|  | /* Target-dependent code for the Renesas RX for GDB, the GNU debugger. | 
|  |  | 
|  | Copyright (C) 2008-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Red Hat, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "arch-utils.h" | 
|  | #include "prologue-value.h" | 
|  | #include "target.h" | 
|  | #include "regcache.h" | 
|  | #include "opcode/rx.h" | 
|  | #include "dis-asm.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "value.h" | 
|  | #include "gdbcore.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "remote.h" | 
|  | #include "target-descriptions.h" | 
|  | #include "gdbarch.h" | 
|  |  | 
|  | #include "elf/rx.h" | 
|  | #include "elf-bfd.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | #include "features/rx.c" | 
|  |  | 
|  | /* Certain important register numbers.  */ | 
|  | enum | 
|  | { | 
|  | RX_SP_REGNUM = 0, | 
|  | RX_R1_REGNUM = 1, | 
|  | RX_R4_REGNUM = 4, | 
|  | RX_FP_REGNUM = 6, | 
|  | RX_R15_REGNUM = 15, | 
|  | RX_USP_REGNUM = 16, | 
|  | RX_PSW_REGNUM = 18, | 
|  | RX_PC_REGNUM = 19, | 
|  | RX_BPSW_REGNUM = 21, | 
|  | RX_BPC_REGNUM = 22, | 
|  | RX_FPSW_REGNUM = 24, | 
|  | RX_ACC_REGNUM = 25, | 
|  | RX_NUM_REGS = 26 | 
|  | }; | 
|  |  | 
|  | /* RX frame types.  */ | 
|  | enum rx_frame_type { | 
|  | RX_FRAME_TYPE_NORMAL, | 
|  | RX_FRAME_TYPE_EXCEPTION, | 
|  | RX_FRAME_TYPE_FAST_INTERRUPT | 
|  | }; | 
|  |  | 
|  | /* Architecture specific data.  */ | 
|  | struct rx_gdbarch_tdep : gdbarch_tdep | 
|  | { | 
|  | /* The ELF header flags specify the multilib used.  */ | 
|  | int elf_flags = 0; | 
|  |  | 
|  | /* Type of PSW and BPSW.  */ | 
|  | struct type *rx_psw_type = nullptr; | 
|  |  | 
|  | /* Type of FPSW.  */ | 
|  | struct type *rx_fpsw_type = nullptr; | 
|  | }; | 
|  |  | 
|  | /* This structure holds the results of a prologue analysis.  */ | 
|  | struct rx_prologue | 
|  | { | 
|  | /* Frame type, either a normal frame or one of two types of exception | 
|  | frames.  */ | 
|  | enum rx_frame_type frame_type; | 
|  |  | 
|  | /* The offset from the frame base to the stack pointer --- always | 
|  | zero or negative. | 
|  |  | 
|  | Calling this a "size" is a bit misleading, but given that the | 
|  | stack grows downwards, using offsets for everything keeps one | 
|  | from going completely sign-crazy: you never change anything's | 
|  | sign for an ADD instruction; always change the second operand's | 
|  | sign for a SUB instruction; and everything takes care of | 
|  | itself.  */ | 
|  | int frame_size; | 
|  |  | 
|  | /* Non-zero if this function has initialized the frame pointer from | 
|  | the stack pointer, zero otherwise.  */ | 
|  | int has_frame_ptr; | 
|  |  | 
|  | /* If has_frame_ptr is non-zero, this is the offset from the frame | 
|  | base to where the frame pointer points.  This is always zero or | 
|  | negative.  */ | 
|  | int frame_ptr_offset; | 
|  |  | 
|  | /* The address of the first instruction at which the frame has been | 
|  | set up and the arguments are where the debug info says they are | 
|  | --- as best as we can tell.  */ | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | /* reg_offset[R] is the offset from the CFA at which register R is | 
|  | saved, or 1 if register R has not been saved.  (Real values are | 
|  | always zero or negative.)  */ | 
|  | int reg_offset[RX_NUM_REGS]; | 
|  | }; | 
|  |  | 
|  | /* RX register names */ | 
|  | static const char *const rx_register_names[] = { | 
|  | "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7", | 
|  | "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "usp", "isp", "psw", "pc",  "intb", "bpsw","bpc","fintv", | 
|  | "fpsw", "acc", | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Function for finding saved registers in a 'struct pv_area'; this | 
|  | function is passed to pv_area::scan. | 
|  |  | 
|  | If VALUE is a saved register, ADDR says it was saved at a constant | 
|  | offset from the frame base, and SIZE indicates that the whole | 
|  | register was saved, record its offset.  */ | 
|  | static void | 
|  | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | 
|  | { | 
|  | struct rx_prologue *result = (struct rx_prologue *) result_untyped; | 
|  |  | 
|  | if (value.kind == pvk_register | 
|  | && value.k == 0 | 
|  | && pv_is_register (addr, RX_SP_REGNUM) | 
|  | && size == register_size (target_gdbarch (), value.reg)) | 
|  | result->reg_offset[value.reg] = addr.k; | 
|  | } | 
|  |  | 
|  | /* Define a "handle" struct for fetching the next opcode.  */ | 
|  | struct rx_get_opcode_byte_handle | 
|  | { | 
|  | CORE_ADDR pc; | 
|  | }; | 
|  |  | 
|  | /* Fetch a byte on behalf of the opcode decoder.  HANDLE contains | 
|  | the memory address of the next byte to fetch.  If successful, | 
|  | the address in the handle is updated and the byte fetched is | 
|  | returned as the value of the function.  If not successful, -1 | 
|  | is returned.  */ | 
|  | static int | 
|  | rx_get_opcode_byte (void *handle) | 
|  | { | 
|  | struct rx_get_opcode_byte_handle *opcdata | 
|  | = (struct rx_get_opcode_byte_handle *) handle; | 
|  | int status; | 
|  | gdb_byte byte; | 
|  |  | 
|  | status = target_read_code (opcdata->pc, &byte, 1); | 
|  | if (status == 0) | 
|  | { | 
|  | opcdata->pc += 1; | 
|  | return byte; | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Analyze a prologue starting at START_PC, going no further than | 
|  | LIMIT_PC.  Fill in RESULT as appropriate.  */ | 
|  |  | 
|  | static void | 
|  | rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc, | 
|  | enum rx_frame_type frame_type, | 
|  | struct rx_prologue *result) | 
|  | { | 
|  | CORE_ADDR pc, next_pc; | 
|  | int rn; | 
|  | pv_t reg[RX_NUM_REGS]; | 
|  | CORE_ADDR after_last_frame_setup_insn = start_pc; | 
|  |  | 
|  | memset (result, 0, sizeof (*result)); | 
|  |  | 
|  | result->frame_type = frame_type; | 
|  |  | 
|  | for (rn = 0; rn < RX_NUM_REGS; rn++) | 
|  | { | 
|  | reg[rn] = pv_register (rn, 0); | 
|  | result->reg_offset[rn] = 1; | 
|  | } | 
|  |  | 
|  | pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ())); | 
|  |  | 
|  | if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT) | 
|  | { | 
|  | /* This code won't do anything useful at present, but this is | 
|  | what happens for fast interrupts.  */ | 
|  | reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM]; | 
|  | reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM]; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* When an exception occurs, the PSW is saved to the interrupt stack | 
|  | first.  */ | 
|  | if (frame_type == RX_FRAME_TYPE_EXCEPTION) | 
|  | { | 
|  | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | 
|  | stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]); | 
|  | } | 
|  |  | 
|  | /* The call instruction (or an exception/interrupt) has saved the return | 
|  | address on the stack.  */ | 
|  | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | 
|  | stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | pc = start_pc; | 
|  | while (pc < limit_pc) | 
|  | { | 
|  | int bytes_read; | 
|  | struct rx_get_opcode_byte_handle opcode_handle; | 
|  | RX_Opcode_Decoded opc; | 
|  |  | 
|  | opcode_handle.pc = pc; | 
|  | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | 
|  | &opcode_handle); | 
|  | next_pc = pc + bytes_read; | 
|  |  | 
|  | if (opc.id == RXO_pushm	/* pushm r1, r2 */ | 
|  | && opc.op[1].type == RX_Operand_Register | 
|  | && opc.op[2].type == RX_Operand_Register) | 
|  | { | 
|  | int r1, r2; | 
|  | int r; | 
|  |  | 
|  | r1 = opc.op[1].reg; | 
|  | r2 = opc.op[2].reg; | 
|  | for (r = r2; r >= r1; r--) | 
|  | { | 
|  | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | 
|  | stack.store (reg[RX_SP_REGNUM], 4, reg[r]); | 
|  | } | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RXO_mov	/* mov.l rdst, rsrc */ | 
|  | && opc.op[0].type == RX_Operand_Register | 
|  | && opc.op[1].type == RX_Operand_Register | 
|  | && opc.size == RX_Long) | 
|  | { | 
|  | int rdst, rsrc; | 
|  |  | 
|  | rdst = opc.op[0].reg; | 
|  | rsrc = opc.op[1].reg; | 
|  | reg[rdst] = reg[rsrc]; | 
|  | if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RXO_mov	/* mov.l rsrc, [-SP] */ | 
|  | && opc.op[0].type == RX_Operand_Predec | 
|  | && opc.op[0].reg == RX_SP_REGNUM | 
|  | && opc.op[1].type == RX_Operand_Register | 
|  | && opc.size == RX_Long) | 
|  | { | 
|  | int rsrc; | 
|  |  | 
|  | rsrc = opc.op[1].reg; | 
|  | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | 
|  | stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]); | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RXO_add	/* add #const, rsrc, rdst */ | 
|  | && opc.op[0].type == RX_Operand_Register | 
|  | && opc.op[1].type == RX_Operand_Immediate | 
|  | && opc.op[2].type == RX_Operand_Register) | 
|  | { | 
|  | int rdst = opc.op[0].reg; | 
|  | int addend = opc.op[1].addend; | 
|  | int rsrc = opc.op[2].reg; | 
|  | reg[rdst] = pv_add_constant (reg[rsrc], addend); | 
|  | /* Negative adjustments to the stack pointer or frame pointer | 
|  | are (most likely) part of the prologue.  */ | 
|  | if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) | 
|  | after_last_frame_setup_insn = next_pc; | 
|  | } | 
|  | else if (opc.id == RXO_mov | 
|  | && opc.op[0].type == RX_Operand_Indirect | 
|  | && opc.op[1].type == RX_Operand_Register | 
|  | && opc.size == RX_Long | 
|  | && (opc.op[0].reg == RX_SP_REGNUM | 
|  | || opc.op[0].reg == RX_FP_REGNUM) | 
|  | && (RX_R1_REGNUM <= opc.op[1].reg | 
|  | && opc.op[1].reg <= RX_R4_REGNUM)) | 
|  | { | 
|  | /* This moves an argument register to the stack.  Don't | 
|  | record it, but allow it to be a part of the prologue.  */ | 
|  | } | 
|  | else if (opc.id == RXO_branch | 
|  | && opc.op[0].type == RX_Operand_Immediate | 
|  | && next_pc < opc.op[0].addend) | 
|  | { | 
|  | /* When a loop appears as the first statement of a function | 
|  | body, gcc 4.x will use a BRA instruction to branch to the | 
|  | loop condition checking code.  This BRA instruction is | 
|  | marked as part of the prologue.  We therefore set next_pc | 
|  | to this branch target and also stop the prologue scan. | 
|  | The instructions at and beyond the branch target should | 
|  | no longer be associated with the prologue. | 
|  |  | 
|  | Note that we only consider forward branches here.  We | 
|  | presume that a forward branch is being used to skip over | 
|  | a loop body. | 
|  |  | 
|  | A backwards branch is covered by the default case below. | 
|  | If we were to encounter a backwards branch, that would | 
|  | most likely mean that we've scanned through a loop body. | 
|  | We definitely want to stop the prologue scan when this | 
|  | happens and that is precisely what is done by the default | 
|  | case below.  */ | 
|  |  | 
|  | after_last_frame_setup_insn = opc.op[0].addend; | 
|  | break;		/* Scan no further if we hit this case.  */ | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Terminate the prologue scan.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | pc = next_pc; | 
|  | } | 
|  |  | 
|  | /* Is the frame size (offset, really) a known constant?  */ | 
|  | if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) | 
|  | result->frame_size = reg[RX_SP_REGNUM].k; | 
|  |  | 
|  | /* Was the frame pointer initialized?  */ | 
|  | if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) | 
|  | { | 
|  | result->has_frame_ptr = 1; | 
|  | result->frame_ptr_offset = reg[RX_FP_REGNUM].k; | 
|  | } | 
|  |  | 
|  | /* Record where all the registers were saved.  */ | 
|  | stack.scan (check_for_saved, (void *) result); | 
|  |  | 
|  | result->prologue_end = after_last_frame_setup_insn; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Implement the "skip_prologue" gdbarch method.  */ | 
|  | static CORE_ADDR | 
|  | rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | const char *name; | 
|  | CORE_ADDR func_addr, func_end; | 
|  | struct rx_prologue p; | 
|  |  | 
|  | /* Try to find the extent of the function that contains PC.  */ | 
|  | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | 
|  | return pc; | 
|  |  | 
|  | /* The frame type doesn't matter here, since we only care about | 
|  | where the prologue ends.  We'll use RX_FRAME_TYPE_NORMAL.  */ | 
|  | rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p); | 
|  | return p.prologue_end; | 
|  | } | 
|  |  | 
|  | /* Given a frame described by THIS_FRAME, decode the prologue of its | 
|  | associated function if there is not cache entry as specified by | 
|  | THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and | 
|  | return that struct as the value of this function.  */ | 
|  |  | 
|  | static struct rx_prologue * | 
|  | rx_analyze_frame_prologue (struct frame_info *this_frame, | 
|  | enum rx_frame_type frame_type, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | if (!*this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR func_start, stop_addr; | 
|  |  | 
|  | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); | 
|  |  | 
|  | func_start = get_frame_func (this_frame); | 
|  | stop_addr = get_frame_pc (this_frame); | 
|  |  | 
|  | /* If we couldn't find any function containing the PC, then | 
|  | just initialize the prologue cache, but don't do anything.  */ | 
|  | if (!func_start) | 
|  | stop_addr = func_start; | 
|  |  | 
|  | rx_analyze_prologue (func_start, stop_addr, frame_type, | 
|  | (struct rx_prologue *) *this_prologue_cache); | 
|  | } | 
|  |  | 
|  | return (struct rx_prologue *) *this_prologue_cache; | 
|  | } | 
|  |  | 
|  | /* Determine type of frame by scanning the function for a return | 
|  | instruction.  */ | 
|  |  | 
|  | static enum rx_frame_type | 
|  | rx_frame_type (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | const char *name; | 
|  | CORE_ADDR pc, start_pc, lim_pc; | 
|  | int bytes_read; | 
|  | struct rx_get_opcode_byte_handle opcode_handle; | 
|  | RX_Opcode_Decoded opc; | 
|  |  | 
|  | gdb_assert (this_cache != NULL); | 
|  |  | 
|  | /* If we have a cached value, return it.  */ | 
|  |  | 
|  | if (*this_cache != NULL) | 
|  | { | 
|  | struct rx_prologue *p = (struct rx_prologue *) *this_cache; | 
|  |  | 
|  | return p->frame_type; | 
|  | } | 
|  |  | 
|  | /* No cached value; scan the function.  The frame type is cached in | 
|  | rx_analyze_prologue / rx_analyze_frame_prologue.  */ | 
|  |  | 
|  | pc = get_frame_pc (this_frame); | 
|  |  | 
|  | /* Attempt to find the last address in the function.  If it cannot | 
|  | be determined, set the limit to be a short ways past the frame's | 
|  | pc.  */ | 
|  | if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc)) | 
|  | lim_pc = pc + 20; | 
|  |  | 
|  | while (pc < lim_pc) | 
|  | { | 
|  | opcode_handle.pc = pc; | 
|  | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | 
|  | &opcode_handle); | 
|  |  | 
|  | if (bytes_read <= 0 || opc.id == RXO_rts) | 
|  | return RX_FRAME_TYPE_NORMAL; | 
|  | else if (opc.id == RXO_rtfi) | 
|  | return RX_FRAME_TYPE_FAST_INTERRUPT; | 
|  | else if (opc.id == RXO_rte) | 
|  | return RX_FRAME_TYPE_EXCEPTION; | 
|  |  | 
|  | pc += bytes_read; | 
|  | } | 
|  |  | 
|  | return RX_FRAME_TYPE_NORMAL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Given the next frame and a prologue cache, return this frame's | 
|  | base.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | rx_frame_base (struct frame_info *this_frame, void **this_cache) | 
|  | { | 
|  | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); | 
|  | struct rx_prologue *p | 
|  | = rx_analyze_frame_prologue (this_frame, frame_type, this_cache); | 
|  |  | 
|  | /* In functions that use alloca, the distance between the stack | 
|  | pointer and the frame base varies dynamically, so we can't use | 
|  | the SP plus static information like prologue analysis to find the | 
|  | frame base.  However, such functions must have a frame pointer, | 
|  | to be able to restore the SP on exit.  So whenever we do have a | 
|  | frame pointer, use that to find the base.  */ | 
|  | if (p->has_frame_ptr) | 
|  | { | 
|  | CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); | 
|  | return fp - p->frame_ptr_offset; | 
|  | } | 
|  | else | 
|  | { | 
|  | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); | 
|  | return sp - p->frame_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_this_id" method for unwinding frames.  */ | 
|  |  | 
|  | static void | 
|  | rx_frame_this_id (struct frame_info *this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | *this_id = frame_id_build (rx_frame_base (this_frame, this_cache), | 
|  | get_frame_func (this_frame)); | 
|  | } | 
|  |  | 
|  | /* Implement the "frame_prev_register" method for unwinding frames.  */ | 
|  |  | 
|  | static struct value * | 
|  | rx_frame_prev_register (struct frame_info *this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); | 
|  | struct rx_prologue *p | 
|  | = rx_analyze_frame_prologue (this_frame, frame_type, this_cache); | 
|  | CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache); | 
|  |  | 
|  | if (regnum == RX_SP_REGNUM) | 
|  | { | 
|  | if (frame_type == RX_FRAME_TYPE_EXCEPTION) | 
|  | { | 
|  | struct value *psw_val; | 
|  | CORE_ADDR psw; | 
|  |  | 
|  | psw_val = rx_frame_prev_register (this_frame, this_cache, | 
|  | RX_PSW_REGNUM); | 
|  | psw = extract_unsigned_integer | 
|  | (value_contents_all (psw_val).data (), 4, | 
|  | gdbarch_byte_order (get_frame_arch (this_frame))); | 
|  |  | 
|  | if ((psw & 0x20000 /* U bit */) != 0) | 
|  | return rx_frame_prev_register (this_frame, this_cache, | 
|  | RX_USP_REGNUM); | 
|  |  | 
|  | /* Fall through for the case where U bit is zero.  */ | 
|  | } | 
|  |  | 
|  | return frame_unwind_got_constant (this_frame, regnum, frame_base); | 
|  | } | 
|  |  | 
|  | if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT) | 
|  | { | 
|  | if (regnum == RX_PC_REGNUM) | 
|  | return rx_frame_prev_register (this_frame, this_cache, | 
|  | RX_BPC_REGNUM); | 
|  | if (regnum == RX_PSW_REGNUM) | 
|  | return rx_frame_prev_register (this_frame, this_cache, | 
|  | RX_BPSW_REGNUM); | 
|  | } | 
|  |  | 
|  | /* If prologue analysis says we saved this register somewhere, | 
|  | return a description of the stack slot holding it.  */ | 
|  | if (p->reg_offset[regnum] != 1) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | frame_base + p->reg_offset[regnum]); | 
|  |  | 
|  | /* Otherwise, presume we haven't changed the value of this | 
|  | register, and get it from the next frame.  */ | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | /* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame.  */ | 
|  |  | 
|  | static int | 
|  | normal_frame_p (enum rx_frame_type frame_type) | 
|  | { | 
|  | return (frame_type == RX_FRAME_TYPE_NORMAL); | 
|  | } | 
|  |  | 
|  | /* Return TRUE if the frame indicated by FRAME_TYPE is an exception | 
|  | frame.  */ | 
|  |  | 
|  | static int | 
|  | exception_frame_p (enum rx_frame_type frame_type) | 
|  | { | 
|  | return (frame_type == RX_FRAME_TYPE_EXCEPTION | 
|  | || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT); | 
|  | } | 
|  |  | 
|  | /* Common code used by both normal and exception frame sniffers.  */ | 
|  |  | 
|  | static int | 
|  | rx_frame_sniffer_common (const struct frame_unwind *self, | 
|  | struct frame_info *this_frame, | 
|  | void **this_cache, | 
|  | int (*sniff_p)(enum rx_frame_type) ) | 
|  | { | 
|  | gdb_assert (this_cache != NULL); | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | { | 
|  | enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache); | 
|  |  | 
|  | if (sniff_p (frame_type)) | 
|  | { | 
|  | /* The call below will fill in the cache, including the frame | 
|  | type.  */ | 
|  | (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | struct rx_prologue *p = (struct rx_prologue *) *this_cache; | 
|  |  | 
|  | return sniff_p (p->frame_type); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Frame sniffer for normal (non-exception) frames.  */ | 
|  |  | 
|  | static int | 
|  | rx_frame_sniffer (const struct frame_unwind *self, | 
|  | struct frame_info *this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | return rx_frame_sniffer_common (self, this_frame, this_cache, | 
|  | normal_frame_p); | 
|  | } | 
|  |  | 
|  | /* Frame sniffer for exception frames.  */ | 
|  |  | 
|  | static int | 
|  | rx_exception_sniffer (const struct frame_unwind *self, | 
|  | struct frame_info *this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | return rx_frame_sniffer_common (self, this_frame, this_cache, | 
|  | exception_frame_p); | 
|  | } | 
|  |  | 
|  | /* Data structure for normal code using instruction-based prologue | 
|  | analyzer.  */ | 
|  |  | 
|  | static const struct frame_unwind rx_frame_unwind = { | 
|  | "rx prologue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | rx_frame_this_id, | 
|  | rx_frame_prev_register, | 
|  | NULL, | 
|  | rx_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Data structure for exception code using instruction-based prologue | 
|  | analyzer.  */ | 
|  |  | 
|  | static const struct frame_unwind rx_exception_unwind = { | 
|  | "rx exception", | 
|  | /* SIGTRAMP_FRAME could be used here, but backtraces are less informative.  */ | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | rx_frame_this_id, | 
|  | rx_frame_prev_register, | 
|  | NULL, | 
|  | rx_exception_sniffer | 
|  | }; | 
|  |  | 
|  | /* Implement the "push_dummy_call" gdbarch method.  */ | 
|  | static CORE_ADDR | 
|  | rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | 
|  | struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int write_pass; | 
|  | int sp_off = 0; | 
|  | CORE_ADDR cfa; | 
|  | int num_register_candidate_args; | 
|  |  | 
|  | struct type *func_type = value_type (function); | 
|  |  | 
|  | /* Dereference function pointer types.  */ | 
|  | while (func_type->code () == TYPE_CODE_PTR) | 
|  | func_type = TYPE_TARGET_TYPE (func_type); | 
|  |  | 
|  | /* The end result had better be a function or a method.  */ | 
|  | gdb_assert (func_type->code () == TYPE_CODE_FUNC | 
|  | || func_type->code () == TYPE_CODE_METHOD); | 
|  |  | 
|  | /* Functions with a variable number of arguments have all of their | 
|  | variable arguments and the last non-variable argument passed | 
|  | on the stack. | 
|  |  | 
|  | Otherwise, we can pass up to four arguments on the stack. | 
|  |  | 
|  | Once computed, we leave this value alone.  I.e. we don't update | 
|  | it in case of a struct return going in a register or an argument | 
|  | requiring multiple registers, etc.  We rely instead on the value | 
|  | of the ``arg_reg'' variable to get these other details correct.  */ | 
|  |  | 
|  | if (func_type->has_varargs ()) | 
|  | num_register_candidate_args = func_type->num_fields () - 1; | 
|  | else | 
|  | num_register_candidate_args = 4; | 
|  |  | 
|  | /* We make two passes; the first does the stack allocation, | 
|  | the second actually stores the arguments.  */ | 
|  | for (write_pass = 0; write_pass <= 1; write_pass++) | 
|  | { | 
|  | int i; | 
|  | int arg_reg = RX_R1_REGNUM; | 
|  |  | 
|  | if (write_pass) | 
|  | sp = align_down (sp - sp_off, 4); | 
|  | sp_off = 0; | 
|  |  | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | struct type *return_type = TYPE_TARGET_TYPE (func_type); | 
|  |  | 
|  | gdb_assert (return_type->code () == TYPE_CODE_STRUCT | 
|  | || func_type->code () == TYPE_CODE_UNION); | 
|  |  | 
|  | if (TYPE_LENGTH (return_type) > 16 | 
|  | || TYPE_LENGTH (return_type) % 4 != 0) | 
|  | { | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | 
|  | struct_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Push the arguments.  */ | 
|  | for (i = 0; i < nargs; i++) | 
|  | { | 
|  | struct value *arg = args[i]; | 
|  | const gdb_byte *arg_bits = value_contents_all (arg).data (); | 
|  | struct type *arg_type = check_typedef (value_type (arg)); | 
|  | ULONGEST arg_size = TYPE_LENGTH (arg_type); | 
|  |  | 
|  | if (i == 0 && struct_addr != 0 | 
|  | && return_method != return_method_struct | 
|  | && arg_type->code () == TYPE_CODE_PTR | 
|  | && extract_unsigned_integer (arg_bits, 4, | 
|  | byte_order) == struct_addr) | 
|  | { | 
|  | /* This argument represents the address at which C++ (and | 
|  | possibly other languages) store their return value. | 
|  | Put this value in R15.  */ | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | 
|  | struct_addr); | 
|  | } | 
|  | else if (arg_type->code () != TYPE_CODE_STRUCT | 
|  | && arg_type->code () != TYPE_CODE_UNION | 
|  | && arg_size <= 8) | 
|  | { | 
|  | /* Argument is a scalar.  */ | 
|  | if (arg_size == 8) | 
|  | { | 
|  | if (i < num_register_candidate_args | 
|  | && arg_reg <= RX_R4_REGNUM - 1) | 
|  | { | 
|  | /* If argument registers are going to be used to pass | 
|  | an 8 byte scalar, the ABI specifies that two registers | 
|  | must be available.  */ | 
|  | if (write_pass) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regcache, arg_reg, | 
|  | extract_unsigned_integer | 
|  | (arg_bits, 4, | 
|  | byte_order)); | 
|  | regcache_cooked_write_unsigned (regcache, | 
|  | arg_reg + 1, | 
|  | extract_unsigned_integer | 
|  | (arg_bits + 4, 4, | 
|  | byte_order)); | 
|  | } | 
|  | arg_reg += 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | sp_off = align_up (sp_off, 4); | 
|  | /* Otherwise, pass the 8 byte scalar on the stack.  */ | 
|  | if (write_pass) | 
|  | write_memory (sp + sp_off, arg_bits, 8); | 
|  | sp_off += 8; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | ULONGEST u; | 
|  |  | 
|  | gdb_assert (arg_size <= 4); | 
|  |  | 
|  | u = | 
|  | extract_unsigned_integer (arg_bits, arg_size, byte_order); | 
|  |  | 
|  | if (i < num_register_candidate_args | 
|  | && arg_reg <= RX_R4_REGNUM) | 
|  | { | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, arg_reg, u); | 
|  | arg_reg += 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | int p_arg_size = 4; | 
|  |  | 
|  | if (func_type->is_prototyped () | 
|  | && i < func_type->num_fields ()) | 
|  | { | 
|  | struct type *p_arg_type = | 
|  | func_type->field (i).type (); | 
|  | p_arg_size = TYPE_LENGTH (p_arg_type); | 
|  | } | 
|  |  | 
|  | sp_off = align_up (sp_off, p_arg_size); | 
|  |  | 
|  | if (write_pass) | 
|  | write_memory_unsigned_integer (sp + sp_off, | 
|  | p_arg_size, byte_order, | 
|  | u); | 
|  | sp_off += p_arg_size; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Argument is a struct or union.  Pass as much of the struct | 
|  | in registers, if possible.  Pass the rest on the stack.  */ | 
|  | while (arg_size > 0) | 
|  | { | 
|  | if (i < num_register_candidate_args | 
|  | && arg_reg <= RX_R4_REGNUM | 
|  | && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) | 
|  | && arg_size % 4 == 0) | 
|  | { | 
|  | int len = std::min (arg_size, (ULONGEST) 4); | 
|  |  | 
|  | if (write_pass) | 
|  | regcache_cooked_write_unsigned (regcache, arg_reg, | 
|  | extract_unsigned_integer | 
|  | (arg_bits, len, | 
|  | byte_order)); | 
|  | arg_bits += len; | 
|  | arg_size -= len; | 
|  | arg_reg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | sp_off = align_up (sp_off, 4); | 
|  | if (write_pass) | 
|  | write_memory (sp + sp_off, arg_bits, arg_size); | 
|  | sp_off += align_up (arg_size, 4); | 
|  | arg_size = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Keep track of the stack address prior to pushing the return address. | 
|  | This is the value that we'll return.  */ | 
|  | cfa = sp; | 
|  |  | 
|  | /* Push the return address.  */ | 
|  | sp = sp - 4; | 
|  | write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); | 
|  |  | 
|  | /* Update the stack pointer.  */ | 
|  | regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); | 
|  |  | 
|  | return cfa; | 
|  | } | 
|  |  | 
|  | /* Implement the "return_value" gdbarch method.  */ | 
|  | static enum return_value_convention | 
|  | rx_return_value (struct gdbarch *gdbarch, | 
|  | struct value *function, | 
|  | struct type *valtype, | 
|  | struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | ULONGEST valtype_len = TYPE_LENGTH (valtype); | 
|  |  | 
|  | if (TYPE_LENGTH (valtype) > 16 | 
|  | || ((valtype->code () == TYPE_CODE_STRUCT | 
|  | || valtype->code () == TYPE_CODE_UNION) | 
|  | && TYPE_LENGTH (valtype) % 4 != 0)) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (readbuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = RX_R1_REGNUM; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | int len = std::min (valtype_len, (ULONGEST) 4); | 
|  |  | 
|  | regcache_cooked_read_unsigned (regcache, argreg, &u); | 
|  | store_unsigned_integer (readbuf + offset, len, byte_order, u); | 
|  | valtype_len -= len; | 
|  | offset += len; | 
|  | argreg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (writebuf) | 
|  | { | 
|  | ULONGEST u; | 
|  | int argreg = RX_R1_REGNUM; | 
|  | int offset = 0; | 
|  |  | 
|  | while (valtype_len > 0) | 
|  | { | 
|  | int len = std::min (valtype_len, (ULONGEST) 4); | 
|  |  | 
|  | u = extract_unsigned_integer (writebuf + offset, len, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, argreg, u); | 
|  | valtype_len -= len; | 
|  | offset += len; | 
|  | argreg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | constexpr gdb_byte rx_break_insn[] = { 0x00 }; | 
|  |  | 
|  | typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint; | 
|  |  | 
|  | /* Implement the dwarf_reg_to_regnum" gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | if (0 <= reg && reg <= 15) | 
|  | return reg; | 
|  | else if (reg == 16) | 
|  | return RX_PSW_REGNUM; | 
|  | else if (reg == 17) | 
|  | return RX_PC_REGNUM; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a gdbarch object.  */ | 
|  | static struct gdbarch * | 
|  | rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | int elf_flags; | 
|  | tdesc_arch_data_up tdesc_data; | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  |  | 
|  | /* Extract the elf_flags if available.  */ | 
|  | if (info.abfd != NULL | 
|  | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | 
|  | elf_flags = elf_elfheader (info.abfd)->e_flags; | 
|  | else | 
|  | elf_flags = 0; | 
|  |  | 
|  |  | 
|  | /* Try to find the architecture in the list of already defined | 
|  | architectures.  */ | 
|  | for (arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | arches != NULL; | 
|  | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | 
|  | { | 
|  | rx_gdbarch_tdep *tdep | 
|  | = (rx_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch); | 
|  |  | 
|  | if (tdep->elf_flags != elf_flags) | 
|  | continue; | 
|  |  | 
|  | return arches->gdbarch; | 
|  | } | 
|  |  | 
|  | if (tdesc == NULL) | 
|  | tdesc = tdesc_rx; | 
|  |  | 
|  | /* Check any target description for validity.  */ | 
|  | if (tdesc_has_registers (tdesc)) | 
|  | { | 
|  | const struct tdesc_feature *feature; | 
|  | bool valid_p = true; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.rx.core"); | 
|  |  | 
|  | if (feature != NULL) | 
|  | { | 
|  | tdesc_data = tdesc_data_alloc (); | 
|  | for (int i = 0; i < RX_NUM_REGS; i++) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | rx_register_names[i]); | 
|  | } | 
|  |  | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | gdb_assert(tdesc_data != NULL); | 
|  |  | 
|  | rx_gdbarch_tdep *tdep = new rx_gdbarch_tdep; | 
|  | gdbarch = gdbarch_alloc (&info, tdep); | 
|  | tdep->elf_flags = elf_flags; | 
|  |  | 
|  | set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); | 
|  | tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); | 
|  |  | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, 0); | 
|  | set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); | 
|  | set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | set_gdbarch_decr_pc_after_break (gdbarch, 1); | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind); | 
|  | set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); | 
|  |  | 
|  | /* Target builtin data types.  */ | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  | set_gdbarch_short_bit (gdbarch, 16); | 
|  | set_gdbarch_int_bit (gdbarch, 32); | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | set_gdbarch_float_bit (gdbarch, 32); | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  |  | 
|  | if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) | 
|  | { | 
|  | set_gdbarch_double_bit (gdbarch, 64); | 
|  | set_gdbarch_long_double_bit (gdbarch, 64); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_double_bit (gdbarch, 32); | 
|  | set_gdbarch_long_double_bit (gdbarch, 32); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | 
|  | } | 
|  |  | 
|  | /* DWARF register mapping.  */ | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum); | 
|  |  | 
|  | /* Frame unwinding.  */ | 
|  | frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind); | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); | 
|  |  | 
|  | /* Methods setting up a dummy call, and extracting the return value from | 
|  | a call.  */ | 
|  | set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); | 
|  | set_gdbarch_return_value (gdbarch, rx_return_value); | 
|  |  | 
|  | /* Virtual tables.  */ | 
|  | set_gdbarch_vbit_in_delta (gdbarch, 1); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Register the above initialization routine.  */ | 
|  |  | 
|  | void _initialize_rx_tdep (); | 
|  | void | 
|  | _initialize_rx_tdep () | 
|  | { | 
|  | register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); | 
|  | initialize_tdesc_rx (); | 
|  | } |