|  | /* Print values for GNU debugger GDB. | 
|  |  | 
|  | Copyright (C) 1986-2016 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "frame.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "value.h" | 
|  | #include "language.h" | 
|  | #include "expression.h" | 
|  | #include "gdbcore.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "target.h" | 
|  | #include "breakpoint.h" | 
|  | #include "demangle.h" | 
|  | #include "gdb-demangle.h" | 
|  | #include "valprint.h" | 
|  | #include "annotate.h" | 
|  | #include "symfile.h"		/* for overlay functions */ | 
|  | #include "objfiles.h"		/* ditto */ | 
|  | #include "completer.h"		/* for completion functions */ | 
|  | #include "ui-out.h" | 
|  | #include "block.h" | 
|  | #include "disasm.h" | 
|  | #include "dfp.h" | 
|  | #include "observer.h" | 
|  | #include "solist.h" | 
|  | #include "parser-defs.h" | 
|  | #include "charset.h" | 
|  | #include "arch-utils.h" | 
|  | #include "cli/cli-utils.h" | 
|  | #include "cli/cli-script.h" | 
|  | #include "format.h" | 
|  | #include "source.h" | 
|  |  | 
|  | #ifdef TUI | 
|  | #include "tui/tui.h"		/* For tui_active et al.   */ | 
|  | #endif | 
|  |  | 
|  | /* Last specified output format.  */ | 
|  |  | 
|  | static char last_format = 0; | 
|  |  | 
|  | /* Last specified examination size.  'b', 'h', 'w' or `q'.  */ | 
|  |  | 
|  | static char last_size = 'w'; | 
|  |  | 
|  | /* Default address to examine next, and associated architecture.  */ | 
|  |  | 
|  | static struct gdbarch *next_gdbarch; | 
|  | static CORE_ADDR next_address; | 
|  |  | 
|  | /* Number of delay instructions following current disassembled insn.  */ | 
|  |  | 
|  | static int branch_delay_insns; | 
|  |  | 
|  | /* Last address examined.  */ | 
|  |  | 
|  | static CORE_ADDR last_examine_address; | 
|  |  | 
|  | /* Contents of last address examined. | 
|  | This is not valid past the end of the `x' command!  */ | 
|  |  | 
|  | static struct value *last_examine_value; | 
|  |  | 
|  | /* Largest offset between a symbolic value and an address, that will be | 
|  | printed as `0x1234 <symbol+offset>'.  */ | 
|  |  | 
|  | static unsigned int max_symbolic_offset = UINT_MAX; | 
|  | static void | 
|  | show_max_symbolic_offset (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | fprintf_filtered (file, | 
|  | _("The largest offset that will be " | 
|  | "printed in <symbol+1234> form is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | /* Append the source filename and linenumber of the symbol when | 
|  | printing a symbolic value as `<symbol at filename:linenum>' if set.  */ | 
|  | static int print_symbol_filename = 0; | 
|  | static void | 
|  | show_print_symbol_filename (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | fprintf_filtered (file, _("Printing of source filename and " | 
|  | "line number with <symbol> is %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | /* Number of auto-display expression currently being displayed. | 
|  | So that we can disable it if we get a signal within it. | 
|  | -1 when not doing one.  */ | 
|  |  | 
|  | static int current_display_number; | 
|  |  | 
|  | struct display | 
|  | { | 
|  | /* Chain link to next auto-display item.  */ | 
|  | struct display *next; | 
|  |  | 
|  | /* The expression as the user typed it.  */ | 
|  | char *exp_string; | 
|  |  | 
|  | /* Expression to be evaluated and displayed.  */ | 
|  | expression_up exp; | 
|  |  | 
|  | /* Item number of this auto-display item.  */ | 
|  | int number; | 
|  |  | 
|  | /* Display format specified.  */ | 
|  | struct format_data format; | 
|  |  | 
|  | /* Program space associated with `block'.  */ | 
|  | struct program_space *pspace; | 
|  |  | 
|  | /* Innermost block required by this expression when evaluated.  */ | 
|  | const struct block *block; | 
|  |  | 
|  | /* Status of this display (enabled or disabled).  */ | 
|  | int enabled_p; | 
|  | }; | 
|  |  | 
|  | /* Chain of expressions whose values should be displayed | 
|  | automatically each time the program stops.  */ | 
|  |  | 
|  | static struct display *display_chain; | 
|  |  | 
|  | static int display_number; | 
|  |  | 
|  | /* Walk the following statement or block through all displays. | 
|  | ALL_DISPLAYS_SAFE does so even if the statement deletes the current | 
|  | display.  */ | 
|  |  | 
|  | #define ALL_DISPLAYS(B)				\ | 
|  | for (B = display_chain; B; B = B->next) | 
|  |  | 
|  | #define ALL_DISPLAYS_SAFE(B,TMP)		\ | 
|  | for (B = display_chain;			\ | 
|  | B ? (TMP = B->next, 1): 0;		\ | 
|  | B = TMP) | 
|  |  | 
|  | /* Prototypes for exported functions.  */ | 
|  |  | 
|  | void _initialize_printcmd (void); | 
|  |  | 
|  | /* Prototypes for local functions.  */ | 
|  |  | 
|  | static void do_one_display (struct display *); | 
|  |  | 
|  |  | 
|  | /* Decode a format specification.  *STRING_PTR should point to it. | 
|  | OFORMAT and OSIZE are used as defaults for the format and size | 
|  | if none are given in the format specification. | 
|  | If OSIZE is zero, then the size field of the returned value | 
|  | should be set only if a size is explicitly specified by the | 
|  | user. | 
|  | The structure returned describes all the data | 
|  | found in the specification.  In addition, *STRING_PTR is advanced | 
|  | past the specification and past all whitespace following it.  */ | 
|  |  | 
|  | static struct format_data | 
|  | decode_format (const char **string_ptr, int oformat, int osize) | 
|  | { | 
|  | struct format_data val; | 
|  | const char *p = *string_ptr; | 
|  |  | 
|  | val.format = '?'; | 
|  | val.size = '?'; | 
|  | val.count = 1; | 
|  | val.raw = 0; | 
|  |  | 
|  | if (*p == '-') | 
|  | { | 
|  | val.count = -1; | 
|  | p++; | 
|  | } | 
|  | if (*p >= '0' && *p <= '9') | 
|  | val.count *= atoi (p); | 
|  | while (*p >= '0' && *p <= '9') | 
|  | p++; | 
|  |  | 
|  | /* Now process size or format letters that follow.  */ | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g') | 
|  | val.size = *p++; | 
|  | else if (*p == 'r') | 
|  | { | 
|  | val.raw = 1; | 
|  | p++; | 
|  | } | 
|  | else if (*p >= 'a' && *p <= 'z') | 
|  | val.format = *p++; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (*p == ' ' || *p == '\t') | 
|  | p++; | 
|  | *string_ptr = p; | 
|  |  | 
|  | /* Set defaults for format and size if not specified.  */ | 
|  | if (val.format == '?') | 
|  | { | 
|  | if (val.size == '?') | 
|  | { | 
|  | /* Neither has been specified.  */ | 
|  | val.format = oformat; | 
|  | val.size = osize; | 
|  | } | 
|  | else | 
|  | /* If a size is specified, any format makes a reasonable | 
|  | default except 'i'.  */ | 
|  | val.format = oformat == 'i' ? 'x' : oformat; | 
|  | } | 
|  | else if (val.size == '?') | 
|  | switch (val.format) | 
|  | { | 
|  | case 'a': | 
|  | /* Pick the appropriate size for an address.  This is deferred | 
|  | until do_examine when we know the actual architecture to use. | 
|  | A special size value of 'a' is used to indicate this case.  */ | 
|  | val.size = osize ? 'a' : osize; | 
|  | break; | 
|  | case 'f': | 
|  | /* Floating point has to be word or giantword.  */ | 
|  | if (osize == 'w' || osize == 'g') | 
|  | val.size = osize; | 
|  | else | 
|  | /* Default it to giantword if the last used size is not | 
|  | appropriate.  */ | 
|  | val.size = osize ? 'g' : osize; | 
|  | break; | 
|  | case 'c': | 
|  | /* Characters default to one byte.  */ | 
|  | val.size = osize ? 'b' : osize; | 
|  | break; | 
|  | case 's': | 
|  | /* Display strings with byte size chars unless explicitly | 
|  | specified.  */ | 
|  | val.size = '\0'; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* The default is the size most recently specified.  */ | 
|  | val.size = osize; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Print value VAL on stream according to OPTIONS. | 
|  | Do not end with a newline. | 
|  | SIZE is the letter for the size of datum being printed. | 
|  | This is used to pad hex numbers so they line up.  SIZE is 0 | 
|  | for print / output and set for examine.  */ | 
|  |  | 
|  | static void | 
|  | print_formatted (struct value *val, int size, | 
|  | const struct value_print_options *options, | 
|  | struct ui_file *stream) | 
|  | { | 
|  | struct type *type = check_typedef (value_type (val)); | 
|  | int len = TYPE_LENGTH (type); | 
|  |  | 
|  | if (VALUE_LVAL (val) == lval_memory) | 
|  | next_address = value_address (val) + len; | 
|  |  | 
|  | if (size) | 
|  | { | 
|  | switch (options->format) | 
|  | { | 
|  | case 's': | 
|  | { | 
|  | struct type *elttype = value_type (val); | 
|  |  | 
|  | next_address = (value_address (val) | 
|  | + val_print_string (elttype, NULL, | 
|  | value_address (val), -1, | 
|  | stream, options) * len); | 
|  | } | 
|  | return; | 
|  |  | 
|  | case 'i': | 
|  | /* We often wrap here if there are long symbolic names.  */ | 
|  | wrap_here ("    "); | 
|  | next_address = (value_address (val) | 
|  | + gdb_print_insn (get_type_arch (type), | 
|  | value_address (val), stream, | 
|  | &branch_delay_insns)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (options->format == 0 || options->format == 's' | 
|  | || TYPE_CODE (type) == TYPE_CODE_REF | 
|  | || TYPE_CODE (type) == TYPE_CODE_ARRAY | 
|  | || TYPE_CODE (type) == TYPE_CODE_STRING | 
|  | || TYPE_CODE (type) == TYPE_CODE_STRUCT | 
|  | || TYPE_CODE (type) == TYPE_CODE_UNION | 
|  | || TYPE_CODE (type) == TYPE_CODE_NAMESPACE) | 
|  | value_print (val, stream, options); | 
|  | else | 
|  | /* User specified format, so don't look to the type to tell us | 
|  | what to do.  */ | 
|  | val_print_scalar_formatted (type, | 
|  | value_embedded_offset (val), | 
|  | val, | 
|  | options, size, stream); | 
|  | } | 
|  |  | 
|  | /* Return builtin floating point type of same length as TYPE. | 
|  | If no such type is found, return TYPE itself.  */ | 
|  | static struct type * | 
|  | float_type_from_length (struct type *type) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_type_arch (type); | 
|  | const struct builtin_type *builtin = builtin_type (gdbarch); | 
|  |  | 
|  | if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float)) | 
|  | type = builtin->builtin_float; | 
|  | else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double)) | 
|  | type = builtin->builtin_double; | 
|  | else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double)) | 
|  | type = builtin->builtin_long_double; | 
|  |  | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, | 
|  | according to OPTIONS and SIZE on STREAM.  Formats s and i are not | 
|  | supported at this level.  */ | 
|  |  | 
|  | void | 
|  | print_scalar_formatted (const gdb_byte *valaddr, struct type *type, | 
|  | const struct value_print_options *options, | 
|  | int size, struct ui_file *stream) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_type_arch (type); | 
|  | LONGEST val_long = 0; | 
|  | unsigned int len = TYPE_LENGTH (type); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* String printing should go through val_print_scalar_formatted.  */ | 
|  | gdb_assert (options->format != 's'); | 
|  |  | 
|  | if (len > sizeof(LONGEST) | 
|  | && (TYPE_CODE (type) == TYPE_CODE_INT | 
|  | || TYPE_CODE (type) == TYPE_CODE_ENUM)) | 
|  | { | 
|  | switch (options->format) | 
|  | { | 
|  | case 'o': | 
|  | print_octal_chars (stream, valaddr, len, byte_order); | 
|  | return; | 
|  | case 'u': | 
|  | case 'd': | 
|  | print_decimal_chars (stream, valaddr, len, byte_order); | 
|  | return; | 
|  | case 't': | 
|  | print_binary_chars (stream, valaddr, len, byte_order); | 
|  | return; | 
|  | case 'x': | 
|  | print_hex_chars (stream, valaddr, len, byte_order); | 
|  | return; | 
|  | case 'c': | 
|  | print_char_chars (stream, type, valaddr, len, byte_order); | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | }; | 
|  | } | 
|  |  | 
|  | if (options->format != 'f') | 
|  | val_long = unpack_long (type, valaddr); | 
|  |  | 
|  | /* If the value is a pointer, and pointers and addresses are not the | 
|  | same, then at this point, the value's length (in target bytes) is | 
|  | gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type).  */ | 
|  | if (TYPE_CODE (type) == TYPE_CODE_PTR) | 
|  | len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  |  | 
|  | /* If we are printing it as unsigned, truncate it in case it is actually | 
|  | a negative signed value (e.g. "print/u (short)-1" should print 65535 | 
|  | (if shorts are 16 bits) instead of 4294967295).  */ | 
|  | if (options->format != 'd' || TYPE_UNSIGNED (type)) | 
|  | { | 
|  | if (len < sizeof (LONGEST)) | 
|  | val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1; | 
|  | } | 
|  |  | 
|  | switch (options->format) | 
|  | { | 
|  | case 'x': | 
|  | if (!size) | 
|  | { | 
|  | /* No size specified, like in print.  Print varying # of digits.  */ | 
|  | print_longest (stream, 'x', 1, val_long); | 
|  | } | 
|  | else | 
|  | switch (size) | 
|  | { | 
|  | case 'b': | 
|  | case 'h': | 
|  | case 'w': | 
|  | case 'g': | 
|  | print_longest (stream, size, 1, val_long); | 
|  | break; | 
|  | default: | 
|  | error (_("Undefined output size \"%c\"."), size); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'd': | 
|  | print_longest (stream, 'd', 1, val_long); | 
|  | break; | 
|  |  | 
|  | case 'u': | 
|  | print_longest (stream, 'u', 0, val_long); | 
|  | break; | 
|  |  | 
|  | case 'o': | 
|  | if (val_long) | 
|  | print_longest (stream, 'o', 1, val_long); | 
|  | else | 
|  | fprintf_filtered (stream, "0"); | 
|  | break; | 
|  |  | 
|  | case 'a': | 
|  | { | 
|  | CORE_ADDR addr = unpack_pointer (type, valaddr); | 
|  |  | 
|  | print_address (gdbarch, addr, stream); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'c': | 
|  | { | 
|  | struct value_print_options opts = *options; | 
|  |  | 
|  | opts.format = 0; | 
|  | if (TYPE_UNSIGNED (type)) | 
|  | type = builtin_type (gdbarch)->builtin_true_unsigned_char; | 
|  | else | 
|  | type = builtin_type (gdbarch)->builtin_true_char; | 
|  |  | 
|  | value_print (value_from_longest (type, val_long), stream, &opts); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'f': | 
|  | type = float_type_from_length (type); | 
|  | print_floating (valaddr, type, stream); | 
|  | break; | 
|  |  | 
|  | case 0: | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("failed internal consistency check")); | 
|  |  | 
|  | case 't': | 
|  | /* Binary; 't' stands for "two".  */ | 
|  | { | 
|  | char bits[8 * (sizeof val_long) + 1]; | 
|  | char buf[8 * (sizeof val_long) + 32]; | 
|  | char *cp = bits; | 
|  | int width; | 
|  |  | 
|  | if (!size) | 
|  | width = 8 * (sizeof val_long); | 
|  | else | 
|  | switch (size) | 
|  | { | 
|  | case 'b': | 
|  | width = 8; | 
|  | break; | 
|  | case 'h': | 
|  | width = 16; | 
|  | break; | 
|  | case 'w': | 
|  | width = 32; | 
|  | break; | 
|  | case 'g': | 
|  | width = 64; | 
|  | break; | 
|  | default: | 
|  | error (_("Undefined output size \"%c\"."), size); | 
|  | } | 
|  |  | 
|  | bits[width] = '\0'; | 
|  | while (width-- > 0) | 
|  | { | 
|  | bits[width] = (val_long & 1) ? '1' : '0'; | 
|  | val_long >>= 1; | 
|  | } | 
|  | if (!size) | 
|  | { | 
|  | while (*cp && *cp == '0') | 
|  | cp++; | 
|  | if (*cp == '\0') | 
|  | cp--; | 
|  | } | 
|  | strncpy (buf, cp, sizeof (bits)); | 
|  | fputs_filtered (buf, stream); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 'z': | 
|  | print_hex_chars (stream, valaddr, len, byte_order); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | error (_("Undefined output format \"%c\"."), options->format); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Specify default address for `x' command. | 
|  | The `info lines' command uses this.  */ | 
|  |  | 
|  | void | 
|  | set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; | 
|  |  | 
|  | next_gdbarch = gdbarch; | 
|  | next_address = addr; | 
|  |  | 
|  | /* Make address available to the user as $_.  */ | 
|  | set_internalvar (lookup_internalvar ("_"), | 
|  | value_from_pointer (ptr_type, addr)); | 
|  | } | 
|  |  | 
|  | /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM, | 
|  | after LEADIN.  Print nothing if no symbolic name is found nearby. | 
|  | Optionally also print source file and line number, if available. | 
|  | DO_DEMANGLE controls whether to print a symbol in its native "raw" form, | 
|  | or to interpret it as a possible C++ name and convert it back to source | 
|  | form.  However note that DO_DEMANGLE can be overridden by the specific | 
|  | settings of the demangle and asm_demangle variables.  Returns | 
|  | non-zero if anything was printed; zero otherwise.  */ | 
|  |  | 
|  | int | 
|  | print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | struct ui_file *stream, | 
|  | int do_demangle, char *leadin) | 
|  | { | 
|  | char *name = NULL; | 
|  | char *filename = NULL; | 
|  | int unmapped = 0; | 
|  | int offset = 0; | 
|  | int line = 0; | 
|  |  | 
|  | /* Throw away both name and filename.  */ | 
|  | struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name); | 
|  | make_cleanup (free_current_contents, &filename); | 
|  |  | 
|  | if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset, | 
|  | &filename, &line, &unmapped)) | 
|  | { | 
|  | do_cleanups (cleanup_chain); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | fputs_filtered (leadin, stream); | 
|  | if (unmapped) | 
|  | fputs_filtered ("<*", stream); | 
|  | else | 
|  | fputs_filtered ("<", stream); | 
|  | fputs_filtered (name, stream); | 
|  | if (offset != 0) | 
|  | fprintf_filtered (stream, "+%u", (unsigned int) offset); | 
|  |  | 
|  | /* Append source filename and line number if desired.  Give specific | 
|  | line # of this addr, if we have it; else line # of the nearest symbol.  */ | 
|  | if (print_symbol_filename && filename != NULL) | 
|  | { | 
|  | if (line != -1) | 
|  | fprintf_filtered (stream, " at %s:%d", filename, line); | 
|  | else | 
|  | fprintf_filtered (stream, " in %s", filename); | 
|  | } | 
|  | if (unmapped) | 
|  | fputs_filtered ("*>", stream); | 
|  | else | 
|  | fputs_filtered (">", stream); | 
|  |  | 
|  | do_cleanups (cleanup_chain); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Given an address ADDR return all the elements needed to print the | 
|  | address in a symbolic form.  NAME can be mangled or not depending | 
|  | on DO_DEMANGLE (and also on the asm_demangle global variable, | 
|  | manipulated via ''set print asm-demangle'').  Return 0 in case of | 
|  | success, when all the info in the OUT paramters is valid.  Return 1 | 
|  | otherwise.  */ | 
|  | int | 
|  | build_address_symbolic (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr,  /* IN */ | 
|  | int do_demangle, /* IN */ | 
|  | char **name,     /* OUT */ | 
|  | int *offset,     /* OUT */ | 
|  | char **filename, /* OUT */ | 
|  | int *line,       /* OUT */ | 
|  | int *unmapped)   /* OUT */ | 
|  | { | 
|  | struct bound_minimal_symbol msymbol; | 
|  | struct symbol *symbol; | 
|  | CORE_ADDR name_location = 0; | 
|  | struct obj_section *section = NULL; | 
|  | const char *name_temp = ""; | 
|  |  | 
|  | /* Let's say it is mapped (not unmapped).  */ | 
|  | *unmapped = 0; | 
|  |  | 
|  | /* Determine if the address is in an overlay, and whether it is | 
|  | mapped.  */ | 
|  | if (overlay_debugging) | 
|  | { | 
|  | section = find_pc_overlay (addr); | 
|  | if (pc_in_unmapped_range (addr, section)) | 
|  | { | 
|  | *unmapped = 1; | 
|  | addr = overlay_mapped_address (addr, section); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* First try to find the address in the symbol table, then | 
|  | in the minsyms.  Take the closest one.  */ | 
|  |  | 
|  | /* This is defective in the sense that it only finds text symbols.  So | 
|  | really this is kind of pointless--we should make sure that the | 
|  | minimal symbols have everything we need (by changing that we could | 
|  | save some memory, but for many debug format--ELF/DWARF or | 
|  | anything/stabs--it would be inconvenient to eliminate those minimal | 
|  | symbols anyway).  */ | 
|  | msymbol = lookup_minimal_symbol_by_pc_section (addr, section); | 
|  | symbol = find_pc_sect_function (addr, section); | 
|  |  | 
|  | if (symbol) | 
|  | { | 
|  | /* If this is a function (i.e. a code address), strip out any | 
|  | non-address bits.  For instance, display a pointer to the | 
|  | first instruction of a Thumb function as <function>; the | 
|  | second instruction will be <function+2>, even though the | 
|  | pointer is <function+3>.  This matches the ISA behavior.  */ | 
|  | addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
|  |  | 
|  | name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol)); | 
|  | if (do_demangle || asm_demangle) | 
|  | name_temp = SYMBOL_PRINT_NAME (symbol); | 
|  | else | 
|  | name_temp = SYMBOL_LINKAGE_NAME (symbol); | 
|  | } | 
|  |  | 
|  | if (msymbol.minsym != NULL | 
|  | && MSYMBOL_HAS_SIZE (msymbol.minsym) | 
|  | && MSYMBOL_SIZE (msymbol.minsym) == 0 | 
|  | && MSYMBOL_TYPE (msymbol.minsym) != mst_text | 
|  | && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc | 
|  | && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text) | 
|  | msymbol.minsym = NULL; | 
|  |  | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | if (BMSYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL) | 
|  | { | 
|  | /* If this is a function (i.e. a code address), strip out any | 
|  | non-address bits.  For instance, display a pointer to the | 
|  | first instruction of a Thumb function as <function>; the | 
|  | second instruction will be <function+2>, even though the | 
|  | pointer is <function+3>.  This matches the ISA behavior.  */ | 
|  | if (MSYMBOL_TYPE (msymbol.minsym) == mst_text | 
|  | || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc | 
|  | || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text | 
|  | || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline) | 
|  | addr = gdbarch_addr_bits_remove (gdbarch, addr); | 
|  |  | 
|  | /* The msymbol is closer to the address than the symbol; | 
|  | use the msymbol instead.  */ | 
|  | symbol = 0; | 
|  | name_location = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
|  | if (do_demangle || asm_demangle) | 
|  | name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym); | 
|  | else | 
|  | name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym); | 
|  | } | 
|  | } | 
|  | if (symbol == NULL && msymbol.minsym == NULL) | 
|  | return 1; | 
|  |  | 
|  | /* If the nearest symbol is too far away, don't print anything symbolic.  */ | 
|  |  | 
|  | /* For when CORE_ADDR is larger than unsigned int, we do math in | 
|  | CORE_ADDR.  But when we detect unsigned wraparound in the | 
|  | CORE_ADDR math, we ignore this test and print the offset, | 
|  | because addr+max_symbolic_offset has wrapped through the end | 
|  | of the address space back to the beginning, giving bogus comparison.  */ | 
|  | if (addr > name_location + max_symbolic_offset | 
|  | && name_location + max_symbolic_offset > name_location) | 
|  | return 1; | 
|  |  | 
|  | *offset = addr - name_location; | 
|  |  | 
|  | *name = xstrdup (name_temp); | 
|  |  | 
|  | if (print_symbol_filename) | 
|  | { | 
|  | struct symtab_and_line sal; | 
|  |  | 
|  | sal = find_pc_sect_line (addr, section, 0); | 
|  |  | 
|  | if (sal.symtab) | 
|  | { | 
|  | *filename = xstrdup (symtab_to_filename_for_display (sal.symtab)); | 
|  | *line = sal.line; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Print address ADDR symbolically on STREAM. | 
|  | First print it as a number.  Then perhaps print | 
|  | <SYMBOL + OFFSET> after the number.  */ | 
|  |  | 
|  | void | 
|  | print_address (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr, struct ui_file *stream) | 
|  | { | 
|  | fputs_filtered (paddress (gdbarch, addr), stream); | 
|  | print_address_symbolic (gdbarch, addr, stream, asm_demangle, " "); | 
|  | } | 
|  |  | 
|  | /* Return a prefix for instruction address: | 
|  | "=> " for current instruction, else "   ".  */ | 
|  |  | 
|  | const char * | 
|  | pc_prefix (CORE_ADDR addr) | 
|  | { | 
|  | if (has_stack_frames ()) | 
|  | { | 
|  | struct frame_info *frame; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | frame = get_selected_frame (NULL); | 
|  | if (get_frame_pc_if_available (frame, &pc) && pc == addr) | 
|  | return "=> "; | 
|  | } | 
|  | return "   "; | 
|  | } | 
|  |  | 
|  | /* Print address ADDR symbolically on STREAM.  Parameter DEMANGLE | 
|  | controls whether to print the symbolic name "raw" or demangled. | 
|  | Return non-zero if anything was printed; zero otherwise.  */ | 
|  |  | 
|  | int | 
|  | print_address_demangle (const struct value_print_options *opts, | 
|  | struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | struct ui_file *stream, int do_demangle) | 
|  | { | 
|  | if (opts->addressprint) | 
|  | { | 
|  | fputs_filtered (paddress (gdbarch, addr), stream); | 
|  | print_address_symbolic (gdbarch, addr, stream, do_demangle, " "); | 
|  | } | 
|  | else | 
|  | { | 
|  | return print_address_symbolic (gdbarch, addr, stream, do_demangle, ""); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Find the address of the instruction that is INST_COUNT instructions before | 
|  | the instruction at ADDR. | 
|  | Since some architectures have variable-length instructions, we can't just | 
|  | simply subtract INST_COUNT * INSN_LEN from ADDR.  Instead, we use line | 
|  | number information to locate the nearest known instruction boundary, | 
|  | and disassemble forward from there.  If we go out of the symbol range | 
|  | during disassembling, we return the lowest address we've got so far and | 
|  | set the number of instructions read to INST_READ.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | int inst_count, int *inst_read) | 
|  | { | 
|  | /* The vector PCS is used to store instruction addresses within | 
|  | a pc range.  */ | 
|  | CORE_ADDR loop_start, loop_end, p; | 
|  | VEC (CORE_ADDR) *pcs = NULL; | 
|  | struct symtab_and_line sal; | 
|  | struct cleanup *cleanup = make_cleanup (VEC_cleanup (CORE_ADDR), &pcs); | 
|  |  | 
|  | *inst_read = 0; | 
|  | loop_start = loop_end = addr; | 
|  |  | 
|  | /* In each iteration of the outer loop, we get a pc range that ends before | 
|  | LOOP_START, then we count and store every instruction address of the range | 
|  | iterated in the loop. | 
|  | If the number of instructions counted reaches INST_COUNT, return the | 
|  | stored address that is located INST_COUNT instructions back from ADDR. | 
|  | If INST_COUNT is not reached, we subtract the number of counted | 
|  | instructions from INST_COUNT, and go to the next iteration.  */ | 
|  | do | 
|  | { | 
|  | VEC_truncate (CORE_ADDR, pcs, 0); | 
|  | sal = find_pc_sect_line (loop_start, NULL, 1); | 
|  | if (sal.line <= 0) | 
|  | { | 
|  | /* We reach here when line info is not available.  In this case, | 
|  | we print a message and just exit the loop.  The return value | 
|  | is calculated after the loop.  */ | 
|  | printf_filtered (_("No line number information available " | 
|  | "for address ")); | 
|  | wrap_here ("  "); | 
|  | print_address (gdbarch, loop_start - 1, gdb_stdout); | 
|  | printf_filtered ("\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | loop_end = loop_start; | 
|  | loop_start = sal.pc; | 
|  |  | 
|  | /* This loop pushes instruction addresses in the range from | 
|  | LOOP_START to LOOP_END.  */ | 
|  | for (p = loop_start; p < loop_end;) | 
|  | { | 
|  | VEC_safe_push (CORE_ADDR, pcs, p); | 
|  | p += gdb_insn_length (gdbarch, p); | 
|  | } | 
|  |  | 
|  | inst_count -= VEC_length (CORE_ADDR, pcs); | 
|  | *inst_read += VEC_length (CORE_ADDR, pcs); | 
|  | } | 
|  | while (inst_count > 0); | 
|  |  | 
|  | /* After the loop, the vector PCS has instruction addresses of the last | 
|  | source line we processed, and INST_COUNT has a negative value. | 
|  | We return the address at the index of -INST_COUNT in the vector for | 
|  | the reason below. | 
|  | Let's assume the following instruction addresses and run 'x/-4i 0x400e'. | 
|  | Line X of File | 
|  | 0x4000 | 
|  | 0x4001 | 
|  | 0x4005 | 
|  | Line Y of File | 
|  | 0x4009 | 
|  | 0x400c | 
|  | => 0x400e | 
|  | 0x4011 | 
|  | find_instruction_backward is called with INST_COUNT = 4 and expected to | 
|  | return 0x4001.  When we reach here, INST_COUNT is set to -1 because | 
|  | it was subtracted by 2 (from Line Y) and 3 (from Line X).  The value | 
|  | 4001 is located at the index 1 of the last iterated line (= Line X), | 
|  | which is simply calculated by -INST_COUNT. | 
|  | The case when the length of PCS is 0 means that we reached an area for | 
|  | which line info is not available.  In such case, we return LOOP_START, | 
|  | which was the lowest instruction address that had line info.  */ | 
|  | p = VEC_length (CORE_ADDR, pcs) > 0 | 
|  | ? VEC_index (CORE_ADDR, pcs, -inst_count) | 
|  | : loop_start; | 
|  |  | 
|  | /* INST_READ includes all instruction addresses in a pc range.  Need to | 
|  | exclude the beginning part up to the address we're returning.  That | 
|  | is, exclude {0x4000} in the example above.  */ | 
|  | if (inst_count < 0) | 
|  | *inst_read += inst_count; | 
|  |  | 
|  | do_cleanups (cleanup); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Backward read LEN bytes of target memory from address MEMADDR + LEN, | 
|  | placing the results in GDB's memory from MYADDR + LEN.  Returns | 
|  | a count of the bytes actually read.  */ | 
|  |  | 
|  | static int | 
|  | read_memory_backward (struct gdbarch *gdbarch, | 
|  | CORE_ADDR memaddr, gdb_byte *myaddr, int len) | 
|  | { | 
|  | int errcode; | 
|  | int nread;      /* Number of bytes actually read.  */ | 
|  |  | 
|  | /* First try a complete read.  */ | 
|  | errcode = target_read_memory (memaddr, myaddr, len); | 
|  | if (errcode == 0) | 
|  | { | 
|  | /* Got it all.  */ | 
|  | nread = len; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Loop, reading one byte at a time until we get as much as we can.  */ | 
|  | memaddr += len; | 
|  | myaddr += len; | 
|  | for (nread = 0; nread < len; ++nread) | 
|  | { | 
|  | errcode = target_read_memory (--memaddr, --myaddr, 1); | 
|  | if (errcode != 0) | 
|  | { | 
|  | /* The read was unsuccessful, so exit the loop.  */ | 
|  | printf_filtered (_("Cannot access memory at address %s\n"), | 
|  | paddress (gdbarch, memaddr)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return nread; | 
|  | } | 
|  |  | 
|  | /* Returns true if X (which is LEN bytes wide) is the number zero.  */ | 
|  |  | 
|  | static int | 
|  | integer_is_zero (const gdb_byte *x, int len) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | while (i < len && x[i] == 0) | 
|  | ++i; | 
|  | return (i == len); | 
|  | } | 
|  |  | 
|  | /* Find the start address of a string in which ADDR is included. | 
|  | Basically we search for '\0' and return the next address, | 
|  | but if OPTIONS->PRINT_MAX is smaller than the length of a string, | 
|  | we stop searching and return the address to print characters as many as | 
|  | PRINT_MAX from the string.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | find_string_backward (struct gdbarch *gdbarch, | 
|  | CORE_ADDR addr, int count, int char_size, | 
|  | const struct value_print_options *options, | 
|  | int *strings_counted) | 
|  | { | 
|  | const int chunk_size = 0x20; | 
|  | gdb_byte *buffer = NULL; | 
|  | struct cleanup *cleanup = NULL; | 
|  | int read_error = 0; | 
|  | int chars_read = 0; | 
|  | int chars_to_read = chunk_size; | 
|  | int chars_counted = 0; | 
|  | int count_original = count; | 
|  | CORE_ADDR string_start_addr = addr; | 
|  |  | 
|  | gdb_assert (char_size == 1 || char_size == 2 || char_size == 4); | 
|  | buffer = (gdb_byte *) xmalloc (chars_to_read * char_size); | 
|  | cleanup = make_cleanup (xfree, buffer); | 
|  | while (count > 0 && read_error == 0) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | addr -= chars_to_read * char_size; | 
|  | chars_read = read_memory_backward (gdbarch, addr, buffer, | 
|  | chars_to_read * char_size); | 
|  | chars_read /= char_size; | 
|  | read_error = (chars_read == chars_to_read) ? 0 : 1; | 
|  | /* Searching for '\0' from the end of buffer in backward direction.  */ | 
|  | for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted) | 
|  | { | 
|  | int offset = (chars_to_read - i - 1) * char_size; | 
|  |  | 
|  | if (integer_is_zero (buffer + offset, char_size) | 
|  | || chars_counted == options->print_max) | 
|  | { | 
|  | /* Found '\0' or reached print_max.  As OFFSET is the offset to | 
|  | '\0', we add CHAR_SIZE to return the start address of | 
|  | a string.  */ | 
|  | --count; | 
|  | string_start_addr = addr + offset + char_size; | 
|  | chars_counted = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update STRINGS_COUNTED with the actual number of loaded strings.  */ | 
|  | *strings_counted = count_original - count; | 
|  |  | 
|  | if (read_error != 0) | 
|  | { | 
|  | /* In error case, STRING_START_ADDR is pointing to the string that | 
|  | was last successfully loaded.  Rewind the partially loaded string.  */ | 
|  | string_start_addr -= chars_counted * char_size; | 
|  | } | 
|  |  | 
|  | do_cleanups (cleanup); | 
|  | return string_start_addr; | 
|  | } | 
|  |  | 
|  | /* Examine data at address ADDR in format FMT. | 
|  | Fetch it from memory and print on gdb_stdout.  */ | 
|  |  | 
|  | static void | 
|  | do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | char format = 0; | 
|  | char size; | 
|  | int count = 1; | 
|  | struct type *val_type = NULL; | 
|  | int i; | 
|  | int maxelts; | 
|  | struct value_print_options opts; | 
|  | int need_to_update_next_address = 0; | 
|  | CORE_ADDR addr_rewound = 0; | 
|  |  | 
|  | format = fmt.format; | 
|  | size = fmt.size; | 
|  | count = fmt.count; | 
|  | next_gdbarch = gdbarch; | 
|  | next_address = addr; | 
|  |  | 
|  | /* Instruction format implies fetch single bytes | 
|  | regardless of the specified size. | 
|  | The case of strings is handled in decode_format, only explicit | 
|  | size operator are not changed to 'b'.  */ | 
|  | if (format == 'i') | 
|  | size = 'b'; | 
|  |  | 
|  | if (size == 'a') | 
|  | { | 
|  | /* Pick the appropriate size for an address.  */ | 
|  | if (gdbarch_ptr_bit (next_gdbarch) == 64) | 
|  | size = 'g'; | 
|  | else if (gdbarch_ptr_bit (next_gdbarch) == 32) | 
|  | size = 'w'; | 
|  | else if (gdbarch_ptr_bit (next_gdbarch) == 16) | 
|  | size = 'h'; | 
|  | else | 
|  | /* Bad value for gdbarch_ptr_bit.  */ | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("failed internal consistency check")); | 
|  | } | 
|  |  | 
|  | if (size == 'b') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int8; | 
|  | else if (size == 'h') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int16; | 
|  | else if (size == 'w') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int32; | 
|  | else if (size == 'g') | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int64; | 
|  |  | 
|  | if (format == 's') | 
|  | { | 
|  | struct type *char_type = NULL; | 
|  |  | 
|  | /* Search for "char16_t"  or "char32_t" types or fall back to 8-bit char | 
|  | if type is not found.  */ | 
|  | if (size == 'h') | 
|  | char_type = builtin_type (next_gdbarch)->builtin_char16; | 
|  | else if (size == 'w') | 
|  | char_type = builtin_type (next_gdbarch)->builtin_char32; | 
|  | if (char_type) | 
|  | val_type = char_type; | 
|  | else | 
|  | { | 
|  | if (size != '\0' && size != 'b') | 
|  | warning (_("Unable to display strings with " | 
|  | "size '%c', using 'b' instead."), size); | 
|  | size = 'b'; | 
|  | val_type = builtin_type (next_gdbarch)->builtin_int8; | 
|  | } | 
|  | } | 
|  |  | 
|  | maxelts = 8; | 
|  | if (size == 'w') | 
|  | maxelts = 4; | 
|  | if (size == 'g') | 
|  | maxelts = 2; | 
|  | if (format == 's' || format == 'i') | 
|  | maxelts = 1; | 
|  |  | 
|  | get_formatted_print_options (&opts, format); | 
|  |  | 
|  | if (count < 0) | 
|  | { | 
|  | /* This is the negative repeat count case. | 
|  | We rewind the address based on the given repeat count and format, | 
|  | then examine memory from there in forward direction.  */ | 
|  |  | 
|  | count = -count; | 
|  | if (format == 'i') | 
|  | { | 
|  | next_address = find_instruction_backward (gdbarch, addr, count, | 
|  | &count); | 
|  | } | 
|  | else if (format == 's') | 
|  | { | 
|  | next_address = find_string_backward (gdbarch, addr, count, | 
|  | TYPE_LENGTH (val_type), | 
|  | &opts, &count); | 
|  | } | 
|  | else | 
|  | { | 
|  | next_address = addr - count * TYPE_LENGTH (val_type); | 
|  | } | 
|  |  | 
|  | /* The following call to print_formatted updates next_address in every | 
|  | iteration.  In backward case, we store the start address here | 
|  | and update next_address with it before exiting the function.  */ | 
|  | addr_rewound = (format == 's' | 
|  | ? next_address - TYPE_LENGTH (val_type) | 
|  | : next_address); | 
|  | need_to_update_next_address = 1; | 
|  | } | 
|  |  | 
|  | /* Print as many objects as specified in COUNT, at most maxelts per line, | 
|  | with the address of the next one at the start of each line.  */ | 
|  |  | 
|  | while (count > 0) | 
|  | { | 
|  | QUIT; | 
|  | if (format == 'i') | 
|  | fputs_filtered (pc_prefix (next_address), gdb_stdout); | 
|  | print_address (next_gdbarch, next_address, gdb_stdout); | 
|  | printf_filtered (":"); | 
|  | for (i = maxelts; | 
|  | i > 0 && count > 0; | 
|  | i--, count--) | 
|  | { | 
|  | printf_filtered ("\t"); | 
|  | /* Note that print_formatted sets next_address for the next | 
|  | object.  */ | 
|  | last_examine_address = next_address; | 
|  |  | 
|  | if (last_examine_value) | 
|  | value_free (last_examine_value); | 
|  |  | 
|  | /* The value to be displayed is not fetched greedily. | 
|  | Instead, to avoid the possibility of a fetched value not | 
|  | being used, its retrieval is delayed until the print code | 
|  | uses it.  When examining an instruction stream, the | 
|  | disassembler will perform its own memory fetch using just | 
|  | the address stored in LAST_EXAMINE_VALUE.  FIXME: Should | 
|  | the disassembler be modified so that LAST_EXAMINE_VALUE | 
|  | is left with the byte sequence from the last complete | 
|  | instruction fetched from memory?  */ | 
|  | last_examine_value = value_at_lazy (val_type, next_address); | 
|  |  | 
|  | if (last_examine_value) | 
|  | release_value (last_examine_value); | 
|  |  | 
|  | print_formatted (last_examine_value, size, &opts, gdb_stdout); | 
|  |  | 
|  | /* Display any branch delay slots following the final insn.  */ | 
|  | if (format == 'i' && count == 1) | 
|  | count += branch_delay_insns; | 
|  | } | 
|  | printf_filtered ("\n"); | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | if (need_to_update_next_address) | 
|  | next_address = addr_rewound; | 
|  | } | 
|  |  | 
|  | static void | 
|  | validate_format (struct format_data fmt, const char *cmdname) | 
|  | { | 
|  | if (fmt.size != 0) | 
|  | error (_("Size letters are meaningless in \"%s\" command."), cmdname); | 
|  | if (fmt.count != 1) | 
|  | error (_("Item count other than 1 is meaningless in \"%s\" command."), | 
|  | cmdname); | 
|  | if (fmt.format == 'i') | 
|  | error (_("Format letter \"%c\" is meaningless in \"%s\" command."), | 
|  | fmt.format, cmdname); | 
|  | } | 
|  |  | 
|  | /* Parse print command format string into *FMTP and update *EXPP. | 
|  | CMDNAME should name the current command.  */ | 
|  |  | 
|  | void | 
|  | print_command_parse_format (const char **expp, const char *cmdname, | 
|  | struct format_data *fmtp) | 
|  | { | 
|  | const char *exp = *expp; | 
|  |  | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | exp++; | 
|  | *fmtp = decode_format (&exp, last_format, 0); | 
|  | validate_format (*fmtp, cmdname); | 
|  | last_format = fmtp->format; | 
|  | } | 
|  | else | 
|  | { | 
|  | fmtp->count = 1; | 
|  | fmtp->format = 0; | 
|  | fmtp->size = 0; | 
|  | fmtp->raw = 0; | 
|  | } | 
|  |  | 
|  | *expp = exp; | 
|  | } | 
|  |  | 
|  | /* Print VAL to console according to *FMTP, including recording it to | 
|  | the history.  */ | 
|  |  | 
|  | void | 
|  | print_value (struct value *val, const struct format_data *fmtp) | 
|  | { | 
|  | struct value_print_options opts; | 
|  | int histindex = record_latest_value (val); | 
|  |  | 
|  | annotate_value_history_begin (histindex, value_type (val)); | 
|  |  | 
|  | printf_filtered ("$%d = ", histindex); | 
|  |  | 
|  | annotate_value_history_value (); | 
|  |  | 
|  | get_formatted_print_options (&opts, fmtp->format); | 
|  | opts.raw = fmtp->raw; | 
|  |  | 
|  | print_formatted (val, fmtp->size, &opts, gdb_stdout); | 
|  | printf_filtered ("\n"); | 
|  |  | 
|  | annotate_value_history_end (); | 
|  | } | 
|  |  | 
|  | /* Evaluate string EXP as an expression in the current language and | 
|  | print the resulting value.  EXP may contain a format specifier as the | 
|  | first argument ("/x myvar" for example, to print myvar in hex).  */ | 
|  |  | 
|  | static void | 
|  | print_command_1 (const char *exp, int voidprint) | 
|  | { | 
|  | struct value *val; | 
|  | struct format_data fmt; | 
|  |  | 
|  | print_command_parse_format (&exp, "print", &fmt); | 
|  |  | 
|  | if (exp && *exp) | 
|  | { | 
|  | expression_up expr = parse_expression (exp); | 
|  | val = evaluate_expression (expr.get ()); | 
|  | } | 
|  | else | 
|  | val = access_value_history (0); | 
|  |  | 
|  | if (voidprint || (val && value_type (val) && | 
|  | TYPE_CODE (value_type (val)) != TYPE_CODE_VOID)) | 
|  | print_value (val, &fmt); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_command (char *exp, int from_tty) | 
|  | { | 
|  | print_command_1 (exp, 1); | 
|  | } | 
|  |  | 
|  | /* Same as print, except it doesn't print void results.  */ | 
|  | static void | 
|  | call_command (char *exp, int from_tty) | 
|  | { | 
|  | print_command_1 (exp, 0); | 
|  | } | 
|  |  | 
|  | /* Implementation of the "output" command.  */ | 
|  |  | 
|  | static void | 
|  | output_command (char *exp, int from_tty) | 
|  | { | 
|  | output_command_const (exp, from_tty); | 
|  | } | 
|  |  | 
|  | /* Like output_command, but takes a const string as argument.  */ | 
|  |  | 
|  | void | 
|  | output_command_const (const char *exp, int from_tty) | 
|  | { | 
|  | char format = 0; | 
|  | struct value *val; | 
|  | struct format_data fmt; | 
|  | struct value_print_options opts; | 
|  |  | 
|  | fmt.size = 0; | 
|  | fmt.raw = 0; | 
|  |  | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | exp++; | 
|  | fmt = decode_format (&exp, 0, 0); | 
|  | validate_format (fmt, "output"); | 
|  | format = fmt.format; | 
|  | } | 
|  |  | 
|  | expression_up expr = parse_expression (exp); | 
|  |  | 
|  | val = evaluate_expression (expr.get ()); | 
|  |  | 
|  | annotate_value_begin (value_type (val)); | 
|  |  | 
|  | get_formatted_print_options (&opts, format); | 
|  | opts.raw = fmt.raw; | 
|  | print_formatted (val, fmt.size, &opts, gdb_stdout); | 
|  |  | 
|  | annotate_value_end (); | 
|  |  | 
|  | wrap_here (""); | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_command (char *exp, int from_tty) | 
|  | { | 
|  | expression_up expr = parse_expression (exp); | 
|  |  | 
|  | if (expr->nelts >= 1) | 
|  | switch (expr->elts[0].opcode) | 
|  | { | 
|  | case UNOP_PREINCREMENT: | 
|  | case UNOP_POSTINCREMENT: | 
|  | case UNOP_PREDECREMENT: | 
|  | case UNOP_POSTDECREMENT: | 
|  | case BINOP_ASSIGN: | 
|  | case BINOP_ASSIGN_MODIFY: | 
|  | case BINOP_COMMA: | 
|  | break; | 
|  | default: | 
|  | warning | 
|  | (_("Expression is not an assignment (and might have no effect)")); | 
|  | } | 
|  |  | 
|  | evaluate_expression (expr.get ()); | 
|  | } | 
|  |  | 
|  | static void | 
|  | sym_info (char *arg, int from_tty) | 
|  | { | 
|  | struct minimal_symbol *msymbol; | 
|  | struct objfile *objfile; | 
|  | struct obj_section *osect; | 
|  | CORE_ADDR addr, sect_addr; | 
|  | int matches = 0; | 
|  | unsigned int offset; | 
|  |  | 
|  | if (!arg) | 
|  | error_no_arg (_("address")); | 
|  |  | 
|  | addr = parse_and_eval_address (arg); | 
|  | ALL_OBJSECTIONS (objfile, osect) | 
|  | { | 
|  | /* Only process each object file once, even if there's a separate | 
|  | debug file.  */ | 
|  | if (objfile->separate_debug_objfile_backlink) | 
|  | continue; | 
|  |  | 
|  | sect_addr = overlay_mapped_address (addr, osect); | 
|  |  | 
|  | if (obj_section_addr (osect) <= sect_addr | 
|  | && sect_addr < obj_section_endaddr (osect) | 
|  | && (msymbol | 
|  | = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym)) | 
|  | { | 
|  | const char *obj_name, *mapped, *sec_name, *msym_name; | 
|  | char *loc_string; | 
|  | struct cleanup *old_chain; | 
|  |  | 
|  | matches = 1; | 
|  | offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol); | 
|  | mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped"); | 
|  | sec_name = osect->the_bfd_section->name; | 
|  | msym_name = MSYMBOL_PRINT_NAME (msymbol); | 
|  |  | 
|  | /* Don't print the offset if it is zero. | 
|  | We assume there's no need to handle i18n of "sym + offset".  */ | 
|  | if (offset) | 
|  | loc_string = xstrprintf ("%s + %u", msym_name, offset); | 
|  | else | 
|  | loc_string = xstrprintf ("%s", msym_name); | 
|  |  | 
|  | /* Use a cleanup to free loc_string in case the user quits | 
|  | a pagination request inside printf_filtered.  */ | 
|  | old_chain = make_cleanup (xfree, loc_string); | 
|  |  | 
|  | gdb_assert (osect->objfile && objfile_name (osect->objfile)); | 
|  | obj_name = objfile_name (osect->objfile); | 
|  |  | 
|  | if (MULTI_OBJFILE_P ()) | 
|  | if (pc_in_unmapped_range (addr, osect)) | 
|  | if (section_is_overlay (osect)) | 
|  | printf_filtered (_("%s in load address range of " | 
|  | "%s overlay section %s of %s\n"), | 
|  | loc_string, mapped, sec_name, obj_name); | 
|  | else | 
|  | printf_filtered (_("%s in load address range of " | 
|  | "section %s of %s\n"), | 
|  | loc_string, sec_name, obj_name); | 
|  | else | 
|  | if (section_is_overlay (osect)) | 
|  | printf_filtered (_("%s in %s overlay section %s of %s\n"), | 
|  | loc_string, mapped, sec_name, obj_name); | 
|  | else | 
|  | printf_filtered (_("%s in section %s of %s\n"), | 
|  | loc_string, sec_name, obj_name); | 
|  | else | 
|  | if (pc_in_unmapped_range (addr, osect)) | 
|  | if (section_is_overlay (osect)) | 
|  | printf_filtered (_("%s in load address range of %s overlay " | 
|  | "section %s\n"), | 
|  | loc_string, mapped, sec_name); | 
|  | else | 
|  | printf_filtered (_("%s in load address range of section %s\n"), | 
|  | loc_string, sec_name); | 
|  | else | 
|  | if (section_is_overlay (osect)) | 
|  | printf_filtered (_("%s in %s overlay section %s\n"), | 
|  | loc_string, mapped, sec_name); | 
|  | else | 
|  | printf_filtered (_("%s in section %s\n"), | 
|  | loc_string, sec_name); | 
|  |  | 
|  | do_cleanups (old_chain); | 
|  | } | 
|  | } | 
|  | if (matches == 0) | 
|  | printf_filtered (_("No symbol matches %s.\n"), arg); | 
|  | } | 
|  |  | 
|  | static void | 
|  | address_info (char *exp, int from_tty) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | int regno; | 
|  | struct symbol *sym; | 
|  | struct bound_minimal_symbol msymbol; | 
|  | long val; | 
|  | struct obj_section *section; | 
|  | CORE_ADDR load_addr, context_pc = 0; | 
|  | struct field_of_this_result is_a_field_of_this; | 
|  |  | 
|  | if (exp == 0) | 
|  | error (_("Argument required.")); | 
|  |  | 
|  | sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN, | 
|  | &is_a_field_of_this).symbol; | 
|  | if (sym == NULL) | 
|  | { | 
|  | if (is_a_field_of_this.type != NULL) | 
|  | { | 
|  | printf_filtered ("Symbol \""); | 
|  | fprintf_symbol_filtered (gdb_stdout, exp, | 
|  | current_language->la_language, DMGL_ANSI); | 
|  | printf_filtered ("\" is a field of the local class variable "); | 
|  | if (current_language->la_language == language_objc) | 
|  | printf_filtered ("`self'\n");	/* ObjC equivalent of "this" */ | 
|  | else | 
|  | printf_filtered ("`this'\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | msymbol = lookup_bound_minimal_symbol (exp); | 
|  |  | 
|  | if (msymbol.minsym != NULL) | 
|  | { | 
|  | struct objfile *objfile = msymbol.objfile; | 
|  |  | 
|  | gdbarch = get_objfile_arch (objfile); | 
|  | load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); | 
|  |  | 
|  | printf_filtered ("Symbol \""); | 
|  | fprintf_symbol_filtered (gdb_stdout, exp, | 
|  | current_language->la_language, DMGL_ANSI); | 
|  | printf_filtered ("\" is at "); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (" in a file compiled without debugging"); | 
|  | section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | printf_filtered (",\n -- loaded at "); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (" in overlay section %s", | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | printf_filtered (".\n"); | 
|  | } | 
|  | else | 
|  | error (_("No symbol \"%s\" in current context."), exp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printf_filtered ("Symbol \""); | 
|  | fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym), | 
|  | current_language->la_language, DMGL_ANSI); | 
|  | printf_filtered ("\" is "); | 
|  | val = SYMBOL_VALUE (sym); | 
|  | if (SYMBOL_OBJFILE_OWNED (sym)) | 
|  | section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym); | 
|  | else | 
|  | section = NULL; | 
|  | gdbarch = symbol_arch (sym); | 
|  |  | 
|  | if (SYMBOL_COMPUTED_OPS (sym) != NULL) | 
|  | { | 
|  | SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc, | 
|  | gdb_stdout); | 
|  | printf_filtered (".\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (SYMBOL_CLASS (sym)) | 
|  | { | 
|  | case LOC_CONST: | 
|  | case LOC_CONST_BYTES: | 
|  | printf_filtered ("constant"); | 
|  | break; | 
|  |  | 
|  | case LOC_LABEL: | 
|  | printf_filtered ("a label at address "); | 
|  | load_addr = SYMBOL_VALUE_ADDRESS (sym); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | printf_filtered (",\n -- loaded at "); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (" in overlay section %s", | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_COMPUTED: | 
|  | gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); | 
|  |  | 
|  | case LOC_REGISTER: | 
|  | /* GDBARCH is the architecture associated with the objfile the symbol | 
|  | is defined in; the target architecture may be different, and may | 
|  | provide additional registers.  However, we do not know the target | 
|  | architecture at this point.  We assume the objfile architecture | 
|  | will contain all the standard registers that occur in debug info | 
|  | in that objfile.  */ | 
|  | regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); | 
|  |  | 
|  | if (SYMBOL_IS_ARGUMENT (sym)) | 
|  | printf_filtered (_("an argument in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | else | 
|  | printf_filtered (_("a variable in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | break; | 
|  |  | 
|  | case LOC_STATIC: | 
|  | printf_filtered (_("static storage at address ")); | 
|  | load_addr = SYMBOL_VALUE_ADDRESS (sym); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | printf_filtered (_(",\n -- loaded at ")); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_REGPARM_ADDR: | 
|  | /* Note comment at LOC_REGISTER.  */ | 
|  | regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); | 
|  | printf_filtered (_("address of an argument in register %s"), | 
|  | gdbarch_register_name (gdbarch, regno)); | 
|  | break; | 
|  |  | 
|  | case LOC_ARG: | 
|  | printf_filtered (_("an argument at offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_LOCAL: | 
|  | printf_filtered (_("a local variable at frame offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_REF_ARG: | 
|  | printf_filtered (_("a reference argument at offset %ld"), val); | 
|  | break; | 
|  |  | 
|  | case LOC_TYPEDEF: | 
|  | printf_filtered (_("a typedef")); | 
|  | break; | 
|  |  | 
|  | case LOC_BLOCK: | 
|  | printf_filtered (_("a function at address ")); | 
|  | load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | printf_filtered (_(",\n -- loaded at ")); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_UNRESOLVED: | 
|  | { | 
|  | struct bound_minimal_symbol msym; | 
|  |  | 
|  | msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym)); | 
|  | if (msym.minsym == NULL) | 
|  | printf_filtered ("unresolved"); | 
|  | else | 
|  | { | 
|  | section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym); | 
|  |  | 
|  | if (section | 
|  | && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) | 
|  | { | 
|  | load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym); | 
|  | printf_filtered (_("a thread-local variable at offset %s " | 
|  | "in the thread-local storage for `%s'"), | 
|  | paddress (gdbarch, load_addr), | 
|  | objfile_name (section->objfile)); | 
|  | } | 
|  | else | 
|  | { | 
|  | load_addr = BMSYMBOL_VALUE_ADDRESS (msym); | 
|  | printf_filtered (_("static storage at address ")); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | if (section_is_overlay (section)) | 
|  | { | 
|  | load_addr = overlay_unmapped_address (load_addr, section); | 
|  | printf_filtered (_(",\n -- loaded at ")); | 
|  | fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); | 
|  | printf_filtered (_(" in overlay section %s"), | 
|  | section->the_bfd_section->name); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_OPTIMIZED_OUT: | 
|  | printf_filtered (_("optimized out")); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printf_filtered (_("of unknown (botched) type")); | 
|  | break; | 
|  | } | 
|  | printf_filtered (".\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | x_command (char *exp, int from_tty) | 
|  | { | 
|  | struct format_data fmt; | 
|  | struct cleanup *old_chain; | 
|  | struct value *val; | 
|  |  | 
|  | fmt.format = last_format ? last_format : 'x'; | 
|  | fmt.size = last_size; | 
|  | fmt.count = 1; | 
|  | fmt.raw = 0; | 
|  |  | 
|  | if (exp && *exp == '/') | 
|  | { | 
|  | const char *tmp = exp + 1; | 
|  |  | 
|  | fmt = decode_format (&tmp, last_format, last_size); | 
|  | exp = (char *) tmp; | 
|  | } | 
|  |  | 
|  | /* If we have an expression, evaluate it and use it as the address.  */ | 
|  |  | 
|  | if (exp != 0 && *exp != 0) | 
|  | { | 
|  | expression_up expr = parse_expression (exp); | 
|  | /* Cause expression not to be there any more if this command is | 
|  | repeated with Newline.  But don't clobber a user-defined | 
|  | command's definition.  */ | 
|  | if (from_tty) | 
|  | *exp = 0; | 
|  | val = evaluate_expression (expr.get ()); | 
|  | if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF) | 
|  | val = coerce_ref (val); | 
|  | /* In rvalue contexts, such as this, functions are coerced into | 
|  | pointers to functions.  This makes "x/i main" work.  */ | 
|  | if (/* last_format == 'i'  && */ | 
|  | TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC | 
|  | && VALUE_LVAL (val) == lval_memory) | 
|  | next_address = value_address (val); | 
|  | else | 
|  | next_address = value_as_address (val); | 
|  |  | 
|  | next_gdbarch = expr->gdbarch; | 
|  | } | 
|  |  | 
|  | if (!next_gdbarch) | 
|  | error_no_arg (_("starting display address")); | 
|  |  | 
|  | do_examine (fmt, next_gdbarch, next_address); | 
|  |  | 
|  | /* If the examine succeeds, we remember its size and format for next | 
|  | time.  Set last_size to 'b' for strings.  */ | 
|  | if (fmt.format == 's') | 
|  | last_size = 'b'; | 
|  | else | 
|  | last_size = fmt.size; | 
|  | last_format = fmt.format; | 
|  |  | 
|  | /* Set a couple of internal variables if appropriate.  */ | 
|  | if (last_examine_value) | 
|  | { | 
|  | /* Make last address examined available to the user as $_.  Use | 
|  | the correct pointer type.  */ | 
|  | struct type *pointer_type | 
|  | = lookup_pointer_type (value_type (last_examine_value)); | 
|  | set_internalvar (lookup_internalvar ("_"), | 
|  | value_from_pointer (pointer_type, | 
|  | last_examine_address)); | 
|  |  | 
|  | /* Make contents of last address examined available to the user | 
|  | as $__.  If the last value has not been fetched from memory | 
|  | then don't fetch it now; instead mark it by voiding the $__ | 
|  | variable.  */ | 
|  | if (value_lazy (last_examine_value)) | 
|  | clear_internalvar (lookup_internalvar ("__")); | 
|  | else | 
|  | set_internalvar (lookup_internalvar ("__"), last_examine_value); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add an expression to the auto-display chain. | 
|  | Specify the expression.  */ | 
|  |  | 
|  | static void | 
|  | display_command (char *arg, int from_tty) | 
|  | { | 
|  | struct format_data fmt; | 
|  | struct display *newobj; | 
|  | const char *exp = arg; | 
|  |  | 
|  | if (exp == 0) | 
|  | { | 
|  | do_displays (); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*exp == '/') | 
|  | { | 
|  | exp++; | 
|  | fmt = decode_format (&exp, 0, 0); | 
|  | if (fmt.size && fmt.format == 0) | 
|  | fmt.format = 'x'; | 
|  | if (fmt.format == 'i' || fmt.format == 's') | 
|  | fmt.size = 'b'; | 
|  | } | 
|  | else | 
|  | { | 
|  | fmt.format = 0; | 
|  | fmt.size = 0; | 
|  | fmt.count = 0; | 
|  | fmt.raw = 0; | 
|  | } | 
|  |  | 
|  | innermost_block = NULL; | 
|  | expression_up expr = parse_expression (exp); | 
|  |  | 
|  | newobj = new display (); | 
|  |  | 
|  | newobj->exp_string = xstrdup (exp); | 
|  | newobj->exp = std::move (expr); | 
|  | newobj->block = innermost_block; | 
|  | newobj->pspace = current_program_space; | 
|  | newobj->number = ++display_number; | 
|  | newobj->format = fmt; | 
|  | newobj->enabled_p = 1; | 
|  | newobj->next = NULL; | 
|  |  | 
|  | if (display_chain == NULL) | 
|  | display_chain = newobj; | 
|  | else | 
|  | { | 
|  | struct display *last; | 
|  |  | 
|  | for (last = display_chain; last->next != NULL; last = last->next) | 
|  | ; | 
|  | last->next = newobj; | 
|  | } | 
|  |  | 
|  | if (from_tty) | 
|  | do_one_display (newobj); | 
|  |  | 
|  | dont_repeat (); | 
|  | } | 
|  |  | 
|  | static void | 
|  | free_display (struct display *d) | 
|  | { | 
|  | xfree (d->exp_string); | 
|  | delete d; | 
|  | } | 
|  |  | 
|  | /* Clear out the display_chain.  Done when new symtabs are loaded, | 
|  | since this invalidates the types stored in many expressions.  */ | 
|  |  | 
|  | void | 
|  | clear_displays (void) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | while ((d = display_chain) != NULL) | 
|  | { | 
|  | display_chain = d->next; | 
|  | free_display (d); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Delete the auto-display DISPLAY.  */ | 
|  |  | 
|  | static void | 
|  | delete_display (struct display *display) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | gdb_assert (display != NULL); | 
|  |  | 
|  | if (display_chain == display) | 
|  | display_chain = display->next; | 
|  |  | 
|  | ALL_DISPLAYS (d) | 
|  | if (d->next == display) | 
|  | { | 
|  | d->next = display->next; | 
|  | break; | 
|  | } | 
|  |  | 
|  | free_display (display); | 
|  | } | 
|  |  | 
|  | /* Call FUNCTION on each of the displays whose numbers are given in | 
|  | ARGS.  DATA is passed unmodified to FUNCTION.  */ | 
|  |  | 
|  | static void | 
|  | map_display_numbers (char *args, | 
|  | void (*function) (struct display *, | 
|  | void *), | 
|  | void *data) | 
|  | { | 
|  | int num; | 
|  |  | 
|  | if (args == NULL) | 
|  | error_no_arg (_("one or more display numbers")); | 
|  |  | 
|  | number_or_range_parser parser (args); | 
|  |  | 
|  | while (!parser.finished ()) | 
|  | { | 
|  | const char *p = parser.cur_tok (); | 
|  |  | 
|  | num = parser.get_number (); | 
|  | if (num == 0) | 
|  | warning (_("bad display number at or near '%s'"), p); | 
|  | else | 
|  | { | 
|  | struct display *d, *tmp; | 
|  |  | 
|  | ALL_DISPLAYS_SAFE (d, tmp) | 
|  | if (d->number == num) | 
|  | break; | 
|  | if (d == NULL) | 
|  | printf_unfiltered (_("No display number %d.\n"), num); | 
|  | else | 
|  | function (d, data); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Callback for map_display_numbers, that deletes a display.  */ | 
|  |  | 
|  | static void | 
|  | do_delete_display (struct display *d, void *data) | 
|  | { | 
|  | delete_display (d); | 
|  | } | 
|  |  | 
|  | /* "undisplay" command.  */ | 
|  |  | 
|  | static void | 
|  | undisplay_command (char *args, int from_tty) | 
|  | { | 
|  | if (args == NULL) | 
|  | { | 
|  | if (query (_("Delete all auto-display expressions? "))) | 
|  | clear_displays (); | 
|  | dont_repeat (); | 
|  | return; | 
|  | } | 
|  |  | 
|  | map_display_numbers (args, do_delete_display, NULL); | 
|  | dont_repeat (); | 
|  | } | 
|  |  | 
|  | /* Display a single auto-display. | 
|  | Do nothing if the display cannot be printed in the current context, | 
|  | or if the display is disabled.  */ | 
|  |  | 
|  | static void | 
|  | do_one_display (struct display *d) | 
|  | { | 
|  | int within_current_scope; | 
|  |  | 
|  | if (d->enabled_p == 0) | 
|  | return; | 
|  |  | 
|  | /* The expression carries the architecture that was used at parse time. | 
|  | This is a problem if the expression depends on architecture features | 
|  | (e.g. register numbers), and the current architecture is now different. | 
|  | For example, a display statement like "display/i $pc" is expected to | 
|  | display the PC register of the current architecture, not the arch at | 
|  | the time the display command was given.  Therefore, we re-parse the | 
|  | expression if the current architecture has changed.  */ | 
|  | if (d->exp != NULL && d->exp->gdbarch != get_current_arch ()) | 
|  | { | 
|  | d->exp.reset (); | 
|  | d->block = NULL; | 
|  | } | 
|  |  | 
|  | if (d->exp == NULL) | 
|  | { | 
|  |  | 
|  | TRY | 
|  | { | 
|  | innermost_block = NULL; | 
|  | d->exp = parse_expression (d->exp_string); | 
|  | d->block = innermost_block; | 
|  | } | 
|  | CATCH (ex, RETURN_MASK_ALL) | 
|  | { | 
|  | /* Can't re-parse the expression.  Disable this display item.  */ | 
|  | d->enabled_p = 0; | 
|  | warning (_("Unable to display \"%s\": %s"), | 
|  | d->exp_string, ex.message); | 
|  | return; | 
|  | } | 
|  | END_CATCH | 
|  | } | 
|  |  | 
|  | if (d->block) | 
|  | { | 
|  | if (d->pspace == current_program_space) | 
|  | within_current_scope = contained_in (get_selected_block (0), d->block); | 
|  | else | 
|  | within_current_scope = 0; | 
|  | } | 
|  | else | 
|  | within_current_scope = 1; | 
|  | if (!within_current_scope) | 
|  | return; | 
|  |  | 
|  | scoped_restore save_display_number | 
|  | = make_scoped_restore (¤t_display_number, d->number); | 
|  |  | 
|  | annotate_display_begin (); | 
|  | printf_filtered ("%d", d->number); | 
|  | annotate_display_number_end (); | 
|  | printf_filtered (": "); | 
|  | if (d->format.size) | 
|  | { | 
|  |  | 
|  | annotate_display_format (); | 
|  |  | 
|  | printf_filtered ("x/"); | 
|  | if (d->format.count != 1) | 
|  | printf_filtered ("%d", d->format.count); | 
|  | printf_filtered ("%c", d->format.format); | 
|  | if (d->format.format != 'i' && d->format.format != 's') | 
|  | printf_filtered ("%c", d->format.size); | 
|  | printf_filtered (" "); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | puts_filtered (d->exp_string); | 
|  | annotate_display_expression_end (); | 
|  |  | 
|  | if (d->format.count != 1 || d->format.format == 'i') | 
|  | printf_filtered ("\n"); | 
|  | else | 
|  | printf_filtered ("  "); | 
|  |  | 
|  | annotate_display_value (); | 
|  |  | 
|  | TRY | 
|  | { | 
|  | struct value *val; | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | val = evaluate_expression (d->exp.get ()); | 
|  | addr = value_as_address (val); | 
|  | if (d->format.format == 'i') | 
|  | addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr); | 
|  | do_examine (d->format, d->exp->gdbarch, addr); | 
|  | } | 
|  | CATCH (ex, RETURN_MASK_ERROR) | 
|  | { | 
|  | fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message); | 
|  | } | 
|  | END_CATCH | 
|  | } | 
|  | else | 
|  | { | 
|  | struct value_print_options opts; | 
|  |  | 
|  | annotate_display_format (); | 
|  |  | 
|  | if (d->format.format) | 
|  | printf_filtered ("/%c ", d->format.format); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | puts_filtered (d->exp_string); | 
|  | annotate_display_expression_end (); | 
|  |  | 
|  | printf_filtered (" = "); | 
|  |  | 
|  | annotate_display_expression (); | 
|  |  | 
|  | get_formatted_print_options (&opts, d->format.format); | 
|  | opts.raw = d->format.raw; | 
|  |  | 
|  | TRY | 
|  | { | 
|  | struct value *val; | 
|  |  | 
|  | val = evaluate_expression (d->exp.get ()); | 
|  | print_formatted (val, d->format.size, &opts, gdb_stdout); | 
|  | } | 
|  | CATCH (ex, RETURN_MASK_ERROR) | 
|  | { | 
|  | fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message); | 
|  | } | 
|  | END_CATCH | 
|  |  | 
|  | printf_filtered ("\n"); | 
|  | } | 
|  |  | 
|  | annotate_display_end (); | 
|  |  | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | /* Display all of the values on the auto-display chain which can be | 
|  | evaluated in the current scope.  */ | 
|  |  | 
|  | void | 
|  | do_displays (void) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | for (d = display_chain; d; d = d->next) | 
|  | do_one_display (d); | 
|  | } | 
|  |  | 
|  | /* Delete the auto-display which we were in the process of displaying. | 
|  | This is done when there is an error or a signal.  */ | 
|  |  | 
|  | void | 
|  | disable_display (int num) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | for (d = display_chain; d; d = d->next) | 
|  | if (d->number == num) | 
|  | { | 
|  | d->enabled_p = 0; | 
|  | return; | 
|  | } | 
|  | printf_unfiltered (_("No display number %d.\n"), num); | 
|  | } | 
|  |  | 
|  | void | 
|  | disable_current_display (void) | 
|  | { | 
|  | if (current_display_number >= 0) | 
|  | { | 
|  | disable_display (current_display_number); | 
|  | fprintf_unfiltered (gdb_stderr, | 
|  | _("Disabling display %d to " | 
|  | "avoid infinite recursion.\n"), | 
|  | current_display_number); | 
|  | } | 
|  | current_display_number = -1; | 
|  | } | 
|  |  | 
|  | static void | 
|  | display_info (char *ignore, int from_tty) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | if (!display_chain) | 
|  | printf_unfiltered (_("There are no auto-display expressions now.\n")); | 
|  | else | 
|  | printf_filtered (_("Auto-display expressions now in effect:\n\ | 
|  | Num Enb Expression\n")); | 
|  |  | 
|  | for (d = display_chain; d; d = d->next) | 
|  | { | 
|  | printf_filtered ("%d:   %c  ", d->number, "ny"[(int) d->enabled_p]); | 
|  | if (d->format.size) | 
|  | printf_filtered ("/%d%c%c ", d->format.count, d->format.size, | 
|  | d->format.format); | 
|  | else if (d->format.format) | 
|  | printf_filtered ("/%c ", d->format.format); | 
|  | puts_filtered (d->exp_string); | 
|  | if (d->block && !contained_in (get_selected_block (0), d->block)) | 
|  | printf_filtered (_(" (cannot be evaluated in the current context)")); | 
|  | printf_filtered ("\n"); | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Callback fo map_display_numbers, that enables or disables the | 
|  | passed in display D.  */ | 
|  |  | 
|  | static void | 
|  | do_enable_disable_display (struct display *d, void *data) | 
|  | { | 
|  | d->enabled_p = *(int *) data; | 
|  | } | 
|  |  | 
|  | /* Implamentation of both the "disable display" and "enable display" | 
|  | commands.  ENABLE decides what to do.  */ | 
|  |  | 
|  | static void | 
|  | enable_disable_display_command (char *args, int from_tty, int enable) | 
|  | { | 
|  | if (args == NULL) | 
|  | { | 
|  | struct display *d; | 
|  |  | 
|  | ALL_DISPLAYS (d) | 
|  | d->enabled_p = enable; | 
|  | return; | 
|  | } | 
|  |  | 
|  | map_display_numbers (args, do_enable_disable_display, &enable); | 
|  | } | 
|  |  | 
|  | /* The "enable display" command.  */ | 
|  |  | 
|  | static void | 
|  | enable_display_command (char *args, int from_tty) | 
|  | { | 
|  | enable_disable_display_command (args, from_tty, 1); | 
|  | } | 
|  |  | 
|  | /* The "disable display" command.  */ | 
|  |  | 
|  | static void | 
|  | disable_display_command (char *args, int from_tty) | 
|  | { | 
|  | enable_disable_display_command (args, from_tty, 0); | 
|  | } | 
|  |  | 
|  | /* display_chain items point to blocks and expressions.  Some expressions in | 
|  | turn may point to symbols. | 
|  | Both symbols and blocks are obstack_alloc'd on objfile_stack, and are | 
|  | obstack_free'd when a shared library is unloaded. | 
|  | Clear pointers that are about to become dangling. | 
|  | Both .exp and .block fields will be restored next time we need to display | 
|  | an item by re-parsing .exp_string field in the new execution context.  */ | 
|  |  | 
|  | static void | 
|  | clear_dangling_display_expressions (struct objfile *objfile) | 
|  | { | 
|  | struct display *d; | 
|  | struct program_space *pspace; | 
|  |  | 
|  | /* With no symbol file we cannot have a block or expression from it.  */ | 
|  | if (objfile == NULL) | 
|  | return; | 
|  | pspace = objfile->pspace; | 
|  | if (objfile->separate_debug_objfile_backlink) | 
|  | { | 
|  | objfile = objfile->separate_debug_objfile_backlink; | 
|  | gdb_assert (objfile->pspace == pspace); | 
|  | } | 
|  |  | 
|  | for (d = display_chain; d != NULL; d = d->next) | 
|  | { | 
|  | if (d->pspace != pspace) | 
|  | continue; | 
|  |  | 
|  | if (lookup_objfile_from_block (d->block) == objfile | 
|  | || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile))) | 
|  | { | 
|  | d->exp.reset (); | 
|  | d->block = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Print the value in stack frame FRAME of a variable specified by a | 
|  | struct symbol.  NAME is the name to print; if NULL then VAR's print | 
|  | name will be used.  STREAM is the ui_file on which to print the | 
|  | value.  INDENT specifies the number of indent levels to print | 
|  | before printing the variable name. | 
|  |  | 
|  | This function invalidates FRAME.  */ | 
|  |  | 
|  | void | 
|  | print_variable_and_value (const char *name, struct symbol *var, | 
|  | struct frame_info *frame, | 
|  | struct ui_file *stream, int indent) | 
|  | { | 
|  |  | 
|  | if (!name) | 
|  | name = SYMBOL_PRINT_NAME (var); | 
|  |  | 
|  | fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name); | 
|  | TRY | 
|  | { | 
|  | struct value *val; | 
|  | struct value_print_options opts; | 
|  |  | 
|  | /* READ_VAR_VALUE needs a block in order to deal with non-local | 
|  | references (i.e. to handle nested functions).  In this context, we | 
|  | print variables that are local to this frame, so we can avoid passing | 
|  | a block to it.  */ | 
|  | val = read_var_value (var, NULL, frame); | 
|  | get_user_print_options (&opts); | 
|  | opts.deref_ref = 1; | 
|  | common_val_print (val, stream, indent, &opts, current_language); | 
|  |  | 
|  | /* common_val_print invalidates FRAME when a pretty printer calls inferior | 
|  | function.  */ | 
|  | frame = NULL; | 
|  | } | 
|  | CATCH (except, RETURN_MASK_ERROR) | 
|  | { | 
|  | fprintf_filtered(stream, "<error reading variable %s (%s)>", name, | 
|  | except.message); | 
|  | } | 
|  | END_CATCH | 
|  |  | 
|  | fprintf_filtered (stream, "\n"); | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE to STREAM using FORMAT. | 
|  | VALUE is a C-style string on the target.  */ | 
|  |  | 
|  | static void | 
|  | printf_c_string (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | gdb_byte *str; | 
|  | CORE_ADDR tem; | 
|  | int j; | 
|  |  | 
|  | tem = value_as_address (value); | 
|  |  | 
|  | /* This is a %s argument.  Find the length of the string.  */ | 
|  | for (j = 0;; j++) | 
|  | { | 
|  | gdb_byte c; | 
|  |  | 
|  | QUIT; | 
|  | read_memory (tem + j, &c, 1); | 
|  | if (c == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Copy the string contents into a string inside GDB.  */ | 
|  | str = (gdb_byte *) alloca (j + 1); | 
|  | if (j != 0) | 
|  | read_memory (tem, str, j); | 
|  | str[j] = 0; | 
|  |  | 
|  | fprintf_filtered (stream, format, (char *) str); | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE to STREAM using FORMAT. | 
|  | VALUE is a wide C-style string on the target.  */ | 
|  |  | 
|  | static void | 
|  | printf_wide_c_string (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | gdb_byte *str; | 
|  | CORE_ADDR tem; | 
|  | int j; | 
|  | struct gdbarch *gdbarch = get_type_arch (value_type (value)); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | struct type *wctype = lookup_typename (current_language, gdbarch, | 
|  | "wchar_t", NULL, 0); | 
|  | int wcwidth = TYPE_LENGTH (wctype); | 
|  | gdb_byte *buf = (gdb_byte *) alloca (wcwidth); | 
|  | struct obstack output; | 
|  | struct cleanup *inner_cleanup; | 
|  |  | 
|  | tem = value_as_address (value); | 
|  |  | 
|  | /* This is a %s argument.  Find the length of the string.  */ | 
|  | for (j = 0;; j += wcwidth) | 
|  | { | 
|  | QUIT; | 
|  | read_memory (tem + j, buf, wcwidth); | 
|  | if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Copy the string contents into a string inside GDB.  */ | 
|  | str = (gdb_byte *) alloca (j + wcwidth); | 
|  | if (j != 0) | 
|  | read_memory (tem, str, j); | 
|  | memset (&str[j], 0, wcwidth); | 
|  |  | 
|  | obstack_init (&output); | 
|  | inner_cleanup = make_cleanup_obstack_free (&output); | 
|  |  | 
|  | convert_between_encodings (target_wide_charset (gdbarch), | 
|  | host_charset (), | 
|  | str, j, wcwidth, | 
|  | &output, translit_char); | 
|  | obstack_grow_str0 (&output, ""); | 
|  |  | 
|  | fprintf_filtered (stream, format, obstack_base (&output)); | 
|  | do_cleanups (inner_cleanup); | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE, a decimal floating point value, to STREAM using FORMAT.  */ | 
|  |  | 
|  | static void | 
|  | printf_decfloat (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | const gdb_byte *param_ptr = value_contents (value); | 
|  |  | 
|  | #if defined (PRINTF_HAS_DECFLOAT) | 
|  | /* If we have native support for Decimal floating | 
|  | printing, handle it here.  */ | 
|  | fprintf_filtered (stream, format, param_ptr); | 
|  | #else | 
|  | /* As a workaround until vasprintf has native support for DFP | 
|  | we convert the DFP values to string and print them using | 
|  | the %s format specifier.  */ | 
|  | const char *p; | 
|  |  | 
|  | /* Parameter data.  */ | 
|  | struct type *param_type = value_type (value); | 
|  | struct gdbarch *gdbarch = get_type_arch (param_type); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* DFP output data.  */ | 
|  | struct value *dfp_value = NULL; | 
|  | gdb_byte *dfp_ptr; | 
|  | int dfp_len = 16; | 
|  | gdb_byte dec[16]; | 
|  | struct type *dfp_type = NULL; | 
|  | char decstr[MAX_DECIMAL_STRING]; | 
|  |  | 
|  | /* Points to the end of the string so that we can go back | 
|  | and check for DFP length modifiers.  */ | 
|  | p = format + strlen (format); | 
|  |  | 
|  | /* Look for the float/double format specifier.  */ | 
|  | while (*p != 'f' && *p != 'e' && *p != 'E' | 
|  | && *p != 'g' && *p != 'G') | 
|  | p--; | 
|  |  | 
|  | /* Search for the '%' char and extract the size and type of | 
|  | the output decimal value based on its modifiers | 
|  | (%Hf, %Df, %DDf).  */ | 
|  | while (*--p != '%') | 
|  | { | 
|  | if (*p == 'H') | 
|  | { | 
|  | dfp_len = 4; | 
|  | dfp_type = builtin_type (gdbarch)->builtin_decfloat; | 
|  | } | 
|  | else if (*p == 'D' && *(p - 1) == 'D') | 
|  | { | 
|  | dfp_len = 16; | 
|  | dfp_type = builtin_type (gdbarch)->builtin_declong; | 
|  | p--; | 
|  | } | 
|  | else | 
|  | { | 
|  | dfp_len = 8; | 
|  | dfp_type = builtin_type (gdbarch)->builtin_decdouble; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Conversion between different DFP types.  */ | 
|  | if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT) | 
|  | decimal_convert (param_ptr, TYPE_LENGTH (param_type), | 
|  | byte_order, dec, dfp_len, byte_order); | 
|  | else | 
|  | /* If this is a non-trivial conversion, just output 0. | 
|  | A correct converted value can be displayed by explicitly | 
|  | casting to a DFP type.  */ | 
|  | decimal_from_string (dec, dfp_len, byte_order, "0"); | 
|  |  | 
|  | dfp_value = value_from_decfloat (dfp_type, dec); | 
|  |  | 
|  | dfp_ptr = (gdb_byte *) value_contents (dfp_value); | 
|  |  | 
|  | decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr); | 
|  |  | 
|  | /* Print the DFP value.  */ | 
|  | fprintf_filtered (stream, "%s", decstr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Subroutine of ui_printf to simplify it. | 
|  | Print VALUE, a target pointer, to STREAM using FORMAT.  */ | 
|  |  | 
|  | static void | 
|  | printf_pointer (struct ui_file *stream, const char *format, | 
|  | struct value *value) | 
|  | { | 
|  | /* We avoid the host's %p because pointers are too | 
|  | likely to be the wrong size.  The only interesting | 
|  | modifier for %p is a width; extract that, and then | 
|  | handle %p as glibc would: %#x or a literal "(nil)".  */ | 
|  |  | 
|  | const char *p; | 
|  | char *fmt, *fmt_p; | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | long long val = value_as_long (value); | 
|  | #else | 
|  | long val = value_as_long (value); | 
|  | #endif | 
|  |  | 
|  | fmt = (char *) alloca (strlen (format) + 5); | 
|  |  | 
|  | /* Copy up to the leading %.  */ | 
|  | p = format; | 
|  | fmt_p = fmt; | 
|  | while (*p) | 
|  | { | 
|  | int is_percent = (*p == '%'); | 
|  |  | 
|  | *fmt_p++ = *p++; | 
|  | if (is_percent) | 
|  | { | 
|  | if (*p == '%') | 
|  | *fmt_p++ = *p++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (val != 0) | 
|  | *fmt_p++ = '#'; | 
|  |  | 
|  | /* Copy any width.  */ | 
|  | while (*p >= '0' && *p < '9') | 
|  | *fmt_p++ = *p++; | 
|  |  | 
|  | gdb_assert (*p == 'p' && *(p + 1) == '\0'); | 
|  | if (val != 0) | 
|  | { | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | *fmt_p++ = 'l'; | 
|  | #endif | 
|  | *fmt_p++ = 'l'; | 
|  | *fmt_p++ = 'x'; | 
|  | *fmt_p++ = '\0'; | 
|  | fprintf_filtered (stream, fmt, val); | 
|  | } | 
|  | else | 
|  | { | 
|  | *fmt_p++ = 's'; | 
|  | *fmt_p++ = '\0'; | 
|  | fprintf_filtered (stream, fmt, "(nil)"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* printf "printf format string" ARG to STREAM.  */ | 
|  |  | 
|  | static void | 
|  | ui_printf (const char *arg, struct ui_file *stream) | 
|  | { | 
|  | struct format_piece *fpieces; | 
|  | const char *s = arg; | 
|  | struct value **val_args; | 
|  | int allocated_args = 20; | 
|  | struct cleanup *old_cleanups; | 
|  |  | 
|  | val_args = XNEWVEC (struct value *, allocated_args); | 
|  | old_cleanups = make_cleanup (free_current_contents, &val_args); | 
|  |  | 
|  | if (s == 0) | 
|  | error_no_arg (_("format-control string and values to print")); | 
|  |  | 
|  | s = skip_spaces_const (s); | 
|  |  | 
|  | /* A format string should follow, enveloped in double quotes.  */ | 
|  | if (*s++ != '"') | 
|  | error (_("Bad format string, missing '\"'.")); | 
|  |  | 
|  | fpieces = parse_format_string (&s); | 
|  |  | 
|  | make_cleanup (free_format_pieces_cleanup, &fpieces); | 
|  |  | 
|  | if (*s++ != '"') | 
|  | error (_("Bad format string, non-terminated '\"'.")); | 
|  |  | 
|  | s = skip_spaces_const (s); | 
|  |  | 
|  | if (*s != ',' && *s != 0) | 
|  | error (_("Invalid argument syntax")); | 
|  |  | 
|  | if (*s == ',') | 
|  | s++; | 
|  | s = skip_spaces_const (s); | 
|  |  | 
|  | { | 
|  | int nargs = 0; | 
|  | int nargs_wanted; | 
|  | int i, fr; | 
|  | char *current_substring; | 
|  |  | 
|  | nargs_wanted = 0; | 
|  | for (fr = 0; fpieces[fr].string != NULL; fr++) | 
|  | if (fpieces[fr].argclass != literal_piece) | 
|  | ++nargs_wanted; | 
|  |  | 
|  | /* Now, parse all arguments and evaluate them. | 
|  | Store the VALUEs in VAL_ARGS.  */ | 
|  |  | 
|  | while (*s != '\0') | 
|  | { | 
|  | const char *s1; | 
|  |  | 
|  | if (nargs == allocated_args) | 
|  | val_args = (struct value **) xrealloc ((char *) val_args, | 
|  | (allocated_args *= 2) | 
|  | * sizeof (struct value *)); | 
|  | s1 = s; | 
|  | val_args[nargs] = parse_to_comma_and_eval (&s1); | 
|  |  | 
|  | nargs++; | 
|  | s = s1; | 
|  | if (*s == ',') | 
|  | s++; | 
|  | } | 
|  |  | 
|  | if (nargs != nargs_wanted) | 
|  | error (_("Wrong number of arguments for specified format-string")); | 
|  |  | 
|  | /* Now actually print them.  */ | 
|  | i = 0; | 
|  | for (fr = 0; fpieces[fr].string != NULL; fr++) | 
|  | { | 
|  | current_substring = fpieces[fr].string; | 
|  | switch (fpieces[fr].argclass) | 
|  | { | 
|  | case string_arg: | 
|  | printf_c_string (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case wide_string_arg: | 
|  | printf_wide_c_string (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case wide_char_arg: | 
|  | { | 
|  | struct gdbarch *gdbarch | 
|  | = get_type_arch (value_type (val_args[i])); | 
|  | struct type *wctype = lookup_typename (current_language, gdbarch, | 
|  | "wchar_t", NULL, 0); | 
|  | struct type *valtype; | 
|  | struct obstack output; | 
|  | struct cleanup *inner_cleanup; | 
|  | const gdb_byte *bytes; | 
|  |  | 
|  | valtype = value_type (val_args[i]); | 
|  | if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype) | 
|  | || TYPE_CODE (valtype) != TYPE_CODE_INT) | 
|  | error (_("expected wchar_t argument for %%lc")); | 
|  |  | 
|  | bytes = value_contents (val_args[i]); | 
|  |  | 
|  | obstack_init (&output); | 
|  | inner_cleanup = make_cleanup_obstack_free (&output); | 
|  |  | 
|  | convert_between_encodings (target_wide_charset (gdbarch), | 
|  | host_charset (), | 
|  | bytes, TYPE_LENGTH (valtype), | 
|  | TYPE_LENGTH (valtype), | 
|  | &output, translit_char); | 
|  | obstack_grow_str0 (&output, ""); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, | 
|  | obstack_base (&output)); | 
|  | do_cleanups (inner_cleanup); | 
|  | } | 
|  | break; | 
|  | case double_arg: | 
|  | { | 
|  | struct type *type = value_type (val_args[i]); | 
|  | DOUBLEST val; | 
|  | int inv; | 
|  |  | 
|  | /* If format string wants a float, unchecked-convert the value | 
|  | to floating point of the same size.  */ | 
|  | type = float_type_from_length (type); | 
|  | val = unpack_double (type, value_contents (val_args[i]), &inv); | 
|  | if (inv) | 
|  | error (_("Invalid floating value found in program.")); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, (double) val); | 
|  | break; | 
|  | } | 
|  | case long_double_arg: | 
|  | #ifdef HAVE_LONG_DOUBLE | 
|  | { | 
|  | struct type *type = value_type (val_args[i]); | 
|  | DOUBLEST val; | 
|  | int inv; | 
|  |  | 
|  | /* If format string wants a float, unchecked-convert the value | 
|  | to floating point of the same size.  */ | 
|  | type = float_type_from_length (type); | 
|  | val = unpack_double (type, value_contents (val_args[i]), &inv); | 
|  | if (inv) | 
|  | error (_("Invalid floating value found in program.")); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, | 
|  | (long double) val); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | error (_("long double not supported in printf")); | 
|  | #endif | 
|  | case long_long_arg: | 
|  | #ifdef PRINTF_HAS_LONG_LONG | 
|  | { | 
|  | long long val = value_as_long (val_args[i]); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, val); | 
|  | break; | 
|  | } | 
|  | #else | 
|  | error (_("long long not supported in printf")); | 
|  | #endif | 
|  | case int_arg: | 
|  | { | 
|  | int val = value_as_long (val_args[i]); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, val); | 
|  | break; | 
|  | } | 
|  | case long_arg: | 
|  | { | 
|  | long val = value_as_long (val_args[i]); | 
|  |  | 
|  | fprintf_filtered (stream, current_substring, val); | 
|  | break; | 
|  | } | 
|  | /* Handles decimal floating values.  */ | 
|  | case decfloat_arg: | 
|  | printf_decfloat (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case ptr_arg: | 
|  | printf_pointer (stream, current_substring, val_args[i]); | 
|  | break; | 
|  | case literal_piece: | 
|  | /* Print a portion of the format string that has no | 
|  | directives.  Note that this will not include any | 
|  | ordinary %-specs, but it might include "%%".  That is | 
|  | why we use printf_filtered and not puts_filtered here. | 
|  | Also, we pass a dummy argument because some platforms | 
|  | have modified GCC to include -Wformat-security by | 
|  | default, which will warn here if there is no | 
|  | argument.  */ | 
|  | fprintf_filtered (stream, current_substring, 0); | 
|  | break; | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("failed internal consistency check")); | 
|  | } | 
|  | /* Maybe advance to the next argument.  */ | 
|  | if (fpieces[fr].argclass != literal_piece) | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | do_cleanups (old_cleanups); | 
|  | } | 
|  |  | 
|  | /* Implement the "printf" command.  */ | 
|  |  | 
|  | static void | 
|  | printf_command (char *arg, int from_tty) | 
|  | { | 
|  | ui_printf (arg, gdb_stdout); | 
|  | gdb_flush (gdb_stdout); | 
|  | } | 
|  |  | 
|  | /* Implement the "eval" command.  */ | 
|  |  | 
|  | static void | 
|  | eval_command (char *arg, int from_tty) | 
|  | { | 
|  | struct ui_file *ui_out = mem_fileopen (); | 
|  | struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out); | 
|  |  | 
|  | ui_printf (arg, ui_out); | 
|  |  | 
|  | std::string expanded = ui_file_as_string (ui_out); | 
|  |  | 
|  | expanded = insert_user_defined_cmd_args (expanded.c_str ()); | 
|  |  | 
|  | execute_command (&expanded[0], from_tty); | 
|  |  | 
|  | do_cleanups (cleanups); | 
|  | } | 
|  |  | 
|  | void | 
|  | _initialize_printcmd (void) | 
|  | { | 
|  | struct cmd_list_element *c; | 
|  |  | 
|  | current_display_number = -1; | 
|  |  | 
|  | observer_attach_free_objfile (clear_dangling_display_expressions); | 
|  |  | 
|  | add_info ("address", address_info, | 
|  | _("Describe where symbol SYM is stored.")); | 
|  |  | 
|  | add_info ("symbol", sym_info, _("\ | 
|  | Describe what symbol is at location ADDR.\n\ | 
|  | Only for symbols with fixed locations (global or static scope).")); | 
|  |  | 
|  | add_com ("x", class_vars, x_command, _("\ | 
|  | Examine memory: x/FMT ADDRESS.\n\ | 
|  | ADDRESS is an expression for the memory address to examine.\n\ | 
|  | FMT is a repeat count followed by a format letter and a size letter.\n\ | 
|  | Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\ | 
|  | t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\ | 
|  | and z(hex, zero padded on the left).\n\ | 
|  | Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\ | 
|  | The specified number of objects of the specified size are printed\n\ | 
|  | according to the format.  If a negative number is specified, memory is\n\ | 
|  | examined backward from the address.\n\n\ | 
|  | Defaults for format and size letters are those previously used.\n\ | 
|  | Default count is 1.  Default address is following last thing printed\n\ | 
|  | with this command or \"print\".")); | 
|  |  | 
|  | #if 0 | 
|  | add_com ("whereis", class_vars, whereis_command, | 
|  | _("Print line number and file of definition of variable.")); | 
|  | #endif | 
|  |  | 
|  | add_info ("display", display_info, _("\ | 
|  | Expressions to display when program stops, with code numbers.")); | 
|  |  | 
|  | add_cmd ("undisplay", class_vars, undisplay_command, _("\ | 
|  | Cancel some expressions to be displayed when program stops.\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means cancel all automatic-display expressions.\n\ | 
|  | \"delete display\" has the same effect as this command.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), | 
|  | &cmdlist); | 
|  |  | 
|  | add_com ("display", class_vars, display_command, _("\ | 
|  | Print value of expression EXP each time the program stops.\n\ | 
|  | /FMT may be used before EXP as in the \"print\" command.\n\ | 
|  | /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\ | 
|  | as in the \"x\" command, and then EXP is used to get the address to examine\n\ | 
|  | and examining is done as in the \"x\" command.\n\n\ | 
|  | With no argument, display all currently requested auto-display expressions.\n\ | 
|  | Use \"undisplay\" to cancel display requests previously made.")); | 
|  |  | 
|  | add_cmd ("display", class_vars, enable_display_command, _("\ | 
|  | Enable some expressions to be displayed when program stops.\n\ | 
|  | Arguments are the code numbers of the expressions to resume displaying.\n\ | 
|  | No argument means enable all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &enablelist); | 
|  |  | 
|  | add_cmd ("display", class_vars, disable_display_command, _("\ | 
|  | Disable some expressions to be displayed when program stops.\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means disable all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &disablelist); | 
|  |  | 
|  | add_cmd ("display", class_vars, undisplay_command, _("\ | 
|  | Cancel some expressions to be displayed when program stops.\n\ | 
|  | Arguments are the code numbers of the expressions to stop displaying.\n\ | 
|  | No argument means cancel all automatic-display expressions.\n\ | 
|  | Do \"info display\" to see current list of code numbers."), &deletelist); | 
|  |  | 
|  | add_com ("printf", class_vars, printf_command, _("\ | 
|  | printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\ | 
|  | This is useful for formatted output in user-defined commands.")); | 
|  |  | 
|  | add_com ("output", class_vars, output_command, _("\ | 
|  | Like \"print\" but don't put in value history and don't print newline.\n\ | 
|  | This is useful in user-defined commands.")); | 
|  |  | 
|  | add_prefix_cmd ("set", class_vars, set_command, _("\ | 
|  | Evaluate expression EXP and assign result to variable VAR, using assignment\n\ | 
|  | syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ | 
|  | example).  VAR may be a debugger \"convenience\" variable (names starting\n\ | 
|  | with $), a register (a few standard names starting with $), or an actual\n\ | 
|  | variable in the program being debugged.  EXP is any valid expression.\n\ | 
|  | Use \"set variable\" for variables with names identical to set subcommands.\n\ | 
|  | \n\ | 
|  | With a subcommand, this command modifies parts of the gdb environment.\n\ | 
|  | You can see these environment settings with the \"show\" command."), | 
|  | &setlist, "set ", 1, &cmdlist); | 
|  | if (dbx_commands) | 
|  | add_com ("assign", class_vars, set_command, _("\ | 
|  | Evaluate expression EXP and assign result to variable VAR, using assignment\n\ | 
|  | syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ | 
|  | example).  VAR may be a debugger \"convenience\" variable (names starting\n\ | 
|  | with $), a register (a few standard names starting with $), or an actual\n\ | 
|  | variable in the program being debugged.  EXP is any valid expression.\n\ | 
|  | Use \"set variable\" for variables with names identical to set subcommands.\n\ | 
|  | \nWith a subcommand, this command modifies parts of the gdb environment.\n\ | 
|  | You can see these environment settings with the \"show\" command.")); | 
|  |  | 
|  | /* "call" is the same as "set", but handy for dbx users to call fns.  */ | 
|  | c = add_com ("call", class_vars, call_command, _("\ | 
|  | Call a function in the program.\n\ | 
|  | The argument is the function name and arguments, in the notation of the\n\ | 
|  | current working language.  The result is printed and saved in the value\n\ | 
|  | history, if it is not void.")); | 
|  | set_cmd_completer (c, expression_completer); | 
|  |  | 
|  | add_cmd ("variable", class_vars, set_command, _("\ | 
|  | Evaluate expression EXP and assign result to variable VAR, using assignment\n\ | 
|  | syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ | 
|  | example).  VAR may be a debugger \"convenience\" variable (names starting\n\ | 
|  | with $), a register (a few standard names starting with $), or an actual\n\ | 
|  | variable in the program being debugged.  EXP is any valid expression.\n\ | 
|  | This may usually be abbreviated to simply \"set\"."), | 
|  | &setlist); | 
|  |  | 
|  | c = add_com ("print", class_vars, print_command, _("\ | 
|  | Print value of expression EXP.\n\ | 
|  | Variables accessible are those of the lexical environment of the selected\n\ | 
|  | stack frame, plus all those whose scope is global or an entire file.\n\ | 
|  | \n\ | 
|  | $NUM gets previous value number NUM.  $ and $$ are the last two values.\n\ | 
|  | $$NUM refers to NUM'th value back from the last one.\n\ | 
|  | Names starting with $ refer to registers (with the values they would have\n\ | 
|  | if the program were to return to the stack frame now selected, restoring\n\ | 
|  | all registers saved by frames farther in) or else to debugger\n\ | 
|  | \"convenience\" variables (any such name not a known register).\n\ | 
|  | Use assignment expressions to give values to convenience variables.\n\ | 
|  | \n\ | 
|  | {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\ | 
|  | @ is a binary operator for treating consecutive data objects\n\ | 
|  | anywhere in memory as an array.  FOO@NUM gives an array whose first\n\ | 
|  | element is FOO, whose second element is stored in the space following\n\ | 
|  | where FOO is stored, etc.  FOO must be an expression whose value\n\ | 
|  | resides in memory.\n\ | 
|  | \n\ | 
|  | EXP may be preceded with /FMT, where FMT is a format letter\n\ | 
|  | but no count or size letter (see \"x\" command).")); | 
|  | set_cmd_completer (c, expression_completer); | 
|  | add_com_alias ("p", "print", class_vars, 1); | 
|  | add_com_alias ("inspect", "print", class_vars, 1); | 
|  |  | 
|  | add_setshow_uinteger_cmd ("max-symbolic-offset", no_class, | 
|  | &max_symbolic_offset, _("\ | 
|  | Set the largest offset that will be printed in <symbol+1234> form."), _("\ | 
|  | Show the largest offset that will be printed in <symbol+1234> form."), _("\ | 
|  | Tell GDB to only display the symbolic form of an address if the\n\ | 
|  | offset between the closest earlier symbol and the address is less than\n\ | 
|  | the specified maximum offset.  The default is \"unlimited\", which tells GDB\n\ | 
|  | to always print the symbolic form of an address if any symbol precedes\n\ | 
|  | it.  Zero is equivalent to \"unlimited\"."), | 
|  | NULL, | 
|  | show_max_symbolic_offset, | 
|  | &setprintlist, &showprintlist); | 
|  | add_setshow_boolean_cmd ("symbol-filename", no_class, | 
|  | &print_symbol_filename, _("\ | 
|  | Set printing of source filename and line number with <symbol>."), _("\ | 
|  | Show printing of source filename and line number with <symbol>."), NULL, | 
|  | NULL, | 
|  | show_print_symbol_filename, | 
|  | &setprintlist, &showprintlist); | 
|  |  | 
|  | add_com ("eval", no_class, eval_command, _("\ | 
|  | Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\ | 
|  | a command line, and call it.")); | 
|  | } |