|  | /* Find a variable's value in memory, for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 1986-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "frame.h" | 
|  | #include "value.h" | 
|  | #include "gdbcore.h" | 
|  | #include "inferior.h" | 
|  | #include "target.h" | 
|  | #include "symfile.h"		/* for overlay functions */ | 
|  | #include "regcache.h" | 
|  | #include "user-regs.h" | 
|  | #include "block.h" | 
|  | #include "objfiles.h" | 
|  | #include "language.h" | 
|  | #include "dwarf2/loc.h" | 
|  | #include "gdbsupport/selftest.h" | 
|  |  | 
|  | /* Basic byte-swapping routines.  All 'extract' functions return a | 
|  | host-format integer from a target-format integer at ADDR which is | 
|  | LEN bytes long.  */ | 
|  |  | 
|  | #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8 | 
|  | /* 8 bit characters are a pretty safe assumption these days, so we | 
|  | assume it throughout all these swapping routines.  If we had to deal with | 
|  | 9 bit characters, we would need to make len be in bits and would have | 
|  | to re-write these routines...  */ | 
|  | you lose | 
|  | #endif | 
|  |  | 
|  | template<typename T, typename> | 
|  | T | 
|  | extract_integer (gdb::array_view<const gdb_byte> buf, enum bfd_endian byte_order) | 
|  | { | 
|  | typename std::make_unsigned<T>::type retval = 0; | 
|  |  | 
|  | if (buf.size () > (int) sizeof (T)) | 
|  | error (_("\ | 
|  | That operation is not available on integers of more than %d bytes."), | 
|  | (int) sizeof (T)); | 
|  |  | 
|  | /* Start at the most significant end of the integer, and work towards | 
|  | the least significant.  */ | 
|  | if (byte_order == BFD_ENDIAN_BIG) | 
|  | { | 
|  | size_t i = 0; | 
|  |  | 
|  | if (std::is_signed<T>::value) | 
|  | { | 
|  | /* Do the sign extension once at the start.  */ | 
|  | retval = ((LONGEST) buf[i] ^ 0x80) - 0x80; | 
|  | ++i; | 
|  | } | 
|  | for (; i < buf.size (); ++i) | 
|  | retval = (retval << 8) | buf[i]; | 
|  | } | 
|  | else | 
|  | { | 
|  | ssize_t i = buf.size () - 1; | 
|  |  | 
|  | if (std::is_signed<T>::value) | 
|  | { | 
|  | /* Do the sign extension once at the start.  */ | 
|  | retval = ((LONGEST) buf[i] ^ 0x80) - 0x80; | 
|  | --i; | 
|  | } | 
|  | for (; i >= 0; --i) | 
|  | retval = (retval << 8) | buf[i]; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Explicit instantiations.  */ | 
|  | template LONGEST extract_integer<LONGEST> (gdb::array_view<const gdb_byte> buf, | 
|  | enum bfd_endian byte_order); | 
|  | template ULONGEST extract_integer<ULONGEST> | 
|  | (gdb::array_view<const gdb_byte> buf, enum bfd_endian byte_order); | 
|  |  | 
|  | /* Sometimes a long long unsigned integer can be extracted as a | 
|  | LONGEST value.  This is done so that we can print these values | 
|  | better.  If this integer can be converted to a LONGEST, this | 
|  | function returns 1 and sets *PVAL.  Otherwise it returns 0.  */ | 
|  |  | 
|  | int | 
|  | extract_long_unsigned_integer (const gdb_byte *addr, int orig_len, | 
|  | enum bfd_endian byte_order, LONGEST *pval) | 
|  | { | 
|  | const gdb_byte *p; | 
|  | const gdb_byte *first_addr; | 
|  | int len; | 
|  |  | 
|  | len = orig_len; | 
|  | if (byte_order == BFD_ENDIAN_BIG) | 
|  | { | 
|  | for (p = addr; | 
|  | len > (int) sizeof (LONGEST) && p < addr + orig_len; | 
|  | p++) | 
|  | { | 
|  | if (*p == 0) | 
|  | len--; | 
|  | else | 
|  | break; | 
|  | } | 
|  | first_addr = p; | 
|  | } | 
|  | else | 
|  | { | 
|  | first_addr = addr; | 
|  | for (p = addr + orig_len - 1; | 
|  | len > (int) sizeof (LONGEST) && p >= addr; | 
|  | p--) | 
|  | { | 
|  | if (*p == 0) | 
|  | len--; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len <= (int) sizeof (LONGEST)) | 
|  | { | 
|  | *pval = (LONGEST) extract_unsigned_integer (first_addr, | 
|  | sizeof (LONGEST), | 
|  | byte_order); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Treat the bytes at BUF as a pointer of type TYPE, and return the | 
|  | address it represents.  */ | 
|  | CORE_ADDR | 
|  | extract_typed_address (const gdb_byte *buf, struct type *type) | 
|  | { | 
|  | if (!type->is_pointer_or_reference ()) | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("extract_typed_address: " | 
|  | "type is not a pointer or reference")); | 
|  |  | 
|  | return gdbarch_pointer_to_address (type->arch (), type, buf); | 
|  | } | 
|  |  | 
|  | /* All 'store' functions accept a host-format integer and store a | 
|  | target-format integer at ADDR which is LEN bytes long.  */ | 
|  | template<typename T, typename> | 
|  | void | 
|  | store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order, | 
|  | T val) | 
|  | { | 
|  | gdb_byte *p; | 
|  | gdb_byte *startaddr = addr; | 
|  | gdb_byte *endaddr = startaddr + len; | 
|  |  | 
|  | /* Start at the least significant end of the integer, and work towards | 
|  | the most significant.  */ | 
|  | if (byte_order == BFD_ENDIAN_BIG) | 
|  | { | 
|  | for (p = endaddr - 1; p >= startaddr; --p) | 
|  | { | 
|  | *p = val & 0xff; | 
|  | val >>= 8; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | for (p = startaddr; p < endaddr; ++p) | 
|  | { | 
|  | *p = val & 0xff; | 
|  | val >>= 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Explicit instantiations.  */ | 
|  | template void store_integer (gdb_byte *addr, int len, | 
|  | enum bfd_endian byte_order, | 
|  | LONGEST val); | 
|  |  | 
|  | template void store_integer (gdb_byte *addr, int len, | 
|  | enum bfd_endian byte_order, | 
|  | ULONGEST val); | 
|  |  | 
|  | /* Store the address ADDR as a pointer of type TYPE at BUF, in target | 
|  | form.  */ | 
|  | void | 
|  | store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr) | 
|  | { | 
|  | if (!type->is_pointer_or_reference ()) | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("store_typed_address: " | 
|  | "type is not a pointer or reference")); | 
|  |  | 
|  | gdbarch_address_to_pointer (type->arch (), type, buf, addr); | 
|  | } | 
|  |  | 
|  | /* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE | 
|  | bytes.  If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most | 
|  | significant bytes.  If SOURCE_SIZE is less than DEST_SIZE then either sign | 
|  | or zero extended according to IS_SIGNED.  Values are stored in memory with | 
|  | endianness BYTE_ORDER.  */ | 
|  |  | 
|  | void | 
|  | copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source, | 
|  | int source_size, bool is_signed, | 
|  | enum bfd_endian byte_order) | 
|  | { | 
|  | signed int size_diff = dest_size - source_size; | 
|  |  | 
|  | /* Copy across everything from SOURCE that can fit into DEST.  */ | 
|  |  | 
|  | if (byte_order == BFD_ENDIAN_BIG && size_diff > 0) | 
|  | memcpy (dest + size_diff, source, source_size); | 
|  | else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0) | 
|  | memcpy (dest, source - size_diff, dest_size); | 
|  | else | 
|  | memcpy (dest, source, std::min (source_size, dest_size)); | 
|  |  | 
|  | /* Fill the remaining space in DEST by either zero extending or sign | 
|  | extending.  */ | 
|  |  | 
|  | if (size_diff > 0) | 
|  | { | 
|  | gdb_byte extension = 0; | 
|  | if (is_signed | 
|  | && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80) | 
|  | || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80))) | 
|  | extension = 0xff; | 
|  |  | 
|  | /* Extend into MSBs of SOURCE.  */ | 
|  | if (byte_order == BFD_ENDIAN_BIG) | 
|  | memset (dest, extension, size_diff); | 
|  | else | 
|  | memset (dest + source_size, extension, size_diff); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return a `value' with the contents of (virtual or cooked) register | 
|  | REGNUM as found in the specified FRAME.  The register's type is | 
|  | determined by register_type ().  */ | 
|  |  | 
|  | struct value * | 
|  | value_of_register (int regnum, struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct value *reg_val; | 
|  |  | 
|  | /* User registers lie completely outside of the range of normal | 
|  | registers.  Catch them early so that the target never sees them.  */ | 
|  | if (regnum >= gdbarch_num_cooked_regs (gdbarch)) | 
|  | return value_of_user_reg (regnum, frame); | 
|  |  | 
|  | reg_val = value_of_register_lazy (frame, regnum); | 
|  | value_fetch_lazy (reg_val); | 
|  | return reg_val; | 
|  | } | 
|  |  | 
|  | /* Return a `value' with the contents of (virtual or cooked) register | 
|  | REGNUM as found in the specified FRAME.  The register's type is | 
|  | determined by register_type ().  The value is not fetched.  */ | 
|  |  | 
|  | struct value * | 
|  | value_of_register_lazy (struct frame_info *frame, int regnum) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct value *reg_val; | 
|  | struct frame_info *next_frame; | 
|  |  | 
|  | gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch)); | 
|  |  | 
|  | gdb_assert (frame != NULL); | 
|  |  | 
|  | next_frame = get_next_frame_sentinel_okay (frame); | 
|  |  | 
|  | /* In some cases NEXT_FRAME may not have a valid frame-id yet.  This can | 
|  | happen if we end up trying to unwind a register as part of the frame | 
|  | sniffer.  The only time that we get here without a valid frame-id is | 
|  | if NEXT_FRAME is an inline frame.  If this is the case then we can | 
|  | avoid getting into trouble here by skipping past the inline frames.  */ | 
|  | while (get_frame_type (next_frame) == INLINE_FRAME) | 
|  | next_frame = get_next_frame_sentinel_okay (next_frame); | 
|  |  | 
|  | /* We should have a valid next frame.  */ | 
|  | gdb_assert (frame_id_p (get_frame_id (next_frame))); | 
|  |  | 
|  | reg_val = allocate_value_lazy (register_type (gdbarch, regnum)); | 
|  | VALUE_LVAL (reg_val) = lval_register; | 
|  | VALUE_REGNUM (reg_val) = regnum; | 
|  | VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame); | 
|  |  | 
|  | return reg_val; | 
|  | } | 
|  |  | 
|  | /* Given a pointer of type TYPE in target form in BUF, return the | 
|  | address it represents.  */ | 
|  | CORE_ADDR | 
|  | unsigned_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | 
|  | } | 
|  |  | 
|  | CORE_ADDR | 
|  | signed_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order); | 
|  | } | 
|  |  | 
|  | /* Given an address, store it as a pointer of type TYPE in target | 
|  | format in BUF.  */ | 
|  | void | 
|  | unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type, | 
|  | gdb_byte *buf, CORE_ADDR addr) | 
|  | { | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr); | 
|  | } | 
|  |  | 
|  | void | 
|  | address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type, | 
|  | gdb_byte *buf, CORE_ADDR addr) | 
|  | { | 
|  | enum bfd_endian byte_order = type_byte_order (type); | 
|  |  | 
|  | store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr); | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | enum symbol_needs_kind | 
|  | symbol_read_needs (struct symbol *sym) | 
|  | { | 
|  | if (SYMBOL_COMPUTED_OPS (sym) != NULL) | 
|  | return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym); | 
|  |  | 
|  | switch (sym->aclass ()) | 
|  | { | 
|  | /* All cases listed explicitly so that gcc -Wall will detect it if | 
|  | we failed to consider one.  */ | 
|  | case LOC_COMPUTED: | 
|  | gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); | 
|  |  | 
|  | case LOC_REGISTER: | 
|  | case LOC_ARG: | 
|  | case LOC_REF_ARG: | 
|  | case LOC_REGPARM_ADDR: | 
|  | case LOC_LOCAL: | 
|  | return SYMBOL_NEEDS_FRAME; | 
|  |  | 
|  | case LOC_UNDEF: | 
|  | case LOC_CONST: | 
|  | case LOC_STATIC: | 
|  | case LOC_TYPEDEF: | 
|  |  | 
|  | case LOC_LABEL: | 
|  | /* Getting the address of a label can be done independently of the block, | 
|  | even if some *uses* of that address wouldn't work so well without | 
|  | the right frame.  */ | 
|  |  | 
|  | case LOC_BLOCK: | 
|  | case LOC_CONST_BYTES: | 
|  | case LOC_UNRESOLVED: | 
|  | case LOC_OPTIMIZED_OUT: | 
|  | return SYMBOL_NEEDS_NONE; | 
|  | } | 
|  | return SYMBOL_NEEDS_FRAME; | 
|  | } | 
|  |  | 
|  | /* See value.h.  */ | 
|  |  | 
|  | int | 
|  | symbol_read_needs_frame (struct symbol *sym) | 
|  | { | 
|  | return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME; | 
|  | } | 
|  |  | 
|  | /* Private data to be used with minsym_lookup_iterator_cb.  */ | 
|  |  | 
|  | struct minsym_lookup_data | 
|  | { | 
|  | /* The name of the minimal symbol we are searching for.  */ | 
|  | const char *name = nullptr; | 
|  |  | 
|  | /* The field where the callback should store the minimal symbol | 
|  | if found.  It should be initialized to NULL before the search | 
|  | is started.  */ | 
|  | struct bound_minimal_symbol result; | 
|  | }; | 
|  |  | 
|  | /* A callback function for gdbarch_iterate_over_objfiles_in_search_order. | 
|  | It searches by name for a minimal symbol within the given OBJFILE. | 
|  | The arguments are passed via CB_DATA, which in reality is a pointer | 
|  | to struct minsym_lookup_data.  */ | 
|  |  | 
|  | static int | 
|  | minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data) | 
|  | { | 
|  | struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data; | 
|  |  | 
|  | gdb_assert (data->result.minsym == NULL); | 
|  |  | 
|  | data->result = lookup_minimal_symbol (data->name, NULL, objfile); | 
|  |  | 
|  | /* The iterator should stop iff a match was found.  */ | 
|  | return (data->result.minsym != NULL); | 
|  | } | 
|  |  | 
|  | /* Given static link expression and the frame it lives in, look for the frame | 
|  | the static links points to and return it.  Return NULL if we could not find | 
|  | such a frame.   */ | 
|  |  | 
|  | static struct frame_info * | 
|  | follow_static_link (struct frame_info *frame, | 
|  | const struct dynamic_prop *static_link) | 
|  | { | 
|  | CORE_ADDR upper_frame_base; | 
|  |  | 
|  | if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base)) | 
|  | return NULL; | 
|  |  | 
|  | /* Now climb up the stack frame until we reach the frame we are interested | 
|  | in.  */ | 
|  | for (; frame != NULL; frame = get_prev_frame (frame)) | 
|  | { | 
|  | struct symbol *framefunc = get_frame_function (frame); | 
|  |  | 
|  | /* Stacks can be quite deep: give the user a chance to stop this.  */ | 
|  | QUIT; | 
|  |  | 
|  | /* If we don't know how to compute FRAME's base address, don't give up: | 
|  | maybe the frame we are looking for is upper in the stack frame.  */ | 
|  | if (framefunc != NULL | 
|  | && SYMBOL_BLOCK_OPS (framefunc) != NULL | 
|  | && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL | 
|  | && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame) | 
|  | == upper_frame_base)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical | 
|  | rules, look for the frame that is actually hosting VAR and return it.  If, | 
|  | for some reason, we found no such frame, return NULL. | 
|  |  | 
|  | This kind of computation is necessary to correctly handle lexically nested | 
|  | functions. | 
|  |  | 
|  | Note that in some cases, we know what scope VAR comes from but we cannot | 
|  | reach the specific frame that hosts the instance of VAR we are looking for. | 
|  | For backward compatibility purposes (with old compilers), we then look for | 
|  | the first frame that can host it.  */ | 
|  |  | 
|  | static struct frame_info * | 
|  | get_hosting_frame (struct symbol *var, const struct block *var_block, | 
|  | struct frame_info *frame) | 
|  | { | 
|  | const struct block *frame_block = NULL; | 
|  |  | 
|  | if (!symbol_read_needs_frame (var)) | 
|  | return NULL; | 
|  |  | 
|  | /* Some symbols for local variables have no block: this happens when they are | 
|  | not produced by a debug information reader, for instance when GDB creates | 
|  | synthetic symbols.  Without block information, we must assume they are | 
|  | local to FRAME. In this case, there is nothing to do.  */ | 
|  | else if (var_block == NULL) | 
|  | return frame; | 
|  |  | 
|  | /* We currently assume that all symbols with a location list need a frame. | 
|  | This is true in practice because selecting the location description | 
|  | requires to compute the CFA, hence requires a frame.  However we have | 
|  | tests that embed global/static symbols with null location lists. | 
|  | We want to get <optimized out> instead of <frame required> when evaluating | 
|  | them so return a frame instead of raising an error.  */ | 
|  | else if (var_block == block_global_block (var_block) | 
|  | || var_block == block_static_block (var_block)) | 
|  | return frame; | 
|  |  | 
|  | /* We have to handle the "my_func::my_local_var" notation.  This requires us | 
|  | to look for upper frames when we find no block for the current frame: here | 
|  | and below, handle when frame_block == NULL.  */ | 
|  | if (frame != NULL) | 
|  | frame_block = get_frame_block (frame, NULL); | 
|  |  | 
|  | /* Climb up the call stack until reaching the frame we are looking for.  */ | 
|  | while (frame != NULL && frame_block != var_block) | 
|  | { | 
|  | /* Stacks can be quite deep: give the user a chance to stop this.  */ | 
|  | QUIT; | 
|  |  | 
|  | if (frame_block == NULL) | 
|  | { | 
|  | frame = get_prev_frame (frame); | 
|  | if (frame == NULL) | 
|  | break; | 
|  | frame_block = get_frame_block (frame, NULL); | 
|  | } | 
|  |  | 
|  | /* If we failed to find the proper frame, fallback to the heuristic | 
|  | method below.  */ | 
|  | else if (frame_block == block_global_block (frame_block)) | 
|  | { | 
|  | frame = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Assuming we have a block for this frame: if we are at the function | 
|  | level, the immediate upper lexical block is in an outer function: | 
|  | follow the static link.  */ | 
|  | else if (frame_block->function ()) | 
|  | { | 
|  | const struct dynamic_prop *static_link | 
|  | = block_static_link (frame_block); | 
|  | int could_climb_up = 0; | 
|  |  | 
|  | if (static_link != NULL) | 
|  | { | 
|  | frame = follow_static_link (frame, static_link); | 
|  | if (frame != NULL) | 
|  | { | 
|  | frame_block = get_frame_block (frame, NULL); | 
|  | could_climb_up = frame_block != NULL; | 
|  | } | 
|  | } | 
|  | if (!could_climb_up) | 
|  | { | 
|  | frame = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | else | 
|  | /* We must be in some function nested lexical block.  Just get the | 
|  | outer block: both must share the same frame.  */ | 
|  | frame_block = frame_block->superblock (); | 
|  | } | 
|  |  | 
|  | /* Old compilers may not provide a static link, or they may provide an | 
|  | invalid one.  For such cases, fallback on the old way to evaluate | 
|  | non-local references: just climb up the call stack and pick the first | 
|  | frame that contains the variable we are looking for.  */ | 
|  | if (frame == NULL) | 
|  | { | 
|  | frame = block_innermost_frame (var_block); | 
|  | if (frame == NULL) | 
|  | { | 
|  | if (var_block->function () | 
|  | && !block_inlined_p (var_block) | 
|  | && var_block->function ()->print_name ()) | 
|  | error (_("No frame is currently executing in block %s."), | 
|  | var_block->function ()->print_name ()); | 
|  | else | 
|  | error (_("No frame is currently executing in specified" | 
|  | " block")); | 
|  | } | 
|  | } | 
|  |  | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | /* See language.h.  */ | 
|  |  | 
|  | struct value * | 
|  | language_defn::read_var_value (struct symbol *var, | 
|  | const struct block *var_block, | 
|  | struct frame_info *frame) const | 
|  | { | 
|  | struct value *v; | 
|  | struct type *type = var->type (); | 
|  | CORE_ADDR addr; | 
|  | enum symbol_needs_kind sym_need; | 
|  |  | 
|  | /* Call check_typedef on our type to make sure that, if TYPE is | 
|  | a TYPE_CODE_TYPEDEF, its length is set to the length of the target type | 
|  | instead of zero.  However, we do not replace the typedef type by the | 
|  | target type, because we want to keep the typedef in order to be able to | 
|  | set the returned value type description correctly.  */ | 
|  | check_typedef (type); | 
|  |  | 
|  | sym_need = symbol_read_needs (var); | 
|  | if (sym_need == SYMBOL_NEEDS_FRAME) | 
|  | gdb_assert (frame != NULL); | 
|  | else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers ()) | 
|  | error (_("Cannot read `%s' without registers"), var->print_name ()); | 
|  |  | 
|  | if (frame != NULL) | 
|  | frame = get_hosting_frame (var, var_block, frame); | 
|  |  | 
|  | if (SYMBOL_COMPUTED_OPS (var) != NULL) | 
|  | return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame); | 
|  |  | 
|  | switch (var->aclass ()) | 
|  | { | 
|  | case LOC_CONST: | 
|  | if (is_dynamic_type (type)) | 
|  | { | 
|  | /* Value is a constant byte-sequence and needs no memory access.  */ | 
|  | type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0); | 
|  | } | 
|  | /* Put the constant back in target format. */ | 
|  | v = allocate_value (type); | 
|  | store_signed_integer (value_contents_raw (v).data (), TYPE_LENGTH (type), | 
|  | type_byte_order (type), var->value_longest ()); | 
|  | VALUE_LVAL (v) = not_lval; | 
|  | return v; | 
|  |  | 
|  | case LOC_LABEL: | 
|  | /* Put the constant back in target format.  */ | 
|  | v = allocate_value (type); | 
|  | if (overlay_debugging) | 
|  | { | 
|  | struct objfile *var_objfile = var->objfile (); | 
|  | addr = symbol_overlayed_address (var->value_address (), | 
|  | var->obj_section (var_objfile)); | 
|  | store_typed_address (value_contents_raw (v).data (), type, addr); | 
|  | } | 
|  | else | 
|  | store_typed_address (value_contents_raw (v).data (), type, | 
|  | var->value_address ()); | 
|  | VALUE_LVAL (v) = not_lval; | 
|  | return v; | 
|  |  | 
|  | case LOC_CONST_BYTES: | 
|  | if (is_dynamic_type (type)) | 
|  | { | 
|  | /* Value is a constant byte-sequence and needs no memory access.  */ | 
|  | type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0); | 
|  | } | 
|  | v = allocate_value (type); | 
|  | memcpy (value_contents_raw (v).data (), var->value_bytes (), | 
|  | TYPE_LENGTH (type)); | 
|  | VALUE_LVAL (v) = not_lval; | 
|  | return v; | 
|  |  | 
|  | case LOC_STATIC: | 
|  | if (overlay_debugging) | 
|  | addr | 
|  | = symbol_overlayed_address (var->value_address (), | 
|  | var->obj_section (var->objfile ())); | 
|  | else | 
|  | addr = var->value_address (); | 
|  | break; | 
|  |  | 
|  | case LOC_ARG: | 
|  | addr = get_frame_args_address (frame); | 
|  | if (!addr) | 
|  | error (_("Unknown argument list address for `%s'."), | 
|  | var->print_name ()); | 
|  | addr += var->value_longest (); | 
|  | break; | 
|  |  | 
|  | case LOC_REF_ARG: | 
|  | { | 
|  | struct value *ref; | 
|  | CORE_ADDR argref; | 
|  |  | 
|  | argref = get_frame_args_address (frame); | 
|  | if (!argref) | 
|  | error (_("Unknown argument list address for `%s'."), | 
|  | var->print_name ()); | 
|  | argref += var->value_longest (); | 
|  | ref = value_at (lookup_pointer_type (type), argref); | 
|  | addr = value_as_address (ref); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case LOC_LOCAL: | 
|  | addr = get_frame_locals_address (frame); | 
|  | addr += var->value_longest (); | 
|  | break; | 
|  |  | 
|  | case LOC_TYPEDEF: | 
|  | error (_("Cannot look up value of a typedef `%s'."), | 
|  | var->print_name ()); | 
|  | break; | 
|  |  | 
|  | case LOC_BLOCK: | 
|  | if (overlay_debugging) | 
|  | addr = symbol_overlayed_address | 
|  | (var->value_block ()->entry_pc (), | 
|  | var->obj_section (var->objfile ())); | 
|  | else | 
|  | addr = var->value_block ()->entry_pc (); | 
|  | break; | 
|  |  | 
|  | case LOC_REGISTER: | 
|  | case LOC_REGPARM_ADDR: | 
|  | { | 
|  | int regno = SYMBOL_REGISTER_OPS (var) | 
|  | ->register_number (var, get_frame_arch (frame)); | 
|  | struct value *regval; | 
|  |  | 
|  | if (var->aclass () == LOC_REGPARM_ADDR) | 
|  | { | 
|  | regval = value_from_register (lookup_pointer_type (type), | 
|  | regno, | 
|  | frame); | 
|  |  | 
|  | if (regval == NULL) | 
|  | error (_("Value of register variable not available for `%s'."), | 
|  | var->print_name ()); | 
|  |  | 
|  | addr = value_as_address (regval); | 
|  | } | 
|  | else | 
|  | { | 
|  | regval = value_from_register (type, regno, frame); | 
|  |  | 
|  | if (regval == NULL) | 
|  | error (_("Value of register variable not available for `%s'."), | 
|  | var->print_name ()); | 
|  | return regval; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_COMPUTED: | 
|  | gdb_assert_not_reached ("LOC_COMPUTED variable missing a method"); | 
|  |  | 
|  | case LOC_UNRESOLVED: | 
|  | { | 
|  | struct minsym_lookup_data lookup_data; | 
|  | struct minimal_symbol *msym; | 
|  | struct obj_section *obj_section; | 
|  |  | 
|  | lookup_data.name = var->linkage_name (); | 
|  |  | 
|  | gdbarch_iterate_over_objfiles_in_search_order | 
|  | (var->arch (), | 
|  | minsym_lookup_iterator_cb, &lookup_data, | 
|  | var->objfile ()); | 
|  | msym = lookup_data.result.minsym; | 
|  |  | 
|  | /* If we can't find the minsym there's a problem in the symbol info. | 
|  | The symbol exists in the debug info, but it's missing in the minsym | 
|  | table.  */ | 
|  | if (msym == NULL) | 
|  | { | 
|  | const char *flavour_name | 
|  | = objfile_flavour_name (var->objfile ()); | 
|  |  | 
|  | /* We can't get here unless we've opened the file, so flavour_name | 
|  | can't be NULL.  */ | 
|  | gdb_assert (flavour_name != NULL); | 
|  | error (_("Missing %s symbol \"%s\"."), | 
|  | flavour_name, var->linkage_name ()); | 
|  | } | 
|  | obj_section = msym->obj_section (lookup_data.result.objfile); | 
|  | /* Relocate address, unless there is no section or the variable is | 
|  | a TLS variable. */ | 
|  | if (obj_section == NULL | 
|  | || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) | 
|  | addr = msym->value_raw_address (); | 
|  | else | 
|  | addr = lookup_data.result.value_address (); | 
|  | if (overlay_debugging) | 
|  | addr = symbol_overlayed_address (addr, obj_section); | 
|  | /* Determine address of TLS variable. */ | 
|  | if (obj_section | 
|  | && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) | 
|  | addr = target_translate_tls_address (obj_section->objfile, addr); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case LOC_OPTIMIZED_OUT: | 
|  | if (is_dynamic_type (type)) | 
|  | type = resolve_dynamic_type (type, {}, /* Unused address.  */ 0); | 
|  | return allocate_optimized_out_value (type); | 
|  |  | 
|  | default: | 
|  | error (_("Cannot look up value of a botched symbol `%s'."), | 
|  | var->print_name ()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | v = value_at_lazy (type, addr); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Calls VAR's language read_var_value hook with the given arguments.  */ | 
|  |  | 
|  | struct value * | 
|  | read_var_value (struct symbol *var, const struct block *var_block, | 
|  | struct frame_info *frame) | 
|  | { | 
|  | const struct language_defn *lang = language_def (var->language ()); | 
|  |  | 
|  | gdb_assert (lang != NULL); | 
|  |  | 
|  | return lang->read_var_value (var, var_block, frame); | 
|  | } | 
|  |  | 
|  | /* Install default attributes for register values.  */ | 
|  |  | 
|  | struct value * | 
|  | default_value_from_register (struct gdbarch *gdbarch, struct type *type, | 
|  | int regnum, struct frame_id frame_id) | 
|  | { | 
|  | int len = TYPE_LENGTH (type); | 
|  | struct value *value = allocate_value (type); | 
|  | struct frame_info *frame; | 
|  |  | 
|  | VALUE_LVAL (value) = lval_register; | 
|  | frame = frame_find_by_id (frame_id); | 
|  |  | 
|  | if (frame == NULL) | 
|  | frame_id = null_frame_id; | 
|  | else | 
|  | frame_id = get_frame_id (get_next_frame_sentinel_okay (frame)); | 
|  |  | 
|  | VALUE_NEXT_FRAME_ID (value) = frame_id; | 
|  | VALUE_REGNUM (value) = regnum; | 
|  |  | 
|  | /* Any structure stored in more than one register will always be | 
|  | an integral number of registers.  Otherwise, you need to do | 
|  | some fiddling with the last register copied here for little | 
|  | endian machines.  */ | 
|  | if (type_byte_order (type) == BFD_ENDIAN_BIG | 
|  | && len < register_size (gdbarch, regnum)) | 
|  | /* Big-endian, and we want less than full size.  */ | 
|  | set_value_offset (value, register_size (gdbarch, regnum) - len); | 
|  | else | 
|  | set_value_offset (value, 0); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* VALUE must be an lval_register value.  If regnum is the value's | 
|  | associated register number, and len the length of the values type, | 
|  | read one or more registers in FRAME, starting with register REGNUM, | 
|  | until we've read LEN bytes. | 
|  |  | 
|  | If any of the registers we try to read are optimized out, then mark the | 
|  | complete resulting value as optimized out.  */ | 
|  |  | 
|  | void | 
|  | read_frame_register_value (struct value *value, struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | LONGEST offset = 0; | 
|  | LONGEST reg_offset = value_offset (value); | 
|  | int regnum = VALUE_REGNUM (value); | 
|  | int len = type_length_units (check_typedef (value_type (value))); | 
|  |  | 
|  | gdb_assert (VALUE_LVAL (value) == lval_register); | 
|  |  | 
|  | /* Skip registers wholly inside of REG_OFFSET.  */ | 
|  | while (reg_offset >= register_size (gdbarch, regnum)) | 
|  | { | 
|  | reg_offset -= register_size (gdbarch, regnum); | 
|  | regnum++; | 
|  | } | 
|  |  | 
|  | /* Copy the data.  */ | 
|  | while (len > 0) | 
|  | { | 
|  | struct value *regval = get_frame_register_value (frame, regnum); | 
|  | int reg_len = type_length_units (value_type (regval)) - reg_offset; | 
|  |  | 
|  | /* If the register length is larger than the number of bytes | 
|  | remaining to copy, then only copy the appropriate bytes.  */ | 
|  | if (reg_len > len) | 
|  | reg_len = len; | 
|  |  | 
|  | value_contents_copy (value, offset, regval, reg_offset, reg_len); | 
|  |  | 
|  | offset += reg_len; | 
|  | len -= reg_len; | 
|  | reg_offset = 0; | 
|  | regnum++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME.  */ | 
|  |  | 
|  | struct value * | 
|  | value_from_register (struct type *type, int regnum, struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct type *type1 = check_typedef (type); | 
|  | struct value *v; | 
|  |  | 
|  | if (gdbarch_convert_register_p (gdbarch, regnum, type1)) | 
|  | { | 
|  | int optim, unavail, ok; | 
|  |  | 
|  | /* The ISA/ABI need to something weird when obtaining the | 
|  | specified value from this register.  It might need to | 
|  | re-order non-adjacent, starting with REGNUM (see MIPS and | 
|  | i386).  It might need to convert the [float] register into | 
|  | the corresponding [integer] type (see Alpha).  The assumption | 
|  | is that gdbarch_register_to_value populates the entire value | 
|  | including the location.  */ | 
|  | v = allocate_value (type); | 
|  | VALUE_LVAL (v) = lval_register; | 
|  | VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame)); | 
|  | VALUE_REGNUM (v) = regnum; | 
|  | ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1, | 
|  | value_contents_raw (v).data (), &optim, | 
|  | &unavail); | 
|  |  | 
|  | if (!ok) | 
|  | { | 
|  | if (optim) | 
|  | mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type)); | 
|  | if (unavail) | 
|  | mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type)); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Construct the value.  */ | 
|  | v = gdbarch_value_from_register (gdbarch, type, | 
|  | regnum, get_frame_id (frame)); | 
|  |  | 
|  | /* Get the data.  */ | 
|  | read_frame_register_value (v, frame); | 
|  | } | 
|  |  | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Return contents of register REGNUM in frame FRAME as address. | 
|  | Will abort if register value is not available.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | address_from_register (int regnum, struct frame_info *frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | struct type *type = builtin_type (gdbarch)->builtin_data_ptr; | 
|  | struct value *value; | 
|  | CORE_ADDR result; | 
|  | int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch); | 
|  |  | 
|  | if (regnum < 0 || regnum >= regnum_max_excl) | 
|  | error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum, | 
|  | regnum_max_excl); | 
|  |  | 
|  | /* This routine may be called during early unwinding, at a time | 
|  | where the ID of FRAME is not yet known.  Calling value_from_register | 
|  | would therefore abort in get_frame_id.  However, since we only need | 
|  | a temporary value that is never used as lvalue, we actually do not | 
|  | really need to set its VALUE_NEXT_FRAME_ID.  Therefore, we re-implement | 
|  | the core of value_from_register, but use the null_frame_id.  */ | 
|  |  | 
|  | /* Some targets require a special conversion routine even for plain | 
|  | pointer types.  Avoid constructing a value object in those cases.  */ | 
|  | if (gdbarch_convert_register_p (gdbarch, regnum, type)) | 
|  | { | 
|  | gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type)); | 
|  | int optim, unavail, ok; | 
|  |  | 
|  | ok = gdbarch_register_to_value (gdbarch, frame, regnum, type, | 
|  | buf, &optim, &unavail); | 
|  | if (!ok) | 
|  | { | 
|  | /* This function is used while computing a location expression. | 
|  | Complain about the value being optimized out, rather than | 
|  | letting value_as_address complain about some random register | 
|  | the expression depends on not being saved.  */ | 
|  | error_value_optimized_out (); | 
|  | } | 
|  |  | 
|  | return unpack_long (type, buf); | 
|  | } | 
|  |  | 
|  | value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id); | 
|  | read_frame_register_value (value, frame); | 
|  |  | 
|  | if (value_optimized_out (value)) | 
|  | { | 
|  | /* This function is used while computing a location expression. | 
|  | Complain about the value being optimized out, rather than | 
|  | letting value_as_address complain about some random register | 
|  | the expression depends on not being saved.  */ | 
|  | error_value_optimized_out (); | 
|  | } | 
|  |  | 
|  | result = value_as_address (value); | 
|  | release_value (value); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | namespace selftests { | 
|  | namespace findvar_tests { | 
|  |  | 
|  | /* Function to test copy_integer_to_size.  Store SOURCE_VAL with size | 
|  | SOURCE_SIZE to a buffer, making sure no sign extending happens at this | 
|  | stage.  Copy buffer to a new buffer using copy_integer_to_size.  Extract | 
|  | copied value and compare to DEST_VALU.  Copy again with a signed | 
|  | copy_integer_to_size and compare to DEST_VALS.  Do everything for both | 
|  | LITTLE and BIG target endians.  Use unsigned values throughout to make | 
|  | sure there are no implicit sign extensions.  */ | 
|  |  | 
|  | static void | 
|  | do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size, | 
|  | ULONGEST src_val, int src_size) | 
|  | { | 
|  | for (int i = 0; i < 2 ; i++) | 
|  | { | 
|  | gdb_byte srcbuf[sizeof (ULONGEST)] = {}; | 
|  | gdb_byte destbuf[sizeof (ULONGEST)] = {}; | 
|  | enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; | 
|  |  | 
|  | /* Fill the src buffer (and later the dest buffer) with non-zero junk, | 
|  | to ensure zero extensions aren't hidden.  */ | 
|  | memset (srcbuf, 0xaa, sizeof (srcbuf)); | 
|  |  | 
|  | /* Store (and later extract) using unsigned to ensure there are no sign | 
|  | extensions.  */ | 
|  | store_unsigned_integer (srcbuf, src_size, byte_order, src_val); | 
|  |  | 
|  | /* Test unsigned.  */ | 
|  | memset (destbuf, 0xaa, sizeof (destbuf)); | 
|  | copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false, | 
|  | byte_order); | 
|  | SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size, | 
|  | byte_order)); | 
|  |  | 
|  | /* Test signed.  */ | 
|  | memset (destbuf, 0xaa, sizeof (destbuf)); | 
|  | copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true, | 
|  | byte_order); | 
|  | SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size, | 
|  | byte_order)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | copy_integer_to_size_test () | 
|  | { | 
|  | /* Destination is bigger than the source, which has the signed bit unset.  */ | 
|  | do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4); | 
|  | do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3); | 
|  |  | 
|  | /* Destination is bigger than the source, which has the signed bit set.  */ | 
|  | do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4); | 
|  | do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3); | 
|  |  | 
|  | /* Destination is smaller than the source.  */ | 
|  | do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3); | 
|  | do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3); | 
|  |  | 
|  | /* Destination and source are the same size.  */ | 
|  | do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678, | 
|  | 8); | 
|  | do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6); | 
|  | do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef, | 
|  | 8); | 
|  | do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6); | 
|  |  | 
|  | /* Destination is bigger than the source.  Source is bigger than 32bits.  */ | 
|  | do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6); | 
|  | do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6); | 
|  | do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6); | 
|  | do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6); | 
|  | } | 
|  |  | 
|  | } // namespace findvar_test | 
|  | } // namespace selftests | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void _initialize_findvar (); | 
|  | void | 
|  | _initialize_findvar () | 
|  | { | 
|  | #if GDB_SELF_TEST | 
|  | selftests::register_test | 
|  | ("copy_integer_to_size", | 
|  | selftests::findvar_tests::copy_integer_to_size_test); | 
|  | #endif | 
|  | } |