| /* Motorola 68k series support for 32-bit ELF |
| Copyright (C) 1993-2019 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf/m68k.h" |
| #include "opcode/m68k.h" |
| #include "cpu-m68k.h" |
| #include "elf32-m68k.h" |
| |
| static bfd_boolean |
| elf_m68k_discard_copies (struct elf_link_hash_entry *, void *); |
| |
| static reloc_howto_type howto_table[] = |
| { |
| HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), |
| HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), |
| HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), |
| HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), |
| HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), |
| HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), |
| HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), |
| HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), |
| HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), |
| HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), |
| HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), |
| HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), |
| HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), |
| HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), |
| HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), |
| HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), |
| HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), |
| HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_68K_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_68K_GNU_VTINHERIT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_68K_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_68K_GNU_VTENTRY", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), |
| |
| /* TLS general dynamic variable reference. */ |
| HOWTO (R_68K_TLS_GD32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_GD32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_GD16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_GD16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x0000ffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_GD8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_GD8", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x000000ff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* TLS local dynamic variable reference. */ |
| HOWTO (R_68K_TLS_LDM32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDM32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LDM16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDM16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x0000ffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LDM8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDM8", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x000000ff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LDO32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDO32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LDO16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDO16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x0000ffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LDO8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LDO8", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x000000ff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* TLS initial execution variable reference. */ |
| HOWTO (R_68K_TLS_IE32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_IE32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_IE16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_IE16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x0000ffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_IE8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_IE8", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x000000ff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* TLS local execution variable reference. */ |
| HOWTO (R_68K_TLS_LE32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_bitfield, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LE32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LE16, /* type */ |
| 0, /* rightshift */ |
| 1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 16, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LE16", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x0000ffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_LE8, /* type */ |
| 0, /* rightshift */ |
| 0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 8, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_signed, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_LE8", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0x000000ff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* TLS GD/LD dynamic relocations. */ |
| HOWTO (R_68K_TLS_DTPMOD32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_DTPMOD32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_DTPREL32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_DTPREL32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| HOWTO (R_68K_TLS_TPREL32, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 32, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| bfd_elf_generic_reloc, /* special_function */ |
| "R_68K_TLS_TPREL32", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0xffffffff, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| }; |
| |
| static bfd_boolean |
| rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) |
| { |
| unsigned int indx = ELF32_R_TYPE (dst->r_info); |
| |
| if (indx >= (unsigned int) R_68K_max) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, indx); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| cache_ptr->howto = &howto_table[indx]; |
| return TRUE; |
| } |
| |
| #define elf_info_to_howto rtype_to_howto |
| |
| static const struct |
| { |
| bfd_reloc_code_real_type bfd_val; |
| int elf_val; |
| } |
| reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_68K_NONE }, |
| { BFD_RELOC_32, R_68K_32 }, |
| { BFD_RELOC_16, R_68K_16 }, |
| { BFD_RELOC_8, R_68K_8 }, |
| { BFD_RELOC_32_PCREL, R_68K_PC32 }, |
| { BFD_RELOC_16_PCREL, R_68K_PC16 }, |
| { BFD_RELOC_8_PCREL, R_68K_PC8 }, |
| { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, |
| { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, |
| { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, |
| { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, |
| { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, |
| { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, |
| { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, |
| { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, |
| { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, |
| { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, |
| { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, |
| { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, |
| { BFD_RELOC_NONE, R_68K_COPY }, |
| { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, |
| { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, |
| { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, |
| { BFD_RELOC_CTOR, R_68K_32 }, |
| { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, |
| { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, |
| { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 }, |
| { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 }, |
| { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 }, |
| { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 }, |
| { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 }, |
| { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 }, |
| { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 }, |
| { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 }, |
| { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 }, |
| { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 }, |
| { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 }, |
| { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 }, |
| { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 }, |
| { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 }, |
| { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 }, |
| }; |
| |
| static reloc_howto_type * |
| reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) |
| { |
| if (reloc_map[i].bfd_val == code) |
| return &howto_table[reloc_map[i].elf_val]; |
| } |
| return 0; |
| } |
| |
| static reloc_howto_type * |
| reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) |
| if (howto_table[i].name != NULL |
| && strcasecmp (howto_table[i].name, r_name) == 0) |
| return &howto_table[i]; |
| |
| return NULL; |
| } |
| |
| #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup |
| #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup |
| #define ELF_ARCH bfd_arch_m68k |
| #define ELF_TARGET_ID M68K_ELF_DATA |
| |
| /* Functions for the m68k ELF linker. */ |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| |
| /* Describes one of the various PLT styles. */ |
| |
| struct elf_m68k_plt_info |
| { |
| /* The size of each PLT entry. */ |
| bfd_vma size; |
| |
| /* The template for the first PLT entry. */ |
| const bfd_byte *plt0_entry; |
| |
| /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. |
| The comments by each member indicate the value that the relocation |
| is against. */ |
| struct { |
| unsigned int got4; /* .got + 4 */ |
| unsigned int got8; /* .got + 8 */ |
| } plt0_relocs; |
| |
| /* The template for a symbol's PLT entry. */ |
| const bfd_byte *symbol_entry; |
| |
| /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. |
| The comments by each member indicate the value that the relocation |
| is against. */ |
| struct { |
| unsigned int got; /* the symbol's .got.plt entry */ |
| unsigned int plt; /* .plt */ |
| } symbol_relocs; |
| |
| /* The offset of the resolver stub from the start of SYMBOL_ENTRY. |
| The stub starts with "move.l #relocoffset,%d0". */ |
| bfd_vma symbol_resolve_entry; |
| }; |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 20 |
| |
| /* The first entry in a procedure linkage table looks like this. See |
| the SVR4 ABI m68k supplement to see how this works. */ |
| |
| static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = |
| { |
| 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ |
| 0, 0, 0, 2, /* + (.got + 4) - . */ |
| 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ |
| 0, 0, 0, 2, /* + (.got + 8) - . */ |
| 0, 0, 0, 0 /* pad out to 20 bytes. */ |
| }; |
| |
| /* Subsequent entries in a procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ |
| 0, 0, 0, 2, /* + (.got.plt entry) - . */ |
| 0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 0, 0, 0, 0, /* + reloc index */ |
| 0x60, 0xff, /* bra.l .plt */ |
| 0, 0, 0, 0 /* + .plt - . */ |
| }; |
| |
| static const struct elf_m68k_plt_info elf_m68k_plt_info = |
| { |
| PLT_ENTRY_SIZE, |
| elf_m68k_plt0_entry, { 4, 12 }, |
| elf_m68k_plt_entry, { 4, 16 }, 8 |
| }; |
| |
| #define ISAB_PLT_ENTRY_SIZE 24 |
| |
| static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = |
| { |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* + (.got + 4) - . */ |
| 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* + (.got + 8) - . */ |
| 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 0x4e, 0xd0, /* jmp (%a0) */ |
| 0x4e, 0x71 /* nop */ |
| }; |
| |
| /* Subsequent entries in a procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = |
| { |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* + (.got.plt entry) - . */ |
| 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 0x4e, 0xd0, /* jmp (%a0) */ |
| 0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 0, 0, 0, 0, /* + reloc index */ |
| 0x60, 0xff, /* bra.l .plt */ |
| 0, 0, 0, 0 /* + .plt - . */ |
| }; |
| |
| static const struct elf_m68k_plt_info elf_isab_plt_info = |
| { |
| ISAB_PLT_ENTRY_SIZE, |
| elf_isab_plt0_entry, { 2, 12 }, |
| elf_isab_plt_entry, { 2, 20 }, 12 |
| }; |
| |
| #define ISAC_PLT_ENTRY_SIZE 24 |
| |
| static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = |
| { |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* replaced with .got + 4 - . */ |
| 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* replaced with .got + 8 - . */ |
| 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 0x4e, 0xd0, /* jmp (%a0) */ |
| 0x4e, 0x71 /* nop */ |
| }; |
| |
| /* Subsequent entries in a procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = |
| { |
| 0x20, 0x3c, /* move.l #offset,%d0 */ |
| 0, 0, 0, 0, /* replaced with (.got entry) - . */ |
| 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 0x4e, 0xd0, /* jmp (%a0) */ |
| 0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table */ |
| 0x61, 0xff, /* bsr.l .plt */ |
| 0, 0, 0, 0 /* replaced with .plt - . */ |
| }; |
| |
| static const struct elf_m68k_plt_info elf_isac_plt_info = |
| { |
| ISAC_PLT_ENTRY_SIZE, |
| elf_isac_plt0_entry, { 2, 12}, |
| elf_isac_plt_entry, { 2, 20 }, 12 |
| }; |
| |
| #define CPU32_PLT_ENTRY_SIZE 24 |
| /* Procedure linkage table entries for the cpu32 */ |
| static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = |
| { |
| 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ |
| 0, 0, 0, 2, /* + (.got + 4) - . */ |
| 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ |
| 0, 0, 0, 2, /* + (.got + 8) - . */ |
| 0x4e, 0xd1, /* jmp %a1@ */ |
| 0, 0, 0, 0, /* pad out to 24 bytes. */ |
| 0, 0 |
| }; |
| |
| static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = |
| { |
| 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ |
| 0, 0, 0, 2, /* + (.got.plt entry) - . */ |
| 0x4e, 0xd1, /* jmp %a1@ */ |
| 0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 0, 0, 0, 0, /* + reloc index */ |
| 0x60, 0xff, /* bra.l .plt */ |
| 0, 0, 0, 0, /* + .plt - . */ |
| 0, 0 |
| }; |
| |
| static const struct elf_m68k_plt_info elf_cpu32_plt_info = |
| { |
| CPU32_PLT_ENTRY_SIZE, |
| elf_cpu32_plt0_entry, { 4, 12 }, |
| elf_cpu32_plt_entry, { 4, 18 }, 10 |
| }; |
| |
| /* The m68k linker needs to keep track of the number of relocs that it |
| decides to copy in check_relocs for each symbol. This is so that it |
| can discard PC relative relocs if it doesn't need them when linking |
| with -Bsymbolic. We store the information in a field extending the |
| regular ELF linker hash table. */ |
| |
| /* This structure keeps track of the number of PC relative relocs we have |
| copied for a given symbol. */ |
| |
| struct elf_m68k_pcrel_relocs_copied |
| { |
| /* Next section. */ |
| struct elf_m68k_pcrel_relocs_copied *next; |
| /* A section in dynobj. */ |
| asection *section; |
| /* Number of relocs copied in this section. */ |
| bfd_size_type count; |
| }; |
| |
| /* Forward declaration. */ |
| struct elf_m68k_got_entry; |
| |
| /* m68k ELF linker hash entry. */ |
| |
| struct elf_m68k_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* Number of PC relative relocs copied for this symbol. */ |
| struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; |
| |
| /* Key to got_entries. */ |
| unsigned long got_entry_key; |
| |
| /* List of GOT entries for this symbol. This list is build during |
| offset finalization and is used within elf_m68k_finish_dynamic_symbol |
| to traverse all GOT entries for a particular symbol. |
| |
| ??? We could've used root.got.glist field instead, but having |
| a separate field is cleaner. */ |
| struct elf_m68k_got_entry *glist; |
| }; |
| |
| #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) |
| |
| /* Key part of GOT entry in hashtable. */ |
| struct elf_m68k_got_entry_key |
| { |
| /* BFD in which this symbol was defined. NULL for global symbols. */ |
| const bfd *bfd; |
| |
| /* Symbol index. Either local symbol index or h->got_entry_key. */ |
| unsigned long symndx; |
| |
| /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32}, |
| R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}. |
| |
| From perspective of hashtable key, only elf_m68k_got_reloc_type (type) |
| matters. That is, we distinguish between, say, R_68K_GOT16O |
| and R_68K_GOT32O when allocating offsets, but they are considered to be |
| the same when searching got->entries. */ |
| enum elf_m68k_reloc_type type; |
| }; |
| |
| /* Size of the GOT offset suitable for relocation. */ |
| enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST }; |
| |
| /* Entry of the GOT. */ |
| struct elf_m68k_got_entry |
| { |
| /* GOT entries are put into a got->entries hashtable. This is the key. */ |
| struct elf_m68k_got_entry_key key_; |
| |
| /* GOT entry data. We need s1 before offset finalization and s2 after. */ |
| union |
| { |
| struct |
| { |
| /* Number of times this entry is referenced. */ |
| bfd_vma refcount; |
| } s1; |
| |
| struct |
| { |
| /* Offset from the start of .got section. To calculate offset relative |
| to GOT pointer one should subtract got->offset from this value. */ |
| bfd_vma offset; |
| |
| /* Pointer to the next GOT entry for this global symbol. |
| Symbols have at most one entry in one GOT, but might |
| have entries in more than one GOT. |
| Root of this list is h->glist. |
| NULL for local symbols. */ |
| struct elf_m68k_got_entry *next; |
| } s2; |
| } u; |
| }; |
| |
| /* Return representative type for relocation R_TYPE. |
| This is used to avoid enumerating many relocations in comparisons, |
| switches etc. */ |
| |
| static enum elf_m68k_reloc_type |
| elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type) |
| { |
| switch (r_type) |
| { |
| /* In most cases R_68K_GOTx relocations require the very same |
| handling as R_68K_GOT32O relocation. In cases when we need |
| to distinguish between the two, we use explicitly compare against |
| r_type. */ |
| case R_68K_GOT32: |
| case R_68K_GOT16: |
| case R_68K_GOT8: |
| case R_68K_GOT32O: |
| case R_68K_GOT16O: |
| case R_68K_GOT8O: |
| return R_68K_GOT32O; |
| |
| case R_68K_TLS_GD32: |
| case R_68K_TLS_GD16: |
| case R_68K_TLS_GD8: |
| return R_68K_TLS_GD32; |
| |
| case R_68K_TLS_LDM32: |
| case R_68K_TLS_LDM16: |
| case R_68K_TLS_LDM8: |
| return R_68K_TLS_LDM32; |
| |
| case R_68K_TLS_IE32: |
| case R_68K_TLS_IE16: |
| case R_68K_TLS_IE8: |
| return R_68K_TLS_IE32; |
| |
| default: |
| BFD_ASSERT (FALSE); |
| return 0; |
| } |
| } |
| |
| /* Return size of the GOT entry offset for relocation R_TYPE. */ |
| |
| static enum elf_m68k_got_offset_size |
| elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type) |
| { |
| switch (r_type) |
| { |
| case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8: |
| case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32: |
| case R_68K_TLS_IE32: |
| return R_32; |
| |
| case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16: |
| case R_68K_TLS_IE16: |
| return R_16; |
| |
| case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8: |
| case R_68K_TLS_IE8: |
| return R_8; |
| |
| default: |
| BFD_ASSERT (FALSE); |
| return 0; |
| } |
| } |
| |
| /* Return number of GOT entries we need to allocate in GOT for |
| relocation R_TYPE. */ |
| |
| static bfd_vma |
| elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type) |
| { |
| switch (elf_m68k_reloc_got_type (r_type)) |
| { |
| case R_68K_GOT32O: |
| case R_68K_TLS_IE32: |
| return 1; |
| |
| case R_68K_TLS_GD32: |
| case R_68K_TLS_LDM32: |
| return 2; |
| |
| default: |
| BFD_ASSERT (FALSE); |
| return 0; |
| } |
| } |
| |
| /* Return TRUE if relocation R_TYPE is a TLS one. */ |
| |
| static bfd_boolean |
| elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type) |
| { |
| switch (r_type) |
| { |
| case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8: |
| case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8: |
| case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8: |
| case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8: |
| case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8: |
| case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32: |
| return TRUE; |
| |
| default: |
| return FALSE; |
| } |
| } |
| |
| /* Data structure representing a single GOT. */ |
| struct elf_m68k_got |
| { |
| /* Hashtable of 'struct elf_m68k_got_entry's. |
| Starting size of this table is the maximum number of |
| R_68K_GOT8O entries. */ |
| htab_t entries; |
| |
| /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require |
| several GOT slots. |
| |
| n_slots[R_8] is the count of R_8 slots in this GOT. |
| n_slots[R_16] is the cumulative count of R_8 and R_16 slots |
| in this GOT. |
| n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots |
| in this GOT. This is the total number of slots. */ |
| bfd_vma n_slots[R_LAST]; |
| |
| /* Number of local (entry->key_.h == NULL) slots in this GOT. |
| This is only used to properly calculate size of .rela.got section; |
| see elf_m68k_partition_multi_got. */ |
| bfd_vma local_n_slots; |
| |
| /* Offset of this GOT relative to beginning of .got section. */ |
| bfd_vma offset; |
| }; |
| |
| /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */ |
| struct elf_m68k_bfd2got_entry |
| { |
| /* BFD. */ |
| const bfd *bfd; |
| |
| /* Assigned GOT. Before partitioning multi-GOT each BFD has its own |
| GOT structure. After partitioning several BFD's might [and often do] |
| share a single GOT. */ |
| struct elf_m68k_got *got; |
| }; |
| |
| /* The main data structure holding all the pieces. */ |
| struct elf_m68k_multi_got |
| { |
| /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry |
| here, then it doesn't need a GOT (this includes the case of a BFD |
| having an empty GOT). |
| |
| ??? This hashtable can be replaced by an array indexed by bfd->id. */ |
| htab_t bfd2got; |
| |
| /* Next symndx to assign a global symbol. |
| h->got_entry_key is initialized from this counter. */ |
| unsigned long global_symndx; |
| }; |
| |
| /* m68k ELF linker hash table. */ |
| |
| struct elf_m68k_link_hash_table |
| { |
| struct elf_link_hash_table root; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| /* The PLT format used by this link, or NULL if the format has not |
| yet been chosen. */ |
| const struct elf_m68k_plt_info *plt_info; |
| |
| /* True, if GP is loaded within each function which uses it. |
| Set to TRUE when GOT negative offsets or multi-GOT is enabled. */ |
| bfd_boolean local_gp_p; |
| |
| /* Switch controlling use of negative offsets to double the size of GOTs. */ |
| bfd_boolean use_neg_got_offsets_p; |
| |
| /* Switch controlling generation of multiple GOTs. */ |
| bfd_boolean allow_multigot_p; |
| |
| /* Multi-GOT data structure. */ |
| struct elf_m68k_multi_got multi_got_; |
| }; |
| |
| /* Get the m68k ELF linker hash table from a link_info structure. */ |
| |
| #define elf_m68k_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL) |
| |
| /* Shortcut to multi-GOT data. */ |
| #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_) |
| |
| /* Create an entry in an m68k ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct bfd_hash_entry *ret = entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == NULL) |
| ret = bfd_hash_allocate (table, |
| sizeof (struct elf_m68k_link_hash_entry)); |
| if (ret == NULL) |
| return ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = _bfd_elf_link_hash_newfunc (ret, table, string); |
| if (ret != NULL) |
| { |
| elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; |
| elf_m68k_hash_entry (ret)->got_entry_key = 0; |
| elf_m68k_hash_entry (ret)->glist = NULL; |
| } |
| |
| return ret; |
| } |
| |
| /* Destroy an m68k ELF linker hash table. */ |
| |
| static void |
| elf_m68k_link_hash_table_free (bfd *obfd) |
| { |
| struct elf_m68k_link_hash_table *htab; |
| |
| htab = (struct elf_m68k_link_hash_table *) obfd->link.hash; |
| |
| if (htab->multi_got_.bfd2got != NULL) |
| { |
| htab_delete (htab->multi_got_.bfd2got); |
| htab->multi_got_.bfd2got = NULL; |
| } |
| _bfd_elf_link_hash_table_free (obfd); |
| } |
| |
| /* Create an m68k ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf_m68k_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_m68k_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); |
| |
| ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == (struct elf_m68k_link_hash_table *) NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| elf_m68k_link_hash_newfunc, |
| sizeof (struct elf_m68k_link_hash_entry), |
| M68K_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| ret->root.root.hash_table_free = elf_m68k_link_hash_table_free; |
| |
| ret->multi_got_.global_symndx = 1; |
| |
| return &ret->root.root; |
| } |
| |
| /* Set the right machine number. */ |
| |
| static bfd_boolean |
| elf32_m68k_object_p (bfd *abfd) |
| { |
| unsigned int mach = 0; |
| unsigned features = 0; |
| flagword eflags = elf_elfheader (abfd)->e_flags; |
| |
| if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| features |= m68000; |
| else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| features |= cpu32; |
| else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| features |= fido_a; |
| else |
| { |
| switch (eflags & EF_M68K_CF_ISA_MASK) |
| { |
| case EF_M68K_CF_ISA_A_NODIV: |
| features |= mcfisa_a; |
| break; |
| case EF_M68K_CF_ISA_A: |
| features |= mcfisa_a|mcfhwdiv; |
| break; |
| case EF_M68K_CF_ISA_A_PLUS: |
| features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; |
| break; |
| case EF_M68K_CF_ISA_B_NOUSP: |
| features |= mcfisa_a|mcfisa_b|mcfhwdiv; |
| break; |
| case EF_M68K_CF_ISA_B: |
| features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; |
| break; |
| case EF_M68K_CF_ISA_C: |
| features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; |
| break; |
| case EF_M68K_CF_ISA_C_NODIV: |
| features |= mcfisa_a|mcfisa_c|mcfusp; |
| break; |
| } |
| switch (eflags & EF_M68K_CF_MAC_MASK) |
| { |
| case EF_M68K_CF_MAC: |
| features |= mcfmac; |
| break; |
| case EF_M68K_CF_EMAC: |
| features |= mcfemac; |
| break; |
| } |
| if (eflags & EF_M68K_CF_FLOAT) |
| features |= cfloat; |
| } |
| |
| mach = bfd_m68k_features_to_mach (features); |
| bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); |
| |
| return TRUE; |
| } |
| |
| /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag |
| field based on the machine number. */ |
| |
| static bfd_boolean |
| elf_m68k_final_write_processing (bfd *abfd) |
| { |
| int mach = bfd_get_mach (abfd); |
| unsigned long e_flags = elf_elfheader (abfd)->e_flags; |
| |
| if (!e_flags) |
| { |
| unsigned int arch_mask; |
| |
| arch_mask = bfd_m68k_mach_to_features (mach); |
| |
| if (arch_mask & m68000) |
| e_flags = EF_M68K_M68000; |
| else if (arch_mask & cpu32) |
| e_flags = EF_M68K_CPU32; |
| else if (arch_mask & fido_a) |
| e_flags = EF_M68K_FIDO; |
| else |
| { |
| switch (arch_mask |
| & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp)) |
| { |
| case mcfisa_a: |
| e_flags |= EF_M68K_CF_ISA_A_NODIV; |
| break; |
| case mcfisa_a | mcfhwdiv: |
| e_flags |= EF_M68K_CF_ISA_A; |
| break; |
| case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp: |
| e_flags |= EF_M68K_CF_ISA_A_PLUS; |
| break; |
| case mcfisa_a | mcfisa_b | mcfhwdiv: |
| e_flags |= EF_M68K_CF_ISA_B_NOUSP; |
| break; |
| case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp: |
| e_flags |= EF_M68K_CF_ISA_B; |
| break; |
| case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp: |
| e_flags |= EF_M68K_CF_ISA_C; |
| break; |
| case mcfisa_a | mcfisa_c | mcfusp: |
| e_flags |= EF_M68K_CF_ISA_C_NODIV; |
| break; |
| } |
| if (arch_mask & mcfmac) |
| e_flags |= EF_M68K_CF_MAC; |
| else if (arch_mask & mcfemac) |
| e_flags |= EF_M68K_CF_EMAC; |
| if (arch_mask & cfloat) |
| e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E; |
| } |
| elf_elfheader (abfd)->e_flags = e_flags; |
| } |
| return _bfd_elf_final_write_processing (abfd); |
| } |
| |
| /* Keep m68k-specific flags in the ELF header. */ |
| |
| static bfd_boolean |
| elf32_m68k_set_private_flags (bfd *abfd, flagword flags) |
| { |
| elf_elfheader (abfd)->e_flags = flags; |
| elf_flags_init (abfd) = TRUE; |
| return TRUE; |
| } |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| static bfd_boolean |
| elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) |
| { |
| bfd *obfd = info->output_bfd; |
| flagword out_flags; |
| flagword in_flags; |
| flagword out_isa; |
| flagword in_isa; |
| const bfd_arch_info_type *arch_info; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| /* PR 24523: For non-ELF files do not try to merge any private |
| data, but also do not prevent the link from succeeding. */ |
| return TRUE; |
| |
| /* Get the merged machine. This checks for incompatibility between |
| Coldfire & non-Coldfire flags, incompability between different |
| Coldfire ISAs, and incompability between different MAC types. */ |
| arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); |
| if (!arch_info) |
| return FALSE; |
| |
| bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); |
| |
| in_flags = elf_elfheader (ibfd)->e_flags; |
| if (!elf_flags_init (obfd)) |
| { |
| elf_flags_init (obfd) = TRUE; |
| out_flags = in_flags; |
| } |
| else |
| { |
| out_flags = elf_elfheader (obfd)->e_flags; |
| unsigned int variant_mask; |
| |
| if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| variant_mask = 0; |
| else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| variant_mask = 0; |
| else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| variant_mask = 0; |
| else |
| variant_mask = EF_M68K_CF_ISA_MASK; |
| |
| in_isa = (in_flags & variant_mask); |
| out_isa = (out_flags & variant_mask); |
| if (in_isa > out_isa) |
| out_flags ^= in_isa ^ out_isa; |
| if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 |
| && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO |
| && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) |
| out_flags = EF_M68K_FIDO; |
| else |
| out_flags |= in_flags ^ in_isa; |
| } |
| elf_elfheader (obfd)->e_flags = out_flags; |
| |
| return TRUE; |
| } |
| |
| /* Display the flags field. */ |
| |
| static bfd_boolean |
| elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr) |
| { |
| FILE *file = (FILE *) ptr; |
| flagword eflags = elf_elfheader (abfd)->e_flags; |
| |
| BFD_ASSERT (abfd != NULL && ptr != NULL); |
| |
| /* Print normal ELF private data. */ |
| _bfd_elf_print_private_bfd_data (abfd, ptr); |
| |
| /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ |
| |
| /* xgettext:c-format */ |
| fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| |
| if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| fprintf (file, " [m68000]"); |
| else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| fprintf (file, " [cpu32]"); |
| else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| fprintf (file, " [fido]"); |
| else |
| { |
| if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) |
| fprintf (file, " [cfv4e]"); |
| |
| if (eflags & EF_M68K_CF_ISA_MASK) |
| { |
| char const *isa = _("unknown"); |
| char const *mac = _("unknown"); |
| char const *additional = ""; |
| |
| switch (eflags & EF_M68K_CF_ISA_MASK) |
| { |
| case EF_M68K_CF_ISA_A_NODIV: |
| isa = "A"; |
| additional = " [nodiv]"; |
| break; |
| case EF_M68K_CF_ISA_A: |
| isa = "A"; |
| break; |
| case EF_M68K_CF_ISA_A_PLUS: |
| isa = "A+"; |
| break; |
| case EF_M68K_CF_ISA_B_NOUSP: |
| isa = "B"; |
| additional = " [nousp]"; |
| break; |
| case EF_M68K_CF_ISA_B: |
| isa = "B"; |
| break; |
| case EF_M68K_CF_ISA_C: |
| isa = "C"; |
| break; |
| case EF_M68K_CF_ISA_C_NODIV: |
| isa = "C"; |
| additional = " [nodiv]"; |
| break; |
| } |
| fprintf (file, " [isa %s]%s", isa, additional); |
| |
| if (eflags & EF_M68K_CF_FLOAT) |
| fprintf (file, " [float]"); |
| |
| switch (eflags & EF_M68K_CF_MAC_MASK) |
| { |
| case 0: |
| mac = NULL; |
| break; |
| case EF_M68K_CF_MAC: |
| mac = "mac"; |
| break; |
| case EF_M68K_CF_EMAC: |
| mac = "emac"; |
| break; |
| case EF_M68K_CF_EMAC_B: |
| mac = "emac_b"; |
| break; |
| } |
| if (mac) |
| fprintf (file, " [%s]", mac); |
| } |
| } |
| |
| fputc ('\n', file); |
| |
| return TRUE; |
| } |
| |
| /* Multi-GOT support implementation design: |
| |
| Multi-GOT starts in check_relocs hook. There we scan all |
| relocations of a BFD and build a local GOT (struct elf_m68k_got) |
| for it. If a single BFD appears to require too many GOT slots with |
| R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification |
| to user. |
| After check_relocs has been invoked for each input BFD, we have |
| constructed a GOT for each input BFD. |
| |
| To minimize total number of GOTs required for a particular output BFD |
| (as some environments support only 1 GOT per output object) we try |
| to merge some of the GOTs to share an offset space. Ideally [and in most |
| cases] we end up with a single GOT. In cases when there are too many |
| restricted relocations (e.g., R_68K_GOT16O relocations) we end up with |
| several GOTs, assuming the environment can handle them. |
| |
| Partitioning is done in elf_m68k_partition_multi_got. We start with |
| an empty GOT and traverse bfd2got hashtable putting got_entries from |
| local GOTs to the new 'big' one. We do that by constructing an |
| intermediate GOT holding all the entries the local GOT has and the big |
| GOT lacks. Then we check if there is room in the big GOT to accomodate |
| all the entries from diff. On success we add those entries to the big |
| GOT; on failure we start the new 'big' GOT and retry the adding of |
| entries from the local GOT. Note that this retry will always succeed as |
| each local GOT doesn't overflow the limits. After partitioning we |
| end up with each bfd assigned one of the big GOTs. GOT entries in the |
| big GOTs are initialized with GOT offsets. Note that big GOTs are |
| positioned consequently in program space and represent a single huge GOT |
| to the outside world. |
| |
| After that we get to elf_m68k_relocate_section. There we |
| adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol |
| relocations to refer to appropriate [assigned to current input_bfd] |
| big GOT. |
| |
| Notes: |
| |
| GOT entry type: We have several types of GOT entries. |
| * R_8 type is used in entries for symbols that have at least one |
| R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40 |
| such entries in one GOT. |
| * R_16 type is used in entries for symbols that have at least one |
| R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations. |
| We can have at most 0x4000 such entries in one GOT. |
| * R_32 type is used in all other cases. We can have as many |
| such entries in one GOT as we'd like. |
| When counting relocations we have to include the count of the smaller |
| ranged relocations in the counts of the larger ranged ones in order |
| to correctly detect overflow. |
| |
| Sorting the GOT: In each GOT starting offsets are assigned to |
| R_8 entries, which are followed by R_16 entries, and |
| R_32 entries go at the end. See finalize_got_offsets for details. |
| |
| Negative GOT offsets: To double usable offset range of GOTs we use |
| negative offsets. As we assign entries with GOT offsets relative to |
| start of .got section, the offset values are positive. They become |
| negative only in relocate_section where got->offset value is |
| subtracted from them. |
| |
| 3 special GOT entries: There are 3 special GOT entries used internally |
| by loader. These entries happen to be placed to .got.plt section, |
| so we don't do anything about them in multi-GOT support. |
| |
| Memory management: All data except for hashtables |
| multi_got->bfd2got and got->entries are allocated on |
| elf_hash_table (info)->dynobj bfd (for this reason we pass 'info' |
| to most functions), so we don't need to care to free them. At the |
| moment of allocation hashtables are being linked into main data |
| structure (multi_got), all pieces of which are reachable from |
| elf_m68k_multi_got (info). We deallocate them in |
| elf_m68k_link_hash_table_free. */ |
| |
| /* Initialize GOT. */ |
| |
| static void |
| elf_m68k_init_got (struct elf_m68k_got *got) |
| { |
| got->entries = NULL; |
| got->n_slots[R_8] = 0; |
| got->n_slots[R_16] = 0; |
| got->n_slots[R_32] = 0; |
| got->local_n_slots = 0; |
| got->offset = (bfd_vma) -1; |
| } |
| |
| /* Destruct GOT. */ |
| |
| static void |
| elf_m68k_clear_got (struct elf_m68k_got *got) |
| { |
| if (got->entries != NULL) |
| { |
| htab_delete (got->entries); |
| got->entries = NULL; |
| } |
| } |
| |
| /* Create and empty GOT structure. INFO is the context where memory |
| should be allocated. */ |
| |
| static struct elf_m68k_got * |
| elf_m68k_create_empty_got (struct bfd_link_info *info) |
| { |
| struct elf_m68k_got *got; |
| |
| got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got)); |
| if (got == NULL) |
| return NULL; |
| |
| elf_m68k_init_got (got); |
| |
| return got; |
| } |
| |
| /* Initialize KEY. */ |
| |
| static void |
| elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key, |
| struct elf_link_hash_entry *h, |
| const bfd *abfd, unsigned long symndx, |
| enum elf_m68k_reloc_type reloc_type) |
| { |
| if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32) |
| /* All TLS_LDM relocations share a single GOT entry. */ |
| { |
| key->bfd = NULL; |
| key->symndx = 0; |
| } |
| else if (h != NULL) |
| /* Global symbols are identified with their got_entry_key. */ |
| { |
| key->bfd = NULL; |
| key->symndx = elf_m68k_hash_entry (h)->got_entry_key; |
| BFD_ASSERT (key->symndx != 0); |
| } |
| else |
| /* Local symbols are identified by BFD they appear in and symndx. */ |
| { |
| key->bfd = abfd; |
| key->symndx = symndx; |
| } |
| |
| key->type = reloc_type; |
| } |
| |
| /* Calculate hash of got_entry. |
| ??? Is it good? */ |
| |
| static hashval_t |
| elf_m68k_got_entry_hash (const void *_entry) |
| { |
| const struct elf_m68k_got_entry_key *key; |
| |
| key = &((const struct elf_m68k_got_entry *) _entry)->key_; |
| |
| return (key->symndx |
| + (key->bfd != NULL ? (int) key->bfd->id : -1) |
| + elf_m68k_reloc_got_type (key->type)); |
| } |
| |
| /* Check if two got entries are equal. */ |
| |
| static int |
| elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2) |
| { |
| const struct elf_m68k_got_entry_key *key1; |
| const struct elf_m68k_got_entry_key *key2; |
| |
| key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_; |
| key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_; |
| |
| return (key1->bfd == key2->bfd |
| && key1->symndx == key2->symndx |
| && (elf_m68k_reloc_got_type (key1->type) |
| == elf_m68k_reloc_got_type (key2->type))); |
| } |
| |
| /* When using negative offsets, we allocate one extra R_8, one extra R_16 |
| and one extra R_32 slots to simplify handling of 2-slot entries during |
| offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */ |
| |
| /* Maximal number of R_8 slots in a single GOT. */ |
| #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \ |
| (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ |
| ? (0x40 - 1) \ |
| : 0x20) |
| |
| /* Maximal number of R_8 and R_16 slots in a single GOT. */ |
| #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \ |
| (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ |
| ? (0x4000 - 2) \ |
| : 0x2000) |
| |
| /* SEARCH - simply search the hashtable, don't insert new entries or fail when |
| the entry cannot be found. |
| FIND_OR_CREATE - search for an existing entry, but create new if there's |
| no such. |
| MUST_FIND - search for an existing entry and assert that it exist. |
| MUST_CREATE - assert that there's no such entry and create new one. */ |
| enum elf_m68k_get_entry_howto |
| { |
| SEARCH, |
| FIND_OR_CREATE, |
| MUST_FIND, |
| MUST_CREATE |
| }; |
| |
| /* Get or create (depending on HOWTO) entry with KEY in GOT. |
| INFO is context in which memory should be allocated (can be NULL if |
| HOWTO is SEARCH or MUST_FIND). */ |
| |
| static struct elf_m68k_got_entry * |
| elf_m68k_get_got_entry (struct elf_m68k_got *got, |
| const struct elf_m68k_got_entry_key *key, |
| enum elf_m68k_get_entry_howto howto, |
| struct bfd_link_info *info) |
| { |
| struct elf_m68k_got_entry entry_; |
| struct elf_m68k_got_entry *entry; |
| void **ptr; |
| |
| BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); |
| |
| if (got->entries == NULL) |
| /* This is the first entry in ABFD. Initialize hashtable. */ |
| { |
| if (howto == SEARCH) |
| return NULL; |
| |
| got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT |
| (info), |
| elf_m68k_got_entry_hash, |
| elf_m68k_got_entry_eq, NULL); |
| if (got->entries == NULL) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return NULL; |
| } |
| } |
| |
| entry_.key_ = *key; |
| ptr = htab_find_slot (got->entries, &entry_, |
| (howto == SEARCH || howto == MUST_FIND ? NO_INSERT |
| : INSERT)); |
| if (ptr == NULL) |
| { |
| if (howto == SEARCH) |
| /* Entry not found. */ |
| return NULL; |
| |
| if (howto == MUST_FIND) |
| abort (); |
| |
| /* We're out of memory. */ |
| bfd_set_error (bfd_error_no_memory); |
| return NULL; |
| } |
| |
| if (*ptr == NULL) |
| /* We didn't find the entry and we're asked to create a new one. */ |
| { |
| if (howto == MUST_FIND) |
| abort (); |
| |
| BFD_ASSERT (howto != SEARCH); |
| |
| entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)); |
| if (entry == NULL) |
| return NULL; |
| |
| /* Initialize new entry. */ |
| entry->key_ = *key; |
| |
| entry->u.s1.refcount = 0; |
| |
| /* Mark the entry as not initialized. */ |
| entry->key_.type = R_68K_max; |
| |
| *ptr = entry; |
| } |
| else |
| /* We found the entry. */ |
| { |
| BFD_ASSERT (howto != MUST_CREATE); |
| |
| entry = *ptr; |
| } |
| |
| return entry; |
| } |
| |
| /* Update GOT counters when merging entry of WAS type with entry of NEW type. |
| Return the value to which ENTRY's type should be set. */ |
| |
| static enum elf_m68k_reloc_type |
| elf_m68k_update_got_entry_type (struct elf_m68k_got *got, |
| enum elf_m68k_reloc_type was, |
| enum elf_m68k_reloc_type new_reloc) |
| { |
| enum elf_m68k_got_offset_size was_size; |
| enum elf_m68k_got_offset_size new_size; |
| bfd_vma n_slots; |
| |
| if (was == R_68K_max) |
| /* The type of the entry is not initialized yet. */ |
| { |
| /* Update all got->n_slots counters, including n_slots[R_32]. */ |
| was_size = R_LAST; |
| |
| was = new_reloc; |
| } |
| else |
| { |
| /* !!! We, probably, should emit an error rather then fail on assert |
| in such a case. */ |
| BFD_ASSERT (elf_m68k_reloc_got_type (was) |
| == elf_m68k_reloc_got_type (new_reloc)); |
| |
| was_size = elf_m68k_reloc_got_offset_size (was); |
| } |
| |
| new_size = elf_m68k_reloc_got_offset_size (new_reloc); |
| n_slots = elf_m68k_reloc_got_n_slots (new_reloc); |
| |
| while (was_size > new_size) |
| { |
| --was_size; |
| got->n_slots[was_size] += n_slots; |
| } |
| |
| if (new_reloc > was) |
| /* Relocations are ordered from bigger got offset size to lesser, |
| so choose the relocation type with lesser offset size. */ |
| was = new_reloc; |
| |
| return was; |
| } |
| |
| /* Add new or update existing entry to GOT. |
| H, ABFD, TYPE and SYMNDX is data for the entry. |
| INFO is a context where memory should be allocated. */ |
| |
| static struct elf_m68k_got_entry * |
| elf_m68k_add_entry_to_got (struct elf_m68k_got *got, |
| struct elf_link_hash_entry *h, |
| const bfd *abfd, |
| enum elf_m68k_reloc_type reloc_type, |
| unsigned long symndx, |
| struct bfd_link_info *info) |
| { |
| struct elf_m68k_got_entry_key key_; |
| struct elf_m68k_got_entry *entry; |
| |
| if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0) |
| elf_m68k_hash_entry (h)->got_entry_key |
| = elf_m68k_multi_got (info)->global_symndx++; |
| |
| elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type); |
| |
| entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info); |
| if (entry == NULL) |
| return NULL; |
| |
| /* Determine entry's type and update got->n_slots counters. */ |
| entry->key_.type = elf_m68k_update_got_entry_type (got, |
| entry->key_.type, |
| reloc_type); |
| |
| /* Update refcount. */ |
| ++entry->u.s1.refcount; |
| |
| if (entry->u.s1.refcount == 1) |
| /* We see this entry for the first time. */ |
| { |
| if (entry->key_.bfd != NULL) |
| got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type); |
| } |
| |
| BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); |
| |
| if ((got->n_slots[R_8] |
| > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| || (got->n_slots[R_16] |
| > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) |
| /* This BFD has too many relocation. */ |
| { |
| if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: GOT overflow: " |
| "number of relocations with 8-bit " |
| "offset > %d"), |
| abfd, |
| ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)); |
| else |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: GOT overflow: " |
| "number of relocations with 8- or 16-bit " |
| "offset > %d"), |
| abfd, |
| ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)); |
| |
| return NULL; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute the hash value of the bfd in a bfd2got hash entry. */ |
| |
| static hashval_t |
| elf_m68k_bfd2got_entry_hash (const void *entry) |
| { |
| const struct elf_m68k_bfd2got_entry *e; |
| |
| e = (const struct elf_m68k_bfd2got_entry *) entry; |
| |
| return e->bfd->id; |
| } |
| |
| /* Check whether two hash entries have the same bfd. */ |
| |
| static int |
| elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2) |
| { |
| const struct elf_m68k_bfd2got_entry *e1; |
| const struct elf_m68k_bfd2got_entry *e2; |
| |
| e1 = (const struct elf_m68k_bfd2got_entry *) entry1; |
| e2 = (const struct elf_m68k_bfd2got_entry *) entry2; |
| |
| return e1->bfd == e2->bfd; |
| } |
| |
| /* Destruct a bfd2got entry. */ |
| |
| static void |
| elf_m68k_bfd2got_entry_del (void *_entry) |
| { |
| struct elf_m68k_bfd2got_entry *entry; |
| |
| entry = (struct elf_m68k_bfd2got_entry *) _entry; |
| |
| BFD_ASSERT (entry->got != NULL); |
| elf_m68k_clear_got (entry->got); |
| } |
| |
| /* Find existing or create new (depending on HOWTO) bfd2got entry in |
| MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where |
| memory should be allocated. */ |
| |
| static struct elf_m68k_bfd2got_entry * |
| elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got, |
| const bfd *abfd, |
| enum elf_m68k_get_entry_howto howto, |
| struct bfd_link_info *info) |
| { |
| struct elf_m68k_bfd2got_entry entry_; |
| void **ptr; |
| struct elf_m68k_bfd2got_entry *entry; |
| |
| BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); |
| |
| if (multi_got->bfd2got == NULL) |
| /* This is the first GOT. Initialize bfd2got. */ |
| { |
| if (howto == SEARCH) |
| return NULL; |
| |
| multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash, |
| elf_m68k_bfd2got_entry_eq, |
| elf_m68k_bfd2got_entry_del); |
| if (multi_got->bfd2got == NULL) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return NULL; |
| } |
| } |
| |
| entry_.bfd = abfd; |
| ptr = htab_find_slot (multi_got->bfd2got, &entry_, |
| (howto == SEARCH || howto == MUST_FIND ? NO_INSERT |
| : INSERT)); |
| if (ptr == NULL) |
| { |
| if (howto == SEARCH) |
| /* Entry not found. */ |
| return NULL; |
| |
| if (howto == MUST_FIND) |
| abort (); |
| |
| /* We're out of memory. */ |
| bfd_set_error (bfd_error_no_memory); |
| return NULL; |
| } |
| |
| if (*ptr == NULL) |
| /* Entry was not found. Create new one. */ |
| { |
| if (howto == MUST_FIND) |
| abort (); |
| |
| BFD_ASSERT (howto != SEARCH); |
| |
| entry = ((struct elf_m68k_bfd2got_entry *) |
| bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry))); |
| if (entry == NULL) |
| return NULL; |
| |
| entry->bfd = abfd; |
| |
| entry->got = elf_m68k_create_empty_got (info); |
| if (entry->got == NULL) |
| return NULL; |
| |
| *ptr = entry; |
| } |
| else |
| { |
| BFD_ASSERT (howto != MUST_CREATE); |
| |
| /* Return existing entry. */ |
| entry = *ptr; |
| } |
| |
| return entry; |
| } |
| |
| struct elf_m68k_can_merge_gots_arg |
| { |
| /* A current_got that we constructing a DIFF against. */ |
| struct elf_m68k_got *big; |
| |
| /* GOT holding entries not present or that should be changed in |
| BIG. */ |
| struct elf_m68k_got *diff; |
| |
| /* Context where to allocate memory. */ |
| struct bfd_link_info *info; |
| |
| /* Error flag. */ |
| bfd_boolean error_p; |
| }; |
| |
| /* Process a single entry from the small GOT to see if it should be added |
| or updated in the big GOT. */ |
| |
| static int |
| elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg) |
| { |
| const struct elf_m68k_got_entry *entry1; |
| struct elf_m68k_can_merge_gots_arg *arg; |
| const struct elf_m68k_got_entry *entry2; |
| enum elf_m68k_reloc_type type; |
| |
| entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr; |
| arg = (struct elf_m68k_can_merge_gots_arg *) _arg; |
| |
| entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL); |
| |
| if (entry2 != NULL) |
| /* We found an existing entry. Check if we should update it. */ |
| { |
| type = elf_m68k_update_got_entry_type (arg->diff, |
| entry2->key_.type, |
| entry1->key_.type); |
| |
| if (type == entry2->key_.type) |
| /* ENTRY1 doesn't update data in ENTRY2. Skip it. |
| To skip creation of difference entry we use the type, |
| which we won't see in GOT entries for sure. */ |
| type = R_68K_max; |
| } |
| else |
| /* We didn't find the entry. Add entry1 to DIFF. */ |
| { |
| BFD_ASSERT (entry1->key_.type != R_68K_max); |
| |
| type = elf_m68k_update_got_entry_type (arg->diff, |
| R_68K_max, entry1->key_.type); |
| |
| if (entry1->key_.bfd != NULL) |
| arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type); |
| } |
| |
| if (type != R_68K_max) |
| /* Create an entry in DIFF. */ |
| { |
| struct elf_m68k_got_entry *entry; |
| |
| entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE, |
| arg->info); |
| if (entry == NULL) |
| { |
| arg->error_p = TRUE; |
| return 0; |
| } |
| |
| entry->key_.type = type; |
| } |
| |
| return 1; |
| } |
| |
| /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it. |
| Construct DIFF GOT holding the entries which should be added or updated |
| in BIG GOT to accumulate information from SMALL. |
| INFO is the context where memory should be allocated. */ |
| |
| static bfd_boolean |
| elf_m68k_can_merge_gots (struct elf_m68k_got *big, |
| const struct elf_m68k_got *small, |
| struct bfd_link_info *info, |
| struct elf_m68k_got *diff) |
| { |
| struct elf_m68k_can_merge_gots_arg arg_; |
| |
| BFD_ASSERT (small->offset == (bfd_vma) -1); |
| |
| arg_.big = big; |
| arg_.diff = diff; |
| arg_.info = info; |
| arg_.error_p = FALSE; |
| htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_); |
| if (arg_.error_p) |
| { |
| diff->offset = 0; |
| return FALSE; |
| } |
| |
| /* Check for overflow. */ |
| if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8] |
| > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| || (big->n_slots[R_16] + arg_.diff->n_slots[R_16] |
| > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| struct elf_m68k_merge_gots_arg |
| { |
| /* The BIG got. */ |
| struct elf_m68k_got *big; |
| |
| /* Context where memory should be allocated. */ |
| struct bfd_link_info *info; |
| |
| /* Error flag. */ |
| bfd_boolean error_p; |
| }; |
| |
| /* Process a single entry from DIFF got. Add or update corresponding |
| entry in the BIG got. */ |
| |
| static int |
| elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg) |
| { |
| const struct elf_m68k_got_entry *from; |
| struct elf_m68k_merge_gots_arg *arg; |
| struct elf_m68k_got_entry *to; |
| |
| from = (const struct elf_m68k_got_entry *) *entry_ptr; |
| arg = (struct elf_m68k_merge_gots_arg *) _arg; |
| |
| to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE, |
| arg->info); |
| if (to == NULL) |
| { |
| arg->error_p = TRUE; |
| return 0; |
| } |
| |
| BFD_ASSERT (to->u.s1.refcount == 0); |
| /* All we need to merge is TYPE. */ |
| to->key_.type = from->key_.type; |
| |
| return 1; |
| } |
| |
| /* Merge data from DIFF to BIG. INFO is context where memory should be |
| allocated. */ |
| |
| static bfd_boolean |
| elf_m68k_merge_gots (struct elf_m68k_got *big, |
| struct elf_m68k_got *diff, |
| struct bfd_link_info *info) |
| { |
| if (diff->entries != NULL) |
| /* DIFF is not empty. Merge it into BIG GOT. */ |
| { |
| struct elf_m68k_merge_gots_arg arg_; |
| |
| /* Merge entries. */ |
| arg_.big = big; |
| arg_.info = info; |
| arg_.error_p = FALSE; |
| htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_); |
| if (arg_.error_p) |
| return FALSE; |
| |
| /* Merge counters. */ |
| big->n_slots[R_8] += diff->n_slots[R_8]; |
| big->n_slots[R_16] += diff->n_slots[R_16]; |
| big->n_slots[R_32] += diff->n_slots[R_32]; |
| big->local_n_slots += diff->local_n_slots; |
| } |
| else |
| /* DIFF is empty. */ |
| { |
| BFD_ASSERT (diff->n_slots[R_8] == 0); |
| BFD_ASSERT (diff->n_slots[R_16] == 0); |
| BFD_ASSERT (diff->n_slots[R_32] == 0); |
| BFD_ASSERT (diff->local_n_slots == 0); |
| } |
| |
| BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p |
| || ((big->n_slots[R_8] |
| <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| && (big->n_slots[R_16] |
| <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))); |
| |
| return TRUE; |
| } |
| |
| struct elf_m68k_finalize_got_offsets_arg |
| { |
| /* Ranges of the offsets for GOT entries. |
| R_x entries receive offsets between offset1[R_x] and offset2[R_x]. |
| R_x is R_8, R_16 and R_32. */ |
| bfd_vma *offset1; |
| bfd_vma *offset2; |
| |
| /* Mapping from global symndx to global symbols. |
| This is used to build lists of got entries for global symbols. */ |
| struct elf_m68k_link_hash_entry **symndx2h; |
| |
| bfd_vma n_ldm_entries; |
| }; |
| |
| /* Assign ENTRY an offset. Build list of GOT entries for global symbols |
| along the way. */ |
| |
| static int |
| elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg) |
| { |
| struct elf_m68k_got_entry *entry; |
| struct elf_m68k_finalize_got_offsets_arg *arg; |
| |
| enum elf_m68k_got_offset_size got_offset_size; |
| bfd_vma entry_size; |
| |
| entry = (struct elf_m68k_got_entry *) *entry_ptr; |
| arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg; |
| |
| /* This should be a fresh entry created in elf_m68k_can_merge_gots. */ |
| BFD_ASSERT (entry->u.s1.refcount == 0); |
| |
| /* Get GOT offset size for the entry . */ |
| got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type); |
| |
| /* Calculate entry size in bytes. */ |
| entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type); |
| |
| /* Check if we should switch to negative range of the offsets. */ |
| if (arg->offset1[got_offset_size] + entry_size |
| > arg->offset2[got_offset_size]) |
| { |
| /* Verify that this is the only switch to negative range for |
| got_offset_size. If this assertion fails, then we've miscalculated |
| range for got_offset_size entries in |
| elf_m68k_finalize_got_offsets. */ |
| BFD_ASSERT (arg->offset2[got_offset_size] |
| != arg->offset2[-(int) got_offset_size - 1]); |
| |
| /* Switch. */ |
| arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1]; |
| arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1]; |
| |
| /* Verify that now we have enough room for the entry. */ |
| BFD_ASSERT (arg->offset1[got_offset_size] + entry_size |
| <= arg->offset2[got_offset_size]); |
| } |
| |
| /* Assign offset to entry. */ |
| entry->u.s2.offset = arg->offset1[got_offset_size]; |
| arg->offset1[got_offset_size] += entry_size; |
| |
| if (entry->key_.bfd == NULL) |
| /* Hook up this entry into the list of got_entries of H. */ |
| { |
| struct elf_m68k_link_hash_entry *h; |
| |
| h = arg->symndx2h[entry->key_.symndx]; |
| if (h != NULL) |
| { |
| entry->u.s2.next = h->glist; |
| h->glist = entry; |
| } |
| else |
| /* This should be the entry for TLS_LDM relocation then. */ |
| { |
| BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type) |
| == R_68K_TLS_LDM32) |
| && entry->key_.symndx == 0); |
| |
| ++arg->n_ldm_entries; |
| } |
| } |
| else |
| /* This entry is for local symbol. */ |
| entry->u.s2.next = NULL; |
| |
| return 1; |
| } |
| |
| /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we |
| should use negative offsets. |
| Build list of GOT entries for global symbols along the way. |
| SYMNDX2H is mapping from global symbol indices to actual |
| global symbols. |
| Return offset at which next GOT should start. */ |
| |
| static void |
| elf_m68k_finalize_got_offsets (struct elf_m68k_got *got, |
| bfd_boolean use_neg_got_offsets_p, |
| struct elf_m68k_link_hash_entry **symndx2h, |
| bfd_vma *final_offset, bfd_vma *n_ldm_entries) |
| { |
| struct elf_m68k_finalize_got_offsets_arg arg_; |
| bfd_vma offset1_[2 * R_LAST]; |
| bfd_vma offset2_[2 * R_LAST]; |
| int i; |
| bfd_vma start_offset; |
| |
| BFD_ASSERT (got->offset != (bfd_vma) -1); |
| |
| /* We set entry offsets relative to the .got section (and not the |
| start of a particular GOT), so that we can use them in |
| finish_dynamic_symbol without needing to know the GOT which they come |
| from. */ |
| |
| /* Put offset1 in the middle of offset1_, same for offset2. */ |
| arg_.offset1 = offset1_ + R_LAST; |
| arg_.offset2 = offset2_ + R_LAST; |
| |
| start_offset = got->offset; |
| |
| if (use_neg_got_offsets_p) |
| /* Setup both negative and positive ranges for R_8, R_16 and R_32. */ |
| i = -(int) R_32 - 1; |
| else |
| /* Setup positives ranges for R_8, R_16 and R_32. */ |
| i = (int) R_8; |
| |
| for (; i <= (int) R_32; ++i) |
| { |
| int j; |
| size_t n; |
| |
| /* Set beginning of the range of offsets I. */ |
| arg_.offset1[i] = start_offset; |
| |
| /* Calculate number of slots that require I offsets. */ |
| j = (i >= 0) ? i : -i - 1; |
| n = (j >= 1) ? got->n_slots[j - 1] : 0; |
| n = got->n_slots[j] - n; |
| |
| if (use_neg_got_offsets_p && n != 0) |
| { |
| if (i < 0) |
| /* We first fill the positive side of the range, so we might |
| end up with one empty slot at that side when we can't fit |
| whole 2-slot entry. Account for that at negative side of |
| the interval with one additional entry. */ |
| n = n / 2 + 1; |
| else |
| /* When the number of slots is odd, make positive side of the |
| range one entry bigger. */ |
| n = (n + 1) / 2; |
| } |
| |
| /* N is the number of slots that require I offsets. |
| Calculate length of the range for I offsets. */ |
| n = 4 * n; |
| |
| /* Set end of the range. */ |
| arg_.offset2[i] = start_offset + n; |
| |
| start_offset = arg_.offset2[i]; |
| } |
| |
| if (!use_neg_got_offsets_p) |
| /* Make sure that if we try to switch to negative offsets in |
| elf_m68k_finalize_got_offsets_1, the assert therein will catch |
| the bug. */ |
| for (i = R_8; i <= R_32; ++i) |
| arg_.offset2[-i - 1] = arg_.offset2[i]; |
| |
| /* Setup got->offset. offset1[R_8] is either in the middle or at the |
| beginning of GOT depending on use_neg_got_offsets_p. */ |
| got->offset = arg_.offset1[R_8]; |
| |
| arg_.symndx2h = symndx2h; |
| arg_.n_ldm_entries = 0; |
| |
| /* Assign offsets. */ |
| htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_); |
| |
| /* Check offset ranges we have actually assigned. */ |
| for (i = (int) R_8; i <= (int) R_32; ++i) |
| BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4); |
| |
| *final_offset = start_offset; |
| *n_ldm_entries = arg_.n_ldm_entries; |
| } |
| |
| struct elf_m68k_partition_multi_got_arg |
| { |
| /* The GOT we are adding entries to. Aka big got. */ |
| struct elf_m68k_got *current_got; |
| |
| /* Offset to assign the next CURRENT_GOT. */ |
| bfd_vma offset; |
| |
| /* Context where memory should be allocated. */ |
| struct bfd_link_info *info; |
| |
| /* Total number of slots in the .got section. |
| This is used to calculate size of the .got and .rela.got sections. */ |
| bfd_vma n_slots; |
| |
| /* Difference in numbers of allocated slots in the .got section |
| and necessary relocations in the .rela.got section. |
| This is used to calculate size of the .rela.got section. */ |
| bfd_vma slots_relas_diff; |
| |
| /* Error flag. */ |
| bfd_boolean error_p; |
| |
| /* Mapping from global symndx to global symbols. |
| This is used to build lists of got entries for global symbols. */ |
| struct elf_m68k_link_hash_entry **symndx2h; |
| }; |
| |
| static void |
| elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg) |
| { |
| bfd_vma n_ldm_entries; |
| |
| elf_m68k_finalize_got_offsets (arg->current_got, |
| (elf_m68k_hash_table (arg->info) |
| ->use_neg_got_offsets_p), |
| arg->symndx2h, |
| &arg->offset, &n_ldm_entries); |
| |
| arg->n_slots += arg->current_got->n_slots[R_32]; |
| |
| if (!bfd_link_pic (arg->info)) |
| /* If we are generating a shared object, we need to |
| output a R_68K_RELATIVE reloc so that the dynamic |
| linker can adjust this GOT entry. Overwise we |
| don't need space in .rela.got for local symbols. */ |
| arg->slots_relas_diff += arg->current_got->local_n_slots; |
| |
| /* @LDM relocations require a 2-slot GOT entry, but only |
| one relocation. Account for that. */ |
| arg->slots_relas_diff += n_ldm_entries; |
| |
| BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots); |
| } |
| |
| |
| /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT |
| or start a new CURRENT_GOT. */ |
| |
| static int |
| elf_m68k_partition_multi_got_1 (void **_entry, void *_arg) |
| { |
| struct elf_m68k_bfd2got_entry *entry; |
| struct elf_m68k_partition_multi_got_arg *arg; |
| struct elf_m68k_got *got; |
| struct elf_m68k_got diff_; |
| struct elf_m68k_got *diff; |
| |
| entry = (struct elf_m68k_bfd2got_entry *) *_entry; |
| arg = (struct elf_m68k_partition_multi_got_arg *) _arg; |
| |
| got = entry->got; |
| BFD_ASSERT (got != NULL); |
| BFD_ASSERT (got->offset == (bfd_vma) -1); |
| |
| diff = NULL; |
| |
| if (arg->current_got != NULL) |
| /* Construct diff. */ |
| { |
| diff = &diff_; |
| elf_m68k_init_got (diff); |
| |
| if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff)) |
| { |
| if (diff->offset == 0) |
| /* Offset set to 0 in the diff_ indicates an error. */ |
| { |
| arg->error_p = TRUE; |
| goto final_return; |
| } |
| |
| if (elf_m68k_hash_table (arg->info)->allow_multigot_p) |
| { |
| elf_m68k_clear_got (diff); |
| /* Schedule to finish up current_got and start new one. */ |
| diff = NULL; |
| } |
| /* else |
| Merge GOTs no matter what. If big GOT overflows, |
| we'll fail in relocate_section due to truncated relocations. |
| |
| ??? May be fail earlier? E.g., in can_merge_gots. */ |
| } |
| } |
| else |
| /* Diff of got against empty current_got is got itself. */ |
| { |
| /* Create empty current_got to put subsequent GOTs to. */ |
| arg->current_got = elf_m68k_create_empty_got (arg->info); |
| if (arg->current_got == NULL) |
| { |
| arg->error_p = TRUE; |
| goto final_return; |
| } |
| |
| arg->current_got->offset = arg->offset; |
| |
| diff = got; |
| } |
| |
| if (diff != NULL) |
| { |
| if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info)) |
| { |
| arg->error_p = TRUE; |
| goto final_return; |
| } |
| |
| /* Now we can free GOT. */ |
| elf_m68k_clear_got (got); |
| |
| entry->got = arg->current_got; |
| } |
| else |
| { |
| /* Finish up current_got. */ |
| elf_m68k_partition_multi_got_2 (arg); |
| |
| /* Schedule to start a new current_got. */ |
| arg->current_got = NULL; |
| |
| /* Retry. */ |
| if (!elf_m68k_partition_multi_got_1 (_entry, _arg)) |
| { |
| BFD_ASSERT (arg->error_p); |
| goto final_return; |
| } |
| } |
| |
| final_return: |
| if (diff != NULL) |
| elf_m68k_clear_got (diff); |
| |
| return !arg->error_p; |
| } |
| |
| /* Helper function to build symndx2h mapping. */ |
| |
| static bfd_boolean |
| elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h, |
| void *_arg) |
| { |
| struct elf_m68k_link_hash_entry *h; |
| |
| h = elf_m68k_hash_entry (_h); |
| |
| if (h->got_entry_key != 0) |
| /* H has at least one entry in the GOT. */ |
| { |
| struct elf_m68k_partition_multi_got_arg *arg; |
| |
| arg = (struct elf_m68k_partition_multi_got_arg *) _arg; |
| |
| BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL); |
| arg->symndx2h[h->got_entry_key] = h; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Merge GOTs of some BFDs, assign offsets to GOT entries and build |
| lists of GOT entries for global symbols. |
| Calculate sizes of .got and .rela.got sections. */ |
| |
| static bfd_boolean |
| elf_m68k_partition_multi_got (struct bfd_link_info *info) |
| { |
| struct elf_m68k_multi_got *multi_got; |
| struct elf_m68k_partition_multi_got_arg arg_; |
| |
| multi_got = elf_m68k_multi_got (info); |
| |
| arg_.current_got = NULL; |
| arg_.offset = 0; |
| arg_.info = info; |
| arg_.n_slots = 0; |
| arg_.slots_relas_diff = 0; |
| arg_.error_p = FALSE; |
| |
| if (multi_got->bfd2got != NULL) |
| { |
| /* Initialize symndx2h mapping. */ |
| { |
| arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx |
| * sizeof (*arg_.symndx2h)); |
| if (arg_.symndx2h == NULL) |
| return FALSE; |
| |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_m68k_init_symndx2h_1, &arg_); |
| } |
| |
| /* Partition. */ |
| htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1, |
| &arg_); |
| if (arg_.error_p) |
| { |
| free (arg_.symndx2h); |
| arg_.symndx2h = NULL; |
| |
| return FALSE; |
| } |
| |
| /* Finish up last current_got. */ |
| elf_m68k_partition_multi_got_2 (&arg_); |
| |
| free (arg_.symndx2h); |
| } |
| |
| if (elf_hash_table (info)->dynobj != NULL) |
| /* Set sizes of .got and .rela.got sections. */ |
| { |
| asection *s; |
| |
| s = elf_hash_table (info)->sgot; |
| if (s != NULL) |
| s->size = arg_.offset; |
| else |
| BFD_ASSERT (arg_.offset == 0); |
| |
| BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots); |
| arg_.n_slots -= arg_.slots_relas_diff; |
| |
| s = elf_hash_table (info)->srelgot; |
| if (s != NULL) |
| s->size = arg_.n_slots * sizeof (Elf32_External_Rela); |
| else |
| BFD_ASSERT (arg_.n_slots == 0); |
| } |
| else |
| BFD_ASSERT (multi_got->bfd2got == NULL); |
| |
| return TRUE; |
| } |
| |
| /* Copy any information related to dynamic linking from a pre-existing |
| symbol to a newly created symbol. Also called to copy flags and |
| other back-end info to a weakdef, in which case the symbol is not |
| newly created and plt/got refcounts and dynamic indices should not |
| be copied. */ |
| |
| static void |
| elf_m68k_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *_dir, |
| struct elf_link_hash_entry *_ind) |
| { |
| struct elf_m68k_link_hash_entry *dir; |
| struct elf_m68k_link_hash_entry *ind; |
| |
| _bfd_elf_link_hash_copy_indirect (info, _dir, _ind); |
| |
| if (_ind->root.type != bfd_link_hash_indirect) |
| return; |
| |
| dir = elf_m68k_hash_entry (_dir); |
| ind = elf_m68k_hash_entry (_ind); |
| |
| /* Any absolute non-dynamic relocations against an indirect or weak |
| definition will be against the target symbol. */ |
| _dir->non_got_ref |= _ind->non_got_ref; |
| |
| /* We might have a direct symbol already having entries in the GOTs. |
| Update its key only in case indirect symbol has GOT entries and |
| assert that both indirect and direct symbols don't have GOT entries |
| at the same time. */ |
| if (ind->got_entry_key != 0) |
| { |
| BFD_ASSERT (dir->got_entry_key == 0); |
| /* Assert that GOTs aren't partioned yet. */ |
| BFD_ASSERT (ind->glist == NULL); |
| |
| dir->got_entry_key = ind->got_entry_key; |
| ind->got_entry_key = 0; |
| } |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table or procedure linkage |
| table. */ |
| |
| static bfd_boolean |
| elf_m68k_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| bfd *dynobj; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| struct elf_m68k_got *got; |
| |
| if (bfd_link_relocatable (info)) |
| return TRUE; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| sreloc = NULL; |
| |
| got = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| h = NULL; |
| else |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_68K_GOT8: |
| case R_68K_GOT16: |
| case R_68K_GOT32: |
| if (h != NULL |
| && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) |
| break; |
| /* Fall through. */ |
| |
| /* Relative GOT relocations. */ |
| case R_68K_GOT8O: |
| case R_68K_GOT16O: |
| case R_68K_GOT32O: |
| /* Fall through. */ |
| |
| /* TLS relocations. */ |
| case R_68K_TLS_GD8: |
| case R_68K_TLS_GD16: |
| case R_68K_TLS_GD32: |
| case R_68K_TLS_LDM8: |
| case R_68K_TLS_LDM16: |
| case R_68K_TLS_LDM32: |
| case R_68K_TLS_IE8: |
| case R_68K_TLS_IE16: |
| case R_68K_TLS_IE32: |
| |
| case R_68K_TLS_TPREL32: |
| case R_68K_TLS_DTPREL32: |
| |
| if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32 |
| && bfd_link_pic (info)) |
| /* Do the special chorus for libraries with static TLS. */ |
| info->flags |= DF_STATIC_TLS; |
| |
| /* This symbol requires a global offset table entry. */ |
| |
| if (dynobj == NULL) |
| { |
| /* Create the .got section. */ |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (!_bfd_elf_create_got_section (dynobj, info)) |
| return FALSE; |
| } |
| |
| if (got == NULL) |
| { |
| struct elf_m68k_bfd2got_entry *bfd2got_entry; |
| |
| bfd2got_entry |
| = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), |
| abfd, FIND_OR_CREATE, info); |
| if (bfd2got_entry == NULL) |
| return FALSE; |
| |
| got = bfd2got_entry->got; |
| BFD_ASSERT (got != NULL); |
| } |
| |
| { |
| struct elf_m68k_got_entry *got_entry; |
| |
| /* Add entry to got. */ |
| got_entry = elf_m68k_add_entry_to_got (got, h, abfd, |
| ELF32_R_TYPE (rel->r_info), |
| r_symndx, info); |
| if (got_entry == NULL) |
| return FALSE; |
| |
| if (got_entry->u.s1.refcount == 1) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| if (h != NULL |
| && h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| } |
| } |
| |
| break; |
| |
| case R_68K_PLT8: |
| case R_68K_PLT16: |
| case R_68K_PLT32: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount++; |
| break; |
| |
| case R_68K_PLT8O: |
| case R_68K_PLT16O: |
| case R_68K_PLT32O: |
| /* This symbol requires a procedure linkage table entry. */ |
| |
| if (h == NULL) |
| { |
| /* It does not make sense to have this relocation for a |
| local symbol. FIXME: does it? How to handle it if |
| it does make sense? */ |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| h->needs_plt = 1; |
| h->plt.refcount++; |
| break; |
| |
| case R_68K_PC8: |
| case R_68K_PC16: |
| case R_68K_PC32: |
| /* If we are creating a shared library and this is not a local |
| symbol, we need to copy the reloc into the shared library. |
| However when linking with -Bsymbolic and this is a global |
| symbol which is defined in an object we are including in the |
| link (i.e., DEF_REGULAR is set), then we can resolve the |
| reloc directly. At this point we have not seen all the input |
| files, so it is possible that DEF_REGULAR is not set now but |
| will be set later (it is never cleared). We account for that |
| possibility below by storing information in the |
| pcrel_relocs_copied field of the hash table entry. */ |
| if (!(bfd_link_pic (info) |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (!SYMBOLIC_BIND (info, h) |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| if (h != NULL) |
| { |
| /* Make sure a plt entry is created for this symbol if |
| it turns out to be a function defined by a dynamic |
| object. */ |
| h->plt.refcount++; |
| } |
| break; |
| } |
| /* Fall through. */ |
| case R_68K_8: |
| case R_68K_16: |
| case R_68K_32: |
| /* We don't need to handle relocs into sections not going into |
| the "real" output. */ |
| if ((sec->flags & SEC_ALLOC) == 0) |
| break; |
| |
| if (h != NULL) |
| { |
| /* Make sure a plt entry is created for this symbol if it |
| turns out to be a function defined by a dynamic object. */ |
| h->plt.refcount++; |
| |
| if (bfd_link_executable (info)) |
| /* This symbol needs a non-GOT reference. */ |
| h->non_got_ref = 1; |
| } |
| |
| /* If we are creating a shared library, we need to copy the |
| reloc into the shared library. */ |
| if (bfd_link_pic (info) |
| && (h == NULL |
| || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))) |
| { |
| /* When creating a shared object, we must copy these |
| reloc types into the output file. We create a reloc |
| section in dynobj and make room for this reloc. */ |
| if (sreloc == NULL) |
| { |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, dynobj, 2, abfd, /*rela?*/ TRUE); |
| |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| if (sec->flags & SEC_READONLY |
| /* Don't set DF_TEXTREL yet for PC relative |
| relocations, they might be discarded later. */ |
| && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 |
| || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 |
| || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) |
| info->flags |= DF_TEXTREL; |
| |
| sreloc->size += sizeof (Elf32_External_Rela); |
| |
| /* We count the number of PC relative relocations we have |
| entered for this symbol, so that we can discard them |
| again if, in the -Bsymbolic case, the symbol is later |
| defined by a regular object, or, in the normal shared |
| case, the symbol is forced to be local. Note that this |
| function is only called if we are using an m68kelf linker |
| hash table, which means that h is really a pointer to an |
| elf_m68k_link_hash_entry. */ |
| if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 |
| || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 |
| || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) |
| { |
| struct elf_m68k_pcrel_relocs_copied *p; |
| struct elf_m68k_pcrel_relocs_copied **head; |
| |
| if (h != NULL) |
| { |
| struct elf_m68k_link_hash_entry *eh |
| = elf_m68k_hash_entry (h); |
| head = &eh->pcrel_relocs_copied; |
| } |
| else |
| { |
| asection *s; |
| void *vpp; |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_m68k_pcrel_relocs_copied **) vpp; |
| } |
| |
| for (p = *head; p != NULL; p = p->next) |
| if (p->section == sreloc) |
| break; |
| |
| if (p == NULL) |
| { |
| p = ((struct elf_m68k_pcrel_relocs_copied *) |
| bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); |
| if (p == NULL) |
| return FALSE; |
| p->next = *head; |
| *head = p; |
| p->section = sreloc; |
| p->count = 0; |
| } |
| |
| ++p->count; |
| } |
| } |
| |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_68K_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_68K_GNU_VTENTRY: |
| if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| elf_m68k_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_68K_GNU_VTINHERIT: |
| case R_68K_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Return the type of PLT associated with OUTPUT_BFD. */ |
| |
| static const struct elf_m68k_plt_info * |
| elf_m68k_get_plt_info (bfd *output_bfd) |
| { |
| unsigned int features; |
| |
| features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); |
| if (features & cpu32) |
| return &elf_cpu32_plt_info; |
| if (features & mcfisa_b) |
| return &elf_isab_plt_info; |
| if (features & mcfisa_c) |
| return &elf_isac_plt_info; |
| return &elf_m68k_plt_info; |
| } |
| |
| /* This function is called after all the input files have been read, |
| and the input sections have been assigned to output sections. |
| It's a convenient place to determine the PLT style. */ |
| |
| static bfd_boolean |
| elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got |
| sections. */ |
| if (!elf_m68k_partition_multi_got (info)) |
| return FALSE; |
| |
| elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); |
| return TRUE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_m68k_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| |
| htab = elf_m68k_hash_table (info); |
| dynobj = htab->root.dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && (h->needs_plt |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if ((h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| && h->root.type == bfd_link_hash_undefweak)) |
| /* We must always create the plt entry if it was referenced |
| by a PLTxxO relocation. In this case we already recorded |
| it as a dynamic symbol. */ |
| && h->dynindx == -1) |
| { |
| /* This case can occur if we saw a PLTxx reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PCxx reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| return TRUE; |
| } |
| |
| /* Make sure this symbol is output as a dynamic symbol. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| s = htab->root.splt; |
| BFD_ASSERT (s != NULL); |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size = htab->plt_info->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (!bfd_link_pic (info) |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = s->size; |
| } |
| |
| h->plt.offset = s->size; |
| |
| /* Make room for this entry. */ |
| s->size += htab->plt_info->size; |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| s = htab->root.sgotplt; |
| BFD_ASSERT (s != NULL); |
| s->size += 4; |
| |
| /* We also need to make an entry in the .rela.plt section. */ |
| s = htab->root.srelplt; |
| BFD_ASSERT (s != NULL); |
| s->size += sizeof (Elf32_External_Rela); |
| |
| return TRUE; |
| } |
| |
| /* Reinitialize the plt offset now that it is not used as a reference |
| count any more. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| s = bfd_get_linker_section (dynobj, ".dynbss"); |
| BFD_ASSERT (s != NULL); |
| |
| /* We must generate a R_68K_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rela.bss section we are going to use. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| asection *srel; |
| |
| srel = bfd_get_linker_section (dynobj, ".rela.bss"); |
| BFD_ASSERT (srel != NULL); |
| srel->size += sizeof (Elf32_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean plt; |
| bfd_boolean relocs; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| else |
| { |
| /* We may have created entries in the .rela.got section. |
| However, if we are not creating the dynamic sections, we will |
| not actually use these entries. Reset the size of .rela.got, |
| which will cause it to get stripped from the output file |
| below. */ |
| s = elf_hash_table (info)->srelgot; |
| if (s != NULL) |
| s->size = 0; |
| } |
| |
| /* If this is a -Bsymbolic shared link, then we need to discard all |
| PC relative relocs against symbols defined in a regular object. |
| For the normal shared case we discard the PC relative relocs |
| against symbols that have become local due to visibility changes. |
| We allocated space for them in the check_relocs routine, but we |
| will not fill them in in the relocate_section routine. */ |
| if (bfd_link_pic (info)) |
| elf_link_hash_traverse (elf_hash_table (info), |
| elf_m68k_discard_copies, |
| info); |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| plt = FALSE; |
| relocs = FALSE; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| const char *name; |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| /* It's OK to base decisions on the section name, because none |
| of the dynobj section names depend upon the input files. */ |
| name = bfd_section_name (s); |
| |
| if (strcmp (name, ".plt") == 0) |
| { |
| /* Remember whether there is a PLT. */ |
| plt = s->size != 0; |
| } |
| else if (CONST_STRNEQ (name, ".rela")) |
| { |
| if (s->size != 0) |
| { |
| relocs = TRUE; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| } |
| else if (! CONST_STRNEQ (name, ".got") |
| && strcmp (name, ".dynbss") != 0) |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rela.bss and |
| .rela.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. */ |
| /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. |
| Unused entries should be reclaimed before the section's contents |
| are written out, but at the moment this does not happen. Thus in |
| order to prevent writing out garbage, we initialise the section's |
| contents to zero. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| } |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in elf_m68k_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| #define add_dynamic_entry(TAG, VAL) \ |
| _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| |
| if (bfd_link_executable (info)) |
| { |
| if (!add_dynamic_entry (DT_DEBUG, 0)) |
| return FALSE; |
| } |
| |
| if (plt) |
| { |
| if (!add_dynamic_entry (DT_PLTGOT, 0) |
| || !add_dynamic_entry (DT_PLTRELSZ, 0) |
| || !add_dynamic_entry (DT_PLTREL, DT_RELA) |
| || !add_dynamic_entry (DT_JMPREL, 0)) |
| return FALSE; |
| } |
| |
| if (relocs) |
| { |
| if (!add_dynamic_entry (DT_RELA, 0) |
| || !add_dynamic_entry (DT_RELASZ, 0) |
| || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) |
| return FALSE; |
| } |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| return FALSE; |
| } |
| } |
| #undef add_dynamic_entry |
| |
| return TRUE; |
| } |
| |
| /* This function is called via elf_link_hash_traverse if we are |
| creating a shared object. In the -Bsymbolic case it discards the |
| space allocated to copy PC relative relocs against symbols which |
| are defined in regular objects. For the normal shared case, it |
| discards space for pc-relative relocs that have become local due to |
| symbol visibility changes. We allocated space for them in the |
| check_relocs routine, but we won't fill them in in the |
| relocate_section routine. |
| |
| We also check whether any of the remaining relocations apply |
| against a readonly section, and set the DF_TEXTREL flag in this |
| case. */ |
| |
| static bfd_boolean |
| elf_m68k_discard_copies (struct elf_link_hash_entry *h, |
| void * inf) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| struct elf_m68k_pcrel_relocs_copied *s; |
| |
| if (!SYMBOL_CALLS_LOCAL (info, h)) |
|