (! link_info->keep_memory) | 
 | 	free (internal_relocs); | 
 |       else | 
 | 	coff_section_data (abfd, sec)->relocs = internal_relocs; | 
 |     } | 
 |  | 
 |   if (contents != NULL && contents != coff_section_data (abfd, sec)->contents) | 
 |     { | 
 |       if (! link_info->keep_memory) | 
 | 	free (contents); | 
 |       else | 
 | 	/* Cache the section contents for coff_link_input_bfd.  */ | 
 | 	coff_section_data (abfd, sec)->contents = contents; | 
 |     } | 
 |  | 
 |   return true; | 
 |  | 
 |  error_return: | 
 |   if (internal_relocs != coff_section_data (abfd, sec)->relocs) | 
 |     free (internal_relocs); | 
 |   if (contents != coff_section_data (abfd, sec)->contents) | 
 |     free (contents); | 
 |   return false; | 
 | } | 
 |  | 
 | /* Delete some bytes from a section while relaxing.  */ | 
 |  | 
 | static bool | 
 | sh_relax_delete_bytes (bfd *abfd, | 
 | 		       asection *sec, | 
 | 		       bfd_vma addr, | 
 | 		       int count) | 
 | { | 
 |   bfd_byte *contents; | 
 |   struct internal_reloc *irel, *irelend; | 
 |   struct internal_reloc *irelalign; | 
 |   bfd_vma toaddr; | 
 |   bfd_byte *esym, *esymend; | 
 |   bfd_size_type symesz; | 
 |   struct coff_link_hash_entry **sym_hash; | 
 |   asection *o; | 
 |  | 
 |   contents = coff_section_data (abfd, sec)->contents; | 
 |  | 
 |   /* The deletion must stop at the next ALIGN reloc for an alignment | 
 |      power larger than the number of bytes we are deleting.  */ | 
 |  | 
 |   irelalign = NULL; | 
 |   toaddr = sec->size; | 
 |  | 
 |   irel = coff_section_data (abfd, sec)->relocs; | 
 |   irelend = irel + sec->reloc_count; | 
 |   for (; irel < irelend; irel++) | 
 |     { | 
 |       if (irel->r_type == R_SH_ALIGN | 
 | 	  && irel->r_vaddr - sec->vma > addr | 
 | 	  && count < (1 << irel->r_offset)) | 
 | 	{ | 
 | 	  irelalign = irel; | 
 | 	  toaddr = irel->r_vaddr - sec->vma; | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Actually delete the bytes.  */ | 
 |   memmove (contents + addr, contents + addr + count, | 
 | 	   (size_t) (toaddr - addr - count)); | 
 |   if (irelalign == NULL) | 
 |     sec->size -= count; | 
 |   else | 
 |     { | 
 |       int i; | 
 |  | 
 | #define NOP_OPCODE (0x0009) | 
 |  | 
 |       BFD_ASSERT ((count & 1) == 0); | 
 |       for (i = 0; i < count; i += 2) | 
 | 	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); | 
 |     } | 
 |  | 
 |   /* Adjust all the relocs.  */ | 
 |   for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++) | 
 |     { | 
 |       bfd_vma nraddr, stop; | 
 |       bfd_vma start = 0; | 
 |       int insn = 0; | 
 |       struct internal_syment sym; | 
 |       int off, adjust, oinsn; | 
 |       bfd_signed_vma voff = 0; | 
 |       bool overflow; | 
 |  | 
 |       /* Get the new reloc address.  */ | 
 |       nraddr = irel->r_vaddr - sec->vma; | 
 |       if ((irel->r_vaddr - sec->vma > addr | 
 | 	   && irel->r_vaddr - sec->vma < toaddr) | 
 | 	  || (irel->r_type == R_SH_ALIGN | 
 | 	      && irel->r_vaddr - sec->vma == toaddr)) | 
 | 	nraddr -= count; | 
 |  | 
 |       /* See if this reloc was for the bytes we have deleted, in which | 
 | 	 case we no longer care about it.  Don't delete relocs which | 
 | 	 represent addresses, though.  */ | 
 |       if (irel->r_vaddr - sec->vma >= addr | 
 | 	  && irel->r_vaddr - sec->vma < addr + count | 
 | 	  && irel->r_type != R_SH_ALIGN | 
 | 	  && irel->r_type != R_SH_CODE | 
 | 	  && irel->r_type != R_SH_DATA | 
 | 	  && irel->r_type != R_SH_LABEL) | 
 | 	irel->r_type = R_SH_UNUSED; | 
 |  | 
 |       /* If this is a PC relative reloc, see if the range it covers | 
 | 	 includes the bytes we have deleted.  */ | 
 |       switch (irel->r_type) | 
 | 	{ | 
 | 	default: | 
 | 	  break; | 
 |  | 
 | 	case R_SH_PCDISP8BY2: | 
 | 	case R_SH_PCDISP: | 
 | 	case R_SH_PCRELIMM8BY2: | 
 | 	case R_SH_PCRELIMM8BY4: | 
 | 	  start = irel->r_vaddr - sec->vma; | 
 | 	  insn = bfd_get_16 (abfd, contents + nraddr); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       switch (irel->r_type) | 
 | 	{ | 
 | 	default: | 
 | 	  start = stop = addr; | 
 | 	  break; | 
 |  | 
 | 	case R_SH_IMM32: | 
 | #ifdef COFF_WITH_PE | 
 | 	case R_SH_IMM32CE: | 
 | 	case R_SH_IMAGEBASE: | 
 | #endif | 
 | 	  /* If this reloc is against a symbol defined in this | 
 | 	     section, and the symbol will not be adjusted below, we | 
 | 	     must check the addend to see it will put the value in | 
 | 	     range to be adjusted, and hence must be changed.  */ | 
 | 	  bfd_coff_swap_sym_in (abfd, | 
 | 				((bfd_byte *) obj_coff_external_syms (abfd) | 
 | 				 + (irel->r_symndx | 
 | 				    * bfd_coff_symesz (abfd))), | 
 | 				&sym); | 
 | 	  if (sym.n_sclass != C_EXT | 
 | 	      && sym.n_scnum == sec->target_index | 
 | 	      && ((bfd_vma) sym.n_value <= addr | 
 | 		  || (bfd_vma) sym.n_value >= toaddr)) | 
 | 	    { | 
 | 	      bfd_vma val; | 
 |  | 
 | 	      val = bfd_get_32 (abfd, contents + nraddr); | 
 | 	      val += sym.n_value; | 
 | 	      if (val > addr && val < toaddr) | 
 | 		bfd_put_32 (abfd, val - count, contents + nraddr); | 
 | 	    } | 
 | 	  start = stop = addr; | 
 | 	  break; | 
 |  | 
 | 	case R_SH_PCDISP8BY2: | 
 | 	  off = insn & 0xff; | 
 | 	  if (off & 0x80) | 
 | 	    off -= 0x100; | 
 | 	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); | 
 | 	  break; | 
 |  | 
 | 	case R_SH_PCDISP: | 
 | 	  bfd_coff_swap_sym_in (abfd, | 
 | 				((bfd_byte *) obj_coff_external_syms (abfd) | 
 | 				 + (irel->r_symndx | 
 | 				    * bfd_coff_symesz (abfd))), | 
 | 				&sym); | 
 | 	  if (sym.n_sclass == C_EXT) | 
 | 	    start = stop = addr; | 
 | 	  else | 
 | 	    { | 
 | 	      off = insn & 0xfff; | 
 | 	      if (off & 0x800) | 
 | 		off -= 0x1000; | 
 | 	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); | 
 | 	    } | 
 | 	  break; | 
 |  | 
 | 	case R_SH_PCRELIMM8BY2: | 
 | 	  off = insn & 0xff; | 
 | 	  stop = start + 4 + off * 2; | 
 | 	  break; | 
 |  | 
 | 	case R_SH_PCRELIMM8BY4: | 
 | 	  off = insn & 0xff; | 
 | 	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4; | 
 | 	  break; | 
 |  | 
 | 	case R_SH_SWITCH8: | 
 | 	case R_SH_SWITCH16: | 
 | 	case R_SH_SWITCH32: | 
 | 	  /* These relocs types represent | 
 | 	       .word L2-L1 | 
 | 	     The r_offset field holds the difference between the reloc | 
 | 	     address and L1.  That is the start of the reloc, and | 
 | 	     adding in the contents gives us the top.  We must adjust | 
 | 	     both the r_offset field and the section contents.  */ | 
 |  | 
 | 	  start = irel->r_vaddr - sec->vma; | 
 | 	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset); | 
 |  | 
 | 	  if (start > addr | 
 | 	      && start < toaddr | 
 | 	      && (stop <= addr || stop >= toaddr)) | 
 | 	    irel->r_offset += count; | 
 | 	  else if (stop > addr | 
 | 		   && stop < toaddr | 
 | 		   && (start <= addr || start >= toaddr)) | 
 | 	    irel->r_offset -= count; | 
 |  | 
 | 	  start = stop; | 
 |  | 
 | 	  if (irel->r_type == R_SH_SWITCH16) | 
 | 	    voff = bfd_get_signed_16 (abfd, contents + nraddr); | 
 | 	  else if (irel->r_type == R_SH_SWITCH8) | 
 | 	    voff = bfd_get_8 (abfd, contents + nraddr); | 
 | 	  else | 
 | 	    voff = bfd_get_signed_32 (abfd, contents + nraddr); | 
 | 	  stop = (bfd_vma) ((bfd_signed_vma) start + voff); | 
 |  | 
 | 	  break; | 
 |  | 
 | 	case R_SH_USES: | 
 | 	  start = irel->r_vaddr - sec->vma; | 
 | 	  stop = (bfd_vma) ((bfd_signed_vma) start | 
 | 			    + (long) irel->r_offset | 
 | 			    + 4); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       if (start > addr | 
 | 	  && start < toaddr | 
 | 	  && (stop <= addr || stop >= toaddr)) | 
 | 	adjust = count; | 
 |       else if (stop > addr | 
 | 	       && stop < toaddr | 
 | 	       && (start <= addr || start >= toaddr)) | 
 | 	adjust = - count; | 
 |       else | 
 | 	adjust = 0; | 
 |  | 
 |       if (adjust != 0) | 
 | 	{ | 
 | 	  oinsn = insn; | 
 | 	  overflow = false; | 
 | 	  switch (irel->r_type) | 
 | 	    { | 
 | 	    default: | 
 | 	      abort (); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCDISP8BY2: | 
 | 	    case R_SH_PCRELIMM8BY2: | 
 | 	      insn += adjust / 2; | 
 | 	      if ((oinsn & 0xff00) != (insn & 0xff00)) | 
 | 		overflow = true; | 
 | 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCDISP: | 
 | 	      insn += adjust / 2; | 
 | 	      if ((oinsn & 0xf000) != (insn & 0xf000)) | 
 | 		overflow = true; | 
 | 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCRELIMM8BY4: | 
 | 	      BFD_ASSERT (adjust == count || count >= 4); | 
 | 	      if (count >= 4) | 
 | 		insn += adjust / 4; | 
 | 	      else | 
 | 		{ | 
 | 		  if ((irel->r_vaddr & 3) == 0) | 
 | 		    ++insn; | 
 | 		} | 
 | 	      if ((oinsn & 0xff00) != (insn & 0xff00)) | 
 | 		overflow = true; | 
 | 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_SWITCH8: | 
 | 	      voff += adjust; | 
 | 	      if (voff < 0 || voff >= 0xff) | 
 | 		overflow = true; | 
 | 	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_SWITCH16: | 
 | 	      voff += adjust; | 
 | 	      if (voff < - 0x8000 || voff >= 0x8000) | 
 | 		overflow = true; | 
 | 	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_SWITCH32: | 
 | 	      voff += adjust; | 
 | 	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_USES: | 
 | 	      irel->r_offset += adjust; | 
 | 	      break; | 
 | 	    } | 
 |  | 
 | 	  if (overflow) | 
 | 	    { | 
 | 	      _bfd_error_handler | 
 | 		/* xgettext: c-format */ | 
 | 		(_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), | 
 | 		 abfd, (uint64_t) irel->r_vaddr); | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       irel->r_vaddr = nraddr + sec->vma; | 
 |     } | 
 |  | 
 |   /* Look through all the other sections.  If there contain any IMM32 | 
 |      relocs against internal symbols which we are not going to adjust | 
 |      below, we may need to adjust the addends.  */ | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       struct internal_reloc *internal_relocs; | 
 |       struct internal_reloc *irelscan, *irelscanend; | 
 |       bfd_byte *ocontents; | 
 |  | 
 |       if (o == sec | 
 | 	  || (o->flags & SEC_HAS_CONTENTS) == 0 | 
 | 	  || (o->flags & SEC_RELOC) == 0 | 
 | 	  || o->reloc_count == 0) | 
 | 	continue; | 
 |  | 
 |       /* We always cache the relocs.  Perhaps, if info->keep_memory is | 
 | 	 FALSE, we should free them, if we are permitted to, when we | 
 | 	 leave sh_coff_relax_section.  */ | 
 |       internal_relocs = (_bfd_coff_read_internal_relocs | 
 | 			 (abfd, o, true, (bfd_byte *) NULL, false, | 
 | 			  (struct internal_reloc *) NULL)); | 
 |       if (internal_relocs == NULL) | 
 | 	return false; | 
 |  | 
 |       ocontents = NULL; | 
 |       irelscanend = internal_relocs + o->reloc_count; | 
 |       for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) | 
 | 	{ | 
 | 	  struct internal_syment sym; | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | 	  if (irelscan->r_type != R_SH_IMM32 | 
 | 	      && irelscan->r_type != R_SH_IMAGEBASE | 
 | 	      && irelscan->r_type != R_SH_IMM32CE) | 
 | #else | 
 | 	  if (irelscan->r_type != R_SH_IMM32) | 
 | #endif | 
 | 	    continue; | 
 |  | 
 | 	  bfd_coff_swap_sym_in (abfd, | 
 | 				((bfd_byte *) obj_coff_external_syms (abfd) | 
 | 				 + (irelscan->r_symndx | 
 | 				    * bfd_coff_symesz (abfd))), | 
 | 				&sym); | 
 | 	  if (sym.n_sclass != C_EXT | 
 | 	      && sym.n_scnum == sec->target_index | 
 | 	      && ((bfd_vma) sym.n_value <= addr | 
 | 		  || (bfd_vma) sym.n_value >= toaddr)) | 
 | 	    { | 
 | 	      bfd_vma val; | 
 |  | 
 | 	      if (ocontents == NULL) | 
 | 		{ | 
 | 		  if (coff_section_data (abfd, o)->contents != NULL) | 
 | 		    ocontents = coff_section_data (abfd, o)->contents; | 
 | 		  else | 
 | 		    { | 
 | 		      if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) | 
 | 			return false; | 
 | 		      /* We always cache the section contents. | 
 | 			 Perhaps, if info->keep_memory is FALSE, we | 
 | 			 should free them, if we are permitted to, | 
 | 			 when we leave sh_coff_relax_section.  */ | 
 | 		      coff_section_data (abfd, o)->contents = ocontents; | 
 | 		    } | 
 | 		} | 
 |  | 
 | 	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma); | 
 | 	      val += sym.n_value; | 
 | 	      if (val > addr && val < toaddr) | 
 | 		bfd_put_32 (abfd, val - count, | 
 | 			    ocontents + irelscan->r_vaddr - o->vma); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Adjusting the internal symbols will not work if something has | 
 |      already retrieved the generic symbols.  It would be possible to | 
 |      make this work by adjusting the generic symbols at the same time. | 
 |      However, this case should not arise in normal usage.  */ | 
 |   if (obj_symbols (abfd) != NULL | 
 |       || obj_raw_syments (abfd) != NULL) | 
 |     { | 
 |       _bfd_error_handler | 
 | 	(_("%pB: fatal: generic symbols retrieved before relaxing"), abfd); | 
 |       bfd_set_error (bfd_error_invalid_operation); | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* Adjust all the symbols.  */ | 
 |   sym_hash = obj_coff_sym_hashes (abfd); | 
 |   symesz = bfd_coff_symesz (abfd); | 
 |   esym = (bfd_byte *) obj_coff_external_syms (abfd); | 
 |   esymend = esym + obj_raw_syment_count (abfd) * symesz; | 
 |   while (esym < esymend) | 
 |     { | 
 |       struct internal_syment isym; | 
 |  | 
 |       bfd_coff_swap_sym_in (abfd, esym, &isym); | 
 |  | 
 |       if (isym.n_scnum == sec->target_index | 
 | 	  && (bfd_vma) isym.n_value > addr | 
 | 	  && (bfd_vma) isym.n_value < toaddr) | 
 | 	{ | 
 | 	  isym.n_value -= count; | 
 |  | 
 | 	  bfd_coff_swap_sym_out (abfd, &isym, esym); | 
 |  | 
 | 	  if (*sym_hash != NULL) | 
 | 	    { | 
 | 	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined | 
 | 			  || (*sym_hash)->root.type == bfd_link_hash_defweak); | 
 | 	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr | 
 | 			  && (*sym_hash)->root.u.def.value < toaddr); | 
 | 	      (*sym_hash)->root.u.def.value -= count; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       esym += (isym.n_numaux + 1) * symesz; | 
 |       sym_hash += isym.n_numaux + 1; | 
 |     } | 
 |  | 
 |   /* See if we can move the ALIGN reloc forward.  We have adjusted | 
 |      r_vaddr for it already.  */ | 
 |   if (irelalign != NULL) | 
 |     { | 
 |       bfd_vma alignto, alignaddr; | 
 |  | 
 |       alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset); | 
 |       alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma, | 
 | 			     1 << irelalign->r_offset); | 
 |       if (alignto != alignaddr) | 
 | 	{ | 
 | 	  /* Tail recursion.  */ | 
 | 	  return sh_relax_delete_bytes (abfd, sec, alignaddr, | 
 | 					(int) (alignto - alignaddr)); | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* This is yet another version of the SH opcode table, used to rapidly | 
 |    get information about a particular instruction.  */ | 
 |  | 
 | /* The opcode map is represented by an array of these structures.  The | 
 |    array is indexed by the high order four bits in the instruction.  */ | 
 |  | 
 | struct sh_major_opcode | 
 | { | 
 |   /* A pointer to the instruction list.  This is an array which | 
 |      contains all the instructions with this major opcode.  */ | 
 |   const struct sh_minor_opcode *minor_opcodes; | 
 |   /* The number of elements in minor_opcodes.  */ | 
 |   unsigned short count; | 
 | }; | 
 |  | 
 | /* This structure holds information for a set of SH opcodes.  The | 
 |    instruction code is anded with the mask value, and the resulting | 
 |    value is used to search the order opcode list.  */ | 
 |  | 
 | struct sh_minor_opcode | 
 | { | 
 |   /* The sorted opcode list.  */ | 
 |   const struct sh_opcode *opcodes; | 
 |   /* The number of elements in opcodes.  */ | 
 |   unsigned short count; | 
 |   /* The mask value to use when searching the opcode list.  */ | 
 |   unsigned short mask; | 
 | }; | 
 |  | 
 | /* This structure holds information for an SH instruction.  An array | 
 |    of these structures is sorted in order by opcode.  */ | 
 |  | 
 | struct sh_opcode | 
 | { | 
 |   /* The code for this instruction, after it has been anded with the | 
 |      mask value in the sh_major_opcode structure.  */ | 
 |   unsigned short opcode; | 
 |   /* Flags for this instruction.  */ | 
 |   unsigned long flags; | 
 | }; | 
 |  | 
 | /* Flag which appear in the sh_opcode structure.  */ | 
 |  | 
 | /* This instruction loads a value from memory.  */ | 
 | #define LOAD (0x1) | 
 |  | 
 | /* This instruction stores a value to memory.  */ | 
 | #define STORE (0x2) | 
 |  | 
 | /* This instruction is a branch.  */ | 
 | #define BRANCH (0x4) | 
 |  | 
 | /* This instruction has a delay slot.  */ | 
 | #define DELAY (0x8) | 
 |  | 
 | /* This instruction uses the value in the register in the field at | 
 |    mask 0x0f00 of the instruction.  */ | 
 | #define USES1 (0x10) | 
 | #define USES1_REG(x) ((x & 0x0f00) >> 8) | 
 |  | 
 | /* This instruction uses the value in the register in the field at | 
 |    mask 0x00f0 of the instruction.  */ | 
 | #define USES2 (0x20) | 
 | #define USES2_REG(x) ((x & 0x00f0) >> 4) | 
 |  | 
 | /* This instruction uses the value in register 0.  */ | 
 | #define USESR0 (0x40) | 
 |  | 
 | /* This instruction sets the value in the register in the field at | 
 |    mask 0x0f00 of the instruction.  */ | 
 | #define SETS1 (0x80) | 
 | #define SETS1_REG(x) ((x & 0x0f00) >> 8) | 
 |  | 
 | /* This instruction sets the value in the register in the field at | 
 |    mask 0x00f0 of the instruction.  */ | 
 | #define SETS2 (0x100) | 
 | #define SETS2_REG(x) ((x & 0x00f0) >> 4) | 
 |  | 
 | /* This instruction sets register 0.  */ | 
 | #define SETSR0 (0x200) | 
 |  | 
 | /* This instruction sets a special register.  */ | 
 | #define SETSSP (0x400) | 
 |  | 
 | /* This instruction uses a special register.  */ | 
 | #define USESSP (0x800) | 
 |  | 
 | /* This instruction uses the floating point register in the field at | 
 |    mask 0x0f00 of the instruction.  */ | 
 | #define USESF1 (0x1000) | 
 | #define USESF1_REG(x) ((x & 0x0f00) >> 8) | 
 |  | 
 | /* This instruction uses the floating point register in the field at | 
 |    mask 0x00f0 of the instruction.  */ | 
 | #define USESF2 (0x2000) | 
 | #define USESF2_REG(x) ((x & 0x00f0) >> 4) | 
 |  | 
 | /* This instruction uses floating point register 0.  */ | 
 | #define USESF0 (0x4000) | 
 |  | 
 | /* This instruction sets the floating point register in the field at | 
 |    mask 0x0f00 of the instruction.  */ | 
 | #define SETSF1 (0x8000) | 
 | #define SETSF1_REG(x) ((x & 0x0f00) >> 8) | 
 |  | 
 | #define USESAS (0x10000) | 
 | #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2) | 
 | #define USESR8 (0x20000) | 
 | #define SETSAS (0x40000) | 
 | #define SETSAS_REG(x) USESAS_REG (x) | 
 |  | 
 | #define MAP(a) a, sizeof a / sizeof a[0] | 
 |  | 
 | #ifndef COFF_IMAGE_WITH_PE | 
 |  | 
 | /* The opcode maps.  */ | 
 |  | 
 | static const struct sh_opcode sh_opcode00[] = | 
 | { | 
 |   { 0x0008, SETSSP },			/* clrt */ | 
 |   { 0x0009, 0 },			/* nop */ | 
 |   { 0x000b, BRANCH | DELAY | USESSP },	/* rts */ | 
 |   { 0x0018, SETSSP },			/* sett */ | 
 |   { 0x0019, SETSSP },			/* div0u */ | 
 |   { 0x001b, 0 },			/* sleep */ | 
 |   { 0x0028, SETSSP },			/* clrmac */ | 
 |   { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */ | 
 |   { 0x0038, USESSP | SETSSP },		/* ldtlb */ | 
 |   { 0x0048, SETSSP },			/* clrs */ | 
 |   { 0x0058, SETSSP }			/* sets */ | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode01[] = | 
 | { | 
 |   { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */ | 
 |   { 0x000a, SETS1 | USESSP },			/* sts mach,rn */ | 
 |   { 0x001a, SETS1 | USESSP },			/* sts macl,rn */ | 
 |   { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */ | 
 |   { 0x0029, SETS1 | USESSP },			/* movt rn */ | 
 |   { 0x002a, SETS1 | USESSP },			/* sts pr,rn */ | 
 |   { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */ | 
 |   { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */ | 
 |   { 0x0083, LOAD | USES1 },			/* pref @rn */ | 
 |   { 0x007a, SETS1 | USESSP },			/* sts a0,rn */ | 
 |   { 0x008a, SETS1 | USESSP },			/* sts x0,rn */ | 
 |   { 0x009a, SETS1 | USESSP },			/* sts x1,rn */ | 
 |   { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */ | 
 |   { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode02[] = | 
 | { | 
 |   { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */ | 
 |   { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */ | 
 |   { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */ | 
 |   { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */ | 
 |   { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */ | 
 |   { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */ | 
 |   { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */ | 
 |   { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */ | 
 |   { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode0[] = | 
 | { | 
 |   { MAP (sh_opcode00), 0xffff }, | 
 |   { MAP (sh_opcode01), 0xf0ff }, | 
 |   { MAP (sh_opcode02), 0xf00f } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode10[] = | 
 | { | 
 |   { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode1[] = | 
 | { | 
 |   { MAP (sh_opcode10), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode20[] = | 
 | { | 
 |   { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */ | 
 |   { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */ | 
 |   { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */ | 
 |   { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */ | 
 |   { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */ | 
 |   { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */ | 
 |   { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */ | 
 |   { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */ | 
 |   { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */ | 
 |   { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */ | 
 |   { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */ | 
 |   { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */ | 
 |   { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */ | 
 |   { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */ | 
 |   { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode2[] = | 
 | { | 
 |   { MAP (sh_opcode20), 0xf00f } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode30[] = | 
 | { | 
 |   { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */ | 
 |   { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */ | 
 |   { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */ | 
 |   { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */ | 
 |   { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */ | 
 |   { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */ | 
 |   { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */ | 
 |   { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */ | 
 |   { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */ | 
 |   { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */ | 
 |   { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */ | 
 |   { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */ | 
 |   { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */ | 
 |   { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode3[] = | 
 | { | 
 |   { MAP (sh_opcode30), 0xf00f } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode40[] = | 
 | { | 
 |   { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */ | 
 |   { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */ | 
 |   { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */ | 
 |   { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */ | 
 |   { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */ | 
 |   { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */ | 
 |   { 0x4008, SETS1 | USES1 },			/* shll2 rn */ | 
 |   { 0x4009, SETS1 | USES1 },			/* shlr2 rn */ | 
 |   { 0x400a, SETSSP | USES1 },			/* lds rm,mach */ | 
 |   { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */ | 
 |   { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */ | 
 |   { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */ | 
 |   { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */ | 
 |   { 0x4014, SETSSP | USES1 },			/* setrc rm */ | 
 |   { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */ | 
 |   { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */ | 
 |   { 0x4018, SETS1 | USES1 },			/* shll8 rn */ | 
 |   { 0x4019, SETS1 | USES1 },			/* shlr8 rn */ | 
 |   { 0x401a, SETSSP | USES1 },			/* lds rm,macl */ | 
 |   { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */ | 
 |   { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */ | 
 |   { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */ | 
 |   { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */ | 
 |   { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */ | 
 |   { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */ | 
 |   { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */ | 
 |   { 0x4028, SETS1 | USES1 },			/* shll16 rn */ | 
 |   { 0x4029, SETS1 | USES1 },			/* shlr16 rn */ | 
 |   { 0x402a, SETSSP | USES1 },			/* lds rm,pr */ | 
 |   { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */ | 
 |   { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */ | 
 |   { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */ | 
 |   { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */ | 
 |   { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */ | 
 |   { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */ | 
 |   { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */ | 
 |   { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */ | 
 |   { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */ | 
 |   { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */ | 
 |   { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */ | 
 |   { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */ | 
 |   { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */ | 
 |   { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */ | 
 |   { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */ | 
 |   { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */ | 
 |   { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */ | 
 |   { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */ | 
 |   { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */ | 
 |   { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */ | 
 |   { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */ | 
 |   { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */ | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode41[] = | 
 | { | 
 |   { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */ | 
 |   { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */ | 
 |   { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */ | 
 |   { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */ | 
 |   { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */ | 
 |   { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode4[] = | 
 | { | 
 |   { MAP (sh_opcode40), 0xf0ff }, | 
 |   { MAP (sh_opcode41), 0xf00f } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode50[] = | 
 | { | 
 |   { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode5[] = | 
 | { | 
 |   { MAP (sh_opcode50), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode60[] = | 
 | { | 
 |   { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */ | 
 |   { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */ | 
 |   { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */ | 
 |   { 0x6003, SETS1 | USES2 },			/* mov rm,rn */ | 
 |   { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */ | 
 |   { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */ | 
 |   { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */ | 
 |   { 0x6007, SETS1 | USES2 },			/* not rm,rn */ | 
 |   { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */ | 
 |   { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */ | 
 |   { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */ | 
 |   { 0x600b, SETS1 | USES2 },			/* neg rm,rn */ | 
 |   { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */ | 
 |   { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */ | 
 |   { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */ | 
 |   { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode6[] = | 
 | { | 
 |   { MAP (sh_opcode60), 0xf00f } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode70[] = | 
 | { | 
 |   { 0x7000, SETS1 | USES1 }		/* add #imm,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode7[] = | 
 | { | 
 |   { MAP (sh_opcode70), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode80[] = | 
 | { | 
 |   { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */ | 
 |   { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */ | 
 |   { 0x8200, SETSSP },			/* setrc #imm */ | 
 |   { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */ | 
 |   { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */ | 
 |   { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */ | 
 |   { 0x8900, BRANCH | USESSP },		/* bt label */ | 
 |   { 0x8b00, BRANCH | USESSP },		/* bf label */ | 
 |   { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */ | 
 |   { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */ | 
 |   { 0x8e00, SETSSP },			/* ldre @(disp,pc) */ | 
 |   { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode8[] = | 
 | { | 
 |   { MAP (sh_opcode80), 0xff00 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcode90[] = | 
 | { | 
 |   { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcode9[] = | 
 | { | 
 |   { MAP (sh_opcode90), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodea0[] = | 
 | { | 
 |   { 0xa000, BRANCH | DELAY }	/* bra label */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcodea[] = | 
 | { | 
 |   { MAP (sh_opcodea0), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodeb0[] = | 
 | { | 
 |   { 0xb000, BRANCH | DELAY }	/* bsr label */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcodeb[] = | 
 | { | 
 |   { MAP (sh_opcodeb0), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodec0[] = | 
 | { | 
 |   { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */ | 
 |   { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */ | 
 |   { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */ | 
 |   { 0xc300, BRANCH | USESSP },			/* trapa #imm */ | 
 |   { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */ | 
 |   { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */ | 
 |   { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */ | 
 |   { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */ | 
 |   { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */ | 
 |   { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */ | 
 |   { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */ | 
 |   { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */ | 
 |   { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */ | 
 |   { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */ | 
 |   { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */ | 
 |   { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcodec[] = | 
 | { | 
 |   { MAP (sh_opcodec0), 0xff00 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcoded0[] = | 
 | { | 
 |   { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcoded[] = | 
 | { | 
 |   { MAP (sh_opcoded0), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodee0[] = | 
 | { | 
 |   { 0xe000, SETS1 }		/* mov #imm,rn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcodee[] = | 
 | { | 
 |   { MAP (sh_opcodee0), 0xf000 } | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodef0[] = | 
 | { | 
 |   { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */ | 
 |   { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */ | 
 |   { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */ | 
 |   { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */ | 
 |   { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */ | 
 |   { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */ | 
 |   { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */ | 
 |   { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */ | 
 |   { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */ | 
 |   { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */ | 
 |   { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */ | 
 |   { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */ | 
 |   { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */ | 
 |   { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */ | 
 | }; | 
 |  | 
 | static const struct sh_opcode sh_opcodef1[] = | 
 | { | 
 |   { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */ | 
 |   { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */ | 
 |   { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */ | 
 |   { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */ | 
 |   { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */ | 
 |   { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */ | 
 |   { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */ | 
 |   { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */ | 
 |   { 0xf08d, SETSF1 },		/* fldi0 fn */ | 
 |   { 0xf09d, SETSF1 }		/* fldi1 fn */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_opcodef[] = | 
 | { | 
 |   { MAP (sh_opcodef0), 0xf00f }, | 
 |   { MAP (sh_opcodef1), 0xf0ff } | 
 | }; | 
 |  | 
 | static struct sh_major_opcode sh_opcodes[] = | 
 | { | 
 |   { MAP (sh_opcode0) }, | 
 |   { MAP (sh_opcode1) }, | 
 |   { MAP (sh_opcode2) }, | 
 |   { MAP (sh_opcode3) }, | 
 |   { MAP (sh_opcode4) }, | 
 |   { MAP (sh_opcode5) }, | 
 |   { MAP (sh_opcode6) }, | 
 |   { MAP (sh_opcode7) }, | 
 |   { MAP (sh_opcode8) }, | 
 |   { MAP (sh_opcode9) }, | 
 |   { MAP (sh_opcodea) }, | 
 |   { MAP (sh_opcodeb) }, | 
 |   { MAP (sh_opcodec) }, | 
 |   { MAP (sh_opcoded) }, | 
 |   { MAP (sh_opcodee) }, | 
 |   { MAP (sh_opcodef) } | 
 | }; | 
 |  | 
 | /* The double data transfer / parallel processing insns are not | 
 |    described here.  This will cause sh_align_load_span to leave them alone.  */ | 
 |  | 
 | static const struct sh_opcode sh_dsp_opcodef0[] = | 
 | { | 
 |   { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */ | 
 |   { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */ | 
 |   { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */ | 
 |   { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */ | 
 |   { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */ | 
 |   { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */ | 
 |   { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */ | 
 |   { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */ | 
 | }; | 
 |  | 
 | static const struct sh_minor_opcode sh_dsp_opcodef[] = | 
 | { | 
 |   { MAP (sh_dsp_opcodef0), 0xfc0d } | 
 | }; | 
 |  | 
 | /* Given an instruction, return a pointer to the corresponding | 
 |    sh_opcode structure.  Return NULL if the instruction is not | 
 |    recognized.  */ | 
 |  | 
 | static const struct sh_opcode * | 
 | sh_insn_info (unsigned int insn) | 
 | { | 
 |   const struct sh_major_opcode *maj; | 
 |   const struct sh_minor_opcode *min, *minend; | 
 |  | 
 |   maj = &sh_opcodes[(insn & 0xf000) >> 12]; | 
 |   min = maj->minor_opcodes; | 
 |   minend = min + maj->count; | 
 |   for (; min < minend; min++) | 
 |     { | 
 |       unsigned int l; | 
 |       const struct sh_opcode *op, *opend; | 
 |  | 
 |       l = insn & min->mask; | 
 |       op = min->opcodes; | 
 |       opend = op + min->count; | 
 |  | 
 |       /* Since the opcodes tables are sorted, we could use a binary | 
 | 	 search here if the count were above some cutoff value.  */ | 
 |       for (; op < opend; op++) | 
 | 	if (op->opcode == l) | 
 | 	  return op; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* See whether an instruction uses a general purpose register.  */ | 
 |  | 
 | static bool | 
 | sh_insn_uses_reg (unsigned int insn, | 
 | 		  const struct sh_opcode *op, | 
 | 		  unsigned int reg) | 
 | { | 
 |   unsigned int f; | 
 |  | 
 |   f = op->flags; | 
 |  | 
 |   if ((f & USES1) != 0 | 
 |       && USES1_REG (insn) == reg) | 
 |     return true; | 
 |   if ((f & USES2) != 0 | 
 |       && USES2_REG (insn) == reg) | 
 |     return true; | 
 |   if ((f & USESR0) != 0 | 
 |       && reg == 0) | 
 |     return true; | 
 |   if ((f & USESAS) && reg == USESAS_REG (insn)) | 
 |     return true; | 
 |   if ((f & USESR8) && reg == 8) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* See whether an instruction sets a general purpose register.  */ | 
 |  | 
 | static bool | 
 | sh_insn_sets_reg (unsigned int insn, | 
 | 		  const struct sh_opcode *op, | 
 | 		  unsigned int reg) | 
 | { | 
 |   unsigned int f; | 
 |  | 
 |   f = op->flags; | 
 |  | 
 |   if ((f & SETS1) != 0 | 
 |       && SETS1_REG (insn) == reg) | 
 |     return true; | 
 |   if ((f & SETS2) != 0 | 
 |       && SETS2_REG (insn) == reg) | 
 |     return true; | 
 |   if ((f & SETSR0) != 0 | 
 |       && reg == 0) | 
 |     return true; | 
 |   if ((f & SETSAS) && reg == SETSAS_REG (insn)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* See whether an instruction uses or sets a general purpose register */ | 
 |  | 
 | static bool | 
 | sh_insn_uses_or_sets_reg (unsigned int insn, | 
 | 			  const struct sh_opcode *op, | 
 | 			  unsigned int reg) | 
 | { | 
 |   if (sh_insn_uses_reg (insn, op, reg)) | 
 |     return true; | 
 |  | 
 |   return sh_insn_sets_reg (insn, op, reg); | 
 | } | 
 |  | 
 | /* See whether an instruction uses a floating point register.  */ | 
 |  | 
 | static bool | 
 | sh_insn_uses_freg (unsigned int insn, | 
 | 		   const struct sh_opcode *op, | 
 | 		   unsigned int freg) | 
 | { | 
 |   unsigned int f; | 
 |  | 
 |   f = op->flags; | 
 |  | 
 |   /* We can't tell if this is a double-precision insn, so just play safe | 
 |      and assume that it might be.  So not only have we test FREG against | 
 |      itself, but also even FREG against FREG+1 - if the using insn uses | 
 |      just the low part of a double precision value - but also an odd | 
 |      FREG against FREG-1 -  if the setting insn sets just the low part | 
 |      of a double precision value. | 
 |      So what this all boils down to is that we have to ignore the lowest | 
 |      bit of the register number.  */ | 
 |  | 
 |   if ((f & USESF1) != 0 | 
 |       && (USESF1_REG (insn) & 0xe) == (freg & 0xe)) | 
 |     return true; | 
 |   if ((f & USESF2) != 0 | 
 |       && (USESF2_REG (insn) & 0xe) == (freg & 0xe)) | 
 |     return true; | 
 |   if ((f & USESF0) != 0 | 
 |       && freg == 0) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* See whether an instruction sets a floating point register.  */ | 
 |  | 
 | static bool | 
 | sh_insn_sets_freg (unsigned int insn, | 
 | 		   const struct sh_opcode *op, | 
 | 		   unsigned int freg) | 
 | { | 
 |   unsigned int f; | 
 |  | 
 |   f = op->flags; | 
 |  | 
 |   /* We can't tell if this is a double-precision insn, so just play safe | 
 |      and assume that it might be.  So not only have we test FREG against | 
 |      itself, but also even FREG against FREG+1 - if the using insn uses | 
 |      just the low part of a double precision value - but also an odd | 
 |      FREG against FREG-1 -  if the setting insn sets just the low part | 
 |      of a double precision value. | 
 |      So what this all boils down to is that we have to ignore the lowest | 
 |      bit of the register number.  */ | 
 |  | 
 |   if ((f & SETSF1) != 0 | 
 |       && (SETSF1_REG (insn) & 0xe) == (freg & 0xe)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* See whether an instruction uses or sets a floating point register */ | 
 |  | 
 | static bool | 
 | sh_insn_uses_or_sets_freg (unsigned int insn, | 
 | 			   const struct sh_opcode *op, | 
 | 			   unsigned int reg) | 
 | { | 
 |   if (sh_insn_uses_freg (insn, op, reg)) | 
 |     return true; | 
 |  | 
 |   return sh_insn_sets_freg (insn, op, reg); | 
 | } | 
 |  | 
 | /* See whether instructions I1 and I2 conflict, assuming I1 comes | 
 |    before I2.  OP1 and OP2 are the corresponding sh_opcode structures. | 
 |    This should return TRUE if there is a conflict, or FALSE if the | 
 |    instructions can be swapped safely.  */ | 
 |  | 
 | static bool | 
 | sh_insns_conflict (unsigned int i1, | 
 | 		   const struct sh_opcode *op1, | 
 | 		   unsigned int i2, | 
 | 		   const struct sh_opcode *op2) | 
 | { | 
 |   unsigned int f1, f2; | 
 |  | 
 |   f1 = op1->flags; | 
 |   f2 = op2->flags; | 
 |  | 
 |   /* Load of fpscr conflicts with floating point operations. | 
 |      FIXME: shouldn't test raw opcodes here.  */ | 
 |   if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000) | 
 |       || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000)) | 
 |     return true; | 
 |  | 
 |   if ((f1 & (BRANCH | DELAY)) != 0 | 
 |       || (f2 & (BRANCH | DELAY)) != 0) | 
 |     return true; | 
 |  | 
 |   if (((f1 | f2) & SETSSP) | 
 |       && (f1 & (SETSSP | USESSP)) | 
 |       && (f2 & (SETSSP | USESSP))) | 
 |     return true; | 
 |  | 
 |   if ((f1 & SETS1) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1))) | 
 |     return true; | 
 |   if ((f1 & SETS2) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1))) | 
 |     return true; | 
 |   if ((f1 & SETSR0) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i2, op2, 0)) | 
 |     return true; | 
 |   if ((f1 & SETSAS) | 
 |       && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1))) | 
 |     return true; | 
 |   if ((f1 & SETSF1) != 0 | 
 |       && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1))) | 
 |     return true; | 
 |  | 
 |   if ((f2 & SETS1) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2))) | 
 |     return true; | 
 |   if ((f2 & SETS2) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2))) | 
 |     return true; | 
 |   if ((f2 & SETSR0) != 0 | 
 |       && sh_insn_uses_or_sets_reg (i1, op1, 0)) | 
 |     return true; | 
 |   if ((f2 & SETSAS) | 
 |       && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2))) | 
 |     return true; | 
 |   if ((f2 & SETSF1) != 0 | 
 |       && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2))) | 
 |     return true; | 
 |  | 
 |   /* The instructions do not conflict.  */ | 
 |   return false; | 
 | } | 
 |  | 
 | /* I1 is a load instruction, and I2 is some other instruction.  Return | 
 |    TRUE if I1 loads a register which I2 uses.  */ | 
 |  | 
 | static bool | 
 | sh_load_use (unsigned int i1, | 
 | 	     const struct sh_opcode *op1, | 
 | 	     unsigned int i2, | 
 | 	     const struct sh_opcode *op2) | 
 | { | 
 |   unsigned int f1; | 
 |  | 
 |   f1 = op1->flags; | 
 |  | 
 |   if ((f1 & LOAD) == 0) | 
 |     return false; | 
 |  | 
 |   /* If both SETS1 and SETSSP are set, that means a load to a special | 
 |      register using postincrement addressing mode, which we don't care | 
 |      about here.  */ | 
 |   if ((f1 & SETS1) != 0 | 
 |       && (f1 & SETSSP) == 0 | 
 |       && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8)) | 
 |     return true; | 
 |  | 
 |   if ((f1 & SETSR0) != 0 | 
 |       && sh_insn_uses_reg (i2, op2, 0)) | 
 |     return true; | 
 |  | 
 |   if ((f1 & SETSF1) != 0 | 
 |       && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Try to align loads and stores within a span of memory.  This is | 
 |    called by both the ELF and the COFF sh targets.  ABFD and SEC are | 
 |    the BFD and section we are examining.  CONTENTS is the contents of | 
 |    the section.  SWAP is the routine to call to swap two instructions. | 
 |    RELOCS is a pointer to the internal relocation information, to be | 
 |    passed to SWAP.  PLABEL is a pointer to the current label in a | 
 |    sorted list of labels; LABEL_END is the end of the list.  START and | 
 |    STOP are the range of memory to examine.  If a swap is made, | 
 |    *PSWAPPED is set to TRUE.  */ | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | static | 
 | #endif | 
 | bool | 
 | _bfd_sh_align_load_span (bfd *abfd, | 
 | 			 asection *sec, | 
 | 			 bfd_byte *contents, | 
 | 			 bool (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma), | 
 | 			 void * relocs, | 
 | 			 bfd_vma **plabel, | 
 | 			 bfd_vma *label_end, | 
 | 			 bfd_vma start, | 
 | 			 bfd_vma stop, | 
 | 			 bool *pswapped) | 
 | { | 
 |   int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp | 
 | 	     || abfd->arch_info->mach == bfd_mach_sh3_dsp); | 
 |   bfd_vma i; | 
 |  | 
 |   /* The SH4 has a Harvard architecture, hence aligning loads is not | 
 |      desirable.  In fact, it is counter-productive, since it interferes | 
 |      with the schedules generated by the compiler.  */ | 
 |   if (abfd->arch_info->mach == bfd_mach_sh4) | 
 |     return true; | 
 |  | 
 |   /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP | 
 |      instructions.  */ | 
 |   if (dsp) | 
 |     { | 
 |       sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef; | 
 |       sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef [0]; | 
 |     } | 
 |  | 
 |   /* Instructions should be aligned on 2 byte boundaries.  */ | 
 |   if ((start & 1) == 1) | 
 |     ++start; | 
 |  | 
 |   /* Now look through the unaligned addresses.  */ | 
 |   i = start; | 
 |   if ((i & 2) == 0) | 
 |     i += 2; | 
 |   for (; i < stop; i += 4) | 
 |     { | 
 |       unsigned int insn; | 
 |       const struct sh_opcode *op; | 
 |       unsigned int prev_insn = 0; | 
 |       const struct sh_opcode *prev_op = NULL; | 
 |  | 
 |       insn = bfd_get_16 (abfd, contents + i); | 
 |       op = sh_insn_info (insn); | 
 |       if (op == NULL | 
 | 	  || (op->flags & (LOAD | STORE)) == 0) | 
 | 	continue; | 
 |  | 
 |       /* This is a load or store which is not on a four byte boundary.  */ | 
 |  | 
 |       while (*plabel < label_end && **plabel < i) | 
 | 	++*plabel; | 
 |  | 
 |       if (i > start) | 
 | 	{ | 
 | 	  prev_insn = bfd_get_16 (abfd, contents + i - 2); | 
 | 	  /* If INSN is the field b of a parallel processing insn, it is not | 
 | 	     a load / store after all.  Note that the test here might mistake | 
 | 	     the field_b of a pcopy insn for the starting code of a parallel | 
 | 	     processing insn; this might miss a swapping opportunity, but at | 
 | 	     least we're on the safe side.  */ | 
 | 	  if (dsp && (prev_insn & 0xfc00) == 0xf800) | 
 | 	    continue; | 
 |  | 
 | 	  /* Check if prev_insn is actually the field b of a parallel | 
 | 	     processing insn.  Again, this can give a spurious match | 
 | 	     after a pcopy.  */ | 
 | 	  if (dsp && i - 2 > start) | 
 | 	    { | 
 | 	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4); | 
 |  | 
 | 	      if ((pprev_insn & 0xfc00) == 0xf800) | 
 | 		prev_op = NULL; | 
 | 	      else | 
 | 		prev_op = sh_insn_info (prev_insn); | 
 | 	    } | 
 | 	  else | 
 | 	    prev_op = sh_insn_info (prev_insn); | 
 |  | 
 | 	  /* If the load/store instruction is in a delay slot, we | 
 | 	     can't swap.  */ | 
 | 	  if (prev_op == NULL | 
 | 	      || (prev_op->flags & DELAY) != 0) | 
 | 	    continue; | 
 | 	} | 
 |       if (i > start | 
 | 	  && (*plabel >= label_end || **plabel != i) | 
 | 	  && prev_op != NULL | 
 | 	  && (prev_op->flags & (LOAD | STORE)) == 0 | 
 | 	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op)) | 
 | 	{ | 
 | 	  bool ok; | 
 |  | 
 | 	  /* The load/store instruction does not have a label, and | 
 | 	     there is a previous instruction; PREV_INSN is not | 
 | 	     itself a load/store instruction, and PREV_INSN and | 
 | 	     INSN do not conflict.  */ | 
 |  | 
 | 	  ok = true; | 
 |  | 
 | 	  if (i >= start + 4) | 
 | 	    { | 
 | 	      unsigned int prev2_insn; | 
 | 	      const struct sh_opcode *prev2_op; | 
 |  | 
 | 	      prev2_insn = bfd_get_16 (abfd, contents + i - 4); | 
 | 	      prev2_op = sh_insn_info (prev2_insn); | 
 |  | 
 | 	      /* If the instruction before PREV_INSN has a delay | 
 | 		 slot--that is, PREV_INSN is in a delay slot--we | 
 | 		 can not swap.  */ | 
 | 	      if (prev2_op == NULL | 
 | 		  || (prev2_op->flags & DELAY) != 0) | 
 | 		ok = false; | 
 |  | 
 | 	      /* If the instruction before PREV_INSN is a load, | 
 | 		 and it sets a register which INSN uses, then | 
 | 		 putting INSN immediately after PREV_INSN will | 
 | 		 cause a pipeline bubble, so there is no point to | 
 | 		 making the swap.  */ | 
 | 	      if (ok | 
 | 		  && (prev2_op->flags & LOAD) != 0 | 
 | 		  && sh_load_use (prev2_insn, prev2_op, insn, op)) | 
 | 		ok = false; | 
 | 	    } | 
 |  | 
 | 	  if (ok) | 
 | 	    { | 
 | 	      if (! (*swap) (abfd, sec, relocs, contents, i - 2)) | 
 | 		return false; | 
 | 	      *pswapped = true; | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       while (*plabel < label_end && **plabel < i + 2) | 
 | 	++*plabel; | 
 |  | 
 |       if (i + 2 < stop | 
 | 	  && (*plabel >= label_end || **plabel != i + 2)) | 
 | 	{ | 
 | 	  unsigned int next_insn; | 
 | 	  const struct sh_opcode *next_op; | 
 |  | 
 | 	  /* There is an instruction after the load/store | 
 | 	     instruction, and it does not have a label.  */ | 
 | 	  next_insn = bfd_get_16 (abfd, contents + i + 2); | 
 | 	  next_op = sh_insn_info (next_insn); | 
 | 	  if (next_op != NULL | 
 | 	      && (next_op->flags & (LOAD | STORE)) == 0 | 
 | 	      && ! sh_insns_conflict (insn, op, next_insn, next_op)) | 
 | 	    { | 
 | 	      bool ok; | 
 |  | 
 | 	      /* NEXT_INSN is not itself a load/store instruction, | 
 | 		 and it does not conflict with INSN.  */ | 
 |  | 
 | 	      ok = true; | 
 |  | 
 | 	      /* If PREV_INSN is a load, and it sets a register | 
 | 		 which NEXT_INSN uses, then putting NEXT_INSN | 
 | 		 immediately after PREV_INSN will cause a pipeline | 
 | 		 bubble, so there is no reason to make this swap.  */ | 
 | 	      if (prev_op != NULL | 
 | 		  && (prev_op->flags & LOAD) != 0 | 
 | 		  && sh_load_use (prev_insn, prev_op, next_insn, next_op)) | 
 | 		ok = false; | 
 |  | 
 | 	      /* If INSN is a load, and it sets a register which | 
 | 		 the insn after NEXT_INSN uses, then doing the | 
 | 		 swap will cause a pipeline bubble, so there is no | 
 | 		 reason to make the swap.  However, if the insn | 
 | 		 after NEXT_INSN is itself a load or store | 
 | 		 instruction, then it is misaligned, so | 
 | 		 optimistically hope that it will be swapped | 
 | 		 itself, and just live with the pipeline bubble if | 
 | 		 it isn't.  */ | 
 | 	      if (ok | 
 | 		  && i + 4 < stop | 
 | 		  && (op->flags & LOAD) != 0) | 
 | 		{ | 
 | 		  unsigned int next2_insn; | 
 | 		  const struct sh_opcode *next2_op; | 
 |  | 
 | 		  next2_insn = bfd_get_16 (abfd, contents + i + 4); | 
 | 		  next2_op = sh_insn_info (next2_insn); | 
 | 		  if (next2_op == NULL | 
 | 		      || ((next2_op->flags & (LOAD | STORE)) == 0 | 
 | 			  && sh_load_use (insn, op, next2_insn, next2_op))) | 
 | 		    ok = false; | 
 | 		} | 
 |  | 
 | 	      if (ok) | 
 | 		{ | 
 | 		  if (! (*swap) (abfd, sec, relocs, contents, i)) | 
 | 		    return false; | 
 | 		  *pswapped = true; | 
 | 		  continue; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 | #endif /* not COFF_IMAGE_WITH_PE */ | 
 |  | 
 | /* Swap two SH instructions.  */ | 
 |  | 
 | static bool | 
 | sh_swap_insns (bfd *      abfd, | 
 | 	       asection * sec, | 
 | 	       void *     relocs, | 
 | 	       bfd_byte * contents, | 
 | 	       bfd_vma    addr) | 
 | { | 
 |   struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs; | 
 |   unsigned short i1, i2; | 
 |   struct internal_reloc *irel, *irelend; | 
 |  | 
 |   /* Swap the instructions themselves.  */ | 
 |   i1 = bfd_get_16 (abfd, contents + addr); | 
 |   i2 = bfd_get_16 (abfd, contents + addr + 2); | 
 |   bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); | 
 |   bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); | 
 |  | 
 |   /* Adjust all reloc addresses.  */ | 
 |   irelend = internal_relocs + sec->reloc_count; | 
 |   for (irel = internal_relocs; irel < irelend; irel++) | 
 |     { | 
 |       int type, add; | 
 |  | 
 |       /* There are a few special types of relocs that we don't want to | 
 | 	 adjust.  These relocs do not apply to the instruction itself, | 
 | 	 but are only associated with the address.  */ | 
 |       type = irel->r_type; | 
 |       if (type == R_SH_ALIGN | 
 | 	  || type == R_SH_CODE | 
 | 	  || type == R_SH_DATA | 
 | 	  || type == R_SH_LABEL) | 
 | 	continue; | 
 |  | 
 |       /* If an R_SH_USES reloc points to one of the addresses being | 
 | 	 swapped, we must adjust it.  It would be incorrect to do this | 
 | 	 for a jump, though, since we want to execute both | 
 | 	 instructions after the jump.  (We have avoided swapping | 
 | 	 around a label, so the jump will not wind up executing an | 
 | 	 instruction it shouldn't).  */ | 
 |       if (type == R_SH_USES) | 
 | 	{ | 
 | 	  bfd_vma off; | 
 |  | 
 | 	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset; | 
 | 	  if (off == addr) | 
 | 	    irel->r_offset += 2; | 
 | 	  else if (off == addr + 2) | 
 | 	    irel->r_offset -= 2; | 
 | 	} | 
 |  | 
 |       if (irel->r_vaddr - sec->vma == addr) | 
 | 	{ | 
 | 	  irel->r_vaddr += 2; | 
 | 	  add = -2; | 
 | 	} | 
 |       else if (irel->r_vaddr - sec->vma == addr + 2) | 
 | 	{ | 
 | 	  irel->r_vaddr -= 2; | 
 | 	  add = 2; | 
 | 	} | 
 |       else | 
 | 	add = 0; | 
 |  | 
 |       if (add != 0) | 
 | 	{ | 
 | 	  bfd_byte *loc; | 
 | 	  unsigned short insn, oinsn; | 
 | 	  bool overflow; | 
 |  | 
 | 	  loc = contents + irel->r_vaddr - sec->vma; | 
 | 	  overflow = false; | 
 | 	  switch (type) | 
 | 	    { | 
 | 	    default: | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCDISP8BY2: | 
 | 	    case R_SH_PCRELIMM8BY2: | 
 | 	      insn = bfd_get_16 (abfd, loc); | 
 | 	      oinsn = insn; | 
 | 	      insn += add / 2; | 
 | 	      if ((oinsn & 0xff00) != (insn & 0xff00)) | 
 | 		overflow = true; | 
 | 	      bfd_put_16 (abfd, (bfd_vma) insn, loc); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCDISP: | 
 | 	      insn = bfd_get_16 (abfd, loc); | 
 | 	      oinsn = insn; | 
 | 	      insn += add / 2; | 
 | 	      if ((oinsn & 0xf000) != (insn & 0xf000)) | 
 | 		overflow = true; | 
 | 	      bfd_put_16 (abfd, (bfd_vma) insn, loc); | 
 | 	      break; | 
 |  | 
 | 	    case R_SH_PCRELIMM8BY4: | 
 | 	      /* This reloc ignores the least significant 3 bits of | 
 | 		 the program counter before adding in the offset. | 
 | 		 This means that if ADDR is at an even address, the | 
 | 		 swap will not affect the offset.  If ADDR is an at an | 
 | 		 odd address, then the instruction will be crossing a | 
 | 		 four byte boundary, and must be adjusted.  */ | 
 | 	      if ((addr & 3) != 0) | 
 | 		{ | 
 | 		  insn = bfd_get_16 (abfd, loc); | 
 | 		  oinsn = insn; | 
 | 		  insn += add / 2; | 
 | 		  if ((oinsn & 0xff00) != (insn & 0xff00)) | 
 | 		    overflow = true; | 
 | 		  bfd_put_16 (abfd, (bfd_vma) insn, loc); | 
 | 		} | 
 |  | 
 | 	      break; | 
 | 	    } | 
 |  | 
 | 	  if (overflow) | 
 | 	    { | 
 | 	      _bfd_error_handler | 
 | 		/* xgettext: c-format */ | 
 | 		(_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), | 
 | 		 abfd, (uint64_t) irel->r_vaddr); | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Look for loads and stores which we can align to four byte | 
 |    boundaries.  See the longer comment above sh_relax_section for why | 
 |    this is desirable.  This sets *PSWAPPED if some instruction was | 
 |    swapped.  */ | 
 |  | 
 | static bool | 
 | sh_align_loads (bfd *abfd, | 
 | 		asection *sec, | 
 | 		struct internal_reloc *internal_relocs, | 
 | 		bfd_byte *contents, | 
 | 		bool *pswapped) | 
 | { | 
 |   struct internal_reloc *irel, *irelend; | 
 |   bfd_vma *labels = NULL; | 
 |   bfd_vma *label, *label_end; | 
 |   bfd_size_type amt; | 
 |  | 
 |   *pswapped = false; | 
 |  | 
 |   irelend = internal_relocs + sec->reloc_count; | 
 |  | 
 |   /* Get all the addresses with labels on them.  */ | 
 |   amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma); | 
 |   labels = (bfd_vma *) bfd_malloc (amt); | 
 |   if (labels == NULL) | 
 |     goto error_return; | 
 |   label_end = labels; | 
 |   for (irel = internal_relocs; irel < irelend; irel++) | 
 |     { | 
 |       if (irel->r_type == R_SH_LABEL) | 
 | 	{ | 
 | 	  *label_end = irel->r_vaddr - sec->vma; | 
 | 	  ++label_end; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Note that the assembler currently always outputs relocs in | 
 |      address order.  If that ever changes, this code will need to sort | 
 |      the label values and the relocs.  */ | 
 |  | 
 |   label = labels; | 
 |  | 
 |   for (irel = internal_relocs; irel < irelend; irel++) | 
 |     { | 
 |       bfd_vma start, stop; | 
 |  | 
 |       if (irel->r_type != R_SH_CODE) | 
 | 	continue; | 
 |  | 
 |       start = irel->r_vaddr - sec->vma; | 
 |  | 
 |       for (irel++; irel < irelend; irel++) | 
 | 	if (irel->r_type == R_SH_DATA) | 
 | 	  break; | 
 |       if (irel < irelend) | 
 | 	stop = irel->r_vaddr - sec->vma; | 
 |       else | 
 | 	stop = sec->size; | 
 |  | 
 |       if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns, | 
 | 				     internal_relocs, &label, | 
 | 				     label_end, start, stop, pswapped)) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   free (labels); | 
 |  | 
 |   return true; | 
 |  | 
 |  error_return: | 
 |   free (labels); | 
 |   return false; | 
 | } | 
 |  | 
 | /* This is a modification of _bfd_coff_generic_relocate_section, which | 
 |    will handle SH relaxing.  */ | 
 |  | 
 | static bool | 
 | sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, | 
 | 		     struct bfd_link_info *info, | 
 | 		     bfd *input_bfd, | 
 | 		     asection *input_section, | 
 | 		     bfd_byte *contents, | 
 | 		     struct internal_reloc *relocs, | 
 | 		     struct internal_syment *syms, | 
 | 		     asection **sections) | 
 | { | 
 |   struct internal_reloc *rel; | 
 |   struct internal_reloc *relend; | 
 |  | 
 |   rel = relocs; | 
 |   relend = rel + input_section->reloc_count; | 
 |   for (; rel < relend; rel++) | 
 |     { | 
 |       long symndx; | 
 |       struct coff_link_hash_entry *h; | 
 |       struct internal_syment *sym; | 
 |       bfd_vma addend; | 
 |       bfd_vma val; | 
 |       reloc_howto_type *howto; | 
 |       bfd_reloc_status_type rstat; | 
 |  | 
 |       /* Almost all relocs have to do with relaxing.  If any work must | 
 | 	 be done for them, it has been done in sh_relax_section.  */ | 
 |       if (rel->r_type != R_SH_IMM32 | 
 | #ifdef COFF_WITH_PE | 
 | 	  && rel->r_type != R_SH_IMM32CE | 
 | 	  && rel->r_type != R_SH_IMAGEBASE | 
 | #endif | 
 | 	  && rel->r_type != R_SH_PCDISP) | 
 | 	continue; | 
 |  | 
 |       symndx = rel->r_symndx; | 
 |  | 
 |       if (symndx == -1) | 
 | 	{ | 
 | 	  h = NULL; | 
 | 	  sym = NULL; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (symndx < 0 | 
 | 	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd)) | 
 | 	    { | 
 | 	      _bfd_error_handler | 
 | 		/* xgettext: c-format */ | 
 | 		(_("%pB: illegal symbol index %ld in relocs"), | 
 | 		 input_bfd, symndx); | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      return false; | 
 | 	    } | 
 | 	  h = obj_coff_sym_hashes (input_bfd)[symndx]; | 
 | 	  sym = syms + symndx; | 
 | 	} | 
 |  | 
 |       if (sym != NULL && sym->n_scnum != 0) | 
 | 	addend = - sym->n_value; | 
 |       else | 
 | 	addend = 0; | 
 |  | 
 |       if (rel->r_type == R_SH_PCDISP) | 
 | 	addend -= 4; | 
 |  | 
 |       if (rel->r_type >= SH_COFF_HOWTO_COUNT) | 
 | 	howto = NULL; | 
 |       else | 
 | 	howto = &sh_coff_howtos[rel->r_type]; | 
 |  | 
 |       if (howto == NULL) | 
 | 	{ | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  return false; | 
 | 	} | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 |       if (rel->r_type == R_SH_IMAGEBASE) | 
 | 	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase; | 
 | #endif | 
 |  | 
 |       val = 0; | 
 |  | 
 |       if (h == NULL) | 
 | 	{ | 
 | 	  asection *sec; | 
 |  | 
 | 	  /* There is nothing to do for an internal PCDISP reloc.  */ | 
 | 	  if (rel->r_type == R_SH_PCDISP) | 
 | 	    continue; | 
 |  | 
 | 	  if (symndx == -1) | 
 | 	    { | 
 | 	      sec = bfd_abs_section_ptr; | 
 | 	      val = 0; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      sec = sections[symndx]; | 
 | 	      val = (sec->output_section->vma | 
 | 		     + sec->output_offset | 
 | 		     + sym->n_value | 
 | 		     - sec->vma); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (h->root.type == bfd_link_hash_defined | 
 | 	      || h->root.type == bfd_link_hash_defweak) | 
 | 	    { | 
 | 	      asection *sec; | 
 |  | 
 | 	      sec = h->root.u.def.section; | 
 | 	      val = (h->root.u.def.value | 
 | 		     + sec->output_section->vma | 
 | 		     + sec->output_offset); | 
 | 	    } | 
 | 	  else if (! bfd_link_relocatable (info)) | 
 | 	    (*info->callbacks->undefined_symbol) | 
 | 	      (info, h->root.root.string, input_bfd, input_section, | 
 | 	       rel->r_vaddr - input_section->vma, true); | 
 | 	} | 
 |  | 
 |       rstat = _bfd_final_link_relocate (howto, input_bfd, input_section, | 
 | 					contents, | 
 | 					rel->r_vaddr - input_section->vma, | 
 | 					val, addend); | 
 |  | 
 |       switch (rstat) | 
 | 	{ | 
 | 	default: | 
 | 	  abort (); | 
 | 	case bfd_reloc_ok: | 
 | 	  break; | 
 | 	case bfd_reloc_overflow: | 
 | 	  { | 
 | 	    const char *name; | 
 | 	    char buf[SYMNMLEN + 1]; | 
 |  | 
 | 	    if (symndx == -1) | 
 | 	      name = "*ABS*"; | 
 | 	    else if (h != NULL) | 
 | 	      name = NULL; | 
 | 	    else if (sym->_n._n_n._n_zeroes == 0 | 
 | 		     && sym->_n._n_n._n_offset != 0) | 
 | 	      { | 
 | 		if (sym->_n._n_n._n_offset < obj_coff_strings_len (input_bfd)) | 
 | 		  name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset; | 
 | 		else | 
 | 		  name = "?"; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		strncpy (buf, sym->_n._n_name, SYMNMLEN); | 
 | 		buf[SYMNMLEN] = '\0'; | 
 | 		name = buf; | 
 | 	      } | 
 |  | 
 | 	    (*info->callbacks->reloc_overflow) | 
 | 	      (info, (h ? &h->root : NULL), name, howto->name, | 
 | 	       (bfd_vma) 0, input_bfd, input_section, | 
 | 	       rel->r_vaddr - input_section->vma); | 
 | 	  } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* This is a version of bfd_generic_get_relocated_section_contents | 
 |    which uses sh_relocate_section.  */ | 
 |  | 
 | static bfd_byte * | 
 | sh_coff_get_relocated_section_contents (bfd *output_bfd, | 
 | 					struct bfd_link_info *link_info, | 
 | 					struct bfd_link_order *link_order, | 
 | 					bfd_byte *data, | 
 | 					bool relocatable, | 
 | 					asymbol **symbols) | 
 | { | 
 |   asection *input_section = link_order->u.indirect.section; | 
 |   bfd *input_bfd = input_section->owner; | 
 |   asection **sections = NULL; | 
 |   struct internal_reloc *internal_relocs = NULL; | 
 |   struct internal_syment *internal_syms = NULL; | 
 |  | 
 |   /* We only need to handle the case of relaxing, or of having a | 
 |      particular set of section contents, specially.  */ | 
 |   if (relocatable | 
 |       || coff_section_data (input_bfd, input_section) == NULL | 
 |       || coff_section_data (input_bfd, input_section)->contents == NULL) | 
 |     return bfd_generic_get_relocated_section_contents (output_bfd, link_info, | 
 | 						       link_order, data, | 
 | 						       relocatable, | 
 | 						       symbols); | 
 |  | 
 |   bfd_byte *orig_data = data; | 
 |   if (data == NULL) | 
 |     { | 
 |       data = bfd_malloc (input_section->size); | 
 |       if (data == NULL) | 
 | 	return NULL; | 
 |     } | 
 |   memcpy (data, coff_section_data (input_bfd, input_section)->contents, | 
 | 	  (size_t) input_section->size); | 
 |  | 
 |   if ((input_section->flags & SEC_RELOC) != 0 | 
 |       && input_section->reloc_count > 0) | 
 |     { | 
 |       bfd_size_type symesz = bfd_coff_symesz (input_bfd); | 
 |       bfd_byte *esym, *esymend; | 
 |       struct internal_syment *isymp; | 
 |       asection **secpp; | 
 |       bfd_size_type amt; | 
 |  | 
 |       if (! _bfd_coff_get_external_symbols (input_bfd)) | 
 | 	goto error_return; | 
 |  | 
 |       internal_relocs = (_bfd_coff_read_internal_relocs | 
 | 			 (input_bfd, input_section, false, (bfd_byte *) NULL, | 
 | 			  false, (struct internal_reloc *) NULL)); | 
 |       if (internal_relocs == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       amt = obj_raw_syment_count (input_bfd); | 
 |       amt *= sizeof (struct internal_syment); | 
 |       internal_syms = (struct internal_syment *) bfd_malloc (amt); | 
 |       if (internal_syms == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       amt = obj_raw_syment_count (input_bfd); | 
 |       amt *= sizeof (asection *); | 
 |       sections = (asection **) bfd_malloc (amt); | 
 |       if (sections == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       isymp = internal_syms; | 
 |       secpp = sections; | 
 |       esym = (bfd_byte *) obj_coff_external_syms (input_bfd); | 
 |       esymend = esym + obj_raw_syment_count (input_bfd) * symesz; | 
 |       while (esym < esymend) | 
 | 	{ | 
 | 	  bfd_coff_swap_sym_in (input_bfd, esym, isymp); | 
 |  | 
 | 	  if (isymp->n_scnum != 0) | 
 | 	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum); | 
 | 	  else | 
 | 	    { | 
 | 	      if (isymp->n_value == 0) | 
 | 		*secpp = bfd_und_section_ptr; | 
 | 	      else | 
 | 		*secpp = bfd_com_section_ptr; | 
 | 	    } | 
 |  | 
 | 	  esym += (isymp->n_numaux + 1) * symesz; | 
 | 	  secpp += isymp->n_numaux + 1; | 
 | 	  isymp += isymp->n_numaux + 1; | 
 | 	} | 
 |  | 
 |       if (! sh_relocate_section (output_bfd, link_info, input_bfd, | 
 | 				 input_section, data, internal_relocs, | 
 | 				 internal_syms, sections)) | 
 | 	goto error_return; | 
 |  | 
 |       free (sections); | 
 |       sections = NULL; | 
 |       free (internal_syms); | 
 |       internal_syms = NULL; | 
 |       free (internal_relocs); | 
 |       internal_relocs = NULL; | 
 |     } | 
 |  | 
 |   return data; | 
 |  | 
 |  error_return: | 
 |   free (internal_relocs); | 
 |   free (internal_syms); | 
 |   free (sections); | 
 |   if (orig_data == NULL) | 
 |     free (data); | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* The target vectors.  */ | 
 |  | 
 | #ifndef TARGET_SHL_SYM | 
 | CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE) | 
 | #endif | 
 |  | 
 | #ifdef TARGET_SHL_SYM | 
 | #define TARGET_SYM TARGET_SHL_SYM | 
 | #else | 
 | #define TARGET_SYM sh_coff_le_vec | 
 | #endif | 
 |  | 
 | #ifndef TARGET_SHL_NAME | 
 | #define TARGET_SHL_NAME "coff-shl" | 
 | #endif | 
 |  | 
 | #ifdef COFF_WITH_PE | 
 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, | 
 | 			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE); | 
 | #else | 
 | CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE, | 
 | 			       0, '_', NULL, COFF_SWAP_TABLE) | 
 | #endif | 
 |  | 
 | #ifndef TARGET_SHL_SYM | 
 |  | 
 | /* Some people want versions of the SH COFF target which do not align | 
 |    to 16 byte boundaries.  We implement that by adding a couple of new | 
 |    target vectors.  These are just like the ones above, but they | 
 |    change the default section alignment.  To generate them in the | 
 |    assembler, use -small.  To use them in the linker, use -b | 
 |    coff-sh{l}-small and -oformat coff-sh{l}-small. | 
 |  | 
 |    Yes, this is a horrible hack.  A general solution for setting | 
 |    section alignment in COFF is rather complex.  ELF handles this | 
 |    correctly.  */ | 
 |  | 
 | /* Only recognize the small versions if the target was not defaulted. | 
 |    Otherwise we won't recognize the non default endianness.  */ | 
 |  | 
 | static bfd_cleanup | 
 | coff_small_object_p (bfd *abfd) | 
 | { | 
 |   if (abfd->target_defaulted) | 
 |     { | 
 |       bfd_set_error (bfd_error_wrong_format); | 
 |       return NULL; | 
 |     } | 
 |   return coff_object_p (abfd); | 
 | } | 
 |  | 
 | /* Set the section alignment for the small versions.  */ | 
 |  | 
 | static bool | 
 | coff_small_new_section_hook (bfd *abfd, asection *section) | 
 | { | 
 |   if (! coff_new_section_hook (abfd, section)) | 
 |     return false; | 
 |  | 
 |   /* We must align to at least a four byte boundary, because longword | 
 |      accesses must be on a four byte boundary.  */ | 
 |   if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER) | 
 |     section->alignment_power = 2; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* This is copied from bfd_coff_std_swap_table so that we can change | 
 |    the default section alignment power.  */ | 
 |  | 
 | static const bfd_coff_backend_data bfd_coff_small_swap_table = | 
 | { | 
 |   coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in, | 
 |   coff_swap_aux_out, coff_swap_sym_out, | 
 |   coff_swap_lineno_out, coff_swap_reloc_out, | 
 |   coff_swap_filehdr_out, coff_swap_aouthdr_out, | 
 |   coff_swap_scnhdr_out, | 
 |   FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN, | 
 | #ifdef COFF_LONG_FILENAMES | 
 |   true, | 
 | #else | 
 |   false, | 
 | #endif | 
 |   COFF_DEFAULT_LONG_SECTION_NAMES, | 
 |   2, | 
 | #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS | 
 |   true, | 
 | #else | 
 |   false, | 
 | #endif | 
 | #ifdef COFF_DEBUG_STRING_WIDE_PREFIX | 
 |   4, | 
 | #else | 
 |   2, | 
 | #endif | 
 |   32768, | 
 |   coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in, | 
 |   coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook, | 
 |   coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook, | 
 |   coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook, | 
 |   coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate, | 
 |   coff_classify_symbol, coff_compute_section_file_positions, | 
 |   coff_start_final_link, coff_relocate_section, coff_rtype_to_howto, | 
 |   coff_adjust_symndx, coff_link_add_one_symbol, | 
 |   coff_link_output_has_begun, coff_final_link_postscript, | 
 |   bfd_pe_print_pdata | 
 | }; | 
 |  | 
 | #define coff_small_close_and_cleanup \ | 
 |   coff_close_and_cleanup | 
 | #define coff_small_bfd_free_cached_info \ | 
 |   coff_bfd_free_cached_info | 
 | #define coff_small_get_section_contents \ | 
 |   coff_get_section_contents | 
 | #define coff_small_get_section_contents_in_window \ | 
 |   coff_get_section_contents_in_window | 
 |  | 
 | extern const bfd_target sh_coff_small_le_vec; | 
 |  | 
 | const bfd_target sh_coff_small_vec = | 
 | { | 
 |   "coff-sh-small",		/* name */ | 
 |   bfd_target_coff_flavour, | 
 |   BFD_ENDIAN_BIG,		/* data byte order is big */ | 
 |   BFD_ENDIAN_BIG,		/* header byte order is big */ | 
 |  | 
 |   (HAS_RELOC | EXEC_P		/* object flags */ | 
 |    | HAS_LINENO | HAS_DEBUG | 
 |    | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), | 
 |  | 
 |   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), | 
 |   '_',				/* leading symbol underscore */ | 
 |   '/',				/* ar_pad_char */ | 
 |   15,				/* ar_max_namelen */ | 
 |   0,				/* match priority.  */ | 
 |   TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */ | 
 |   bfd_getb64, bfd_getb_signed_64, bfd_putb64, | 
 |   bfd_getb32, bfd_getb_signed_32, bfd_putb32, | 
 |   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ | 
 |   bfd_getb64, bfd_getb_signed_64, bfd_putb64, | 
 |   bfd_getb32, bfd_getb_signed_32, bfd_putb32, | 
 |   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ | 
 |  | 
 |   {				/* bfd_check_format */ | 
 |     _bfd_dummy_target, | 
 |     coff_small_object_p, | 
 |     bfd_generic_archive_p, | 
 |     _bfd_dummy_target | 
 |   }, | 
 |   {				/* bfd_set_format */ | 
 |     _bfd_bool_bfd_false_error, | 
 |     coff_mkobject, | 
 |     _bfd_generic_mkarchive, | 
 |     _bfd_bool_bfd_false_error | 
 |   }, | 
 |   {				/* bfd_write_contents */ | 
 |     _bfd_bool_bfd_false_error, | 
 |     coff_write_object_contents, | 
 |     _bfd_write_archive_contents, | 
 |     _bfd_bool_bfd_false_error | 
 |   }, | 
 |  | 
 |   BFD_JUMP_TABLE_GENERIC (coff_small), | 
 |   BFD_JUMP_TABLE_COPY (coff), | 
 |   BFD_JUMP_TABLE_CORE (_bfd_nocore), | 
 |   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), | 
 |   BFD_JUMP_TABLE_SYMBOLS (coff), | 
 |   BFD_JUMP_TABLE_RELOCS (coff), | 
 |   BFD_JUMP_TABLE_WRITE (coff), | 
 |   BFD_JUMP_TABLE_LINK (coff), | 
 |   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | 
 |  | 
 |   &sh_coff_small_le_vec, | 
 |  | 
 |   &bfd_coff_small_swap_table | 
 | }; | 
 |  | 
 | const bfd_target sh_coff_small_le_vec = | 
 | { | 
 |   "coff-shl-small",		/* name */ | 
 |   bfd_target_coff_flavour, | 
 |   BFD_ENDIAN_LITTLE,		/* data byte order is little */ | 
 |   BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/ | 
 |  | 
 |   (HAS_RELOC | EXEC_P		/* object flags */ | 
 |    | HAS_LINENO | HAS_DEBUG | 
 |    | HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE), | 
 |  | 
 |   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), | 
 |   '_',				/* leading symbol underscore */ | 
 |   '/',				/* ar_pad_char */ | 
 |   15,				/* ar_max_namelen */ | 
 |   0,				/* match priority.  */ | 
 |   TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols.  */ | 
 |   bfd_getl64, bfd_getl_signed_64, bfd_putl64, | 
 |   bfd_getl32, bfd_getl_signed_32, bfd_putl32, | 
 |   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ | 
 |   bfd_getl64, bfd_getl_signed_64, bfd_putl64, | 
 |   bfd_getl32, bfd_getl_signed_32, bfd_putl32, | 
 |   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ | 
 |  | 
 |   {				/* bfd_check_format */ | 
 |     _bfd_dummy_target, | 
 |     coff_small_object_p, | 
 |     bfd_generic_archive_p, | 
 |     _bfd_dummy_target | 
 |   }, | 
 |   {				/* bfd_set_format */ | 
 |     _bfd_bool_bfd_false_error, | 
 |     coff_mkobject, | 
 |     _bfd_generic_mkarchive, | 
 |     _bfd_bool_bfd_false_error | 
 |   }, | 
 |   {				/* bfd_write_contents */ | 
 |     _bfd_bool_bfd_false_error, | 
 |     coff_write_object_contents, | 
 |     _bfd_write_archive_contents, | 
 |     _bfd_bool_bfd_false_error | 
 |   }, | 
 |  | 
 |   BFD_JUMP_TABLE_GENERIC (coff_small), | 
 |   BFD_JUMP_TABLE_COPY (coff), | 
 |   BFD_JUMP_TABLE_CORE (_bfd_nocore), | 
 |   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff), | 
 |   BFD_JUMP_TABLE_SYMBOLS (coff), | 
 |   BFD_JUMP_TABLE_RELOCS (coff), | 
 |   BFD_JUMP_TABLE_WRITE (coff), | 
 |   BFD_JUMP_TABLE_LINK (coff), | 
 |   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | 
 |  | 
 |   &sh_coff_small_vec, | 
 |  | 
 |   &bfd_coff_small_swap_table | 
 | }; | 
 | #endif |