blob: 48a82f7cf36c57ae4f099d2911a141f1613f8d6d [file] [log] [blame]
/* Target-dependent code for GNU/Linux on MIPS processors.
Copyright 2001, 2002, 2004 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "frame.h"
#include "trad-frame.h"
#include "tramp-frame.h"
/* Copied from <asm/elf.h>. */
#define ELF_NGREG 45
#define ELF_NFPREG 33
typedef unsigned char elf_greg_t[4];
typedef elf_greg_t elf_gregset_t[ELF_NGREG];
typedef unsigned char elf_fpreg_t[8];
typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
#define FPR_BASE 32
#define PC 64
#define CAUSE 65
#define BADVADDR 66
#define MMHI 67
#define MMLO 68
#define FPC_CSR 69
#define FPC_EIR 70
#define EF_REG0 6
#define EF_REG31 37
#define EF_LO 38
#define EF_HI 39
#define EF_CP0_EPC 40
#define EF_CP0_BADVADDR 41
#define EF_CP0_STATUS 42
#define EF_CP0_CAUSE 43
#define EF_SIZE 180
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
is copied into PC. This routine returns 1 on success. */
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0
static int
mips_linux_get_longjmp_target (CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
/* Transform the bits comprising a 32-bit register to the right size
for supply_register(). This is needed when mips_regsize() is 8. */
static void
supply_32bit_reg (int regnum, const void *addr)
{
char buf[MAX_REGISTER_SIZE];
store_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum),
extract_signed_integer (addr, 4));
supply_register (regnum, buf);
}
/* Unpack an elf_gregset_t into GDB's register cache. */
void
supply_gregset (elf_gregset_t *gregsetp)
{
int regi;
elf_greg_t *regp = *gregsetp;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = EF_REG0; regi <= EF_REG31; regi++)
supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
(char *)(regp + EF_LO));
supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
(char *)(regp + EF_HI));
supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
(char *)(regp + EF_CP0_EPC));
supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
(char *)(regp + EF_CP0_BADVADDR));
supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
(char *)(regp + EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
supply_register (UNUSED_REGNUM, zerobuf);
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
supply_register (regi, zerobuf);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
void
fill_gregset (elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (elf_gregset_t));
for (regi = 0; regi < 32; regi++)
fill_gregset (gregsetp, regi);
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
fill_gregset (gregsetp, PS_REGNUM);
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
return;
}
if (regno < 32)
{
dst = regp + regno + EF_REG0;
regcache_collect (regno, dst);
return;
}
if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = EF_LO;
else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = EF_HI;
else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = EF_CP0_EPC;
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = EF_CP0_BADVADDR;
else if (regno == PS_REGNUM)
regaddr = EF_CP0_STATUS;
else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = EF_CP0_CAUSE;
else
regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_collect (regno, dst);
}
}
/* Likewise, unpack an elf_fpregset_t. */
void
supply_fpregset (elf_fpregset_t *fpregsetp)
{
int regi;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = 0; regi < 32; regi++)
supply_register (FP0_REGNUM + regi,
(char *)(*fpregsetp + regi));
supply_register (mips_regnum (current_gdbarch)->fp_control_status,
(char *)(*fpregsetp + 32));
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
zerobuf);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
{
char *from, *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
}
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + 32);
memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
fill_fpregset (fpregsetp, FP0_REGNUM + regi);
fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status);
}
}
/* Map gdb internal register number to ptrace ``address''.
These ``addresses'' are normally defined in <asm/ptrace.h>. */
static CORE_ADDR
mips_linux_register_addr (int regno, CORE_ADDR blockend)
{
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
error ("Bogon register number %d.", regno);
if (regno < 32)
regaddr = regno;
else if ((regno >= mips_regnum (current_gdbarch)->fp0)
&& (regno < mips_regnum (current_gdbarch)->fp0 + 32))
regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = PC;
else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = CAUSE;
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = BADVADDR;
else if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = MMLO;
else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = MMHI;
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
regaddr = FPC_CSR;
else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
regaddr = FPC_EIR;
else
error ("Unknowable register number %d.", regno);
return regaddr;
}
/* Fetch (and possibly build) an appropriate link_map_offsets
structure for native GNU/Linux MIPS targets using the struct offsets
defined in link.h (but without actual reference to that file).
This makes it possible to access GNU/Linux MIPS shared libraries from a
GDB that was built on a different host platform (for cross debugging). */
static struct link_map_offsets *
mips_linux_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
this is all we need. */
lmo.r_map_offset = 4;
lmo.r_map_size = 4;
lmo.link_map_size = 20;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 4;
lmo.l_name_offset = 4;
lmo.l_name_size = 4;
lmo.l_next_offset = 12;
lmo.l_next_size = 4;
lmo.l_prev_offset = 16;
lmo.l_prev_size = 4;
}
return lmp;
}
/* Support for 64-bit ABIs. */
/* Copied from <asm/elf.h>. */
#define MIPS64_ELF_NGREG 45
#define MIPS64_ELF_NFPREG 33
typedef unsigned char mips64_elf_greg_t[8];
typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
typedef unsigned char mips64_elf_fpreg_t[8];
typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
#define MIPS64_FPR_BASE 32
#define MIPS64_PC 64
#define MIPS64_CAUSE 65
#define MIPS64_BADVADDR 66
#define MIPS64_MMHI 67
#define MIPS64_MMLO 68
#define MIPS64_FPC_CSR 69
#define MIPS64_FPC_EIR 70
#define MIPS64_EF_REG0 0
#define MIPS64_EF_REG31 31
#define MIPS64_EF_LO 32
#define MIPS64_EF_HI 33
#define MIPS64_EF_CP0_EPC 34
#define MIPS64_EF_CP0_BADVADDR 35
#define MIPS64_EF_CP0_STATUS 36
#define MIPS64_EF_CP0_CAUSE 37
#define MIPS64_EF_SIZE 304
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure from
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
is copied into PC. This routine returns 1 on success. */
/* Details about jmp_buf. */
#define MIPS64_LINUX_JB_PC 0
static int
mips64_linux_get_longjmp_target (CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
jb_addr = read_register (A0_REGNUM);
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
/* Unpack an elf_gregset_t into GDB's register cache. */
static void
mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
{
int regi;
mips64_elf_greg_t *regp = *gregsetp;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
supply_register ((regi - MIPS64_EF_REG0), (char *)(regp + regi));
supply_register (mips_regnum (current_gdbarch)->lo,
(char *)(regp + MIPS64_EF_LO));
supply_register (mips_regnum (current_gdbarch)->hi,
(char *)(regp + MIPS64_EF_HI));
supply_register (mips_regnum (current_gdbarch)->pc,
(char *)(regp + MIPS64_EF_CP0_EPC));
supply_register (mips_regnum (current_gdbarch)->badvaddr,
(char *)(regp + MIPS64_EF_CP0_BADVADDR));
supply_register (PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS));
supply_register (mips_regnum (current_gdbarch)->cause,
(char *)(regp + MIPS64_EF_CP0_CAUSE));
/* Fill inaccessible registers with zero. */
supply_register (UNUSED_REGNUM, zerobuf);
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
supply_register (regi, zerobuf);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
static void
mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
{
int regaddr, regi;
mips64_elf_greg_t *regp = *gregsetp;
void *src, *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips64_elf_gregset_t));
for (regi = 0; regi < 32; regi++)
mips64_fill_gregset (gregsetp, regi);
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
mips64_fill_gregset (gregsetp, PS_REGNUM);
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
return;
}
if (regno < 32)
{
dst = regp + regno + MIPS64_EF_REG0;
regcache_collect (regno, dst);
return;
}
if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = MIPS64_EF_LO;
else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = MIPS64_EF_HI;
else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = MIPS64_EF_CP0_EPC;
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = MIPS64_EF_CP0_BADVADDR;
else if (regno == PS_REGNUM)
regaddr = MIPS64_EF_CP0_STATUS;
else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = MIPS64_EF_CP0_CAUSE;
else
regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_collect (regno, dst);
}
}
/* Likewise, unpack an elf_fpregset_t. */
static void
mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
{
int regi;
char zerobuf[MAX_REGISTER_SIZE];
memset (zerobuf, 0, MAX_REGISTER_SIZE);
for (regi = 0; regi < 32; regi++)
supply_register (FP0_REGNUM + regi,
(char *)(*fpregsetp + regi));
supply_register (mips_regnum (current_gdbarch)->fp_control_status,
(char *)(*fpregsetp + 32));
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
supply_register (mips_regnum (current_gdbarch)->fp_implementation_revision,
zerobuf);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
static void
mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
{
char *from, *to;
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno - FP0_REGNUM));
}
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
{
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
to = (char *) (*fpregsetp + 32);
memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (regno));
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
mips64_fill_fpregset(fpregsetp,
mips_regnum (current_gdbarch)->fp_control_status);
}
}
/* Map gdb internal register number to ptrace ``address''.
These ``addresses'' are normally defined in <asm/ptrace.h>. */
static CORE_ADDR
mips64_linux_register_addr (int regno, CORE_ADDR blockend)
{
int regaddr;
if (regno < 0 || regno >= NUM_REGS)
error ("Bogon register number %d.", regno);
if (regno < 32)
regaddr = regno;
else if ((regno >= mips_regnum (current_gdbarch)->fp0)
&& (regno < mips_regnum (current_gdbarch)->fp0 + 32))
regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
else if (regno == mips_regnum (current_gdbarch)->pc)
regaddr = MIPS64_PC;
else if (regno == mips_regnum (current_gdbarch)->cause)
regaddr = MIPS64_CAUSE;
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
regaddr = MIPS64_BADVADDR;
else if (regno == mips_regnum (current_gdbarch)->lo)
regaddr = MIPS64_MMLO;
else if (regno == mips_regnum (current_gdbarch)->hi)
regaddr = MIPS64_MMHI;
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
regaddr = MIPS64_FPC_CSR;
else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
regaddr = MIPS64_FPC_EIR;
else
error ("Unknowable register number %d.", regno);
return regaddr;
}
/* Use a local version of this function to get the correct types for
regsets, until multi-arch core support is ready. */
static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
int which, CORE_ADDR reg_addr)
{
elf_gregset_t gregset;
elf_fpregset_t fpregset;
mips64_elf_gregset_t gregset64;
mips64_elf_fpregset_t fpregset64;
if (which == 0)
{
if (core_reg_size == sizeof (gregset))
{
memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
supply_gregset (&gregset);
}
else if (core_reg_size == sizeof (gregset64))
{
memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
mips64_supply_gregset (&gregset64);
}
else
{
warning ("wrong size gregset struct in core file");
}
}
else if (which == 2)
{
if (core_reg_size == sizeof (fpregset))
{
memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
supply_fpregset (&fpregset);
}
else if (core_reg_size == sizeof (fpregset64))
{
memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
mips64_supply_fpregset (&fpregset64);
}
else
{
warning ("wrong size fpregset struct in core file");
}
}
}
/* Register that we are able to handle ELF file formats using standard
procfs "regset" structures. */
static struct core_fns regset_core_fns =
{
bfd_target_elf_flavour, /* core_flavour */
default_check_format, /* check_format */
default_core_sniffer, /* core_sniffer */
fetch_core_registers, /* core_read_registers */
NULL /* next */
};
/* Fetch (and possibly build) an appropriate link_map_offsets
structure for native GNU/Linux MIPS targets using the struct offsets
defined in link.h (but without actual reference to that file).
This makes it possible to access GNU/Linux MIPS shared libraries from a
GDB that was built on a different host platform (for cross debugging). */
static struct link_map_offsets *
mips64_linux_svr4_fetch_link_map_offsets (void)
{
static struct link_map_offsets lmo;
static struct link_map_offsets *lmp = NULL;
if (lmp == NULL)
{
lmp = &lmo;
lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
this is all we need. */
lmo.r_map_offset = 8;
lmo.r_map_size = 8;
lmo.link_map_size = 40;
lmo.l_addr_offset = 0;
lmo.l_addr_size = 8;
lmo.l_name_offset = 8;
lmo.l_name_size = 8;
lmo.l_next_offset = 24;
lmo.l_next_size = 8;
lmo.l_prev_offset = 32;
lmo.l_prev_size = 8;
}
return lmp;
}
/* Handle for obtaining pointer to the current register_addr() function
for a given architecture. */
static struct gdbarch_data *register_addr_data;
CORE_ADDR
register_addr (int regno, CORE_ADDR blockend)
{
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
gdbarch_data (current_gdbarch, register_addr_data);
gdb_assert (register_addr_ptr != 0);
return register_addr_ptr (regno, blockend);
}
static void
set_mips_linux_register_addr (struct gdbarch *gdbarch,
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
{
deprecated_set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
}
static void *
init_register_addr_data (struct gdbarch *gdbarch)
{
return 0;
}
/* Check the code at PC for a dynamic linker lazy resolution stub. Because
they aren't in the .plt section, we pattern-match on the code generated
by GNU ld. They look like this:
lw t9,0x8010(gp)
addu t7,ra
jalr t9,ra
addiu t8,zero,INDEX
(with the appropriate doubleword instructions for N64). Also return the
dynamic symbol index used in the last instruction. */
static int
mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
{
unsigned char buf[28], *p;
ULONGEST insn, insn1;
int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
read_memory (pc - 12, buf, 28);
if (n64)
{
/* ld t9,0x8010(gp) */
insn1 = 0xdf998010;
}
else
{
/* lw t9,0x8010(gp) */
insn1 = 0x8f998010;
}
p = buf + 12;
while (p >= buf)
{
insn = extract_unsigned_integer (p, 4);
if (insn == insn1)
break;
p -= 4;
}
if (p < buf)
return 0;
insn = extract_unsigned_integer (p + 4, 4);
if (n64)
{
/* daddu t7,ra */
if (insn != 0x03e0782d)
return 0;
}
else
{
/* addu t7,ra */
if (insn != 0x03e07821)
return 0;
}
insn = extract_unsigned_integer (p + 8, 4);
/* jalr t9,ra */
if (insn != 0x0320f809)
return 0;
insn = extract_unsigned_integer (p + 12, 4);
if (n64)
{
/* daddiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x64180000)
return 0;
}
else
{
/* addiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x24180000)
return 0;
}
return (insn & 0xffff);
}
/* Return non-zero iff PC belongs to the dynamic linker resolution code
or to a stub. */
int
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
/* Check whether PC is in the dynamic linker. This also checks whether
it is in the .plt section, which MIPS does not use. */
if (in_solib_dynsym_resolve_code (pc))
return 1;
/* Pattern match for the stub. It would be nice if there were a more
efficient way to avoid this check. */
if (mips_linux_in_dynsym_stub (pc, NULL))
return 1;
return 0;
}
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
implementation of this triggers at "fixup" from the same objfile as
"_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
"__dl_runtime_resolve" directly. An unresolved PLT entry will
point to _dl_runtime_resolve, which will first call
__dl_runtime_resolve, and then pass control to the resolved
function. */
static CORE_ADDR
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct minimal_symbol *resolver;
resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
return frame_pc_unwind (get_current_frame ());
return 0;
}
/* Signal trampoline support. There are four supported layouts for a
signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
n64 rt_sigframe. We handle them all independently; not the most
efficient way, but simplest. First, declare all the unwinders. */
static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
#define MIPS_NR_LINUX 4000
#define MIPS_NR_N64_LINUX 5000
#define MIPS_NR_N32_LINUX 6000
#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
#define MIPS_INST_SYSCALL 0x0000000c
struct tramp_frame mips_linux_o32_sigframe = {
4,
{ MIPS_INST_LI_V0_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
mips_linux_o32_sigframe_init
};
struct tramp_frame mips_linux_o32_rt_sigframe = {
4,
{ MIPS_INST_LI_V0_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
mips_linux_o32_sigframe_init
};
struct tramp_frame mips_linux_n32_rt_sigframe = {
4,
{ MIPS_INST_LI_V0_N32_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
mips_linux_n32n64_sigframe_init
};
struct tramp_frame mips_linux_n64_rt_sigframe = {
4,
{ MIPS_INST_LI_V0_N64_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
mips_linux_n32n64_sigframe_init
};
/* *INDENT-OFF* */
/* The unwinder for o32 signal frames. The legacy structures look
like this:
struct sigframe {
u32 sf_ass[4]; [argument save space for o32]
u32 sf_code[2]; [signal trampoline]
struct sigcontext sf_sc;
sigset_t sf_mask;
};
struct sigcontext {
unsigned int sc_regmask; [Unused]
unsigned int sc_status;
unsigned long long sc_pc;
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned int sc_ownedfp;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir; [Unused]
unsigned int sc_used_math;
unsigned int sc_ssflags; [Unused]
[Alignment hole of four bytes]
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned int sc_cause; [Unused]
unsigned int sc_badvaddr; [Unused]
unsigned long sc_sigset[4]; [kernel's sigset_t]
};
The RT signal frames look like this:
struct rt_sigframe {
u32 rs_ass[4]; [argument save space for o32]
u32 rs_code[2] [signal trampoline]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
[Alignment hole of four bytes]
struct sigcontext uc_mcontext;
sigset_t uc_sigmask;
}; */
/* *INDENT-ON* */
#define SIGFRAME_CODE_OFFSET (4 * 4)
#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
#define RTSIGFRAME_SIGINFO_SIZE 128
#define STACK_T_SIZE (3 * 4)
#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ UCONTEXT_SIGCONTEXT_OFFSET)
#define SIGCONTEXT_PC (1 * 8)
#define SIGCONTEXT_REGS (2 * 8)
#define SIGCONTEXT_FPREGS (34 * 8)
#define SIGCONTEXT_FPCSR (66 * 8 + 4)
#define SIGCONTEXT_HI (69 * 8)
#define SIGCONTEXT_LO (70 * 8)
#define SIGCONTEXT_CAUSE (71 * 8 + 0)
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
#define SIGCONTEXT_REG_SIZE 8
static void
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
int ireg, reg_position;
CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
const struct mips_regnum *regs = mips_regnum (current_gdbarch);
if (self == &mips_linux_o32_sigframe)
sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
/* I'm not proud of this hack. Eventually we will have the infrastructure
to indicate the size of saved registers on a per-frame basis, but
right now we don't; the kernel saves eight bytes but we only want
four. */
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
sigcontext_base += 4;
#if 0
trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
sigcontext_base + SIGCONTEXT_REGS);
#endif
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
sigcontext_base + SIGCONTEXT_REGS
+ ireg * SIGCONTEXT_REG_SIZE);
for (ireg = 0; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
sigcontext_base + SIGCONTEXT_FPREGS
+ ireg * SIGCONTEXT_REG_SIZE);
trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
sigcontext_base + SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
sigcontext_base + SIGCONTEXT_FPCSR);
trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
sigcontext_base + SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
sigcontext_base + SIGCONTEXT_LO);
trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
sigcontext_base + SIGCONTEXT_CAUSE);
trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
sigcontext_base + SIGCONTEXT_BADVADDR);
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache,
frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
}
/* *INDENT-OFF* */
/* For N32/N64 things look different. There is no non-rt signal frame.
struct rt_sigframe_n32 {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline ]
struct siginfo rs_info;
struct ucontextn32 rs_uc;
};
struct ucontextn32 {
u32 uc_flags;
s32 uc_link;
stack32_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
struct rt_sigframe_n32 {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline ]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
And the sigcontext is different (this is for both n32 and n64):
struct sigcontext {
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned long long sc_pc;
unsigned int sc_status;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir;
unsigned int sc_used_math;
unsigned int sc_cause;
unsigned int sc_badvaddr;
}; */
/* *INDENT-ON* */
#define N32_STACK_T_SIZE STACK_T_SIZE
#define N64_STACK_T_SIZE (2 * 8 + 4)
#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N32_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N64_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGCONTEXT_REGS (0 * 8)
#define N64_SIGCONTEXT_FPREGS (32 * 8)
#define N64_SIGCONTEXT_HI (64 * 8)
#define N64_SIGCONTEXT_LO (65 * 8)
#define N64_SIGCONTEXT_PC (66 * 8)
#define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
#define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
#define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
#define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
#define N64_SIGCONTEXT_REG_SIZE 8
static void
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
int ireg, reg_position;
CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
const struct mips_regnum *regs = mips_regnum (current_gdbarch);
if (self == &mips_linux_n32_rt_sigframe)
sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
#if 0
trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_REGS);
#endif
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_REGS
+ ireg * N64_SIGCONTEXT_REG_SIZE);
for (ireg = 0; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_FPREGS
+ ireg * N64_SIGCONTEXT_REG_SIZE);
trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_FPCSR);
trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_LO);
trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_CAUSE);
trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
sigcontext_base + N64_SIGCONTEXT_BADVADDR);
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache,
frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
}
/* Initialize one of the GNU/Linux OS ABIs. */
static void
mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum mips_abi abi = mips_abi (gdbarch);
switch (abi)
{
case MIPS_ABI_O32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
tramp_frame_append (gdbarch, &mips_linux_o32_sigframe);
tramp_frame_append (gdbarch, &mips_linux_o32_rt_sigframe);
break;
case MIPS_ABI_N32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
tramp_frame_append (gdbarch, &mips_linux_n32_rt_sigframe);
break;
case MIPS_ABI_N64:
set_gdbarch_get_longjmp_target (gdbarch,
mips64_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
tramp_frame_append (gdbarch, &mips_linux_n64_rt_sigframe);
break;
default:
internal_error (__FILE__, __LINE__, "can't handle ABI");
break;
}
set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
/* This overrides the MIPS16 stub support from mips-tdep. But no
one uses MIPS16 on GNU/Linux yet, so this isn't much of a loss. */
set_gdbarch_in_solib_call_trampoline (gdbarch, mips_linux_in_dynsym_stub);
}
void
_initialize_mips_linux_tdep (void)
{
const struct bfd_arch_info *arch_info;
register_addr_data =
gdbarch_data_register_post_init (init_register_addr_data);
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
arch_info != NULL;
arch_info = arch_info->next)
{
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
mips_linux_init_abi);
}
add_core_fns (&regset_core_fns);
}