|  | /* Target-dependent code for the Texas Instruments MSP430 for GDB, the | 
|  | GNU debugger. | 
|  |  | 
|  | Copyright (C) 2012-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Red Hat, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "arch-utils.h" | 
|  | #include "prologue-value.h" | 
|  | #include "target.h" | 
|  | #include "regcache.h" | 
|  | #include "dis-asm.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "value.h" | 
|  | #include "gdbcore.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "reggroups.h" | 
|  | #include "gdbarch.h" | 
|  |  | 
|  | #include "elf/msp430.h" | 
|  | #include "opcode/msp430-decode.h" | 
|  | #include "elf-bfd.h" | 
|  |  | 
|  | /* Register Numbers.  */ | 
|  |  | 
|  | enum | 
|  | { | 
|  | MSP430_PC_RAW_REGNUM, | 
|  | MSP430_SP_RAW_REGNUM, | 
|  | MSP430_SR_RAW_REGNUM, | 
|  | MSP430_CG_RAW_REGNUM, | 
|  | MSP430_R4_RAW_REGNUM, | 
|  | MSP430_R5_RAW_REGNUM, | 
|  | MSP430_R6_RAW_REGNUM, | 
|  | MSP430_R7_RAW_REGNUM, | 
|  | MSP430_R8_RAW_REGNUM, | 
|  | MSP430_R9_RAW_REGNUM, | 
|  | MSP430_R10_RAW_REGNUM, | 
|  | MSP430_R11_RAW_REGNUM, | 
|  | MSP430_R12_RAW_REGNUM, | 
|  | MSP430_R13_RAW_REGNUM, | 
|  | MSP430_R14_RAW_REGNUM, | 
|  | MSP430_R15_RAW_REGNUM, | 
|  |  | 
|  | MSP430_NUM_REGS, | 
|  |  | 
|  | MSP430_PC_REGNUM = MSP430_NUM_REGS, | 
|  | MSP430_SP_REGNUM, | 
|  | MSP430_SR_REGNUM, | 
|  | MSP430_CG_REGNUM, | 
|  | MSP430_R4_REGNUM, | 
|  | MSP430_R5_REGNUM, | 
|  | MSP430_R6_REGNUM, | 
|  | MSP430_R7_REGNUM, | 
|  | MSP430_R8_REGNUM, | 
|  | MSP430_R9_REGNUM, | 
|  | MSP430_R10_REGNUM, | 
|  | MSP430_R11_REGNUM, | 
|  | MSP430_R12_REGNUM, | 
|  | MSP430_R13_REGNUM, | 
|  | MSP430_R14_REGNUM, | 
|  | MSP430_R15_REGNUM, | 
|  |  | 
|  | MSP430_NUM_TOTAL_REGS, | 
|  | MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS | 
|  | }; | 
|  |  | 
|  | enum | 
|  | { | 
|  | /* TI MSP430 Architecture.  */ | 
|  | MSP_ISA_MSP430, | 
|  |  | 
|  | /* TI MSP430X Architecture.  */ | 
|  | MSP_ISA_MSP430X | 
|  | }; | 
|  |  | 
|  | enum | 
|  | { | 
|  | /* The small code model limits code addresses to 16 bits.  */ | 
|  | MSP_SMALL_CODE_MODEL, | 
|  |  | 
|  | /* The large code model uses 20 bit addresses for function | 
|  | pointers.  These are stored in memory using four bytes (32 bits).  */ | 
|  | MSP_LARGE_CODE_MODEL | 
|  | }; | 
|  |  | 
|  | /* Architecture specific data.  */ | 
|  |  | 
|  | struct msp430_gdbarch_tdep : gdbarch_tdep | 
|  | { | 
|  | /* The ELF header flags specify the multilib used.  */ | 
|  | int elf_flags = 0; | 
|  |  | 
|  | /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X.  */ | 
|  | int isa = 0; | 
|  |  | 
|  | /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL.  If, at | 
|  | some point, we support different data models too, we'll probably | 
|  | structure things so that we can combine values using logical | 
|  | "or".  */ | 
|  | int code_model = 0; | 
|  | }; | 
|  |  | 
|  | /* This structure holds the results of a prologue analysis.  */ | 
|  |  | 
|  | struct msp430_prologue | 
|  | { | 
|  | /* The offset from the frame base to the stack pointer --- always | 
|  | zero or negative. | 
|  |  | 
|  | Calling this a "size" is a bit misleading, but given that the | 
|  | stack grows downwards, using offsets for everything keeps one | 
|  | from going completely sign-crazy: you never change anything's | 
|  | sign for an ADD instruction; always change the second operand's | 
|  | sign for a SUB instruction; and everything takes care of | 
|  | itself.  */ | 
|  | int frame_size; | 
|  |  | 
|  | /* Non-zero if this function has initialized the frame pointer from | 
|  | the stack pointer, zero otherwise.  */ | 
|  | int has_frame_ptr; | 
|  |  | 
|  | /* If has_frame_ptr is non-zero, this is the offset from the frame | 
|  | base to where the frame pointer points.  This is always zero or | 
|  | negative.  */ | 
|  | int frame_ptr_offset; | 
|  |  | 
|  | /* The address of the first instruction at which the frame has been | 
|  | set up and the arguments are where the debug info says they are | 
|  | --- as best as we can tell.  */ | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | /* reg_offset[R] is the offset from the CFA at which register R is | 
|  | saved, or 1 if register R has not been saved.  (Real values are | 
|  | always zero or negative.)  */ | 
|  | int reg_offset[MSP430_NUM_TOTAL_REGS]; | 
|  | }; | 
|  |  | 
|  | /* Implement the "register_type" gdbarch method.  */ | 
|  |  | 
|  | static struct type * | 
|  | msp430_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr < MSP430_NUM_REGS) | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | else if (reg_nr == MSP430_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_uint16; | 
|  | } | 
|  |  | 
|  | /* Implement another version of the "register_type" gdbarch method | 
|  | for msp430x.  */ | 
|  |  | 
|  | static struct type * | 
|  | msp430x_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr < MSP430_NUM_REGS) | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | else if (reg_nr == MSP430_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_name" gdbarch method.  */ | 
|  |  | 
|  | static const char * | 
|  | msp430_register_name (struct gdbarch *gdbarch, int regnr) | 
|  | { | 
|  | static const char *const reg_names[] = { | 
|  | /* Raw registers.  */ | 
|  | "", "", "", "", "", "", "", "", | 
|  | "", "", "", "", "", "", "", "", | 
|  | /* Pseudo registers.  */ | 
|  | "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" | 
|  | }; | 
|  |  | 
|  | return reg_names[regnr]; | 
|  | } | 
|  |  | 
|  | /* Implement the "register_reggroup_p" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | const struct reggroup *group) | 
|  | { | 
|  | if (group == all_reggroup) | 
|  | return 1; | 
|  |  | 
|  | /* All other registers are saved and restored.  */ | 
|  | if (group == save_reggroup || group == restore_reggroup) | 
|  | return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS); | 
|  |  | 
|  | return group == general_reggroup; | 
|  | } | 
|  |  | 
|  | /* Implement the "pseudo_register_read" gdbarch method.  */ | 
|  |  | 
|  | static enum register_status | 
|  | msp430_pseudo_register_read (struct gdbarch *gdbarch, | 
|  | readable_regcache *regcache, | 
|  | int regnum, gdb_byte *buffer) | 
|  | { | 
|  | if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS) | 
|  | { | 
|  | enum register_status status; | 
|  | ULONGEST val; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int regsize = register_size (gdbarch, regnum); | 
|  | int raw_regnum = regnum - MSP430_NUM_REGS; | 
|  |  | 
|  | status = regcache->raw_read (raw_regnum, &val); | 
|  | if (status == REG_VALID) | 
|  | store_unsigned_integer (buffer, regsize, byte_order, val); | 
|  |  | 
|  | return status; | 
|  | } | 
|  | else | 
|  | gdb_assert_not_reached ("invalid pseudo register number"); | 
|  | } | 
|  |  | 
|  | /* Implement the "pseudo_register_write" gdbarch method.  */ | 
|  |  | 
|  | static void | 
|  | msp430_pseudo_register_write (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, | 
|  | int regnum, const gdb_byte *buffer) | 
|  | { | 
|  | if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS) | 
|  |  | 
|  | { | 
|  | ULONGEST val; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int regsize = register_size (gdbarch, regnum); | 
|  | int raw_regnum = regnum - MSP430_NUM_REGS; | 
|  |  | 
|  | val = extract_unsigned_integer (buffer, regsize, byte_order); | 
|  | regcache_raw_write_unsigned (regcache, raw_regnum, val); | 
|  |  | 
|  | } | 
|  | else | 
|  | gdb_assert_not_reached ("invalid pseudo register number"); | 
|  | } | 
|  |  | 
|  | /* Implement the `register_sim_regno' gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | gdb_assert (regnum < MSP430_NUM_REGS); | 
|  |  | 
|  | /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We | 
|  | just want to override the default here which disallows register | 
|  | numbers which have no names.  */ | 
|  | return regnum; | 
|  | } | 
|  |  | 
|  | constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 }; | 
|  |  | 
|  | typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint; | 
|  |  | 
|  | /* Define a "handle" struct for fetching the next opcode.  */ | 
|  |  | 
|  | struct msp430_get_opcode_byte_handle | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | }; | 
|  |  | 
|  | /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains | 
|  | the memory address of the next byte to fetch.  If successful, | 
|  | the address in the handle is updated and the byte fetched is | 
|  | returned as the value of the function.  If not successful, -1 | 
|  | is returned.  */ | 
|  |  | 
|  | static int | 
|  | msp430_get_opcode_byte (void *handle) | 
|  | { | 
|  | struct msp430_get_opcode_byte_handle *opcdata | 
|  | = (struct msp430_get_opcode_byte_handle *) handle; | 
|  | int status; | 
|  | gdb_byte byte; | 
|  |  | 
|  | status = target_read_memory (opcdata->pc, &byte, 1); | 
|  | if (status == 0) | 
|  | { | 
|  | opcdata->pc += 1; | 
|  | return byte; | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Function for finding saved registers in a 'struct pv_area'; this | 
|  | function is passed to pv_area::scan. | 
|  |  | 
|  | If VALUE is a saved register, ADDR says it was saved at a constant | 
|  | offset from the frame base, and SIZE indicates that the whole | 
|  | register was saved, record its offset.  */ | 
|  |  | 
|  | static void | 
|  | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | 
|  | { | 
|  | struct msp430_prologue *result = (struct msp430_prologue *) result_untyped; | 
|  |  | 
|  | if (value.kind == pvk_register | 
|  | && value.k == 0 | 
|  | && pv_is_register (addr, MSP430_SP_REGNUM) | 
|  | && size == register_size (target_gdbarch (), value.reg)) | 
|  | result->reg_offset[value.reg] = addr.k; | 
|  | } | 
|  |  | 
|  | /* Analyze a prologue starting at START_PC, going no further than | 
|  | LIMIT_PC.  Fill in RESULT as appropriate.  */ | 
|  |  | 
|  | static void | 
|  | msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc, | 
|  | CORE_ADDR limit_pc, struct msp430_prologue *result) | 
|  | { | 
|  | CORE_ADDR pc, next_pc; | 
|  | int rn; | 
|  | pv_t reg[MSP430_NUM_TOTAL_REGS]; | 
|  | CORE_ADDR after_last_frame_setup_insn = start_pc; | 
|  | msp430_gdbarch_tdep *tdep = (msp430_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  | int code_model = tdep->code_model; | 
|  | int sz; | 
|  |  | 
|  | memset (result, 0, sizeof (*result)); | 
|  |  | 
|  | for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++) | 
|  | { | 
|  | reg[rn] = pv_register (rn, 0); | 
|  | result->reg_offset[rn] = 1; | 
|  | } | 
|  |  | 
|  | pv_area stack (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch)); | 
|  |  | 
|  | /* The call instruction has saved the return address on the stack.  */ | 
|  | sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2; | 
|  | reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz); | 
|  | stack.store (reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]); | 
|  |  | 
|  | pc = start_pc; | 
|  | while (pc < limit_pc) | 
|  | { | 
|  | int bytes_read; | 
|  | struct msp430_get_opcode_byte_handle opcode_handle; | 
|  | MSP430_Opcode_Decoded opc; | 
|  |  | 
|  | opcode_handle.pc = pc; | 
|  | bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte, | 
|  | &opcode_handle); | 
|  | next_pc = pc + bytes_read; | 
|  |  | 
|  | if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register) | 
|  | { | 
|  | int rsrc = opc.op[0].reg; | 
|  |  | 
|  | reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2); | 
|  | stack.store (reg[MSP430_SP_REGNUM], 2, reg[rsrc]); | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == MSO_push	/* PUSHM  */ | 
|  | && opc.op[0].type == MSP430_Operand_None | 
|  | && opc.op[1].type == MSP430_Operand_Register) | 
|  | { | 
|  | int rsrc = opc.op[1].reg; | 
|  | int count = opc.repeats + 1; | 
|  | int size = opc.size == 16 ? 2 : 4; | 
|  |  | 
|  | while (count > 0) | 
|  | { | 
|  | reg[MSP430_SP_REGNUM] | 
|  | = pv_add_constant (reg[MSP430_SP_REGNUM], -size); | 
|  | stack.store (reg[MSP430_SP_REGNUM], size, reg[rsrc]); | 
|  | rsrc--; | 
|  | count--; | 
|  | } | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == MSO_sub | 
|  | && opc.op[0].type == MSP430_Operand_Register | 
|  | && opc.op[0].reg == MSR_SP | 
|  | && opc.op[1].type == MSP430_Operand_Immediate) | 
|  | { | 
|  | int addend = opc.op[1].addend; | 
|  |  | 
|  | reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], | 
|  | -addend); | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == MSO_mov | 
|  | && opc.op[0].type == MSP430_Operand_Immediate | 
|  | && 12 <= opc.op[0].reg && opc.op[0].reg <= 15) | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | else | 
|  | { | 
|  | /* Terminate the prologue scan.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | pc = next_pc; | 
|  | } | 
|  |  | 
|  | /* Is the frame size (offset, really) a known constant?  */ | 
|  | if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM)) | 
|  | result->frame_size = reg[MSP430_SP_REGNUM].k; | 
|  |  | 
|  | /* Record where all the registers were saved.  */ | 
|  | stack.scan (check_for_saved, result); | 
|  |  | 
|  | result->prologue_end = after_last_frame_setup_insn; | 
|  | } | 
|  |  | 
|  | /* Implement the "skip_prologue" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | const char *name; | 
|  | CORE_ADDR func_addr, func_end; | 
|  | struct msp430_prologue p; | 
|  |  | 
|  | /* Try to find the extent of the function that contains PC.  */ | 
|  | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | 
|  | return pc; | 
|  |  | 
|  | msp430_analyze_prologue (gdbarch, pc, func_end, &p); | 
|  | return p.prologue_end; | 
|  | } | 
|  |  | 
|  | /* Given a frame described by THIS_FRAME, decode the prologue of its | 
|  | associated function if there is not cache entry as specified by | 
|  | THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and | 
|  | return that struct as the value of this function.  */ | 
|  |  | 
|  | static struct msp430_prologue * | 
|  | msp430_analyze_frame_prologue (struct frame_info *this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | if (!*this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR func_start, stop_addr; | 
|  |  | 
|  | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue); | 
|  |  | 
|  | func_start = get_frame_func (this_frame); | 
|  | stop_addr = get_frame_pc (this_frame); | 
|  |  | 
|  | /* If we couldn't find any function containing the PC, then | 
|  | just initialize the prologue cache, but don't do anything.  */ | 
|  | if (!func_start) | 
|  | stop_addr = func_start; | 
|  |  | 
|  | msp430_analyze_prologue (get_frame_arch (this_frame), func_start, | 
|  | stop_addr, | 
|  | (struct msp430_prologue *) *this_prologue_cache); | 
|  | } | 
|  |  | 
|  | return (struct msp430_prologue *) *this_prologue_cache; | 
|  | } | 
|  |  | 
|  | /* Given a frame and a prologue cache, return this frame's base.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | 
|  | { | 
|  | struct msp430_prologue *p | 
|  | = msp430_analyze_frame_prologue (this_frame, this_prologue_cache); | 
|  | CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM); | 
|  |  | 
|  | return sp - p->frame_size; | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_this_id" method for unwinding frames.  */ | 
|  |  | 
|  | static void | 
|  | msp430_this_id (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, struct frame_id *this_id) | 
|  | { | 
|  | *this_id = frame_id_build (msp430_frame_base (this_frame, | 
|  | this_prologue_cache), | 
|  | get_frame_func (this_frame)); | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_prev_register" method for unwinding frames.  */ | 
|  |  | 
|  | static struct value * | 
|  | msp430_prev_register (struct frame_info *this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct msp430_prologue *p | 
|  | = msp430_analyze_frame_prologue (this_frame, this_prologue_cache); | 
|  | CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache); | 
|  |  | 
|  | if (regnum == MSP430_SP_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, regnum, frame_base); | 
|  |  | 
|  | /* If prologue analysis says we saved this register somewhere, | 
|  | return a description of the stack slot holding it.  */ | 
|  | else if (p->reg_offset[regnum] != 1) | 
|  | { | 
|  | struct value *rv = frame_unwind_got_memory (this_frame, regnum, | 
|  | frame_base + | 
|  | p->reg_offset[regnum]); | 
|  |  | 
|  | if (regnum == MSP430_PC_REGNUM) | 
|  | { | 
|  | ULONGEST pc = value_as_long (rv); | 
|  |  | 
|  | return frame_unwind_got_constant (this_frame, regnum, pc); | 
|  | } | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | /* Otherwise, presume we haven't changed the value of this | 
|  | register, and get it from the next frame.  */ | 
|  | else | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind msp430_unwind = { | 
|  | "msp430 prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | msp430_this_id, | 
|  | msp430_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | if (reg >= 0 && reg < MSP430_NUM_REGS) | 
|  | return reg + MSP430_NUM_REGS; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Implement the "return_value" gdbarch method.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | msp430_return_value (struct gdbarch *gdbarch, | 
|  | struct value *function, | 
|  | struct type *valtype, | 
|  | struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | LONGEST valtype_len = TYPE_LENGTH (valtype); | 
|  | msp430_gdbarch_tdep *tdep = (msp430_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  | int code_model = tdep->code_model; | 
|  |  | 
|  | if (TYPE_LENGTH (valtype) > 8 | 
|  | || valtype->code () == TYPE_CODE_STRUCT | 
|  | || valtype->code () == TYPE_CODE_UNION) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (readbuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = MSP430_R12_REGNUM; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | int size = 2; | 
|  |  | 
|  | if (code_model == MSP_LARGE_CODE_MODEL | 
|  | && valtype->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | size = 4; | 
|  | } | 
|  |  | 
|  | regcache_cooked_read_unsigned (regcache, argreg, &u); | 
|  | store_unsigned_integer (readbuf + offset, size, byte_order, u); | 
|  | valtype_len -= size; | 
|  | offset += size; | 
|  | argreg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (writebuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = MSP430_R12_REGNUM; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | int size = 2; | 
|  |  | 
|  | if (code_model == MSP_LARGE_CODE_MODEL | 
|  | && valtype->code () == TYPE_CODE_PTR) | 
|  | { | 
|  | size = 4; | 
|  | } | 
|  |  | 
|  | u = extract_unsigned_integer (writebuf + offset, size, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, argreg, u); | 
|  | valtype_len -= size; | 
|  | offset += size; | 
|  | argreg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the "frame_align" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | return align_down (sp, 2); | 
|  | } | 
|  |  | 
|  | /* Implement the "push_dummy_call" gdbarch method.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int write_pass; | 
|  | int sp_off = 0; | 
|  | CORE_ADDR cfa; | 
|  | msp430_gdbarch_tdep *tdep = (msp430_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  | int code_model = tdep->code_model; | 
|  |  | 
|  | struct type *func_type = value_type (function); | 
|  |  | 
|  | /* Dereference function pointer types.  */ | 
|  | while (func_type->code () == TYPE_CODE_PTR) | 
|  | func_type = TYPE_TARGET_TYPE (func_type); | 
|  |  | 
|  | /* The end result had better be a function or a method.  */ | 
|  | gdb_assert (func_type->code () == TYPE_CODE_FUNC | 
|  | || func_type->code () == TYPE_CODE_METHOD); | 
|  |  | 
|  | /* We make two passes; the first does the stack allocation, | 
|  | the second actually stores the arguments.  */ | 
|  | for (write_pass = 0; write_pass <= 1; write_pass++) | 
|  | { | 
|  | int i; | 
|  | int arg_reg = MSP430_R12_REGNUM; | 
|  | int args_on_stack = 0; | 
|  |  | 
|  | if (write_pass) | 
|  | sp = align_down (sp - sp_off, 4); | 
|  | sp_off = 0; | 
|  |  | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr); | 
|  | arg_reg++; | 
|  | } | 
|  |  | 
|  | /* Push the arguments.  */ | 
|  | for (i = 0; i < nargs; i++) | 
|  | { | 
|  | struct value *arg = args[i]; | 
|  | const gdb_byte *arg_bits = value_contents_all (arg).data (); | 
|  | struct type *arg_type = check_typedef (value_type (arg)); | 
|  | ULONGEST arg_size = TYPE_LENGTH (arg_type); | 
|  | int offset; | 
|  | int current_arg_on_stack; | 
|  | gdb_byte struct_addr_buf[4]; | 
|  |  | 
|  | current_arg_on_stack = 0; | 
|  |  | 
|  | if (arg_type->code () == TYPE_CODE_STRUCT | 
|  | || arg_type->code () == TYPE_CODE_UNION) | 
|  | { | 
|  | /* Aggregates of any size are passed by reference.  */ | 
|  | store_unsigned_integer (struct_addr_buf, 4, byte_order, | 
|  | value_address (arg)); | 
|  | arg_bits = struct_addr_buf; | 
|  | arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Scalars bigger than 8 bytes such as complex doubles are passed | 
|  | on the stack.  */ | 
|  | if (arg_size > 8) | 
|  | current_arg_on_stack = 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | for (offset = 0; offset < arg_size; offset += 2) | 
|  | { | 
|  | /* The condition below prevents 8 byte scalars from being split | 
|  | between registers and memory (stack).  It also prevents other | 
|  | splits once the stack has been written to.  */ | 
|  | if (!current_arg_on_stack | 
|  | && (arg_reg | 
|  | + ((arg_size == 8 || args_on_stack) | 
|  | ? ((arg_size - offset) / 2 - 1) | 
|  | : 0) <= MSP430_R15_REGNUM)) | 
|  | { | 
|  | int size = 2; | 
|  |  | 
|  | if (code_model == MSP_LARGE_CODE_MODEL | 
|  | && (arg_type->code () == TYPE_CODE_PTR | 
|  | || TYPE_IS_REFERENCE (arg_type) | 
|  | || arg_type->code () == TYPE_CODE_STRUCT | 
|  | || arg_type->code () == TYPE_CODE_UNION)) | 
|  | { | 
|  | /* When using the large memory model, pointer, | 
|  | reference, struct, and union arguments are | 
|  | passed using the entire register.  (As noted | 
|  | earlier, aggregates are always passed by | 
|  | reference.) */ | 
|  | if (offset != 0) | 
|  | continue; | 
|  | size = 4; | 
|  | } | 
|  |  | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, arg_reg, | 
|  | extract_unsigned_integer | 
|  | (arg_bits + offset, size, | 
|  | byte_order)); | 
|  |  | 
|  | arg_reg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (write_pass) | 
|  | write_memory (sp + sp_off, arg_bits + offset, 2); | 
|  |  | 
|  | sp_off += 2; | 
|  | args_on_stack = 1; | 
|  | current_arg_on_stack = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Keep track of the stack address prior to pushing the return address. | 
|  | This is the value that we'll return.  */ | 
|  | cfa = sp; | 
|  |  | 
|  | /* Push the return address.  */ | 
|  | { | 
|  | int sz = tdep->code_model == MSP_SMALL_CODE_MODEL ? 2 : 4; | 
|  | sp = sp - sz; | 
|  | write_memory_unsigned_integer (sp, sz, byte_order, bp_addr); | 
|  | } | 
|  |  | 
|  | /* Update the stack pointer.  */ | 
|  | regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp); | 
|  |  | 
|  | return cfa; | 
|  | } | 
|  |  | 
|  | /* In order to keep code size small, the compiler may create epilogue | 
|  | code through which more than one function epilogue is routed.  I.e. | 
|  | the epilogue and return may just be a branch to some common piece of | 
|  | code which is responsible for tearing down the frame and performing | 
|  | the return.  These epilog (label) names will have the common prefix | 
|  | defined here.  */ | 
|  |  | 
|  | static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_"; | 
|  |  | 
|  | /* Implement the "in_return_stub" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, | 
|  | const char *name) | 
|  | { | 
|  | return (name != NULL | 
|  | && startswith (name, msp430_epilog_name_prefix)); | 
|  | } | 
|  |  | 
|  | /* Implement the "skip_trampoline_code" gdbarch method.  */ | 
|  | static CORE_ADDR | 
|  | msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) | 
|  | { | 
|  | struct bound_minimal_symbol bms; | 
|  | const char *stub_name; | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  |  | 
|  | bms = lookup_minimal_symbol_by_pc (pc); | 
|  | if (!bms.minsym) | 
|  | return pc; | 
|  |  | 
|  | stub_name = bms.minsym->linkage_name (); | 
|  |  | 
|  | msp430_gdbarch_tdep *tdep = (msp430_gdbarch_tdep *) gdbarch_tdep (gdbarch); | 
|  | if (tdep->code_model == MSP_SMALL_CODE_MODEL | 
|  | && msp430_in_return_stub (gdbarch, pc, stub_name)) | 
|  | { | 
|  | CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM); | 
|  |  | 
|  | return read_memory_integer | 
|  | (sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'), | 
|  | 2, gdbarch_byte_order (gdbarch)); | 
|  | } | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a gdbarch object.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | int elf_flags, isa, code_model; | 
|  |  | 
|  | /* Extract the elf_flags if available.  */ | 
|  | if (info.abfd != NULL | 
|  | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | 
|  | elf_flags = elf_elfheader (info.abfd)->e_flags; | 
|  | else | 
|  | elf_flags = 0; | 
|  |  | 
|  | if (info.abfd != NULL) | 
|  | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | OFBA_MSPABI_Tag_ISA)) | 
|  | { | 
|  | case 1: | 
|  | isa = MSP_ISA_MSP430; | 
|  | code_model = MSP_SMALL_CODE_MODEL; | 
|  | break; | 
|  | case 2: | 
|  | isa = MSP_ISA_MSP430X; | 
|  | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | OFBA_MSPABI_Tag_Code_Model)) | 
|  | { | 
|  | case 1: | 
|  | code_model = MSP_SMALL_CODE_MODEL; | 
|  | break; | 
|  | case 2: | 
|  | code_model = MSP_LARGE_CODE_MODEL; | 
|  | break; | 
|  | default: | 
|  | internal_error (__FILE__, __LINE__, | 
|  | _("Unknown msp430x code memory model")); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0: | 
|  | /* This can happen when loading a previously dumped data structure. | 
|  | Use the ISA and code model from the current architecture, provided | 
|  | it's compatible.  */ | 
|  | { | 
|  | struct gdbarch *ca = get_current_arch (); | 
|  | if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430) | 
|  | { | 
|  | msp430_gdbarch_tdep *ca_tdep | 
|  | = (msp430_gdbarch_tdep *) gdbarch_tdep (ca); | 
|  |  | 
|  | elf_flags = ca_tdep->elf_flags; | 
|  | isa = ca_tdep->isa; | 
|  | code_model = ca_tdep->code_model; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Fall through.  */ | 
|  | default: | 
|  | error (_("Unknown msp430 isa")); | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | isa = MSP_ISA_MSP430; | 
|  | code_model = MSP_SMALL_CODE_MODEL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Try to find the architecture in the list of already defined | 
|  | architectures.  */ | 
|  | for (arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | arches != NULL; | 
|  | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | 
|  | { | 
|  | msp430_gdbarch_tdep *candidate_tdep | 
|  | = (msp430_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch); | 
|  |  | 
|  | if (candidate_tdep->elf_flags != elf_flags | 
|  | || candidate_tdep->isa != isa | 
|  | || candidate_tdep->code_model != code_model) | 
|  | continue; | 
|  |  | 
|  | return arches->gdbarch; | 
|  | } | 
|  |  | 
|  | /* None found, create a new architecture from the information | 
|  | provided.  */ | 
|  | msp430_gdbarch_tdep *tdep = new msp430_gdbarch_tdep; | 
|  | gdbarch = gdbarch_alloc (&info, tdep); | 
|  | tdep->elf_flags = elf_flags; | 
|  | tdep->isa = isa; | 
|  | tdep->code_model = code_model; | 
|  |  | 
|  | /* Registers.  */ | 
|  | set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS); | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS); | 
|  | set_gdbarch_register_name (gdbarch, msp430_register_name); | 
|  | if (isa == MSP_ISA_MSP430) | 
|  | set_gdbarch_register_type (gdbarch, msp430_register_type); | 
|  | else | 
|  | set_gdbarch_register_type (gdbarch, msp430x_register_type); | 
|  | set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM); | 
|  | set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM); | 
|  | set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p); | 
|  | set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read); | 
|  | set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum); | 
|  | set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno); | 
|  |  | 
|  | /* Data types.  */ | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 16); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | if (code_model == MSP_SMALL_CODE_MODEL) | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 16); | 
|  | set_gdbarch_addr_bit (gdbarch, 16); | 
|  | } | 
|  | else				/* MSP_LARGE_CODE_MODEL */ | 
|  | { | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  | } | 
|  | set_gdbarch_dwarf2_addr_size (gdbarch, 4); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_bit (gdbarch, 64); | 
|  | set_gdbarch_long_double_bit (gdbarch, 64); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | 
|  |  | 
|  | /* Breakpoints.  */ | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, | 
|  | msp430_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | 
|  | msp430_breakpoint::bp_from_kind); | 
|  | set_gdbarch_decr_pc_after_break (gdbarch, 1); | 
|  |  | 
|  | /* Frames, prologues, etc.  */ | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue); | 
|  | set_gdbarch_frame_align (gdbarch, msp430_frame_align); | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &msp430_unwind); | 
|  |  | 
|  | /* Dummy frames, return values.  */ | 
|  | set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call); | 
|  | set_gdbarch_return_value (gdbarch, msp430_return_value); | 
|  |  | 
|  | /* Trampolines.  */ | 
|  | set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub); | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code); | 
|  |  | 
|  | /* Virtual tables.  */ | 
|  | set_gdbarch_vbit_in_delta (gdbarch, 0); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Register the initialization routine.  */ | 
|  |  | 
|  | void _initialize_msp430_tdep (); | 
|  | void | 
|  | _initialize_msp430_tdep () | 
|  | { | 
|  | register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init); | 
|  | } |