|  | /* A Fibonacci heap datatype. | 
|  | Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc. | 
|  | Contributed by Daniel Berlin (dan@cgsoftware.com). | 
|  |  | 
|  | This file is part of GNU CC. | 
|  |  | 
|  | GNU CC is free software; you can redistribute it and/or modify it | 
|  | under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | GNU CC is distributed in the hope that it will be useful, but | 
|  | WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GNU CC; see the file COPYING.  If not, write to | 
|  | the Free Software Foundation, 51 Franklin Street - Fifth Floor, | 
|  | Boston, MA 02110-1301, USA.  */ | 
|  |  | 
|  | #ifdef HAVE_CONFIG_H | 
|  | #include "config.h" | 
|  | #endif | 
|  | #ifdef HAVE_LIMITS_H | 
|  | #include <limits.h> | 
|  | #endif | 
|  | #ifdef HAVE_STDLIB_H | 
|  | #include <stdlib.h> | 
|  | #endif | 
|  | #ifdef HAVE_STRING_H | 
|  | #include <string.h> | 
|  | #endif | 
|  | #include "libiberty.h" | 
|  | #include "fibheap.h" | 
|  |  | 
|  |  | 
|  | #define FIBHEAPKEY_MIN	LONG_MIN | 
|  |  | 
|  | static void fibheap_ins_root (fibheap_t, fibnode_t); | 
|  | static void fibheap_rem_root (fibheap_t, fibnode_t); | 
|  | static void fibheap_consolidate (fibheap_t); | 
|  | static void fibheap_link (fibheap_t, fibnode_t, fibnode_t); | 
|  | static void fibheap_cut (fibheap_t, fibnode_t, fibnode_t); | 
|  | static void fibheap_cascading_cut (fibheap_t, fibnode_t); | 
|  | static fibnode_t fibheap_extr_min_node (fibheap_t); | 
|  | static int fibheap_compare (fibheap_t, fibnode_t, fibnode_t); | 
|  | static int fibheap_comp_data (fibheap_t, fibheapkey_t, void *, fibnode_t); | 
|  | static fibnode_t fibnode_new (void); | 
|  | static void fibnode_insert_after (fibnode_t, fibnode_t); | 
|  | #define fibnode_insert_before(a, b) fibnode_insert_after (a->left, b) | 
|  | static fibnode_t fibnode_remove (fibnode_t); | 
|  |  | 
|  |  | 
|  | /* Create a new fibonacci heap.  */ | 
|  | fibheap_t | 
|  | fibheap_new (void) | 
|  | { | 
|  | return (fibheap_t) xcalloc (1, sizeof (struct fibheap)); | 
|  | } | 
|  |  | 
|  | /* Create a new fibonacci heap node.  */ | 
|  | static fibnode_t | 
|  | fibnode_new (void) | 
|  | { | 
|  | fibnode_t node; | 
|  |  | 
|  | node = (fibnode_t) xcalloc (1, sizeof *node); | 
|  | node->left = node; | 
|  | node->right = node; | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fibheap_compare (fibheap_t heap ATTRIBUTE_UNUSED, fibnode_t a, fibnode_t b) | 
|  | { | 
|  | if (a->key < b->key) | 
|  | return -1; | 
|  | if (a->key > b->key) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | fibheap_comp_data (fibheap_t heap, fibheapkey_t key, void *data, fibnode_t b) | 
|  | { | 
|  | struct fibnode a; | 
|  |  | 
|  | a.key = key; | 
|  | a.data = data; | 
|  |  | 
|  | return fibheap_compare (heap, &a, b); | 
|  | } | 
|  |  | 
|  | /* Insert DATA, with priority KEY, into HEAP.  */ | 
|  | fibnode_t | 
|  | fibheap_insert (fibheap_t heap, fibheapkey_t key, void *data) | 
|  | { | 
|  | fibnode_t node; | 
|  |  | 
|  | /* Create the new node.  */ | 
|  | node = fibnode_new (); | 
|  |  | 
|  | /* Set the node's data.  */ | 
|  | node->data = data; | 
|  | node->key = key; | 
|  |  | 
|  | /* Insert it into the root list.  */ | 
|  | fibheap_ins_root (heap, node); | 
|  |  | 
|  | /* If their was no minimum, or this key is less than the min, | 
|  | it's the new min.  */ | 
|  | if (heap->min == NULL || node->key < heap->min->key) | 
|  | heap->min = node; | 
|  |  | 
|  | heap->nodes++; | 
|  |  | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /* Return the data of the minimum node (if we know it).  */ | 
|  | void * | 
|  | fibheap_min (fibheap_t heap) | 
|  | { | 
|  | /* If there is no min, we can't easily return it.  */ | 
|  | if (heap->min == NULL) | 
|  | return NULL; | 
|  | return heap->min->data; | 
|  | } | 
|  |  | 
|  | /* Return the key of the minimum node (if we know it).  */ | 
|  | fibheapkey_t | 
|  | fibheap_min_key (fibheap_t heap) | 
|  | { | 
|  | /* If there is no min, we can't easily return it.  */ | 
|  | if (heap->min == NULL) | 
|  | return 0; | 
|  | return heap->min->key; | 
|  | } | 
|  |  | 
|  | /* Union HEAPA and HEAPB into a new heap.  */ | 
|  | fibheap_t | 
|  | fibheap_union (fibheap_t heapa, fibheap_t heapb) | 
|  | { | 
|  | fibnode_t a_root, b_root, temp; | 
|  |  | 
|  | /* If one of the heaps is empty, the union is just the other heap.  */ | 
|  | if ((a_root = heapa->root) == NULL) | 
|  | { | 
|  | free (heapa); | 
|  | return heapb; | 
|  | } | 
|  | if ((b_root = heapb->root) == NULL) | 
|  | { | 
|  | free (heapb); | 
|  | return heapa; | 
|  | } | 
|  |  | 
|  | /* Merge them to the next nodes on the opposite chain.  */ | 
|  | a_root->left->right = b_root; | 
|  | b_root->left->right = a_root; | 
|  | temp = a_root->left; | 
|  | a_root->left = b_root->left; | 
|  | b_root->left = temp; | 
|  | heapa->nodes += heapb->nodes; | 
|  |  | 
|  | /* And set the new minimum, if it's changed.  */ | 
|  | if (fibheap_compare (heapa, heapb->min, heapa->min) < 0) | 
|  | heapa->min = heapb->min; | 
|  |  | 
|  | free (heapb); | 
|  | return heapa; | 
|  | } | 
|  |  | 
|  | /* Extract the data of the minimum node from HEAP.  */ | 
|  | void * | 
|  | fibheap_extract_min (fibheap_t heap) | 
|  | { | 
|  | fibnode_t z; | 
|  | void *ret = NULL; | 
|  |  | 
|  | /* If we don't have a min set, it means we have no nodes.  */ | 
|  | if (heap->min != NULL) | 
|  | { | 
|  | /* Otherwise, extract the min node, free the node, and return the | 
|  | node's data.  */ | 
|  | z = fibheap_extr_min_node (heap); | 
|  | ret = z->data; | 
|  | free (z); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Replace both the KEY and the DATA associated with NODE.  */ | 
|  | void * | 
|  | fibheap_replace_key_data (fibheap_t heap, fibnode_t node, | 
|  | fibheapkey_t key, void *data) | 
|  | { | 
|  | void *odata; | 
|  | fibheapkey_t okey; | 
|  | fibnode_t y; | 
|  |  | 
|  | /* If we wanted to, we could actually do a real increase by redeleting and | 
|  | inserting. However, this would require O (log n) time. So just bail out | 
|  | for now.  */ | 
|  | if (fibheap_comp_data (heap, key, data, node) > 0) | 
|  | return NULL; | 
|  |  | 
|  | odata = node->data; | 
|  | okey = node->key; | 
|  | node->data = data; | 
|  | node->key = key; | 
|  | y = node->parent; | 
|  |  | 
|  | /* Short-circuit if the key is the same, as we then don't have to | 
|  | do anything.  Except if we're trying to force the new node to | 
|  | be the new minimum for delete.  */ | 
|  | if (okey == key && okey != FIBHEAPKEY_MIN) | 
|  | return odata; | 
|  |  | 
|  | /* These two compares are specifically <= 0 to make sure that in the case | 
|  | of equality, a node we replaced the data on, becomes the new min.  This | 
|  | is needed so that delete's call to extractmin gets the right node.  */ | 
|  | if (y != NULL && fibheap_compare (heap, node, y) <= 0) | 
|  | { | 
|  | fibheap_cut (heap, node, y); | 
|  | fibheap_cascading_cut (heap, y); | 
|  | } | 
|  |  | 
|  | if (fibheap_compare (heap, node, heap->min) <= 0) | 
|  | heap->min = node; | 
|  |  | 
|  | return odata; | 
|  | } | 
|  |  | 
|  | /* Replace the DATA associated with NODE.  */ | 
|  | void * | 
|  | fibheap_replace_data (fibheap_t heap, fibnode_t node, void *data) | 
|  | { | 
|  | return fibheap_replace_key_data (heap, node, node->key, data); | 
|  | } | 
|  |  | 
|  | /* Replace the KEY associated with NODE.  */ | 
|  | fibheapkey_t | 
|  | fibheap_replace_key (fibheap_t heap, fibnode_t node, fibheapkey_t key) | 
|  | { | 
|  | int okey = node->key; | 
|  | fibheap_replace_key_data (heap, node, key, node->data); | 
|  | return okey; | 
|  | } | 
|  |  | 
|  | /* Delete NODE from HEAP.  */ | 
|  | void * | 
|  | fibheap_delete_node (fibheap_t heap, fibnode_t node) | 
|  | { | 
|  | void *ret = node->data; | 
|  |  | 
|  | /* To perform delete, we just make it the min key, and extract.  */ | 
|  | fibheap_replace_key (heap, node, FIBHEAPKEY_MIN); | 
|  | if (node != heap->min) | 
|  | { | 
|  | fprintf (stderr, "Can't force minimum on fibheap.\n"); | 
|  | abort (); | 
|  | } | 
|  | fibheap_extract_min (heap); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Delete HEAP.  */ | 
|  | void | 
|  | fibheap_delete (fibheap_t heap) | 
|  | { | 
|  | while (heap->min != NULL) | 
|  | free (fibheap_extr_min_node (heap)); | 
|  |  | 
|  | free (heap); | 
|  | } | 
|  |  | 
|  | /* Determine if HEAP is empty.  */ | 
|  | int | 
|  | fibheap_empty (fibheap_t heap) | 
|  | { | 
|  | return heap->nodes == 0; | 
|  | } | 
|  |  | 
|  | /* Extract the minimum node of the heap.  */ | 
|  | static fibnode_t | 
|  | fibheap_extr_min_node (fibheap_t heap) | 
|  | { | 
|  | fibnode_t ret = heap->min; | 
|  | fibnode_t x, y, orig; | 
|  |  | 
|  | /* Attach the child list of the minimum node to the root list of the heap. | 
|  | If there is no child list, we don't do squat.  */ | 
|  | for (x = ret->child, orig = NULL; x != orig && x != NULL; x = y) | 
|  | { | 
|  | if (orig == NULL) | 
|  | orig = x; | 
|  | y = x->right; | 
|  | x->parent = NULL; | 
|  | fibheap_ins_root (heap, x); | 
|  | } | 
|  |  | 
|  | /* Remove the old root.  */ | 
|  | fibheap_rem_root (heap, ret); | 
|  | heap->nodes--; | 
|  |  | 
|  | /* If we are left with no nodes, then the min is NULL.  */ | 
|  | if (heap->nodes == 0) | 
|  | heap->min = NULL; | 
|  | else | 
|  | { | 
|  | /* Otherwise, consolidate to find new minimum, as well as do the reorg | 
|  | work that needs to be done.  */ | 
|  | heap->min = ret->right; | 
|  | fibheap_consolidate (heap); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Insert NODE into the root list of HEAP.  */ | 
|  | static void | 
|  | fibheap_ins_root (fibheap_t heap, fibnode_t node) | 
|  | { | 
|  | /* If the heap is currently empty, the new node becomes the singleton | 
|  | circular root list.  */ | 
|  | if (heap->root == NULL) | 
|  | { | 
|  | heap->root = node; | 
|  | node->left = node; | 
|  | node->right = node; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Otherwise, insert it in the circular root list between the root | 
|  | and it's right node.  */ | 
|  | fibnode_insert_after (heap->root, node); | 
|  | } | 
|  |  | 
|  | /* Remove NODE from the rootlist of HEAP.  */ | 
|  | static void | 
|  | fibheap_rem_root (fibheap_t heap, fibnode_t node) | 
|  | { | 
|  | if (node->left == node) | 
|  | heap->root = NULL; | 
|  | else | 
|  | heap->root = fibnode_remove (node); | 
|  | } | 
|  |  | 
|  | /* Consolidate the heap.  */ | 
|  | static void | 
|  | fibheap_consolidate (fibheap_t heap) | 
|  | { | 
|  | fibnode_t a[1 + 8 * sizeof (long)]; | 
|  | fibnode_t w; | 
|  | fibnode_t y; | 
|  | fibnode_t x; | 
|  | int i; | 
|  | int d; | 
|  | int D; | 
|  |  | 
|  | D = 1 + 8 * sizeof (long); | 
|  |  | 
|  | memset (a, 0, sizeof (fibnode_t) * D); | 
|  |  | 
|  | while ((w = heap->root) != NULL) | 
|  | { | 
|  | x = w; | 
|  | fibheap_rem_root (heap, w); | 
|  | d = x->degree; | 
|  | while (a[d] != NULL) | 
|  | { | 
|  | y = a[d]; | 
|  | if (fibheap_compare (heap, x, y) > 0) | 
|  | { | 
|  | fibnode_t temp; | 
|  | temp = x; | 
|  | x = y; | 
|  | y = temp; | 
|  | } | 
|  | fibheap_link (heap, y, x); | 
|  | a[d] = NULL; | 
|  | d++; | 
|  | } | 
|  | a[d] = x; | 
|  | } | 
|  | heap->min = NULL; | 
|  | for (i = 0; i < D; i++) | 
|  | if (a[i] != NULL) | 
|  | { | 
|  | fibheap_ins_root (heap, a[i]); | 
|  | if (heap->min == NULL || fibheap_compare (heap, a[i], heap->min) < 0) | 
|  | heap->min = a[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make NODE a child of PARENT.  */ | 
|  | static void | 
|  | fibheap_link (fibheap_t heap ATTRIBUTE_UNUSED, | 
|  | fibnode_t node, fibnode_t parent) | 
|  | { | 
|  | if (parent->child == NULL) | 
|  | parent->child = node; | 
|  | else | 
|  | fibnode_insert_before (parent->child, node); | 
|  | node->parent = parent; | 
|  | parent->degree++; | 
|  | node->mark = 0; | 
|  | } | 
|  |  | 
|  | /* Remove NODE from PARENT's child list.  */ | 
|  | static void | 
|  | fibheap_cut (fibheap_t heap, fibnode_t node, fibnode_t parent) | 
|  | { | 
|  | fibnode_remove (node); | 
|  | parent->degree--; | 
|  | fibheap_ins_root (heap, node); | 
|  | node->parent = NULL; | 
|  | node->mark = 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | fibheap_cascading_cut (fibheap_t heap, fibnode_t y) | 
|  | { | 
|  | fibnode_t z; | 
|  |  | 
|  | while ((z = y->parent) != NULL) | 
|  | { | 
|  | if (y->mark == 0) | 
|  | { | 
|  | y->mark = 1; | 
|  | return; | 
|  | } | 
|  | else | 
|  | { | 
|  | fibheap_cut (heap, y, z); | 
|  | y = z; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | fibnode_insert_after (fibnode_t a, fibnode_t b) | 
|  | { | 
|  | if (a == a->right) | 
|  | { | 
|  | a->right = b; | 
|  | a->left = b; | 
|  | b->right = a; | 
|  | b->left = a; | 
|  | } | 
|  | else | 
|  | { | 
|  | b->right = a->right; | 
|  | a->right->left = b; | 
|  | a->right = b; | 
|  | b->left = a; | 
|  | } | 
|  | } | 
|  |  | 
|  | static fibnode_t | 
|  | fibnode_remove (fibnode_t node) | 
|  | { | 
|  | fibnode_t ret; | 
|  |  | 
|  | if (node == node->left) | 
|  | ret = NULL; | 
|  | else | 
|  | ret = node->left; | 
|  |  | 
|  | if (node->parent != NULL && node->parent->child == node) | 
|  | node->parent->child = ret; | 
|  |  | 
|  | node->right->left = node->left; | 
|  | node->left->right = node->right; | 
|  |  | 
|  | node->parent = NULL; | 
|  | node->left = node; | 
|  | node->right = node; | 
|  |  | 
|  | return ret; | 
|  | } |