|  | /* An expandable hash tables datatype. | 
|  | Copyright (C) 1999-2022 Free Software Foundation, Inc. | 
|  | Contributed by Vladimir Makarov (vmakarov@cygnus.com). | 
|  |  | 
|  | This file is part of the libiberty library. | 
|  | Libiberty is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Library General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2 of the License, or (at your option) any later version. | 
|  |  | 
|  | Libiberty is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Library General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Library General Public | 
|  | License along with libiberty; see the file COPYING.LIB.  If | 
|  | not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, | 
|  | Boston, MA 02110-1301, USA.  */ | 
|  |  | 
|  | /* This package implements basic hash table functionality.  It is possible | 
|  | to search for an entry, create an entry and destroy an entry. | 
|  |  | 
|  | Elements in the table are generic pointers. | 
|  |  | 
|  | The size of the table is not fixed; if the occupancy of the table | 
|  | grows too high the hash table will be expanded. | 
|  |  | 
|  | The abstract data implementation is based on generalized Algorithm D | 
|  | from Knuth's book "The art of computer programming".  Hash table is | 
|  | expanded by creation of new hash table and transferring elements from | 
|  | the old table to the new table. */ | 
|  |  | 
|  | #ifdef HAVE_CONFIG_H | 
|  | #include "config.h" | 
|  | #endif | 
|  |  | 
|  | #include <sys/types.h> | 
|  |  | 
|  | #ifdef HAVE_STDLIB_H | 
|  | #include <stdlib.h> | 
|  | #endif | 
|  | #ifdef HAVE_STRING_H | 
|  | #include <string.h> | 
|  | #endif | 
|  | #ifdef HAVE_MALLOC_H | 
|  | #include <malloc.h> | 
|  | #endif | 
|  | #ifdef HAVE_LIMITS_H | 
|  | #include <limits.h> | 
|  | #endif | 
|  | #ifdef HAVE_INTTYPES_H | 
|  | #include <inttypes.h> | 
|  | #endif | 
|  | #ifdef HAVE_STDINT_H | 
|  | #include <stdint.h> | 
|  | #endif | 
|  |  | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "libiberty.h" | 
|  | #include "ansidecl.h" | 
|  | #include "hashtab.h" | 
|  |  | 
|  | #ifndef CHAR_BIT | 
|  | #define CHAR_BIT 8 | 
|  | #endif | 
|  |  | 
|  | static unsigned int higher_prime_index (unsigned long); | 
|  | static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); | 
|  | static hashval_t htab_mod (hashval_t, htab_t); | 
|  | static hashval_t htab_mod_m2 (hashval_t, htab_t); | 
|  | static hashval_t hash_pointer (const void *); | 
|  | static int eq_pointer (const void *, const void *); | 
|  | static int htab_expand (htab_t); | 
|  | static void **find_empty_slot_for_expand (htab_t, hashval_t); | 
|  |  | 
|  | /* At some point, we could make these be NULL, and modify the | 
|  | hash-table routines to handle NULL specially; that would avoid | 
|  | function-call overhead for the common case of hashing pointers.  */ | 
|  | htab_hash htab_hash_pointer = hash_pointer; | 
|  | htab_eq htab_eq_pointer = eq_pointer; | 
|  |  | 
|  | /* Table of primes and multiplicative inverses. | 
|  |  | 
|  | Note that these are not minimally reduced inverses.  Unlike when generating | 
|  | code to divide by a constant, we want to be able to use the same algorithm | 
|  | all the time.  All of these inverses (are implied to) have bit 32 set. | 
|  |  | 
|  | For the record, here's the function that computed the table; it's a | 
|  | vastly simplified version of the function of the same name from gcc.  */ | 
|  |  | 
|  | #if 0 | 
|  | unsigned int | 
|  | ceil_log2 (unsigned int x) | 
|  | { | 
|  | int i; | 
|  | for (i = 31; i >= 0 ; --i) | 
|  | if (x > (1u << i)) | 
|  | return i+1; | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | unsigned int | 
|  | choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) | 
|  | { | 
|  | unsigned long long mhigh; | 
|  | double nx; | 
|  | int lgup, post_shift; | 
|  | int pow, pow2; | 
|  | int n = 32, precision = 32; | 
|  |  | 
|  | lgup = ceil_log2 (d); | 
|  | pow = n + lgup; | 
|  | pow2 = n + lgup - precision; | 
|  |  | 
|  | nx = ldexp (1.0, pow) + ldexp (1.0, pow2); | 
|  | mhigh = nx / d; | 
|  |  | 
|  | *shiftp = lgup - 1; | 
|  | *mlp = mhigh; | 
|  | return mhigh >> 32; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | struct prime_ent | 
|  | { | 
|  | hashval_t prime; | 
|  | hashval_t inv; | 
|  | hashval_t inv_m2;	/* inverse of prime-2 */ | 
|  | hashval_t shift; | 
|  | }; | 
|  |  | 
|  | static struct prime_ent const prime_tab[] = { | 
|  | {          7, 0x24924925, 0x9999999b, 2 }, | 
|  | {         13, 0x3b13b13c, 0x745d1747, 3 }, | 
|  | {         31, 0x08421085, 0x1a7b9612, 4 }, | 
|  | {         61, 0x0c9714fc, 0x15b1e5f8, 5 }, | 
|  | {        127, 0x02040811, 0x0624dd30, 6 }, | 
|  | {        251, 0x05197f7e, 0x073260a5, 7 }, | 
|  | {        509, 0x01824366, 0x02864fc8, 8 }, | 
|  | {       1021, 0x00c0906d, 0x014191f7, 9 }, | 
|  | {       2039, 0x0121456f, 0x0161e69e, 10 }, | 
|  | {       4093, 0x00300902, 0x00501908, 11 }, | 
|  | {       8191, 0x00080041, 0x00180241, 12 }, | 
|  | {      16381, 0x000c0091, 0x00140191, 13 }, | 
|  | {      32749, 0x002605a5, 0x002a06e6, 14 }, | 
|  | {      65521, 0x000f00e2, 0x00110122, 15 }, | 
|  | {     131071, 0x00008001, 0x00018003, 16 }, | 
|  | {     262139, 0x00014002, 0x0001c004, 17 }, | 
|  | {     524287, 0x00002001, 0x00006001, 18 }, | 
|  | {    1048573, 0x00003001, 0x00005001, 19 }, | 
|  | {    2097143, 0x00004801, 0x00005801, 20 }, | 
|  | {    4194301, 0x00000c01, 0x00001401, 21 }, | 
|  | {    8388593, 0x00001e01, 0x00002201, 22 }, | 
|  | {   16777213, 0x00000301, 0x00000501, 23 }, | 
|  | {   33554393, 0x00001381, 0x00001481, 24 }, | 
|  | {   67108859, 0x00000141, 0x000001c1, 25 }, | 
|  | {  134217689, 0x000004e1, 0x00000521, 26 }, | 
|  | {  268435399, 0x00000391, 0x000003b1, 27 }, | 
|  | {  536870909, 0x00000019, 0x00000029, 28 }, | 
|  | { 1073741789, 0x0000008d, 0x00000095, 29 }, | 
|  | { 2147483647, 0x00000003, 0x00000007, 30 }, | 
|  | /* Avoid "decimal constant so large it is unsigned" for 4294967291.  */ | 
|  | { 0xfffffffb, 0x00000006, 0x00000008, 31 } | 
|  | }; | 
|  |  | 
|  | /* The following function returns an index into the above table of the | 
|  | nearest prime number which is greater than N, and near a power of two. */ | 
|  |  | 
|  | static unsigned int | 
|  | higher_prime_index (unsigned long n) | 
|  | { | 
|  | unsigned int low = 0; | 
|  | unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); | 
|  |  | 
|  | while (low != high) | 
|  | { | 
|  | unsigned int mid = low + (high - low) / 2; | 
|  | if (n > prime_tab[mid].prime) | 
|  | low = mid + 1; | 
|  | else | 
|  | high = mid; | 
|  | } | 
|  |  | 
|  | /* If we've run out of primes, abort.  */ | 
|  | if (n > prime_tab[low].prime) | 
|  | { | 
|  | fprintf (stderr, "Cannot find prime bigger than %lu\n", n); | 
|  | abort (); | 
|  | } | 
|  |  | 
|  | return low; | 
|  | } | 
|  |  | 
|  | /* Returns non-zero if P1 and P2 are equal.  */ | 
|  |  | 
|  | static int | 
|  | eq_pointer (const void *p1, const void *p2) | 
|  | { | 
|  | return p1 == p2; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The parens around the function names in the next two definitions | 
|  | are essential in order to prevent macro expansions of the name. | 
|  | The bodies, however, are expanded as expected, so they are not | 
|  | recursive definitions.  */ | 
|  |  | 
|  | /* Return the current size of given hash table.  */ | 
|  |  | 
|  | #define htab_size(htab)  ((htab)->size) | 
|  |  | 
|  | size_t | 
|  | (htab_size) (htab_t htab) | 
|  | { | 
|  | return htab_size (htab); | 
|  | } | 
|  |  | 
|  | /* Return the current number of elements in given hash table. */ | 
|  |  | 
|  | #define htab_elements(htab)  ((htab)->n_elements - (htab)->n_deleted) | 
|  |  | 
|  | size_t | 
|  | (htab_elements) (htab_t htab) | 
|  | { | 
|  | return htab_elements (htab); | 
|  | } | 
|  |  | 
|  | /* Return X % Y.  */ | 
|  |  | 
|  | static inline hashval_t | 
|  | htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) | 
|  | { | 
|  | /* The multiplicative inverses computed above are for 32-bit types, and | 
|  | requires that we be able to compute a highpart multiply.  */ | 
|  | #ifdef UNSIGNED_64BIT_TYPE | 
|  | __extension__ typedef UNSIGNED_64BIT_TYPE ull; | 
|  | if (sizeof (hashval_t) * CHAR_BIT <= 32) | 
|  | { | 
|  | hashval_t t1, t2, t3, t4, q, r; | 
|  |  | 
|  | t1 = ((ull)x * inv) >> 32; | 
|  | t2 = x - t1; | 
|  | t3 = t2 >> 1; | 
|  | t4 = t1 + t3; | 
|  | q  = t4 >> shift; | 
|  | r  = x - (q * y); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Otherwise just use the native division routines.  */ | 
|  | return x % y; | 
|  | } | 
|  |  | 
|  | /* Compute the primary hash for HASH given HTAB's current size.  */ | 
|  |  | 
|  | static inline hashval_t | 
|  | htab_mod (hashval_t hash, htab_t htab) | 
|  | { | 
|  | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; | 
|  | return htab_mod_1 (hash, p->prime, p->inv, p->shift); | 
|  | } | 
|  |  | 
|  | /* Compute the secondary hash for HASH given HTAB's current size.  */ | 
|  |  | 
|  | static inline hashval_t | 
|  | htab_mod_m2 (hashval_t hash, htab_t htab) | 
|  | { | 
|  | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; | 
|  | return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); | 
|  | } | 
|  |  | 
|  | /* This function creates table with length slightly longer than given | 
|  | source length.  Created hash table is initiated as empty (all the | 
|  | hash table entries are HTAB_EMPTY_ENTRY).  The function returns the | 
|  | created hash table, or NULL if memory allocation fails.  */ | 
|  |  | 
|  | htab_t | 
|  | htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, | 
|  | htab_del del_f, htab_alloc alloc_f, htab_free free_f) | 
|  | { | 
|  | return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f, | 
|  | free_f); | 
|  | } | 
|  |  | 
|  | /* As above, but uses the variants of ALLOC_F and FREE_F which accept | 
|  | an extra argument.  */ | 
|  |  | 
|  | htab_t | 
|  | htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, | 
|  | htab_del del_f, void *alloc_arg, | 
|  | htab_alloc_with_arg alloc_f, | 
|  | htab_free_with_arg free_f) | 
|  | { | 
|  | htab_t result; | 
|  | unsigned int size_prime_index; | 
|  |  | 
|  | size_prime_index = higher_prime_index (size); | 
|  | size = prime_tab[size_prime_index].prime; | 
|  |  | 
|  | result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); | 
|  | if (result == NULL) | 
|  | return NULL; | 
|  | result->entries = (void **) (*alloc_f) (alloc_arg, size, sizeof (void *)); | 
|  | if (result->entries == NULL) | 
|  | { | 
|  | if (free_f != NULL) | 
|  | (*free_f) (alloc_arg, result); | 
|  | return NULL; | 
|  | } | 
|  | result->size = size; | 
|  | result->size_prime_index = size_prime_index; | 
|  | result->hash_f = hash_f; | 
|  | result->eq_f = eq_f; | 
|  | result->del_f = del_f; | 
|  | result->alloc_arg = alloc_arg; | 
|  | result->alloc_with_arg_f = alloc_f; | 
|  | result->free_with_arg_f = free_f; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  |  | 
|  | @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @ | 
|  | htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @ | 
|  | htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @ | 
|  | htab_free @var{free_f}) | 
|  |  | 
|  | This function creates a hash table that uses two different allocators | 
|  | @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself | 
|  | and its entries respectively.  This is useful when variables of different | 
|  | types need to be allocated with different allocators. | 
|  |  | 
|  | The created hash table is slightly larger than @var{size} and it is | 
|  | initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}). | 
|  | The function returns the created hash table, or @code{NULL} if memory | 
|  | allocation fails. | 
|  |  | 
|  | @end deftypefn | 
|  |  | 
|  | */ | 
|  |  | 
|  | htab_t | 
|  | htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, | 
|  | htab_del del_f, htab_alloc alloc_tab_f, | 
|  | htab_alloc alloc_f, htab_free free_f) | 
|  | { | 
|  | htab_t result; | 
|  | unsigned int size_prime_index; | 
|  |  | 
|  | size_prime_index = higher_prime_index (size); | 
|  | size = prime_tab[size_prime_index].prime; | 
|  |  | 
|  | result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab)); | 
|  | if (result == NULL) | 
|  | return NULL; | 
|  | result->entries = (void **) (*alloc_f) (size, sizeof (void *)); | 
|  | if (result->entries == NULL) | 
|  | { | 
|  | if (free_f != NULL) | 
|  | (*free_f) (result); | 
|  | return NULL; | 
|  | } | 
|  | result->size = size; | 
|  | result->size_prime_index = size_prime_index; | 
|  | result->hash_f = hash_f; | 
|  | result->eq_f = eq_f; | 
|  | result->del_f = del_f; | 
|  | result->alloc_f = alloc_f; | 
|  | result->free_f = free_f; | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Update the function pointers and allocation parameter in the htab_t.  */ | 
|  |  | 
|  | void | 
|  | htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, | 
|  | htab_del del_f, void *alloc_arg, | 
|  | htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) | 
|  | { | 
|  | htab->hash_f = hash_f; | 
|  | htab->eq_f = eq_f; | 
|  | htab->del_f = del_f; | 
|  | htab->alloc_arg = alloc_arg; | 
|  | htab->alloc_with_arg_f = alloc_f; | 
|  | htab->free_with_arg_f = free_f; | 
|  | } | 
|  |  | 
|  | /* These functions exist solely for backward compatibility.  */ | 
|  |  | 
|  | #undef htab_create | 
|  | htab_t | 
|  | htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) | 
|  | { | 
|  | return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); | 
|  | } | 
|  |  | 
|  | htab_t | 
|  | htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) | 
|  | { | 
|  | return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); | 
|  | } | 
|  |  | 
|  | /* This function frees all memory allocated for given hash table. | 
|  | Naturally the hash table must already exist. */ | 
|  |  | 
|  | void | 
|  | htab_delete (htab_t htab) | 
|  | { | 
|  | size_t size = htab_size (htab); | 
|  | void **entries = htab->entries; | 
|  | int i; | 
|  |  | 
|  | if (htab->del_f) | 
|  | for (i = size - 1; i >= 0; i--) | 
|  | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) | 
|  | (*htab->del_f) (entries[i]); | 
|  |  | 
|  | if (htab->free_f != NULL) | 
|  | { | 
|  | (*htab->free_f) (entries); | 
|  | (*htab->free_f) (htab); | 
|  | } | 
|  | else if (htab->free_with_arg_f != NULL) | 
|  | { | 
|  | (*htab->free_with_arg_f) (htab->alloc_arg, entries); | 
|  | (*htab->free_with_arg_f) (htab->alloc_arg, htab); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function clears all entries in the given hash table.  */ | 
|  |  | 
|  | void | 
|  | htab_empty (htab_t htab) | 
|  | { | 
|  | size_t size = htab_size (htab); | 
|  | void **entries = htab->entries; | 
|  | int i; | 
|  |  | 
|  | if (htab->del_f) | 
|  | for (i = size - 1; i >= 0; i--) | 
|  | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) | 
|  | (*htab->del_f) (entries[i]); | 
|  |  | 
|  | /* Instead of clearing megabyte, downsize the table.  */ | 
|  | if (size > 1024*1024 / sizeof (void *)) | 
|  | { | 
|  | int nindex = higher_prime_index (1024 / sizeof (void *)); | 
|  | int nsize = prime_tab[nindex].prime; | 
|  |  | 
|  | if (htab->free_f != NULL) | 
|  | (*htab->free_f) (htab->entries); | 
|  | else if (htab->free_with_arg_f != NULL) | 
|  | (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); | 
|  | if (htab->alloc_with_arg_f != NULL) | 
|  | htab->entries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | 
|  | sizeof (void *)); | 
|  | else | 
|  | htab->entries = (void **) (*htab->alloc_f) (nsize, sizeof (void *)); | 
|  | htab->size = nsize; | 
|  | htab->size_prime_index = nindex; | 
|  | } | 
|  | else | 
|  | memset (entries, 0, size * sizeof (void *)); | 
|  | htab->n_deleted = 0; | 
|  | htab->n_elements = 0; | 
|  | } | 
|  |  | 
|  | /* Similar to htab_find_slot, but without several unwanted side effects: | 
|  | - Does not call htab->eq_f when it finds an existing entry. | 
|  | - Does not change the count of elements/searches/collisions in the | 
|  | hash table. | 
|  | This function also assumes there are no deleted entries in the table. | 
|  | HASH is the hash value for the element to be inserted.  */ | 
|  |  | 
|  | static void ** | 
|  | find_empty_slot_for_expand (htab_t htab, hashval_t hash) | 
|  | { | 
|  | hashval_t index = htab_mod (hash, htab); | 
|  | size_t size = htab_size (htab); | 
|  | void **slot = htab->entries + index; | 
|  | hashval_t hash2; | 
|  |  | 
|  | if (*slot == HTAB_EMPTY_ENTRY) | 
|  | return slot; | 
|  | else if (*slot == HTAB_DELETED_ENTRY) | 
|  | abort (); | 
|  |  | 
|  | hash2 = htab_mod_m2 (hash, htab); | 
|  | for (;;) | 
|  | { | 
|  | index += hash2; | 
|  | if (index >= size) | 
|  | index -= size; | 
|  |  | 
|  | slot = htab->entries + index; | 
|  | if (*slot == HTAB_EMPTY_ENTRY) | 
|  | return slot; | 
|  | else if (*slot == HTAB_DELETED_ENTRY) | 
|  | abort (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The following function changes size of memory allocated for the | 
|  | entries and repeatedly inserts the table elements.  The occupancy | 
|  | of the table after the call will be about 50%.  Naturally the hash | 
|  | table must already exist.  Remember also that the place of the | 
|  | table entries is changed.  If memory allocation failures are allowed, | 
|  | this function will return zero, indicating that the table could not be | 
|  | expanded.  If all goes well, it will return a non-zero value.  */ | 
|  |  | 
|  | static int | 
|  | htab_expand (htab_t htab) | 
|  | { | 
|  | void **oentries; | 
|  | void **olimit; | 
|  | void **p; | 
|  | void **nentries; | 
|  | size_t nsize, osize, elts; | 
|  | unsigned int oindex, nindex; | 
|  |  | 
|  | oentries = htab->entries; | 
|  | oindex = htab->size_prime_index; | 
|  | osize = htab->size; | 
|  | olimit = oentries + osize; | 
|  | elts = htab_elements (htab); | 
|  |  | 
|  | /* Resize only when table after removal of unused elements is either | 
|  | too full or too empty.  */ | 
|  | if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) | 
|  | { | 
|  | nindex = higher_prime_index (elts * 2); | 
|  | nsize = prime_tab[nindex].prime; | 
|  | } | 
|  | else | 
|  | { | 
|  | nindex = oindex; | 
|  | nsize = osize; | 
|  | } | 
|  |  | 
|  | if (htab->alloc_with_arg_f != NULL) | 
|  | nentries = (void **) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | 
|  | sizeof (void *)); | 
|  | else | 
|  | nentries = (void **) (*htab->alloc_f) (nsize, sizeof (void *)); | 
|  | if (nentries == NULL) | 
|  | return 0; | 
|  | htab->entries = nentries; | 
|  | htab->size = nsize; | 
|  | htab->size_prime_index = nindex; | 
|  | htab->n_elements -= htab->n_deleted; | 
|  | htab->n_deleted = 0; | 
|  |  | 
|  | p = oentries; | 
|  | do | 
|  | { | 
|  | void *x = *p; | 
|  |  | 
|  | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) | 
|  | { | 
|  | void **q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); | 
|  |  | 
|  | *q = x; | 
|  | } | 
|  |  | 
|  | p++; | 
|  | } | 
|  | while (p < olimit); | 
|  |  | 
|  | if (htab->free_f != NULL) | 
|  | (*htab->free_f) (oentries); | 
|  | else if (htab->free_with_arg_f != NULL) | 
|  | (*htab->free_with_arg_f) (htab->alloc_arg, oentries); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* This function searches for a hash table entry equal to the given | 
|  | element.  It cannot be used to insert or delete an element.  */ | 
|  |  | 
|  | void * | 
|  | htab_find_with_hash (htab_t htab, const void *element, hashval_t hash) | 
|  | { | 
|  | hashval_t index, hash2; | 
|  | size_t size; | 
|  | void *entry; | 
|  |  | 
|  | htab->searches++; | 
|  | size = htab_size (htab); | 
|  | index = htab_mod (hash, htab); | 
|  |  | 
|  | entry = htab->entries[index]; | 
|  | if (entry == HTAB_EMPTY_ENTRY | 
|  | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | 
|  | return entry; | 
|  |  | 
|  | hash2 = htab_mod_m2 (hash, htab); | 
|  | for (;;) | 
|  | { | 
|  | htab->collisions++; | 
|  | index += hash2; | 
|  | if (index >= size) | 
|  | index -= size; | 
|  |  | 
|  | entry = htab->entries[index]; | 
|  | if (entry == HTAB_EMPTY_ENTRY | 
|  | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | 
|  | return entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Like htab_find_slot_with_hash, but compute the hash value from the | 
|  | element.  */ | 
|  |  | 
|  | void * | 
|  | htab_find (htab_t htab, const void *element) | 
|  | { | 
|  | return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); | 
|  | } | 
|  |  | 
|  | /* This function searches for a hash table slot containing an entry | 
|  | equal to the given element.  To delete an entry, call this with | 
|  | insert=NO_INSERT, then call htab_clear_slot on the slot returned | 
|  | (possibly after doing some checks).  To insert an entry, call this | 
|  | with insert=INSERT, then write the value you want into the returned | 
|  | slot.  When inserting an entry, NULL may be returned if memory | 
|  | allocation fails.  */ | 
|  |  | 
|  | void ** | 
|  | htab_find_slot_with_hash (htab_t htab, const void *element, | 
|  | hashval_t hash, enum insert_option insert) | 
|  | { | 
|  | void **first_deleted_slot; | 
|  | hashval_t index, hash2; | 
|  | size_t size; | 
|  | void *entry; | 
|  |  | 
|  | size = htab_size (htab); | 
|  | if (insert == INSERT && size * 3 <= htab->n_elements * 4) | 
|  | { | 
|  | if (htab_expand (htab) == 0) | 
|  | return NULL; | 
|  | size = htab_size (htab); | 
|  | } | 
|  |  | 
|  | index = htab_mod (hash, htab); | 
|  |  | 
|  | htab->searches++; | 
|  | first_deleted_slot = NULL; | 
|  |  | 
|  | entry = htab->entries[index]; | 
|  | if (entry == HTAB_EMPTY_ENTRY) | 
|  | goto empty_entry; | 
|  | else if (entry == HTAB_DELETED_ENTRY) | 
|  | first_deleted_slot = &htab->entries[index]; | 
|  | else if ((*htab->eq_f) (entry, element)) | 
|  | return &htab->entries[index]; | 
|  |  | 
|  | hash2 = htab_mod_m2 (hash, htab); | 
|  | for (;;) | 
|  | { | 
|  | htab->collisions++; | 
|  | index += hash2; | 
|  | if (index >= size) | 
|  | index -= size; | 
|  |  | 
|  | entry = htab->entries[index]; | 
|  | if (entry == HTAB_EMPTY_ENTRY) | 
|  | goto empty_entry; | 
|  | else if (entry == HTAB_DELETED_ENTRY) | 
|  | { | 
|  | if (!first_deleted_slot) | 
|  | first_deleted_slot = &htab->entries[index]; | 
|  | } | 
|  | else if ((*htab->eq_f) (entry, element)) | 
|  | return &htab->entries[index]; | 
|  | } | 
|  |  | 
|  | empty_entry: | 
|  | if (insert == NO_INSERT) | 
|  | return NULL; | 
|  |  | 
|  | if (first_deleted_slot) | 
|  | { | 
|  | htab->n_deleted--; | 
|  | *first_deleted_slot = HTAB_EMPTY_ENTRY; | 
|  | return first_deleted_slot; | 
|  | } | 
|  |  | 
|  | htab->n_elements++; | 
|  | return &htab->entries[index]; | 
|  | } | 
|  |  | 
|  | /* Like htab_find_slot_with_hash, but compute the hash value from the | 
|  | element.  */ | 
|  |  | 
|  | void ** | 
|  | htab_find_slot (htab_t htab, const void *element, enum insert_option insert) | 
|  | { | 
|  | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), | 
|  | insert); | 
|  | } | 
|  |  | 
|  | /* This function deletes an element with the given value from hash | 
|  | table (the hash is computed from the element).  If there is no matching | 
|  | element in the hash table, this function does nothing.  */ | 
|  |  | 
|  | void | 
|  | htab_remove_elt (htab_t htab, const void *element) | 
|  | { | 
|  | htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This function deletes an element with the given value from hash | 
|  | table.  If there is no matching element in the hash table, this | 
|  | function does nothing.  */ | 
|  |  | 
|  | void | 
|  | htab_remove_elt_with_hash (htab_t htab, const void *element, hashval_t hash) | 
|  | { | 
|  | void **slot; | 
|  |  | 
|  | slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); | 
|  | if (slot == NULL) | 
|  | return; | 
|  |  | 
|  | if (htab->del_f) | 
|  | (*htab->del_f) (*slot); | 
|  |  | 
|  | *slot = HTAB_DELETED_ENTRY; | 
|  | htab->n_deleted++; | 
|  | } | 
|  |  | 
|  | /* This function clears a specified slot in a hash table.  It is | 
|  | useful when you've already done the lookup and don't want to do it | 
|  | again.  */ | 
|  |  | 
|  | void | 
|  | htab_clear_slot (htab_t htab, void **slot) | 
|  | { | 
|  | if (slot < htab->entries || slot >= htab->entries + htab_size (htab) | 
|  | || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) | 
|  | abort (); | 
|  |  | 
|  | if (htab->del_f) | 
|  | (*htab->del_f) (*slot); | 
|  |  | 
|  | *slot = HTAB_DELETED_ENTRY; | 
|  | htab->n_deleted++; | 
|  | } | 
|  |  | 
|  | /* This function scans over the entire hash table calling | 
|  | CALLBACK for each live entry.  If CALLBACK returns false, | 
|  | the iteration stops.  INFO is passed as CALLBACK's second | 
|  | argument.  */ | 
|  |  | 
|  | void | 
|  | htab_traverse_noresize (htab_t htab, htab_trav callback, void *info) | 
|  | { | 
|  | void **slot; | 
|  | void **limit; | 
|  |  | 
|  | slot = htab->entries; | 
|  | limit = slot + htab_size (htab); | 
|  |  | 
|  | do | 
|  | { | 
|  | void *x = *slot; | 
|  |  | 
|  | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) | 
|  | if (!(*callback) (slot, info)) | 
|  | break; | 
|  | } | 
|  | while (++slot < limit); | 
|  | } | 
|  |  | 
|  | /* Like htab_traverse_noresize, but does resize the table when it is | 
|  | too empty to improve effectivity of subsequent calls.  */ | 
|  |  | 
|  | void | 
|  | htab_traverse (htab_t htab, htab_trav callback, void *info) | 
|  | { | 
|  | size_t size = htab_size (htab); | 
|  | if (htab_elements (htab) * 8 < size && size > 32) | 
|  | htab_expand (htab); | 
|  |  | 
|  | htab_traverse_noresize (htab, callback, info); | 
|  | } | 
|  |  | 
|  | /* Return the fraction of fixed collisions during all work with given | 
|  | hash table. */ | 
|  |  | 
|  | double | 
|  | htab_collisions (htab_t htab) | 
|  | { | 
|  | if (htab->searches == 0) | 
|  | return 0.0; | 
|  |  | 
|  | return (double) htab->collisions / (double) htab->searches; | 
|  | } | 
|  |  | 
|  | /* Hash P as a null-terminated string. | 
|  |  | 
|  | Copied from gcc/hashtable.c.  Zack had the following to say with respect | 
|  | to applicability, though note that unlike hashtable.c, this hash table | 
|  | implementation re-hashes rather than chain buckets. | 
|  |  | 
|  | http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html | 
|  | From: Zack Weinberg <zackw@panix.com> | 
|  | Date: Fri, 17 Aug 2001 02:15:56 -0400 | 
|  |  | 
|  | I got it by extracting all the identifiers from all the source code | 
|  | I had lying around in mid-1999, and testing many recurrences of | 
|  | the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either | 
|  | prime numbers or the appropriate identity.  This was the best one. | 
|  | I don't remember exactly what constituted "best", except I was | 
|  | looking at bucket-length distributions mostly. | 
|  |  | 
|  | So it should be very good at hashing identifiers, but might not be | 
|  | as good at arbitrary strings. | 
|  |  | 
|  | I'll add that it thoroughly trounces the hash functions recommended | 
|  | for this use at http://burtleburtle.net/bob/hash/index.html, both | 
|  | on speed and bucket distribution.  I haven't tried it against the | 
|  | function they just started using for Perl's hashes.  */ | 
|  |  | 
|  | hashval_t | 
|  | htab_hash_string (const void *p) | 
|  | { | 
|  | const unsigned char *str = (const unsigned char *) p; | 
|  | hashval_t r = 0; | 
|  | unsigned char c; | 
|  |  | 
|  | while ((c = *str++) != 0) | 
|  | r = r * 67 + c - 113; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* An equality function for null-terminated strings.  */ | 
|  | int | 
|  | htab_eq_string (const void *a, const void *b) | 
|  | { | 
|  | return strcmp ((const char *) a, (const char *) b) == 0; | 
|  | } | 
|  |  | 
|  | /* DERIVED FROM: | 
|  | -------------------------------------------------------------------- | 
|  | lookup2.c, by Bob Jenkins, December 1996, Public Domain. | 
|  | hash(), hash2(), hash3, and mix() are externally useful functions. | 
|  | Routines to test the hash are included if SELF_TEST is defined. | 
|  | You can use this free for any purpose.  It has no warranty. | 
|  | -------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | /* | 
|  | -------------------------------------------------------------------- | 
|  | mix -- mix 3 32-bit values reversibly. | 
|  | For every delta with one or two bit set, and the deltas of all three | 
|  | high bits or all three low bits, whether the original value of a,b,c | 
|  | is almost all zero or is uniformly distributed, | 
|  | * If mix() is run forward or backward, at least 32 bits in a,b,c | 
|  | have at least 1/4 probability of changing. | 
|  | * If mix() is run forward, every bit of c will change between 1/3 and | 
|  | 2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.) | 
|  | mix() was built out of 36 single-cycle latency instructions in a | 
|  | structure that could supported 2x parallelism, like so: | 
|  | a -= b; | 
|  | a -= c; x = (c>>13); | 
|  | b -= c; a ^= x; | 
|  | b -= a; x = (a<<8); | 
|  | c -= a; b ^= x; | 
|  | c -= b; x = (b>>13); | 
|  | ... | 
|  | Unfortunately, superscalar Pentiums and Sparcs can't take advantage | 
|  | of that parallelism.  They've also turned some of those single-cycle | 
|  | latency instructions into multi-cycle latency instructions.  Still, | 
|  | this is the fastest good hash I could find.  There were about 2^^68 | 
|  | to choose from.  I only looked at a billion or so. | 
|  | -------------------------------------------------------------------- | 
|  | */ | 
|  | /* same, but slower, works on systems that might have 8 byte hashval_t's */ | 
|  | #define mix(a,b,c) \ | 
|  | { \ | 
|  | a -= b; a -= c; a ^= (c>>13); \ | 
|  | b -= c; b -= a; b ^= (a<< 8); \ | 
|  | c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ | 
|  | a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ | 
|  | b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ | 
|  | c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ | 
|  | a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ | 
|  | b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ | 
|  | c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ | 
|  | } | 
|  |  | 
|  | /* | 
|  | -------------------------------------------------------------------- | 
|  | hash() -- hash a variable-length key into a 32-bit value | 
|  | k     : the key (the unaligned variable-length array of bytes) | 
|  | len   : the length of the key, counting by bytes | 
|  | level : can be any 4-byte value | 
|  | Returns a 32-bit value.  Every bit of the key affects every bit of | 
|  | the return value.  Every 1-bit and 2-bit delta achieves avalanche. | 
|  | About 36+6len instructions. | 
|  |  | 
|  | The best hash table sizes are powers of 2.  There is no need to do | 
|  | mod a prime (mod is sooo slow!).  If you need less than 32 bits, | 
|  | use a bitmask.  For example, if you need only 10 bits, do | 
|  | h = (h & hashmask(10)); | 
|  | In which case, the hash table should have hashsize(10) elements. | 
|  |  | 
|  | If you are hashing n strings (ub1 **)k, do it like this: | 
|  | for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); | 
|  |  | 
|  | By Bob Jenkins, 1996.  bob_jenkins@burtleburtle.net.  You may use this | 
|  | code any way you wish, private, educational, or commercial.  It's free. | 
|  |  | 
|  | See http://burtleburtle.net/bob/hash/evahash.html | 
|  | Use for hash table lookup, or anything where one collision in 2^32 is | 
|  | acceptable.  Do NOT use for cryptographic purposes. | 
|  | -------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | hashval_t | 
|  | iterative_hash (const void *k_in /* the key */, | 
|  | register size_t  length /* the length of the key */, | 
|  | register hashval_t initval /* the previous hash, or | 
|  | an arbitrary value */) | 
|  | { | 
|  | register const unsigned char *k = (const unsigned char *)k_in; | 
|  | register hashval_t a,b,c,len; | 
|  |  | 
|  | /* Set up the internal state */ | 
|  | len = length; | 
|  | a = b = 0x9e3779b9;  /* the golden ratio; an arbitrary value */ | 
|  | c = initval;           /* the previous hash value */ | 
|  |  | 
|  | /*---------------------------------------- handle most of the key */ | 
|  | #ifndef WORDS_BIGENDIAN | 
|  | /* On a little-endian machine, if the data is 4-byte aligned we can hash | 
|  | by word for better speed.  This gives nondeterministic results on | 
|  | big-endian machines.  */ | 
|  | if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) | 
|  | while (len >= 12)    /* aligned */ | 
|  | { | 
|  | a += *(hashval_t *)(k+0); | 
|  | b += *(hashval_t *)(k+4); | 
|  | c += *(hashval_t *)(k+8); | 
|  | mix(a,b,c); | 
|  | k += 12; len -= 12; | 
|  | } | 
|  | else /* unaligned */ | 
|  | #endif | 
|  | while (len >= 12) | 
|  | { | 
|  | a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); | 
|  | b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); | 
|  | c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); | 
|  | mix(a,b,c); | 
|  | k += 12; len -= 12; | 
|  | } | 
|  |  | 
|  | /*------------------------------------- handle the last 11 bytes */ | 
|  | c += length; | 
|  | switch(len)              /* all the case statements fall through */ | 
|  | { | 
|  | case 11: c+=((hashval_t)k[10]<<24);	/* fall through */ | 
|  | case 10: c+=((hashval_t)k[9]<<16);	/* fall through */ | 
|  | case 9 : c+=((hashval_t)k[8]<<8);	/* fall through */ | 
|  | /* the first byte of c is reserved for the length */ | 
|  | case 8 : b+=((hashval_t)k[7]<<24);	/* fall through */ | 
|  | case 7 : b+=((hashval_t)k[6]<<16);	/* fall through */ | 
|  | case 6 : b+=((hashval_t)k[5]<<8);	/* fall through */ | 
|  | case 5 : b+=k[4];			/* fall through */ | 
|  | case 4 : a+=((hashval_t)k[3]<<24);	/* fall through */ | 
|  | case 3 : a+=((hashval_t)k[2]<<16);	/* fall through */ | 
|  | case 2 : a+=((hashval_t)k[1]<<8);	/* fall through */ | 
|  | case 1 : a+=k[0]; | 
|  | /* case 0: nothing left to add */ | 
|  | } | 
|  | mix(a,b,c); | 
|  | /*-------------------------------------------- report the result */ | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* Returns a hash code for pointer P. Simplified version of evahash */ | 
|  |  | 
|  | static hashval_t | 
|  | hash_pointer (const void *p) | 
|  | { | 
|  | intptr_t v = (intptr_t) p; | 
|  | unsigned a, b, c; | 
|  |  | 
|  | a = b = 0x9e3779b9; | 
|  | a += v >> (sizeof (intptr_t) * CHAR_BIT / 2); | 
|  | b += v & (((intptr_t) 1 << (sizeof (intptr_t) * CHAR_BIT / 2)) - 1); | 
|  | c = 0x42135234; | 
|  | mix (a, b, c); | 
|  | return c; | 
|  | } |