|  | /* Motorola 68HC11/HC12-specific support for 32-bit ELF | 
|  | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | 
|  | 2009, 2010  Free Software Foundation, Inc. | 
|  | Contributed by Stephane Carrez (stcarrez@nerim.fr) | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  | #include "alloca-conf.h" | 
|  | #include "sysdep.h" | 
|  | #include "bfd.h" | 
|  | #include "bfdlink.h" | 
|  | #include "libbfd.h" | 
|  | #include "elf-bfd.h" | 
|  | #include "elf32-m68hc1x.h" | 
|  | #include "elf/m68hc11.h" | 
|  | #include "opcode/m68hc11.h" | 
|  |  | 
|  |  | 
|  | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ | 
|  | ((struct elf32_m68hc11_stub_hash_entry *) \ | 
|  | bfd_hash_lookup ((table), (string), (create), (copy))) | 
|  |  | 
|  | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub | 
|  | (const char *stub_name, | 
|  | asection *section, | 
|  | struct m68hc11_elf_link_hash_table *htab); | 
|  |  | 
|  | static struct bfd_hash_entry *stub_hash_newfunc | 
|  | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); | 
|  |  | 
|  | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, | 
|  | const char* name, bfd_vma value, | 
|  | asection* sec); | 
|  |  | 
|  | static bfd_boolean m68hc11_elf_export_one_stub | 
|  | (struct bfd_hash_entry *gen_entry, void *in_arg); | 
|  |  | 
|  | static void scan_sections_for_abi (bfd*, asection*, PTR); | 
|  |  | 
|  | struct m68hc11_scan_param | 
|  | { | 
|  | struct m68hc11_page_info* pinfo; | 
|  | bfd_boolean use_memory_banks; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Create a 68HC11/68HC12 ELF linker hash table.  */ | 
|  |  | 
|  | struct m68hc11_elf_link_hash_table* | 
|  | m68hc11_elf_hash_table_create (bfd *abfd) | 
|  | { | 
|  | struct m68hc11_elf_link_hash_table *ret; | 
|  | bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); | 
|  |  | 
|  | ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt); | 
|  | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) | 
|  | return NULL; | 
|  |  | 
|  | memset (ret, 0, amt); | 
|  | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, | 
|  | _bfd_elf_link_hash_newfunc, | 
|  | sizeof (struct elf_link_hash_entry), | 
|  | M68HC11_ELF_DATA)) | 
|  | { | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Init the stub hash table too.  */ | 
|  | amt = sizeof (struct bfd_hash_table); | 
|  | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); | 
|  | if (ret->stub_hash_table == NULL) | 
|  | { | 
|  | free (ret); | 
|  | return NULL; | 
|  | } | 
|  | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, | 
|  | sizeof (struct elf32_m68hc11_stub_hash_entry))) | 
|  | return NULL; | 
|  |  | 
|  | ret->stub_bfd = NULL; | 
|  | ret->stub_section = 0; | 
|  | ret->add_stub_section = NULL; | 
|  | ret->sym_cache.abfd = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Free the derived linker hash table.  */ | 
|  |  | 
|  | void | 
|  | m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash) | 
|  | { | 
|  | struct m68hc11_elf_link_hash_table *ret | 
|  | = (struct m68hc11_elf_link_hash_table *) hash; | 
|  |  | 
|  | bfd_hash_table_free (ret->stub_hash_table); | 
|  | free (ret->stub_hash_table); | 
|  | _bfd_generic_link_hash_table_free (hash); | 
|  | } | 
|  |  | 
|  | /* Assorted hash table functions.  */ | 
|  |  | 
|  | /* Initialize an entry in the stub hash table.  */ | 
|  |  | 
|  | static struct bfd_hash_entry * | 
|  | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, | 
|  | const char *string) | 
|  | { | 
|  | /* Allocate the structure if it has not already been allocated by a | 
|  | subclass.  */ | 
|  | if (entry == NULL) | 
|  | { | 
|  | entry = bfd_hash_allocate (table, | 
|  | sizeof (struct elf32_m68hc11_stub_hash_entry)); | 
|  | if (entry == NULL) | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Call the allocation method of the superclass.  */ | 
|  | entry = bfd_hash_newfunc (entry, table, string); | 
|  | if (entry != NULL) | 
|  | { | 
|  | struct elf32_m68hc11_stub_hash_entry *eh; | 
|  |  | 
|  | /* Initialize the local fields.  */ | 
|  | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; | 
|  | eh->stub_sec = NULL; | 
|  | eh->stub_offset = 0; | 
|  | eh->target_value = 0; | 
|  | eh->target_section = NULL; | 
|  | } | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* Add a new stub entry to the stub hash.  Not all fields of the new | 
|  | stub entry are initialised.  */ | 
|  |  | 
|  | static struct elf32_m68hc11_stub_hash_entry * | 
|  | m68hc12_add_stub (const char *stub_name, asection *section, | 
|  | struct m68hc11_elf_link_hash_table *htab) | 
|  | { | 
|  | struct elf32_m68hc11_stub_hash_entry *stub_entry; | 
|  |  | 
|  | /* Enter this entry into the linker stub hash table.  */ | 
|  | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, | 
|  | TRUE, FALSE); | 
|  | if (stub_entry == NULL) | 
|  | { | 
|  | (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), | 
|  | section->owner, stub_name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (htab->stub_section == 0) | 
|  | { | 
|  | htab->stub_section = (*htab->add_stub_section) (".tramp", | 
|  | htab->tramp_section); | 
|  | } | 
|  |  | 
|  | stub_entry->stub_sec = htab->stub_section; | 
|  | stub_entry->stub_offset = 0; | 
|  | return stub_entry; | 
|  | } | 
|  |  | 
|  | /* Hook called by the linker routine which adds symbols from an object | 
|  | file.  We use it for identify far symbols and force a loading of | 
|  | the trampoline handler.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, | 
|  | Elf_Internal_Sym *sym, | 
|  | const char **namep ATTRIBUTE_UNUSED, | 
|  | flagword *flagsp ATTRIBUTE_UNUSED, | 
|  | asection **secp ATTRIBUTE_UNUSED, | 
|  | bfd_vma *valp ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if (sym->st_other & STO_M68HC12_FAR) | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) | 
|  | bfd_link_hash_lookup (info->hash, "__far_trampoline", | 
|  | FALSE, FALSE, FALSE); | 
|  | if (h == NULL) | 
|  | { | 
|  | struct bfd_link_hash_entry* entry = NULL; | 
|  |  | 
|  | _bfd_generic_link_add_one_symbol (info, abfd, | 
|  | "__far_trampoline", | 
|  | BSF_GLOBAL, | 
|  | bfd_und_section_ptr, | 
|  | (bfd_vma) 0, (const char*) NULL, | 
|  | FALSE, FALSE, &entry); | 
|  | } | 
|  |  | 
|  | } | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* External entry points for sizing and building linker stubs.  */ | 
|  |  | 
|  | /* Set up various things so that we can make a list of input sections | 
|  | for each output section included in the link.  Returns -1 on error, | 
|  | 0 when no stubs will be needed, and 1 on success.  */ | 
|  |  | 
|  | int | 
|  | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) | 
|  | { | 
|  | bfd *input_bfd; | 
|  | unsigned int bfd_count; | 
|  | int top_id, top_index; | 
|  | asection *section; | 
|  | asection **input_list, **list; | 
|  | bfd_size_type amt; | 
|  | asection *text_section; | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = m68hc11_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return -1; | 
|  |  | 
|  | if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) | 
|  | return 0; | 
|  |  | 
|  | /* Count the number of input BFDs and find the top input section id. | 
|  | Also search for an existing ".tramp" section so that we know | 
|  | where generated trampolines must go.  Default to ".text" if we | 
|  | can't find it.  */ | 
|  | htab->tramp_section = 0; | 
|  | text_section = 0; | 
|  | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link_next) | 
|  | { | 
|  | bfd_count += 1; | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | const char* name = bfd_get_section_name (input_bfd, section); | 
|  |  | 
|  | if (!strcmp (name, ".tramp")) | 
|  | htab->tramp_section = section; | 
|  |  | 
|  | if (!strcmp (name, ".text")) | 
|  | text_section = section; | 
|  |  | 
|  | if (top_id < section->id) | 
|  | top_id = section->id; | 
|  | } | 
|  | } | 
|  | htab->bfd_count = bfd_count; | 
|  | if (htab->tramp_section == 0) | 
|  | htab->tramp_section = text_section; | 
|  |  | 
|  | /* We can't use output_bfd->section_count here to find the top output | 
|  | section index as some sections may have been removed, and | 
|  | strip_excluded_output_sections doesn't renumber the indices.  */ | 
|  | for (section = output_bfd->sections, top_index = 0; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if (top_index < section->index) | 
|  | top_index = section->index; | 
|  | } | 
|  |  | 
|  | htab->top_index = top_index; | 
|  | amt = sizeof (asection *) * (top_index + 1); | 
|  | input_list = (asection **) bfd_malloc (amt); | 
|  | htab->input_list = input_list; | 
|  | if (input_list == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* For sections we aren't interested in, mark their entries with a | 
|  | value we can check later.  */ | 
|  | list = input_list + top_index; | 
|  | do | 
|  | *list = bfd_abs_section_ptr; | 
|  | while (list-- != input_list); | 
|  |  | 
|  | for (section = output_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if ((section->flags & SEC_CODE) != 0) | 
|  | input_list[section->index] = NULL; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Determine and set the size of the stub section for a final link. | 
|  |  | 
|  | The basic idea here is to examine all the relocations looking for | 
|  | PC-relative calls to a target that is unreachable with a "bl" | 
|  | instruction.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, | 
|  | struct bfd_link_info *info, | 
|  | asection * (*add_stub_section) (const char*, asection*)) | 
|  | { | 
|  | bfd *input_bfd; | 
|  | asection *section; | 
|  | Elf_Internal_Sym *local_syms, **all_local_syms; | 
|  | unsigned int bfd_indx, bfd_count; | 
|  | bfd_size_type amt; | 
|  | asection *stub_sec; | 
|  | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); | 
|  |  | 
|  | if (htab == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | /* Stash our params away.  */ | 
|  | htab->stub_bfd = stub_bfd; | 
|  | htab->add_stub_section = add_stub_section; | 
|  |  | 
|  | /* Count the number of input BFDs and find the top input section id.  */ | 
|  | for (input_bfd = info->input_bfds, bfd_count = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link_next) | 
|  | bfd_count += 1; | 
|  |  | 
|  | /* We want to read in symbol extension records only once.  To do this | 
|  | we need to read in the local symbols in parallel and save them for | 
|  | later use; so hold pointers to the local symbols in an array.  */ | 
|  | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | 
|  | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | 
|  | if (all_local_syms == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | /* Walk over all the input BFDs, swapping in local symbols.  */ | 
|  | for (input_bfd = info->input_bfds, bfd_indx = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link_next, bfd_indx++) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  |  | 
|  | /* We'll need the symbol table in a second.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info == 0) | 
|  | continue; | 
|  |  | 
|  | /* We need an array of the local symbols attached to the input bfd.  */ | 
|  | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | 
|  | if (local_syms == NULL) | 
|  | { | 
|  | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | 
|  | symtab_hdr->sh_info, 0, | 
|  | NULL, NULL, NULL); | 
|  | /* Cache them for elf_link_input_bfd.  */ | 
|  | symtab_hdr->contents = (unsigned char *) local_syms; | 
|  | } | 
|  | if (local_syms == NULL) | 
|  | { | 
|  | free (all_local_syms); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | all_local_syms[bfd_indx] = local_syms; | 
|  | } | 
|  |  | 
|  | for (input_bfd = info->input_bfds, bfd_indx = 0; | 
|  | input_bfd != NULL; | 
|  | input_bfd = input_bfd->link_next, bfd_indx++) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry ** sym_hashes; | 
|  |  | 
|  | sym_hashes = elf_sym_hashes (input_bfd); | 
|  |  | 
|  | /* We'll need the symbol table in a second.  */ | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | if (symtab_hdr->sh_info == 0) | 
|  | continue; | 
|  |  | 
|  | local_syms = all_local_syms[bfd_indx]; | 
|  |  | 
|  | /* Walk over each section attached to the input bfd.  */ | 
|  | for (section = input_bfd->sections; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | 
|  |  | 
|  | /* If there aren't any relocs, then there's nothing more | 
|  | to do.  */ | 
|  | if ((section->flags & SEC_RELOC) == 0 | 
|  | || section->reloc_count == 0) | 
|  | continue; | 
|  |  | 
|  | /* If this section is a link-once section that will be | 
|  | discarded, then don't create any stubs.  */ | 
|  | if (section->output_section == NULL | 
|  | || section->output_section->owner != output_bfd) | 
|  | continue; | 
|  |  | 
|  | /* Get the relocs.  */ | 
|  | internal_relocs | 
|  | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, | 
|  | (Elf_Internal_Rela *) NULL, | 
|  | info->keep_memory); | 
|  | if (internal_relocs == NULL) | 
|  | goto error_ret_free_local; | 
|  |  | 
|  | /* Now examine each relocation.  */ | 
|  | irela = internal_relocs; | 
|  | irelaend = irela + section->reloc_count; | 
|  | for (; irela < irelaend; irela++) | 
|  | { | 
|  | unsigned int r_type, r_indx; | 
|  | struct elf32_m68hc11_stub_hash_entry *stub_entry; | 
|  | asection *sym_sec; | 
|  | bfd_vma sym_value; | 
|  | struct elf_link_hash_entry *hash; | 
|  | const char *stub_name; | 
|  | Elf_Internal_Sym *sym; | 
|  |  | 
|  | r_type = ELF32_R_TYPE (irela->r_info); | 
|  |  | 
|  | /* Only look at 16-bit relocs.  */ | 
|  | if (r_type != (unsigned int) R_M68HC11_16) | 
|  | continue; | 
|  |  | 
|  | /* Now determine the call target, its name, value, | 
|  | section.  */ | 
|  | r_indx = ELF32_R_SYM (irela->r_info); | 
|  | if (r_indx < symtab_hdr->sh_info) | 
|  | { | 
|  | /* It's a local symbol.  */ | 
|  | Elf_Internal_Shdr *hdr; | 
|  | bfd_boolean is_far; | 
|  |  | 
|  | sym = local_syms + r_indx; | 
|  | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | 
|  | if (!is_far) | 
|  | continue; | 
|  |  | 
|  | if (sym->st_shndx >= elf_numsections (input_bfd)) | 
|  | sym_sec = NULL; | 
|  | else | 
|  | { | 
|  | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | 
|  | sym_sec = hdr->bfd_section; | 
|  | } | 
|  | stub_name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, | 
|  | sym->st_name)); | 
|  | sym_value = sym->st_value; | 
|  | hash = NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* It's an external symbol.  */ | 
|  | int e_indx; | 
|  |  | 
|  | e_indx = r_indx - symtab_hdr->sh_info; | 
|  | hash = (struct elf_link_hash_entry *) | 
|  | (sym_hashes[e_indx]); | 
|  |  | 
|  | while (hash->root.type == bfd_link_hash_indirect | 
|  | || hash->root.type == bfd_link_hash_warning) | 
|  | hash = ((struct elf_link_hash_entry *) | 
|  | hash->root.u.i.link); | 
|  |  | 
|  | if (hash->root.type == bfd_link_hash_defined | 
|  | || hash->root.type == bfd_link_hash_defweak | 
|  | || hash->root.type == bfd_link_hash_new) | 
|  | { | 
|  | if (!(hash->other & STO_M68HC12_FAR)) | 
|  | continue; | 
|  | } | 
|  | else if (hash->root.type == bfd_link_hash_undefweak) | 
|  | { | 
|  | continue; | 
|  | } | 
|  | else if (hash->root.type == bfd_link_hash_undefined) | 
|  | { | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | goto error_ret_free_internal; | 
|  | } | 
|  | sym_sec = hash->root.u.def.section; | 
|  | sym_value = hash->root.u.def.value; | 
|  | stub_name = hash->root.root.string; | 
|  | } | 
|  |  | 
|  | if (!stub_name) | 
|  | goto error_ret_free_internal; | 
|  |  | 
|  | stub_entry = m68hc12_stub_hash_lookup | 
|  | (htab->stub_hash_table, | 
|  | stub_name, | 
|  | FALSE, FALSE); | 
|  | if (stub_entry == NULL) | 
|  | { | 
|  | if (add_stub_section == 0) | 
|  | continue; | 
|  |  | 
|  | stub_entry = m68hc12_add_stub (stub_name, section, htab); | 
|  | if (stub_entry == NULL) | 
|  | { | 
|  | error_ret_free_internal: | 
|  | if (elf_section_data (section)->relocs == NULL) | 
|  | free (internal_relocs); | 
|  | goto error_ret_free_local; | 
|  | } | 
|  | } | 
|  |  | 
|  | stub_entry->target_value = sym_value; | 
|  | stub_entry->target_section = sym_sec; | 
|  | } | 
|  |  | 
|  | /* We're done with the internal relocs, free them.  */ | 
|  | if (elf_section_data (section)->relocs == NULL) | 
|  | free (internal_relocs); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (add_stub_section) | 
|  | { | 
|  | /* OK, we've added some stubs.  Find out the new size of the | 
|  | stub sections.  */ | 
|  | for (stub_sec = htab->stub_bfd->sections; | 
|  | stub_sec != NULL; | 
|  | stub_sec = stub_sec->next) | 
|  | { | 
|  | stub_sec->size = 0; | 
|  | } | 
|  |  | 
|  | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); | 
|  | } | 
|  | free (all_local_syms); | 
|  | return TRUE; | 
|  |  | 
|  | error_ret_free_local: | 
|  | free (all_local_syms); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* Export the trampoline addresses in the symbol table.  */ | 
|  | static bfd_boolean | 
|  | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) | 
|  | { | 
|  | struct bfd_link_info *info; | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  | struct elf32_m68hc11_stub_hash_entry *stub_entry; | 
|  | char* name; | 
|  | bfd_boolean result; | 
|  |  | 
|  | info = (struct bfd_link_info *) in_arg; | 
|  | htab = m68hc11_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | /* Massage our args to the form they really have.  */ | 
|  | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; | 
|  |  | 
|  | /* Generate the trampoline according to HC11 or HC12.  */ | 
|  | result = (* htab->build_one_stub) (gen_entry, in_arg); | 
|  |  | 
|  | /* Make a printable name that does not conflict with the real function.  */ | 
|  | name = alloca (strlen (stub_entry->root.string) + 16); | 
|  | sprintf (name, "tramp.%s", stub_entry->root.string); | 
|  |  | 
|  | /* Export the symbol for debugging/disassembling.  */ | 
|  | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, | 
|  | stub_entry->stub_offset, | 
|  | stub_entry->stub_sec); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Export a symbol or set its value and section.  */ | 
|  | static void | 
|  | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, | 
|  | const char *name, bfd_vma value, asection *sec) | 
|  | { | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | h = (struct elf_link_hash_entry *) | 
|  | bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); | 
|  | if (h == NULL) | 
|  | { | 
|  | _bfd_generic_link_add_one_symbol (info, abfd, | 
|  | name, | 
|  | BSF_GLOBAL, | 
|  | sec, | 
|  | value, | 
|  | (const char*) NULL, | 
|  | TRUE, FALSE, NULL); | 
|  | } | 
|  | else | 
|  | { | 
|  | h->root.type = bfd_link_hash_defined; | 
|  | h->root.u.def.value = value; | 
|  | h->root.u.def.section = sec; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Build all the stubs associated with the current output file.  The | 
|  | stubs are kept in a hash table attached to the main linker hash | 
|  | table.  This function is called via m68hc12elf_finish in the | 
|  | linker.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | asection *stub_sec; | 
|  | struct bfd_hash_table *table; | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  | struct m68hc11_scan_param param; | 
|  |  | 
|  | m68hc11_elf_get_bank_parameters (info); | 
|  | htab = m68hc11_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | for (stub_sec = htab->stub_bfd->sections; | 
|  | stub_sec != NULL; | 
|  | stub_sec = stub_sec->next) | 
|  | { | 
|  | bfd_size_type size; | 
|  |  | 
|  | /* Allocate memory to hold the linker stubs.  */ | 
|  | size = stub_sec->size; | 
|  | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); | 
|  | if (stub_sec->contents == NULL && size != 0) | 
|  | return FALSE; | 
|  | stub_sec->size = 0; | 
|  | } | 
|  |  | 
|  | /* Build the stubs as directed by the stub hash table.  */ | 
|  | table = htab->stub_hash_table; | 
|  | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); | 
|  |  | 
|  | /* Scan the output sections to see if we use the memory banks. | 
|  | If so, export the symbols that define how the memory banks | 
|  | are mapped.  This is used by gdb and the simulator to obtain | 
|  | the information.  It can be used by programs to burn the eprom | 
|  | at the good addresses.  */ | 
|  | param.use_memory_banks = FALSE; | 
|  | param.pinfo = &htab->pinfo; | 
|  | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | 
|  | if (param.use_memory_banks) | 
|  | { | 
|  | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, | 
|  | htab->pinfo.bank_physical, | 
|  | bfd_abs_section_ptr); | 
|  | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, | 
|  | htab->pinfo.bank_virtual, | 
|  | bfd_abs_section_ptr); | 
|  | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, | 
|  | htab->pinfo.bank_size, | 
|  | bfd_abs_section_ptr); | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | void | 
|  | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) | 
|  | { | 
|  | unsigned i; | 
|  | struct m68hc11_page_info *pinfo; | 
|  | struct bfd_link_hash_entry *h; | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  |  | 
|  | htab = m68hc11_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return; | 
|  |  | 
|  | pinfo = & htab->pinfo; | 
|  | if (pinfo->bank_param_initialized) | 
|  | return; | 
|  |  | 
|  | pinfo->bank_virtual = M68HC12_BANK_VIRT; | 
|  | pinfo->bank_mask = M68HC12_BANK_MASK; | 
|  | pinfo->bank_physical = M68HC12_BANK_BASE; | 
|  | pinfo->bank_shift = M68HC12_BANK_SHIFT; | 
|  | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, | 
|  | FALSE, FALSE, TRUE); | 
|  | if (h != (struct bfd_link_hash_entry*) NULL | 
|  | && h->type == bfd_link_hash_defined) | 
|  | pinfo->bank_physical = (h->u.def.value | 
|  | + h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset); | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, | 
|  | FALSE, FALSE, TRUE); | 
|  | if (h != (struct bfd_link_hash_entry*) NULL | 
|  | && h->type == bfd_link_hash_defined) | 
|  | pinfo->bank_virtual = (h->u.def.value | 
|  | + h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset); | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, | 
|  | FALSE, FALSE, TRUE); | 
|  | if (h != (struct bfd_link_hash_entry*) NULL | 
|  | && h->type == bfd_link_hash_defined) | 
|  | pinfo->bank_size = (h->u.def.value | 
|  | + h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset); | 
|  |  | 
|  | pinfo->bank_shift = 0; | 
|  | for (i = pinfo->bank_size; i != 0; i >>= 1) | 
|  | pinfo->bank_shift++; | 
|  | pinfo->bank_shift--; | 
|  | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; | 
|  | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; | 
|  | pinfo->bank_param_initialized = 1; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, | 
|  | FALSE, TRUE); | 
|  | if (h != (struct bfd_link_hash_entry*) NULL | 
|  | && h->type == bfd_link_hash_defined) | 
|  | pinfo->trampoline_addr = (h->u.def.value | 
|  | + h->u.def.section->output_section->vma | 
|  | + h->u.def.section->output_offset); | 
|  | } | 
|  |  | 
|  | /* Return 1 if the address is in banked memory. | 
|  | This can be applied to a virtual address and to a physical address.  */ | 
|  | int | 
|  | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) | 
|  | { | 
|  | if (addr >= pinfo->bank_virtual) | 
|  | return 1; | 
|  |  | 
|  | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return the physical address seen by the processor, taking | 
|  | into account banked memory.  */ | 
|  | bfd_vma | 
|  | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) | 
|  | { | 
|  | if (addr < pinfo->bank_virtual) | 
|  | return addr; | 
|  |  | 
|  | /* Map the address to the memory bank.  */ | 
|  | addr -= pinfo->bank_virtual; | 
|  | addr &= pinfo->bank_mask; | 
|  | addr += pinfo->bank_physical; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* Return the page number corresponding to an address in banked memory.  */ | 
|  | bfd_vma | 
|  | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) | 
|  | { | 
|  | if (addr < pinfo->bank_virtual) | 
|  | return 0; | 
|  |  | 
|  | /* Map the address to the memory bank.  */ | 
|  | addr -= pinfo->bank_virtual; | 
|  | addr >>= pinfo->bank_shift; | 
|  | addr &= 0x0ff; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* This function is used for relocs which are only used for relaxing, | 
|  | which the linker should otherwise ignore.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | arelent *reloc_entry, | 
|  | asymbol *symbol ATTRIBUTE_UNUSED, | 
|  | void *data ATTRIBUTE_UNUSED, | 
|  | asection *input_section, | 
|  | bfd *output_bfd, | 
|  | char **error_message ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if (output_bfd != NULL) | 
|  | reloc_entry->address += input_section->output_offset; | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | arelent *reloc_entry, | 
|  | asymbol *symbol, | 
|  | void *data ATTRIBUTE_UNUSED, | 
|  | asection *input_section, | 
|  | bfd *output_bfd, | 
|  | char **error_message ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if (output_bfd != (bfd *) NULL | 
|  | && (symbol->flags & BSF_SECTION_SYM) == 0 | 
|  | && (! reloc_entry->howto->partial_inplace | 
|  | || reloc_entry->addend == 0)) | 
|  | { | 
|  | reloc_entry->address += input_section->output_offset; | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | if (output_bfd != NULL) | 
|  | return bfd_reloc_continue; | 
|  |  | 
|  | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) | 
|  | return bfd_reloc_outofrange; | 
|  |  | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* Look through the relocs for a section during the first phase. | 
|  | Since we don't do .gots or .plts, we just need to consider the | 
|  | virtual table relocs for gc.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, | 
|  | asection *sec, const Elf_Internal_Rela *relocs) | 
|  | { | 
|  | Elf_Internal_Shdr *           symtab_hdr; | 
|  | struct elf_link_hash_entry ** sym_hashes; | 
|  | const Elf_Internal_Rela *     rel; | 
|  | const Elf_Internal_Rela *     rel_end; | 
|  |  | 
|  | if (info->relocatable) | 
|  | return TRUE; | 
|  |  | 
|  | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; | 
|  | sym_hashes = elf_sym_hashes (abfd); | 
|  | rel_end = relocs + sec->reloc_count; | 
|  |  | 
|  | for (rel = relocs; rel < rel_end; rel++) | 
|  | { | 
|  | struct elf_link_hash_entry * h; | 
|  | unsigned long r_symndx; | 
|  |  | 
|  | r_symndx = ELF32_R_SYM (rel->r_info); | 
|  |  | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | h = NULL; | 
|  | else | 
|  | { | 
|  | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  | } | 
|  |  | 
|  | switch (ELF32_R_TYPE (rel->r_info)) | 
|  | { | 
|  | /* This relocation describes the C++ object vtable hierarchy. | 
|  | Reconstruct it for later use during GC.  */ | 
|  | case R_M68HC11_GNU_VTINHERIT: | 
|  | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) | 
|  | return FALSE; | 
|  | break; | 
|  |  | 
|  | /* This relocation describes which C++ vtable entries are actually | 
|  | used.  Record for later use during GC.  */ | 
|  | case R_M68HC11_GNU_VTENTRY: | 
|  | BFD_ASSERT (h != NULL); | 
|  | if (h != NULL | 
|  | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | 
|  | return FALSE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* Relocate a 68hc11/68hc12 ELF section.  */ | 
|  | bfd_boolean | 
|  | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, | 
|  | struct bfd_link_info *info, | 
|  | bfd *input_bfd, asection *input_section, | 
|  | bfd_byte *contents, Elf_Internal_Rela *relocs, | 
|  | Elf_Internal_Sym *local_syms, | 
|  | asection **local_sections) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | struct elf_link_hash_entry **sym_hashes; | 
|  | Elf_Internal_Rela *rel, *relend; | 
|  | const char *name = NULL; | 
|  | struct m68hc11_page_info *pinfo; | 
|  | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
|  | sym_hashes = elf_sym_hashes (input_bfd); | 
|  |  | 
|  | htab = m68hc11_elf_hash_table (info); | 
|  | if (htab == NULL) | 
|  | return FALSE; | 
|  |  | 
|  | /* Get memory bank parameters.  */ | 
|  | m68hc11_elf_get_bank_parameters (info); | 
|  |  | 
|  | pinfo = & htab->pinfo; | 
|  | rel = relocs; | 
|  | relend = relocs + input_section->reloc_count; | 
|  |  | 
|  | for (; rel < relend; rel++) | 
|  | { | 
|  | int r_type; | 
|  | arelent arel; | 
|  | reloc_howto_type *howto; | 
|  | unsigned long r_symndx; | 
|  | Elf_Internal_Sym *sym; | 
|  | asection *sec; | 
|  | bfd_vma relocation = 0; | 
|  | bfd_reloc_status_type r = bfd_reloc_undefined; | 
|  | bfd_vma phys_page; | 
|  | bfd_vma phys_addr; | 
|  | bfd_vma insn_addr; | 
|  | bfd_vma insn_page; | 
|  | bfd_boolean is_far = FALSE; | 
|  | struct elf_link_hash_entry *h; | 
|  | const char* stub_name = 0; | 
|  |  | 
|  | r_symndx = ELF32_R_SYM (rel->r_info); | 
|  | r_type = ELF32_R_TYPE (rel->r_info); | 
|  |  | 
|  | if (r_type == R_M68HC11_GNU_VTENTRY | 
|  | || r_type == R_M68HC11_GNU_VTINHERIT ) | 
|  | continue; | 
|  |  | 
|  | (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel); | 
|  | howto = arel.howto; | 
|  |  | 
|  | h = NULL; | 
|  | sym = NULL; | 
|  | sec = NULL; | 
|  | if (r_symndx < symtab_hdr->sh_info) | 
|  | { | 
|  | sym = local_syms + r_symndx; | 
|  | sec = local_sections[r_symndx]; | 
|  | relocation = (sec->output_section->vma | 
|  | + sec->output_offset | 
|  | + sym->st_value); | 
|  | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | 
|  | if (is_far) | 
|  | stub_name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, | 
|  | sym->st_name)); | 
|  | } | 
|  | else | 
|  | { | 
|  | bfd_boolean unresolved_reloc, warned; | 
|  |  | 
|  | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | 
|  | r_symndx, symtab_hdr, sym_hashes, | 
|  | h, sec, relocation, unresolved_reloc, | 
|  | warned); | 
|  |  | 
|  | is_far = (h && (h->other & STO_M68HC12_FAR)); | 
|  | stub_name = h->root.root.string; | 
|  | } | 
|  |  | 
|  | if (sec != NULL && elf_discarded_section (sec)) | 
|  | { | 
|  | /* For relocs against symbols from removed linkonce sections, | 
|  | or sections discarded by a linker script, we just want the | 
|  | section contents zeroed.  Avoid any special processing.  */ | 
|  | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | 
|  | rel->r_info = 0; | 
|  | rel->r_addend = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (info->relocatable) | 
|  | { | 
|  | /* This is a relocatable link.  We don't have to change | 
|  | anything, unless the reloc is against a section symbol, | 
|  | in which case we have to adjust according to where the | 
|  | section symbol winds up in the output section.  */ | 
|  | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) | 
|  | rel->r_addend += sec->output_offset; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (h != NULL) | 
|  | name = h->root.root.string; | 
|  | else | 
|  | { | 
|  | name = (bfd_elf_string_from_elf_section | 
|  | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | 
|  | if (name == NULL || *name == '\0') | 
|  | name = bfd_section_name (input_bfd, sec); | 
|  | } | 
|  |  | 
|  | if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) | 
|  | { | 
|  | struct elf32_m68hc11_stub_hash_entry* stub; | 
|  |  | 
|  | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, | 
|  | name, FALSE, FALSE); | 
|  | if (stub) | 
|  | { | 
|  | relocation = stub->stub_offset | 
|  | + stub->stub_sec->output_section->vma | 
|  | + stub->stub_sec->output_offset; | 
|  | is_far = FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do the memory bank mapping.  */ | 
|  | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); | 
|  | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); | 
|  | switch (r_type) | 
|  | { | 
|  | case R_M68HC11_24: | 
|  | /* Reloc used by 68HC12 call instruction.  */ | 
|  | bfd_put_16 (input_bfd, phys_addr, | 
|  | (bfd_byte*) contents + rel->r_offset); | 
|  | bfd_put_8 (input_bfd, phys_page, | 
|  | (bfd_byte*) contents + rel->r_offset + 2); | 
|  | r = bfd_reloc_ok; | 
|  | r_type = R_M68HC11_NONE; | 
|  | break; | 
|  |  | 
|  | case R_M68HC11_NONE: | 
|  | r = bfd_reloc_ok; | 
|  | break; | 
|  |  | 
|  | case R_M68HC11_LO16: | 
|  | /* Reloc generated by %addr(expr) gas to obtain the | 
|  | address as mapped in the memory bank window.  */ | 
|  | relocation = phys_addr; | 
|  | break; | 
|  |  | 
|  | case R_M68HC11_PAGE: | 
|  | /* Reloc generated by %page(expr) gas to obtain the | 
|  | page number associated with the address.  */ | 
|  | relocation = phys_page; | 
|  | break; | 
|  |  | 
|  | case R_M68HC11_16: | 
|  | /* Get virtual address of instruction having the relocation.  */ | 
|  | if (is_far) | 
|  | { | 
|  | const char* msg; | 
|  | char* buf; | 
|  | msg = _("Reference to the far symbol `%s' using a wrong " | 
|  | "relocation may result in incorrect execution"); | 
|  | buf = alloca (strlen (msg) + strlen (name) + 10); | 
|  | sprintf (buf, msg, name); | 
|  |  | 
|  | (* info->callbacks->warning) | 
|  | (info, buf, name, input_bfd, NULL, rel->r_offset); | 
|  | } | 
|  |  | 
|  | /* Get virtual address of instruction having the relocation.  */ | 
|  | insn_addr = input_section->output_section->vma | 
|  | + input_section->output_offset | 
|  | + rel->r_offset; | 
|  |  | 
|  | insn_page = m68hc11_phys_page (pinfo, insn_addr); | 
|  |  | 
|  | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) | 
|  | && m68hc11_addr_is_banked (pinfo, insn_addr) | 
|  | && phys_page != insn_page) | 
|  | { | 
|  | const char* msg; | 
|  | char* buf; | 
|  |  | 
|  | msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " | 
|  | "as current banked address [%lx:%04lx] (%lx)"); | 
|  |  | 
|  | buf = alloca (strlen (msg) + 128); | 
|  | sprintf (buf, msg, phys_page, phys_addr, | 
|  | (long) (relocation + rel->r_addend), | 
|  | insn_page, m68hc11_phys_addr (pinfo, insn_addr), | 
|  | (long) (insn_addr)); | 
|  | if (!((*info->callbacks->warning) | 
|  | (info, buf, name, input_bfd, input_section, | 
|  | rel->r_offset))) | 
|  | return FALSE; | 
|  | break; | 
|  | } | 
|  | if (phys_page != 0 && insn_page == 0) | 
|  | { | 
|  | const char* msg; | 
|  | char* buf; | 
|  |  | 
|  | msg = _("reference to a banked address [%lx:%04lx] in the " | 
|  | "normal address space at %04lx"); | 
|  |  | 
|  | buf = alloca (strlen (msg) + 128); | 
|  | sprintf (buf, msg, phys_page, phys_addr, insn_addr); | 
|  | if (!((*info->callbacks->warning) | 
|  | (info, buf, name, input_bfd, input_section, | 
|  | insn_addr))) | 
|  | return FALSE; | 
|  |  | 
|  | relocation = phys_addr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If this is a banked address use the phys_addr so that | 
|  | we stay in the banked window.  */ | 
|  | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) | 
|  | relocation = phys_addr; | 
|  | break; | 
|  | } | 
|  | if (r_type != R_M68HC11_NONE) | 
|  | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | 
|  | contents, rel->r_offset, | 
|  | relocation, rel->r_addend); | 
|  |  | 
|  | if (r != bfd_reloc_ok) | 
|  | { | 
|  | const char * msg = (const char *) 0; | 
|  |  | 
|  | switch (r) | 
|  | { | 
|  | case bfd_reloc_overflow: | 
|  | if (!((*info->callbacks->reloc_overflow) | 
|  | (info, NULL, name, howto->name, (bfd_vma) 0, | 
|  | input_bfd, input_section, rel->r_offset))) | 
|  | return FALSE; | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_undefined: | 
|  | if (!((*info->callbacks->undefined_symbol) | 
|  | (info, name, input_bfd, input_section, | 
|  | rel->r_offset, TRUE))) | 
|  | return FALSE; | 
|  | break; | 
|  |  | 
|  | case bfd_reloc_outofrange: | 
|  | msg = _ ("internal error: out of range error"); | 
|  | goto common_error; | 
|  |  | 
|  | case bfd_reloc_notsupported: | 
|  | msg = _ ("internal error: unsupported relocation error"); | 
|  | goto common_error; | 
|  |  | 
|  | case bfd_reloc_dangerous: | 
|  | msg = _ ("internal error: dangerous error"); | 
|  | goto common_error; | 
|  |  | 
|  | default: | 
|  | msg = _ ("internal error: unknown error"); | 
|  | /* fall through */ | 
|  |  | 
|  | common_error: | 
|  | if (!((*info->callbacks->warning) | 
|  | (info, msg, name, input_bfd, input_section, | 
|  | rel->r_offset))) | 
|  | return FALSE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Set and control ELF flags in ELF header.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) | 
|  | { | 
|  | BFD_ASSERT (!elf_flags_init (abfd) | 
|  | || elf_elfheader (abfd)->e_flags == flags); | 
|  |  | 
|  | elf_elfheader (abfd)->e_flags = flags; | 
|  | elf_flags_init (abfd) = TRUE; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* Merge backend specific data from an object file to the output | 
|  | object file when linking.  */ | 
|  |  | 
|  | bfd_boolean | 
|  | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | flagword old_flags; | 
|  | flagword new_flags; | 
|  | bfd_boolean ok = TRUE; | 
|  |  | 
|  | /* Check if we have the same endianess */ | 
|  | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | 
|  | return FALSE; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return TRUE; | 
|  |  | 
|  | new_flags = elf_elfheader (ibfd)->e_flags; | 
|  | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; | 
|  | old_flags = elf_elfheader (obfd)->e_flags; | 
|  |  | 
|  | if (! elf_flags_init (obfd)) | 
|  | { | 
|  | elf_flags_init (obfd) = TRUE; | 
|  | elf_elfheader (obfd)->e_flags = new_flags; | 
|  | elf_elfheader (obfd)->e_ident[EI_CLASS] | 
|  | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | 
|  |  | 
|  | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | 
|  | && bfd_get_arch_info (obfd)->the_default) | 
|  | { | 
|  | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | 
|  | bfd_get_mach (ibfd))) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* Check ABI compatibility.  */ | 
|  | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%B: linking files compiled for 16-bit integers (-mshort) " | 
|  | "and others for 32-bit integers"), ibfd); | 
|  | ok = FALSE; | 
|  | } | 
|  | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%B: linking files compiled for 32-bit double (-fshort-double) " | 
|  | "and others for 64-bit double"), ibfd); | 
|  | ok = FALSE; | 
|  | } | 
|  |  | 
|  | /* Processor compatibility.  */ | 
|  | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%B: linking files compiled for HCS12 with " | 
|  | "others compiled for HC12"), ibfd); | 
|  | ok = FALSE; | 
|  | } | 
|  | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) | 
|  | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); | 
|  |  | 
|  | elf_elfheader (obfd)->e_flags = new_flags; | 
|  |  | 
|  | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | 
|  | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | 
|  |  | 
|  | /* Warn about any other mismatches */ | 
|  | if (new_flags != old_flags) | 
|  | { | 
|  | (*_bfd_error_handler) | 
|  | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), | 
|  | ibfd, (unsigned long) new_flags, (unsigned long) old_flags); | 
|  | ok = FALSE; | 
|  | } | 
|  |  | 
|  | if (! ok) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | bfd_boolean | 
|  | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) | 
|  | { | 
|  | FILE *file = (FILE *) ptr; | 
|  |  | 
|  | BFD_ASSERT (abfd != NULL && ptr != NULL); | 
|  |  | 
|  | /* Print normal ELF private data.  */ | 
|  | _bfd_elf_print_private_bfd_data (abfd, ptr); | 
|  |  | 
|  | /* xgettext:c-format */ | 
|  | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) | 
|  | fprintf (file, _("[abi=32-bit int, ")); | 
|  | else | 
|  | fprintf (file, _("[abi=16-bit int, ")); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) | 
|  | fprintf (file, _("64-bit double, ")); | 
|  | else | 
|  | fprintf (file, _("32-bit double, ")); | 
|  |  | 
|  | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) | 
|  | fprintf (file, _("cpu=HC11]")); | 
|  | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) | 
|  | fprintf (file, _("cpu=HCS12]")); | 
|  | else | 
|  | fprintf (file, _("cpu=HC12]")); | 
|  |  | 
|  | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) | 
|  | fprintf (file, _(" [memory=bank-model]")); | 
|  | else | 
|  | fprintf (file, _(" [memory=flat]")); | 
|  |  | 
|  | fputc ('\n', file); | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asection *asect, void *arg) | 
|  | { | 
|  | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; | 
|  |  | 
|  | if (asect->vma >= p->pinfo->bank_virtual) | 
|  | p->use_memory_banks = TRUE; | 
|  | } | 
|  |  | 
|  | /* Tweak the OSABI field of the elf header.  */ | 
|  |  | 
|  | void | 
|  | elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) | 
|  | { | 
|  | struct m68hc11_scan_param param; | 
|  | struct m68hc11_elf_link_hash_table *htab; | 
|  |  | 
|  | if (link_info == NULL) | 
|  | return; | 
|  |  | 
|  | htab = m68hc11_elf_hash_table (link_info); | 
|  | if (htab == NULL) | 
|  | return; | 
|  |  | 
|  | m68hc11_elf_get_bank_parameters (link_info); | 
|  |  | 
|  | param.use_memory_banks = FALSE; | 
|  | param.pinfo = & htab->pinfo; | 
|  |  | 
|  | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | 
|  |  | 
|  | if (param.use_memory_banks) | 
|  | { | 
|  | Elf_Internal_Ehdr * i_ehdrp; | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | i_ehdrp->e_flags |= E_M68HC12_BANKS; | 
|  | } | 
|  | } |