blob: 19781c207137f5ef4e0b6e595b336c5a344e8385 [file] [log] [blame]
/* Acorn Risc Machine host machine support.
Copyright (C) 1988, 1989, 1991 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "arm-opcode.h"
#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <machine/reg.h>
#define N_TXTADDR(hdr) 0x8000
#define N_DATADDR(hdr) (hdr.a_text + 0x8000)
#include "gdbcore.h"
#include <sys/user.h> /* After a.out.h */
#include <sys/file.h>
#include "gdb_stat.h"
#include <errno.h>
void
fetch_inferior_registers (regno)
int regno; /* Original value discarded */
{
register unsigned int regaddr;
char buf[MAX_REGISTER_RAW_SIZE];
register int i;
struct user u;
unsigned int offset = (char *) &u.u_ar0 - (char *) &u;
offset = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0)
- KERNEL_U_ADDR;
registers_fetched ();
for (regno = 0; regno < 16; regno++)
{
regaddr = offset + regno * 4;
*(int *)&buf[0] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) regaddr, 0);
if (regno == PC_REGNUM)
*(int *)&buf[0] = GET_PC_PART(*(int *)&buf[0]);
supply_register (regno, buf);
}
*(int *)&buf[0] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) (offset + PC*4), 0);
supply_register (PS_REGNUM, buf); /* set virtual register ps same as pc */
/* read the floating point registers */
offset = (char *) &u.u_fp_regs - (char *)&u;
*(int *)buf = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0);
supply_register (FPS_REGNUM, buf);
for (regno = 16; regno < 24; regno++) {
regaddr = offset + 4 + 12 * (regno - 16);
for (i = 0; i < 12; i += sizeof(int))
*(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
(PTRACE_ARG3_TYPE) (regaddr + i), 0);
supply_register (regno, buf);
}
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (regno)
int regno;
{
register unsigned int regaddr;
char buf[80];
struct user u;
unsigned long value;
unsigned int offset = (char *) &u.u_ar0 - (char *) &u;
offset = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) offset, 0)
- KERNEL_U_ADDR;
if (regno >= 0) {
if (regno >= 16) return;
regaddr = offset + 4 * regno;
errno = 0;
value = read_register(regno);
if (regno == PC_REGNUM)
value = SET_PC_PART(read_register (PS_REGNUM), value);
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, value);
if (errno != 0)
{
sprintf (buf, "writing register number %d", regno);
perror_with_name (buf);
}
}
else for (regno = 0; regno < 15; regno++)
{
regaddr = offset + regno * 4;
errno = 0;
value = read_register(regno);
if (regno == PC_REGNUM)
value = SET_PC_PART(read_register (PS_REGNUM), value);
ptrace (6, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, value);
if (errno != 0)
{
sprintf (buf, "writing all regs, number %d", regno);
perror_with_name (buf);
}
}
}
/* Work with core dump and executable files, for GDB.
This code would be in corefile.c if it weren't machine-dependent. */
/* Structure to describe the chain of shared libraries used
by the execfile.
e.g. prog shares Xt which shares X11 which shares c. */
struct shared_library {
struct exec_header header;
char name[SHLIBLEN];
CORE_ADDR text_start; /* CORE_ADDR of 1st byte of text, this file */
long data_offset; /* offset of data section in file */
int chan; /* file descriptor for the file */
struct shared_library *shares; /* library this one shares */
};
static struct shared_library *shlib = 0;
/* Hook for `exec_file_command' command to call. */
extern void (*exec_file_display_hook) ();
static CORE_ADDR unshared_text_start;
/* extended header from exec file (for shared library info) */
static struct exec_header exec_header;
void
core_file_command (filename, from_tty)
char *filename;
int from_tty;
{
int val;
/* Discard all vestiges of any previous core file
and mark data and stack spaces as empty. */
if (corefile)
free (corefile);
corefile = 0;
if (corechan >= 0)
close (corechan);
corechan = -1;
data_start = 0;
data_end = 0;
stack_start = STACK_END_ADDR;
stack_end = STACK_END_ADDR;
/* Now, if a new core file was specified, open it and digest it. */
if (filename)
{
filename = tilde_expand (filename);
make_cleanup (free, filename);
if (have_inferior_p ())
error ("To look at a core file, you must kill the program with \"kill\".");
corechan = open (filename, O_RDONLY, 0);
if (corechan < 0)
perror_with_name (filename);
/* 4.2-style (and perhaps also sysV-style) core dump file. */
{
struct user u;
unsigned int reg_offset, fp_reg_offset;
val = myread (corechan, &u, sizeof u);
if (val < 0)
perror_with_name ("Not a core file: reading upage");
if (val != sizeof u)
error ("Not a core file: could only read %d bytes", val);
/* We are depending on exec_file_command having been called
previously to set exec_data_start. Since the executable
and the core file share the same text segment, the address
of the data segment will be the same in both. */
data_start = exec_data_start;
data_end = data_start + NBPG * u.u_dsize;
stack_start = stack_end - NBPG * u.u_ssize;
data_offset = NBPG * UPAGES;
stack_offset = NBPG * (UPAGES + u.u_dsize);
/* Some machines put an absolute address in here and some put
the offset in the upage of the regs. */
reg_offset = (int) u.u_ar0;
if (reg_offset > NBPG * UPAGES)
reg_offset -= KERNEL_U_ADDR;
fp_reg_offset = (char *) &u.u_fp_regs - (char *)&u;
/* I don't know where to find this info.
So, for now, mark it as not available. */
N_SET_MAGIC (core_aouthdr, 0);
/* Read the register values out of the core file and store
them where `read_register' will find them. */
{
register int regno;
for (regno = 0; regno < NUM_REGS; regno++)
{
char buf[MAX_REGISTER_RAW_SIZE];
if (regno < 16)
val = lseek (corechan, reg_offset + 4 * regno, 0);
else if (regno < 24)
val = lseek (corechan, fp_reg_offset + 4 + 12*(regno - 24), 0);
else if (regno == 24)
val = lseek (corechan, fp_reg_offset, 0);
else if (regno == 25)
val = lseek (corechan, reg_offset + 4 * PC, 0);
if (val < 0
|| (val = myread (corechan, buf, sizeof buf)) < 0)
{
char * buffer = (char *) alloca (strlen (REGISTER_NAME (regno))
+ 30);
strcpy (buffer, "Reading register ");
strcat (buffer, REGISTER_NAME (regno));
perror_with_name (buffer);
}
if (regno == PC_REGNUM)
*(int *)buf = GET_PC_PART(*(int *)buf);
supply_register (regno, buf);
}
}
}
if (filename[0] == '/')
corefile = savestring (filename, strlen (filename));
else
{
corefile = concat (current_directory, "/", filename, NULL);
}
flush_cached_frames ();
select_frame (get_current_frame (), 0);
validate_files ();
}
else if (from_tty)
printf ("No core file now.\n");
}
#if 0
/* Work with core dump and executable files, for GDB.
This code would be in corefile.c if it weren't machine-dependent. */
/* Structure to describe the chain of shared libraries used
by the execfile.
e.g. prog shares Xt which shares X11 which shares c. */
struct shared_library {
struct exec_header header;
char name[SHLIBLEN];
CORE_ADDR text_start; /* CORE_ADDR of 1st byte of text, this file */
long data_offset; /* offset of data section in file */
int chan; /* file descriptor for the file */
struct shared_library *shares; /* library this one shares */
};
static struct shared_library *shlib = 0;
/* Hook for `exec_file_command' command to call. */
extern void (*exec_file_display_hook) ();
static CORE_ADDR unshared_text_start;
/* extended header from exec file (for shared library info) */
static struct exec_header exec_header;
void
exec_file_command (filename, from_tty)
char *filename;
int from_tty;
{
int val;
/* Eliminate all traces of old exec file.
Mark text segment as empty. */
if (execfile)
free (execfile);
execfile = 0;
data_start = 0;
data_end -= exec_data_start;
text_start = 0;
unshared_text_start = 0;
text_end = 0;
exec_data_start = 0;
exec_data_end = 0;
if (execchan >= 0)
close (execchan);
execchan = -1;
if (shlib) {
close_shared_library(shlib);
shlib = 0;
}
/* Now open and digest the file the user requested, if any. */
if (filename)
{
filename = tilde_expand (filename);
make_cleanup (free, filename);
execchan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
&execfile);
if (execchan < 0)
perror_with_name (filename);
{
struct stat st_exec;
#ifdef HEADER_SEEK_FD
HEADER_SEEK_FD (execchan);
#endif
val = myread (execchan, &exec_header, sizeof exec_header);
exec_aouthdr = exec_header.a_exec;
if (val < 0)
perror_with_name (filename);
text_start = 0x8000;
/* Look for shared library if needed */
if (exec_header.a_exec.a_magic & MF_USES_SL)
shlib = open_shared_library(exec_header.a_shlibname, text_start);
text_offset = N_TXTOFF (exec_aouthdr);
exec_data_offset = N_TXTOFF (exec_aouthdr) + exec_aouthdr.a_text;
if (shlib) {
unshared_text_start = shared_text_end(shlib) & ~0x7fff;
stack_start = shlib->header.a_exec.a_sldatabase;
stack_end = STACK_END_ADDR;
} else
unshared_text_start = 0x8000;
text_end = unshared_text_start + exec_aouthdr.a_text;
exec_data_start = unshared_text_start + exec_aouthdr.a_text;
exec_data_end = exec_data_start + exec_aouthdr.a_data;
data_start = exec_data_start;
data_end += exec_data_start;
fstat (execchan, &st_exec);
exec_mtime = st_exec.st_mtime;
}
validate_files ();
}
else if (from_tty)
printf ("No executable file now.\n");
/* Tell display code (if any) about the changed file name. */
if (exec_file_display_hook)
(*exec_file_display_hook) (filename);
}
#endif
#if 0
/* Read from the program's memory (except for inferior processes).
This function is misnamed, since it only reads, never writes; and
since it will use the core file and/or executable file as necessary.
It should be extended to write as well as read, FIXME, for patching files.
Return 0 if address could be read, EIO if addresss out of bounds. */
int
xfer_core_file (memaddr, myaddr, len)
CORE_ADDR memaddr;
char *myaddr;
int len;
{
register int i;
register int val;
int xferchan;
char **xferfile;
int fileptr;
int returnval = 0;
while (len > 0)
{
xferfile = 0;
xferchan = 0;
/* Determine which file the next bunch of addresses reside in,
and where in the file. Set the file's read/write pointer
to point at the proper place for the desired address
and set xferfile and xferchan for the correct file.
If desired address is nonexistent, leave them zero.
i is set to the number of bytes that can be handled
along with the next address.
We put the most likely tests first for efficiency. */
/* Note that if there is no core file
data_start and data_end are equal. */
if (memaddr >= data_start && memaddr < data_end)
{
i = min (len, data_end - memaddr);
fileptr = memaddr - data_start + data_offset;
xferfile = &corefile;
xferchan = corechan;
}
/* Note that if there is no core file
stack_start and stack_end define the shared library data. */
else if (memaddr >= stack_start && memaddr < stack_end)
{
if (corechan < 0) {
struct shared_library *lib;
for (lib = shlib; lib; lib = lib->shares)
if (memaddr >= lib->header.a_exec.a_sldatabase &&
memaddr < lib->header.a_exec.a_sldatabase +
lib->header.a_exec.a_data)
break;
if (lib) {
i = min (len, lib->header.a_exec.a_sldatabase +
lib->header.a_exec.a_data - memaddr);
fileptr = lib->data_offset + memaddr -
lib->header.a_exec.a_sldatabase;
xferfile = execfile;
xferchan = lib->chan;
}
} else {
i = min (len, stack_end - memaddr);
fileptr = memaddr - stack_start + stack_offset;
xferfile = &corefile;
xferchan = corechan;
}
}
else if (corechan < 0
&& memaddr >= exec_data_start && memaddr < exec_data_end)
{
i = min (len, exec_data_end - memaddr);
fileptr = memaddr - exec_data_start + exec_data_offset;
xferfile = &execfile;
xferchan = execchan;
}
else if (memaddr >= text_start && memaddr < text_end)
{
struct shared_library *lib;
for (lib = shlib; lib; lib = lib->shares)
if (memaddr >= lib->text_start &&
memaddr < lib->text_start + lib->header.a_exec.a_text)
break;
if (lib) {
i = min (len, lib->header.a_exec.a_text +
lib->text_start - memaddr);
fileptr = memaddr - lib->text_start + text_offset;
xferfile = &execfile;
xferchan = lib->chan;
} else {
i = min (len, text_end - memaddr);
fileptr = memaddr - unshared_text_start + text_offset;
xferfile = &execfile;
xferchan = execchan;
}
}
else if (memaddr < text_start)
{
i = min (len, text_start - memaddr);
}
else if (memaddr >= text_end
&& memaddr < (corechan >= 0? data_start : exec_data_start))
{
i = min (len, data_start - memaddr);
}
else if (corechan >= 0
&& memaddr >= data_end && memaddr < stack_start)
{
i = min (len, stack_start - memaddr);
}
else if (corechan < 0 && memaddr >= exec_data_end)
{
i = min (len, - memaddr);
}
else if (memaddr >= stack_end && stack_end != 0)
{
i = min (len, - memaddr);
}
else
{
/* Address did not classify into one of the known ranges.
This shouldn't happen; we catch the endpoints. */
fatal ("Internal: Bad case logic in xfer_core_file.");
}
/* Now we know which file to use.
Set up its pointer and transfer the data. */
if (xferfile)
{
if (*xferfile == 0)
if (xferfile == &execfile)
error ("No program file to examine.");
else
error ("No core dump file or running program to examine.");
val = lseek (xferchan, fileptr, 0);
if (val < 0)
perror_with_name (*xferfile);
val = myread (xferchan, myaddr, i);
if (val < 0)
perror_with_name (*xferfile);
}
/* If this address is for nonexistent memory,
read zeros if reading, or do nothing if writing.
Actually, we never right. */
else
{
memset (myaddr, '\0', i);
returnval = EIO;
}
memaddr += i;
myaddr += i;
len -= i;
}
return returnval;
}
#endif