|  | /* infcover.c -- test zlib's inflate routines with full code coverage | 
|  | * Copyright (C) 2011, 2016 Mark Adler | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | */ | 
|  |  | 
|  | /* to use, do: ./configure --cover && make cover */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  | #include "zlib.h" | 
|  |  | 
|  | /* get definition of internal structure so we can mess with it (see pull()), | 
|  | and so we can call inflate_trees() (see cover5()) */ | 
|  | #define ZLIB_INTERNAL | 
|  | #include "inftrees.h" | 
|  | #include "inflate.h" | 
|  |  | 
|  | #define local static | 
|  |  | 
|  | /* -- memory tracking routines -- */ | 
|  |  | 
|  | /* | 
|  | These memory tracking routines are provided to zlib and track all of zlib's | 
|  | allocations and deallocations, check for LIFO operations, keep a current | 
|  | and high water mark of total bytes requested, optionally set a limit on the | 
|  | total memory that can be allocated, and when done check for memory leaks. | 
|  |  | 
|  | They are used as follows: | 
|  |  | 
|  | z_stream strm; | 
|  | mem_setup(&strm)         initializes the memory tracking and sets the | 
|  | zalloc, zfree, and opaque members of strm to use | 
|  | memory tracking for all zlib operations on strm | 
|  | mem_limit(&strm, limit)  sets a limit on the total bytes requested -- a | 
|  | request that exceeds this limit will result in an | 
|  | allocation failure (returns NULL) -- setting the | 
|  | limit to zero means no limit, which is the default | 
|  | after mem_setup() | 
|  | mem_used(&strm, "msg")   prints to stderr "msg" and the total bytes used | 
|  | mem_high(&strm, "msg")   prints to stderr "msg" and the high water mark | 
|  | mem_done(&strm, "msg")   ends memory tracking, releases all allocations | 
|  | for the tracking as well as leaked zlib blocks, if | 
|  | any.  If there was anything unusual, such as leaked | 
|  | blocks, non-FIFO frees, or frees of addresses not | 
|  | allocated, then "msg" and information about the | 
|  | problem is printed to stderr.  If everything is | 
|  | normal, nothing is printed. mem_done resets the | 
|  | strm members to Z_NULL to use the default memory | 
|  | allocation routines on the next zlib initialization | 
|  | using strm. | 
|  | */ | 
|  |  | 
|  | /* these items are strung together in a linked list, one for each allocation */ | 
|  | struct mem_item { | 
|  | void *ptr;                  /* pointer to allocated memory */ | 
|  | size_t size;                /* requested size of allocation */ | 
|  | struct mem_item *next;      /* pointer to next item in list, or NULL */ | 
|  | }; | 
|  |  | 
|  | /* this structure is at the root of the linked list, and tracks statistics */ | 
|  | struct mem_zone { | 
|  | struct mem_item *first;     /* pointer to first item in list, or NULL */ | 
|  | size_t total, highwater;    /* total allocations, and largest total */ | 
|  | size_t limit;               /* memory allocation limit, or 0 if no limit */ | 
|  | int notlifo, rogue;         /* counts of non-LIFO frees and rogue frees */ | 
|  | }; | 
|  |  | 
|  | /* memory allocation routine to pass to zlib */ | 
|  | local void *mem_alloc(void *mem, unsigned count, unsigned size) | 
|  | { | 
|  | void *ptr; | 
|  | struct mem_item *item; | 
|  | struct mem_zone *zone = mem; | 
|  | size_t len = count * (size_t)size; | 
|  |  | 
|  | /* induced allocation failure */ | 
|  | if (zone == NULL || (zone->limit && zone->total + len > zone->limit)) | 
|  | return NULL; | 
|  |  | 
|  | /* perform allocation using the standard library, fill memory with a | 
|  | non-zero value to make sure that the code isn't depending on zeros */ | 
|  | ptr = malloc(len); | 
|  | if (ptr == NULL) | 
|  | return NULL; | 
|  | memset(ptr, 0xa5, len); | 
|  |  | 
|  | /* create a new item for the list */ | 
|  | item = malloc(sizeof(struct mem_item)); | 
|  | if (item == NULL) { | 
|  | free(ptr); | 
|  | return NULL; | 
|  | } | 
|  | item->ptr = ptr; | 
|  | item->size = len; | 
|  |  | 
|  | /* insert item at the beginning of the list */ | 
|  | item->next = zone->first; | 
|  | zone->first = item; | 
|  |  | 
|  | /* update the statistics */ | 
|  | zone->total += item->size; | 
|  | if (zone->total > zone->highwater) | 
|  | zone->highwater = zone->total; | 
|  |  | 
|  | /* return the allocated memory */ | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | /* memory free routine to pass to zlib */ | 
|  | local void mem_free(void *mem, void *ptr) | 
|  | { | 
|  | struct mem_item *item, *next; | 
|  | struct mem_zone *zone = mem; | 
|  |  | 
|  | /* if no zone, just do a free */ | 
|  | if (zone == NULL) { | 
|  | free(ptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* point next to the item that matches ptr, or NULL if not found -- remove | 
|  | the item from the linked list if found */ | 
|  | next = zone->first; | 
|  | if (next) { | 
|  | if (next->ptr == ptr) | 
|  | zone->first = next->next;   /* first one is it, remove from list */ | 
|  | else { | 
|  | do {                        /* search the linked list */ | 
|  | item = next; | 
|  | next = item->next; | 
|  | } while (next != NULL && next->ptr != ptr); | 
|  | if (next) {                 /* if found, remove from linked list */ | 
|  | item->next = next->next; | 
|  | zone->notlifo++;        /* not a LIFO free */ | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if found, update the statistics and free the item */ | 
|  | if (next) { | 
|  | zone->total -= next->size; | 
|  | free(next); | 
|  | } | 
|  |  | 
|  | /* if not found, update the rogue count */ | 
|  | else | 
|  | zone->rogue++; | 
|  |  | 
|  | /* in any case, do the requested free with the standard library function */ | 
|  | free(ptr); | 
|  | } | 
|  |  | 
|  | /* set up a controlled memory allocation space for monitoring, set the stream | 
|  | parameters to the controlled routines, with opaque pointing to the space */ | 
|  | local void mem_setup(z_stream *strm) | 
|  | { | 
|  | struct mem_zone *zone; | 
|  |  | 
|  | zone = malloc(sizeof(struct mem_zone)); | 
|  | assert(zone != NULL); | 
|  | zone->first = NULL; | 
|  | zone->total = 0; | 
|  | zone->highwater = 0; | 
|  | zone->limit = 0; | 
|  | zone->notlifo = 0; | 
|  | zone->rogue = 0; | 
|  | strm->opaque = zone; | 
|  | strm->zalloc = mem_alloc; | 
|  | strm->zfree = mem_free; | 
|  | } | 
|  |  | 
|  | /* set a limit on the total memory allocation, or 0 to remove the limit */ | 
|  | local void mem_limit(z_stream *strm, size_t limit) | 
|  | { | 
|  | struct mem_zone *zone = strm->opaque; | 
|  |  | 
|  | zone->limit = limit; | 
|  | } | 
|  |  | 
|  | /* show the current total requested allocations in bytes */ | 
|  | local void mem_used(z_stream *strm, char *prefix) | 
|  | { | 
|  | struct mem_zone *zone = strm->opaque; | 
|  |  | 
|  | fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total); | 
|  | } | 
|  |  | 
|  | /* show the high water allocation in bytes */ | 
|  | local void mem_high(z_stream *strm, char *prefix) | 
|  | { | 
|  | struct mem_zone *zone = strm->opaque; | 
|  |  | 
|  | fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater); | 
|  | } | 
|  |  | 
|  | /* release the memory allocation zone -- if there are any surprises, notify */ | 
|  | local void mem_done(z_stream *strm, char *prefix) | 
|  | { | 
|  | int count = 0; | 
|  | struct mem_item *item, *next; | 
|  | struct mem_zone *zone = strm->opaque; | 
|  |  | 
|  | /* show high water mark */ | 
|  | mem_high(strm, prefix); | 
|  |  | 
|  | /* free leftover allocations and item structures, if any */ | 
|  | item = zone->first; | 
|  | while (item != NULL) { | 
|  | free(item->ptr); | 
|  | next = item->next; | 
|  | free(item); | 
|  | item = next; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | /* issue alerts about anything unexpected */ | 
|  | if (count || zone->total) | 
|  | fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n", | 
|  | prefix, zone->total, count); | 
|  | if (zone->notlifo) | 
|  | fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo); | 
|  | if (zone->rogue) | 
|  | fprintf(stderr, "** %s: %d frees not recognized\n", | 
|  | prefix, zone->rogue); | 
|  |  | 
|  | /* free the zone and delete from the stream */ | 
|  | free(zone); | 
|  | strm->opaque = Z_NULL; | 
|  | strm->zalloc = Z_NULL; | 
|  | strm->zfree = Z_NULL; | 
|  | } | 
|  |  | 
|  | /* -- inflate test routines -- */ | 
|  |  | 
|  | /* Decode a hexadecimal string, set *len to length, in[] to the bytes.  This | 
|  | decodes liberally, in that hex digits can be adjacent, in which case two in | 
|  | a row writes a byte.  Or they can be delimited by any non-hex character, | 
|  | where the delimiters are ignored except when a single hex digit is followed | 
|  | by a delimiter, where that single digit writes a byte.  The returned data is | 
|  | allocated and must eventually be freed.  NULL is returned if out of memory. | 
|  | If the length is not needed, then len can be NULL. */ | 
|  | local unsigned char *h2b(const char *hex, unsigned *len) | 
|  | { | 
|  | unsigned char *in, *re; | 
|  | unsigned next, val; | 
|  |  | 
|  | in = malloc((strlen(hex) + 1) >> 1); | 
|  | if (in == NULL) | 
|  | return NULL; | 
|  | next = 0; | 
|  | val = 1; | 
|  | do { | 
|  | if (*hex >= '0' && *hex <= '9') | 
|  | val = (val << 4) + *hex - '0'; | 
|  | else if (*hex >= 'A' && *hex <= 'F') | 
|  | val = (val << 4) + *hex - 'A' + 10; | 
|  | else if (*hex >= 'a' && *hex <= 'f') | 
|  | val = (val << 4) + *hex - 'a' + 10; | 
|  | else if (val != 1 && val < 32)  /* one digit followed by delimiter */ | 
|  | val += 240;                 /* make it look like two digits */ | 
|  | if (val > 255) {                /* have two digits */ | 
|  | in[next++] = val & 0xff;    /* save the decoded byte */ | 
|  | val = 1;                    /* start over */ | 
|  | } | 
|  | } while (*hex++);       /* go through the loop with the terminating null */ | 
|  | if (len != NULL) | 
|  | *len = next; | 
|  | re = realloc(in, next); | 
|  | return re == NULL ? in : re; | 
|  | } | 
|  |  | 
|  | /* generic inflate() run, where hex is the hexadecimal input data, what is the | 
|  | text to include in an error message, step is how much input data to feed | 
|  | inflate() on each call, or zero to feed it all, win is the window bits | 
|  | parameter to inflateInit2(), len is the size of the output buffer, and err | 
|  | is the error code expected from the first inflate() call (the second | 
|  | inflate() call is expected to return Z_STREAM_END).  If win is 47, then | 
|  | header information is collected with inflateGetHeader().  If a zlib stream | 
|  | is looking for a dictionary, then an empty dictionary is provided. | 
|  | inflate() is run until all of the input data is consumed. */ | 
|  | local void inf(char *hex, char *what, unsigned step, int win, unsigned len, | 
|  | int err) | 
|  | { | 
|  | int ret; | 
|  | unsigned have; | 
|  | unsigned char *in, *out; | 
|  | z_stream strm, copy; | 
|  | gz_header head; | 
|  |  | 
|  | mem_setup(&strm); | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit2(&strm, win); | 
|  | if (ret != Z_OK) { | 
|  | mem_done(&strm, what); | 
|  | return; | 
|  | } | 
|  | out = malloc(len);                          assert(out != NULL); | 
|  | if (win == 47) { | 
|  | head.extra = out; | 
|  | head.extra_max = len; | 
|  | head.name = out; | 
|  | head.name_max = len; | 
|  | head.comment = out; | 
|  | head.comm_max = len; | 
|  | ret = inflateGetHeader(&strm, &head);   assert(ret == Z_OK); | 
|  | } | 
|  | in = h2b(hex, &have);                       assert(in != NULL); | 
|  | if (step == 0 || step > have) | 
|  | step = have; | 
|  | strm.avail_in = step; | 
|  | have -= step; | 
|  | strm.next_in = in; | 
|  | do { | 
|  | strm.avail_out = len; | 
|  | strm.next_out = out; | 
|  | ret = inflate(&strm, Z_NO_FLUSH);       assert(err == 9 || ret == err); | 
|  | if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT) | 
|  | break; | 
|  | if (ret == Z_NEED_DICT) { | 
|  | ret = inflateSetDictionary(&strm, in, 1); | 
|  | assert(ret == Z_DATA_ERROR); | 
|  | mem_limit(&strm, 1); | 
|  | ret = inflateSetDictionary(&strm, out, 0); | 
|  | assert(ret == Z_MEM_ERROR); | 
|  | mem_limit(&strm, 0); | 
|  | ((struct inflate_state *)strm.state)->mode = DICT; | 
|  | ret = inflateSetDictionary(&strm, out, 0); | 
|  | assert(ret == Z_OK); | 
|  | ret = inflate(&strm, Z_NO_FLUSH);   assert(ret == Z_BUF_ERROR); | 
|  | } | 
|  | ret = inflateCopy(©, &strm);        assert(ret == Z_OK); | 
|  | ret = inflateEnd(©);                assert(ret == Z_OK); | 
|  | err = 9;                        /* don't care next time around */ | 
|  | have += strm.avail_in; | 
|  | strm.avail_in = step > have ? have : step; | 
|  | have -= strm.avail_in; | 
|  | } while (strm.avail_in); | 
|  | free(in); | 
|  | free(out); | 
|  | ret = inflateReset2(&strm, -8);             assert(ret == Z_OK); | 
|  | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | mem_done(&strm, what); | 
|  | } | 
|  |  | 
|  | /* cover all of the lines in inflate.c up to inflate() */ | 
|  | local void cover_support(void) | 
|  | { | 
|  | int ret; | 
|  | z_stream strm; | 
|  |  | 
|  | mem_setup(&strm); | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit(&strm);                   assert(ret == Z_OK); | 
|  | mem_used(&strm, "inflate init"); | 
|  | ret = inflatePrime(&strm, 5, 31);           assert(ret == Z_OK); | 
|  | ret = inflatePrime(&strm, -1, 0);           assert(ret == Z_OK); | 
|  | ret = inflateSetDictionary(&strm, Z_NULL, 0); | 
|  | assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | mem_done(&strm, "prime"); | 
|  |  | 
|  | inf("63 0", "force window allocation", 0, -15, 1, Z_OK); | 
|  | inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK); | 
|  | inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK); | 
|  | inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END); | 
|  | inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR); | 
|  |  | 
|  | mem_setup(&strm); | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream)); | 
|  | assert(ret == Z_VERSION_ERROR); | 
|  | mem_done(&strm, "wrong version"); | 
|  |  | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit(&strm);                   assert(ret == Z_OK); | 
|  | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | fputs("inflate built-in memory routines\n", stderr); | 
|  | } | 
|  |  | 
|  | /* cover all inflate() header and trailer cases and code after inflate() */ | 
|  | local void cover_wrap(void) | 
|  | { | 
|  | int ret; | 
|  | z_stream strm, copy; | 
|  | unsigned char dict[257]; | 
|  |  | 
|  | ret = inflate(Z_NULL, 0);                   assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateEnd(Z_NULL);                   assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateCopy(Z_NULL, Z_NULL);          assert(ret == Z_STREAM_ERROR); | 
|  | fputs("inflate bad parameters\n", stderr); | 
|  |  | 
|  | inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR); | 
|  | inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR); | 
|  | inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR); | 
|  | inf("8 99", "set window size from header", 0, 0, 0, Z_OK); | 
|  | inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR); | 
|  | inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END); | 
|  | inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1, | 
|  | Z_DATA_ERROR); | 
|  | inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length", | 
|  | 0, 47, 0, Z_STREAM_END); | 
|  | inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR); | 
|  | inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT); | 
|  | inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK); | 
|  |  | 
|  | mem_setup(&strm); | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit2(&strm, -8); | 
|  | strm.avail_in = 2; | 
|  | strm.next_in = (void *)"\x63"; | 
|  | strm.avail_out = 1; | 
|  | strm.next_out = (void *)&ret; | 
|  | mem_limit(&strm, 1); | 
|  | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | 
|  | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | 
|  | mem_limit(&strm, 0); | 
|  | memset(dict, 0, 257); | 
|  | ret = inflateSetDictionary(&strm, dict, 257); | 
|  | assert(ret == Z_OK); | 
|  | mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256); | 
|  | ret = inflatePrime(&strm, 16, 0);           assert(ret == Z_OK); | 
|  | strm.avail_in = 2; | 
|  | strm.next_in = (void *)"\x80"; | 
|  | ret = inflateSync(&strm);                   assert(ret == Z_DATA_ERROR); | 
|  | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_STREAM_ERROR); | 
|  | strm.avail_in = 4; | 
|  | strm.next_in = (void *)"\0\0\xff\xff"; | 
|  | ret = inflateSync(&strm);                   assert(ret == Z_OK); | 
|  | (void)inflateSyncPoint(&strm); | 
|  | ret = inflateCopy(©, &strm);            assert(ret == Z_MEM_ERROR); | 
|  | mem_limit(&strm, 0); | 
|  | ret = inflateUndermine(&strm, 1);           assert(ret == Z_DATA_ERROR); | 
|  | (void)inflateMark(&strm); | 
|  | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | mem_done(&strm, "miscellaneous, force memory errors"); | 
|  | } | 
|  |  | 
|  | /* input and output functions for inflateBack() */ | 
|  | local unsigned pull(void *desc, unsigned char **buf) | 
|  | { | 
|  | static unsigned int next = 0; | 
|  | static unsigned char dat[] = {0x63, 0, 2, 0}; | 
|  | struct inflate_state *state; | 
|  |  | 
|  | if (desc == Z_NULL) { | 
|  | next = 0; | 
|  | return 0;   /* no input (already provided at next_in) */ | 
|  | } | 
|  | state = (void *)((z_stream *)desc)->state; | 
|  | if (state != Z_NULL) | 
|  | state->mode = SYNC;     /* force an otherwise impossible situation */ | 
|  | return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0; | 
|  | } | 
|  |  | 
|  | local int push(void *desc, unsigned char *buf, unsigned len) | 
|  | { | 
|  | buf += len; | 
|  | return desc != Z_NULL;      /* force error if desc not null */ | 
|  | } | 
|  |  | 
|  | /* cover inflateBack() up to common deflate data cases and after those */ | 
|  | local void cover_back(void) | 
|  | { | 
|  | int ret; | 
|  | z_stream strm; | 
|  | unsigned char win[32768]; | 
|  |  | 
|  | ret = inflateBackInit_(Z_NULL, 0, win, 0, 0); | 
|  | assert(ret == Z_VERSION_ERROR); | 
|  | ret = inflateBackInit(Z_NULL, 0, win);      assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL); | 
|  | assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateBackEnd(Z_NULL);               assert(ret == Z_STREAM_ERROR); | 
|  | fputs("inflateBack bad parameters\n", stderr); | 
|  |  | 
|  | mem_setup(&strm); | 
|  | ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | 
|  | strm.avail_in = 2; | 
|  | strm.next_in = (void *)"\x03"; | 
|  | ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | 
|  | assert(ret == Z_STREAM_END); | 
|  | /* force output error */ | 
|  | strm.avail_in = 3; | 
|  | strm.next_in = (void *)"\x63\x00"; | 
|  | ret = inflateBack(&strm, pull, Z_NULL, push, &strm); | 
|  | assert(ret == Z_BUF_ERROR); | 
|  | /* force mode error by mucking with state */ | 
|  | ret = inflateBack(&strm, pull, &strm, push, Z_NULL); | 
|  | assert(ret == Z_STREAM_ERROR); | 
|  | ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | 
|  | mem_done(&strm, "inflateBack bad state"); | 
|  |  | 
|  | ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | 
|  | ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | 
|  | fputs("inflateBack built-in memory routines\n", stderr); | 
|  | } | 
|  |  | 
|  | /* do a raw inflate of data in hexadecimal with both inflate and inflateBack */ | 
|  | local int try(char *hex, char *id, int err) | 
|  | { | 
|  | int ret; | 
|  | unsigned len, size; | 
|  | unsigned char *in, *out, *win; | 
|  | char *prefix; | 
|  | z_stream strm; | 
|  |  | 
|  | /* convert to hex */ | 
|  | in = h2b(hex, &len); | 
|  | assert(in != NULL); | 
|  |  | 
|  | /* allocate work areas */ | 
|  | size = len << 3; | 
|  | out = malloc(size); | 
|  | assert(out != NULL); | 
|  | win = malloc(32768); | 
|  | assert(win != NULL); | 
|  | prefix = malloc(strlen(id) + 6); | 
|  | assert(prefix != NULL); | 
|  |  | 
|  | /* first with inflate */ | 
|  | strcpy(prefix, id); | 
|  | strcat(prefix, "-late"); | 
|  | mem_setup(&strm); | 
|  | strm.avail_in = 0; | 
|  | strm.next_in = Z_NULL; | 
|  | ret = inflateInit2(&strm, err < 0 ? 47 : -15); | 
|  | assert(ret == Z_OK); | 
|  | strm.avail_in = len; | 
|  | strm.next_in = in; | 
|  | do { | 
|  | strm.avail_out = size; | 
|  | strm.next_out = out; | 
|  | ret = inflate(&strm, Z_TREES); | 
|  | assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR); | 
|  | if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT) | 
|  | break; | 
|  | } while (strm.avail_in || strm.avail_out == 0); | 
|  | if (err) { | 
|  | assert(ret == Z_DATA_ERROR); | 
|  | assert(strcmp(id, strm.msg) == 0); | 
|  | } | 
|  | inflateEnd(&strm); | 
|  | mem_done(&strm, prefix); | 
|  |  | 
|  | /* then with inflateBack */ | 
|  | if (err >= 0) { | 
|  | strcpy(prefix, id); | 
|  | strcat(prefix, "-back"); | 
|  | mem_setup(&strm); | 
|  | ret = inflateBackInit(&strm, 15, win); | 
|  | assert(ret == Z_OK); | 
|  | strm.avail_in = len; | 
|  | strm.next_in = in; | 
|  | ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | 
|  | assert(ret != Z_STREAM_ERROR); | 
|  | if (err) { | 
|  | assert(ret == Z_DATA_ERROR); | 
|  | assert(strcmp(id, strm.msg) == 0); | 
|  | } | 
|  | inflateBackEnd(&strm); | 
|  | mem_done(&strm, prefix); | 
|  | } | 
|  |  | 
|  | /* clean up */ | 
|  | free(prefix); | 
|  | free(win); | 
|  | free(out); | 
|  | free(in); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* cover deflate data cases in both inflate() and inflateBack() */ | 
|  | local void cover_inflate(void) | 
|  | { | 
|  | try("0 0 0 0 0", "invalid stored block lengths", 1); | 
|  | try("3 0", "fixed", 0); | 
|  | try("6", "invalid block type", 1); | 
|  | try("1 1 0 fe ff 0", "stored", 0); | 
|  | try("fc 0 0", "too many length or distance symbols", 1); | 
|  | try("4 0 fe ff", "invalid code lengths set", 1); | 
|  | try("4 0 24 49 0", "invalid bit length repeat", 1); | 
|  | try("4 0 24 e9 ff ff", "invalid bit length repeat", 1); | 
|  | try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1); | 
|  | try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0", | 
|  | "invalid literal/lengths set", 1); | 
|  | try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1); | 
|  | try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1); | 
|  | try("2 7e ff ff", "invalid distance code", 1); | 
|  | try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1); | 
|  |  | 
|  | /* also trailer mismatch just in inflate() */ | 
|  | try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1); | 
|  | try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1", | 
|  | "incorrect length check", -1); | 
|  | try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0); | 
|  | try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f", | 
|  | "long code", 0); | 
|  | try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0); | 
|  | try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c", | 
|  | "long distance and extra", 0); | 
|  | try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " | 
|  | "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0); | 
|  | inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258, | 
|  | Z_STREAM_END); | 
|  | inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK); | 
|  | } | 
|  |  | 
|  | /* cover remaining lines in inftrees.c */ | 
|  | local void cover_trees(void) | 
|  | { | 
|  | int ret; | 
|  | unsigned bits; | 
|  | unsigned short lens[16], work[16]; | 
|  | code *next, table[ENOUGH_DISTS]; | 
|  |  | 
|  | /* we need to call inflate_table() directly in order to manifest not- | 
|  | enough errors, since zlib insures that enough is always enough */ | 
|  | for (bits = 0; bits < 15; bits++) | 
|  | lens[bits] = (unsigned short)(bits + 1); | 
|  | lens[15] = 15; | 
|  | next = table; | 
|  | bits = 15; | 
|  | ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | 
|  | assert(ret == 1); | 
|  | next = table; | 
|  | bits = 1; | 
|  | ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | 
|  | assert(ret == 1); | 
|  | fputs("inflate_table not enough errors\n", stderr); | 
|  | } | 
|  |  | 
|  | /* cover remaining inffast.c decoding and window copying */ | 
|  | local void cover_fast(void) | 
|  | { | 
|  | inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68" | 
|  | " ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR); | 
|  | inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49" | 
|  | " 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258, | 
|  | Z_DATA_ERROR); | 
|  | inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258, | 
|  | Z_DATA_ERROR); | 
|  | inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258, | 
|  | Z_DATA_ERROR); | 
|  | inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0", | 
|  | "fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR); | 
|  | inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK); | 
|  | inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0", | 
|  | "contiguous and wrap around window", 6, -8, 259, Z_OK); | 
|  | inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259, | 
|  | Z_STREAM_END); | 
|  | } | 
|  |  | 
|  | int main(void) | 
|  | { | 
|  | fprintf(stderr, "%s\n", zlibVersion()); | 
|  | cover_support(); | 
|  | cover_wrap(); | 
|  | cover_back(); | 
|  | cover_inflate(); | 
|  | cover_trees(); | 
|  | cover_fast(); | 
|  | return 0; | 
|  | } |