| /* Renesas / SuperH SH specific support for 32-bit ELF |
| Copyright (C) 1996-2019 Free Software Foundation, Inc. |
| Contributed by Ian Lance Taylor, Cygnus Support. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf-vxworks.h" |
| #include "elf/sh.h" |
| #include "dwarf2.h" |
| #include "libiberty.h" |
| #include "../opcodes/sh-opc.h" |
| |
| /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */ |
| #define OCTETS_PER_BYTE(ABFD, SEC) 1 |
| |
| static bfd_reloc_status_type sh_elf_reloc |
| (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
| static bfd_reloc_status_type sh_elf_ignore_reloc |
| (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
| static bfd_boolean sh_elf_relax_delete_bytes |
| (bfd *, asection *, bfd_vma, int); |
| static bfd_boolean sh_elf_align_loads |
| (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *); |
| static bfd_boolean sh_elf_swap_insns |
| (bfd *, asection *, void *, bfd_byte *, bfd_vma); |
| static int sh_elf_optimized_tls_reloc |
| (struct bfd_link_info *, int, int); |
| static bfd_vma dtpoff_base |
| (struct bfd_link_info *); |
| static bfd_vma tpoff |
| (struct bfd_link_info *, bfd_vma); |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| |
| /* FDPIC binaries have a default 128K stack. */ |
| #define DEFAULT_STACK_SIZE 0x20000 |
| |
| #define MINUS_ONE ((bfd_vma) 0 - 1) |
| |
| /* Decide whether a reference to a symbol can be resolved locally or |
| not. If the symbol is protected, we want the local address, but |
| its function descriptor must be assigned by the dynamic linker. */ |
| #define SYMBOL_FUNCDESC_LOCAL(INFO, H) \ |
| (SYMBOL_REFERENCES_LOCAL (INFO, H) \ |
| || ! elf_hash_table (INFO)->dynamic_sections_created) |
| |
| #define SH_PARTIAL32 TRUE |
| #define SH_SRC_MASK32 0xffffffff |
| #define SH_ELF_RELOC sh_elf_reloc |
| static reloc_howto_type sh_elf_howto_table[] = |
| { |
| #include "elf32-sh-relocs.h" |
| }; |
| |
| #define SH_PARTIAL32 FALSE |
| #define SH_SRC_MASK32 0 |
| #define SH_ELF_RELOC bfd_elf_generic_reloc |
| static reloc_howto_type sh_vxworks_howto_table[] = |
| { |
| #include "elf32-sh-relocs.h" |
| }; |
| |
| /* Return true if OUTPUT_BFD is a VxWorks object. */ |
| |
| static bfd_boolean |
| vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED) |
| { |
| #if !defined SH_TARGET_ALREADY_DEFINED |
| extern const bfd_target sh_elf32_vxworks_le_vec; |
| extern const bfd_target sh_elf32_vxworks_vec; |
| |
| return (abfd->xvec == &sh_elf32_vxworks_le_vec |
| || abfd->xvec == &sh_elf32_vxworks_vec); |
| #else |
| return FALSE; |
| #endif |
| } |
| |
| /* Return true if OUTPUT_BFD is an FDPIC object. */ |
| |
| static bfd_boolean |
| fdpic_object_p (bfd *abfd ATTRIBUTE_UNUSED) |
| { |
| #if !defined SH_TARGET_ALREADY_DEFINED |
| extern const bfd_target sh_elf32_fdpic_le_vec; |
| extern const bfd_target sh_elf32_fdpic_be_vec; |
| |
| return (abfd->xvec == &sh_elf32_fdpic_le_vec |
| || abfd->xvec == &sh_elf32_fdpic_be_vec); |
| #else |
| return FALSE; |
| #endif |
| } |
| |
| /* Return the howto table for ABFD. */ |
| |
| static reloc_howto_type * |
| get_howto_table (bfd *abfd) |
| { |
| if (vxworks_object_p (abfd)) |
| return sh_vxworks_howto_table; |
| return sh_elf_howto_table; |
| } |
| |
| static bfd_reloc_status_type |
| sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd, |
| asection *input_section, bfd_byte *contents, |
| bfd_vma addr, asection *symbol_section, |
| bfd_vma start, bfd_vma end) |
| { |
| static bfd_vma last_addr; |
| static asection *last_symbol_section; |
| bfd_byte *start_ptr, *ptr, *last_ptr; |
| int diff, cum_diff; |
| bfd_signed_vma x; |
| int insn; |
| |
| /* Sanity check the address. */ |
| if (addr > bfd_get_section_limit (input_bfd, input_section)) |
| return bfd_reloc_outofrange; |
| |
| /* We require the start and end relocations to be processed consecutively - |
| although we allow then to be processed forwards or backwards. */ |
| if (! last_addr) |
| { |
| last_addr = addr; |
| last_symbol_section = symbol_section; |
| return bfd_reloc_ok; |
| } |
| if (last_addr != addr) |
| abort (); |
| last_addr = 0; |
| |
| if (! symbol_section || last_symbol_section != symbol_section || end < start) |
| return bfd_reloc_outofrange; |
| |
| /* Get the symbol_section contents. */ |
| if (symbol_section != input_section) |
| { |
| if (elf_section_data (symbol_section)->this_hdr.contents != NULL) |
| contents = elf_section_data (symbol_section)->this_hdr.contents; |
| else |
| { |
| if (!bfd_malloc_and_get_section (input_bfd, symbol_section, |
| &contents)) |
| { |
| if (contents != NULL) |
| free (contents); |
| return bfd_reloc_outofrange; |
| } |
| } |
| } |
| #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800) |
| start_ptr = contents + start; |
| for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;) |
| { |
| for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);) |
| ptr -= 2; |
| ptr += 2; |
| diff = (last_ptr - ptr) >> 1; |
| cum_diff += diff & 1; |
| cum_diff += diff; |
| } |
| /* Calculate the start / end values to load into rs / re minus four - |
| so that will cancel out the four we would otherwise have to add to |
| addr to get the value to subtract in order to get relative addressing. */ |
| if (cum_diff >= 0) |
| { |
| start -= 4; |
| end = (ptr + cum_diff * 2) - contents; |
| } |
| else |
| { |
| bfd_vma start0 = start - 4; |
| |
| while (start0 && IS_PPI (contents + start0)) |
| start0 -= 2; |
| start0 = start - 2 - ((start - start0) & 2); |
| start = start0 - cum_diff - 2; |
| end = start0; |
| } |
| |
| if (contents != NULL |
| && elf_section_data (symbol_section)->this_hdr.contents != contents) |
| free (contents); |
| |
| insn = bfd_get_16 (input_bfd, contents + addr); |
| |
| x = (insn & 0x200 ? end : start) - addr; |
| if (input_section != symbol_section) |
| x += ((symbol_section->output_section->vma + symbol_section->output_offset) |
| - (input_section->output_section->vma |
| + input_section->output_offset)); |
| x >>= 1; |
| if (x < -128 || x > 127) |
| return bfd_reloc_overflow; |
| |
| x = (insn & ~0xff) | (x & 0xff); |
| bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr); |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* This function is used for normal relocs. This used to be like the COFF |
| function, and is almost certainly incorrect for other ELF targets. */ |
| |
| static bfd_reloc_status_type |
| sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in, |
| void *data, asection *input_section, bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| bfd_vma insn; |
| bfd_vma sym_value; |
| enum elf_sh_reloc_type r_type; |
| bfd_vma addr = reloc_entry->address; |
| bfd_size_type octets = addr * OCTETS_PER_BYTE (abfd, input_section); |
| bfd_byte *hit_data = (bfd_byte *) data + octets; |
| |
| r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type; |
| |
| if (output_bfd != NULL) |
| { |
| /* Partial linking--do nothing. */ |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| /* Almost all relocs have to do with relaxing. If any work must be |
| done for them, it has been done in sh_relax_section. */ |
| if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0) |
| return bfd_reloc_ok; |
| |
| if (symbol_in != NULL |
| && bfd_is_und_section (symbol_in->section)) |
| return bfd_reloc_undefined; |
| |
| /* PR 17512: file: 9891ca98. */ |
| if (octets + bfd_get_reloc_size (reloc_entry->howto) |
| > bfd_get_section_limit_octets (abfd, input_section)) |
| return bfd_reloc_outofrange; |
| |
| if (bfd_is_com_section (symbol_in->section)) |
| sym_value = 0; |
| else |
| sym_value = (symbol_in->value + |
| symbol_in->section->output_section->vma + |
| symbol_in->section->output_offset); |
| |
| switch (r_type) |
| { |
| case R_SH_DIR32: |
| insn = bfd_get_32 (abfd, hit_data); |
| insn += sym_value + reloc_entry->addend; |
| bfd_put_32 (abfd, insn, hit_data); |
| break; |
| case R_SH_IND12W: |
| insn = bfd_get_16 (abfd, hit_data); |
| sym_value += reloc_entry->addend; |
| sym_value -= (input_section->output_section->vma |
| + input_section->output_offset |
| + addr |
| + 4); |
| sym_value += (((insn & 0xfff) ^ 0x800) - 0x800) << 1; |
| insn = (insn & 0xf000) | ((sym_value >> 1) & 0xfff); |
| bfd_put_16 (abfd, insn, hit_data); |
| if (sym_value + 0x1000 >= 0x2000 || (sym_value & 1) != 0) |
| return bfd_reloc_overflow; |
| break; |
| default: |
| abort (); |
| break; |
| } |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* This function is used for relocs which are only used for relaxing, |
| which the linker should otherwise ignore. */ |
| |
| static bfd_reloc_status_type |
| sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, |
| asymbol *symbol ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED, asection *input_section, |
| bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| if (output_bfd != NULL) |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| /* This structure is used to map BFD reloc codes to SH ELF relocs. */ |
| |
| struct elf_reloc_map |
| { |
| bfd_reloc_code_real_type bfd_reloc_val; |
| unsigned char elf_reloc_val; |
| }; |
| |
| /* An array mapping BFD reloc codes to SH ELF relocs. */ |
| |
| static const struct elf_reloc_map sh_reloc_map[] = |
| { |
| { BFD_RELOC_NONE, R_SH_NONE }, |
| { BFD_RELOC_32, R_SH_DIR32 }, |
| { BFD_RELOC_16, R_SH_DIR16 }, |
| { BFD_RELOC_8, R_SH_DIR8 }, |
| { BFD_RELOC_CTOR, R_SH_DIR32 }, |
| { BFD_RELOC_32_PCREL, R_SH_REL32 }, |
| { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN }, |
| { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W }, |
| { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ }, |
| { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL }, |
| { BFD_RELOC_8_PCREL, R_SH_SWITCH8 }, |
| { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 }, |
| { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 }, |
| { BFD_RELOC_SH_USES, R_SH_USES }, |
| { BFD_RELOC_SH_COUNT, R_SH_COUNT }, |
| { BFD_RELOC_SH_ALIGN, R_SH_ALIGN }, |
| { BFD_RELOC_SH_CODE, R_SH_CODE }, |
| { BFD_RELOC_SH_DATA, R_SH_DATA }, |
| { BFD_RELOC_SH_LABEL, R_SH_LABEL }, |
| { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT }, |
| { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY }, |
| { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START }, |
| { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END }, |
| { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 }, |
| { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 }, |
| { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 }, |
| { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 }, |
| { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 }, |
| { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 }, |
| { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 }, |
| { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 }, |
| { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 }, |
| { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 }, |
| { BFD_RELOC_SH_COPY, R_SH_COPY }, |
| { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT }, |
| { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT }, |
| { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE }, |
| { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF }, |
| { BFD_RELOC_SH_GOTPC, R_SH_GOTPC }, |
| { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 }, |
| { BFD_RELOC_SH_GOT20, R_SH_GOT20 }, |
| { BFD_RELOC_SH_GOTOFF20, R_SH_GOTOFF20 }, |
| { BFD_RELOC_SH_GOTFUNCDESC, R_SH_GOTFUNCDESC }, |
| { BFD_RELOC_SH_GOTFUNCDESC20, R_SH_GOTFUNCDESC20 }, |
| { BFD_RELOC_SH_GOTOFFFUNCDESC, R_SH_GOTOFFFUNCDESC }, |
| { BFD_RELOC_SH_GOTOFFFUNCDESC20, R_SH_GOTOFFFUNCDESC20 }, |
| { BFD_RELOC_SH_FUNCDESC, R_SH_FUNCDESC }, |
| }; |
| |
| /* Given a BFD reloc code, return the howto structure for the |
| corresponding SH ELF reloc. */ |
| |
| static reloc_howto_type * |
| sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++) |
| { |
| if (sh_reloc_map[i].bfd_reloc_val == code) |
| return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val; |
| } |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| sh_elf_reloc_name_lookup (bfd *abfd, const char *r_name) |
| { |
| unsigned int i; |
| |
| if (vxworks_object_p (abfd)) |
| { |
| for (i = 0; |
| i < (sizeof (sh_vxworks_howto_table) |
| / sizeof (sh_vxworks_howto_table[0])); |
| i++) |
| if (sh_vxworks_howto_table[i].name != NULL |
| && strcasecmp (sh_vxworks_howto_table[i].name, r_name) == 0) |
| return &sh_vxworks_howto_table[i]; |
| } |
| else |
| { |
| for (i = 0; |
| i < (sizeof (sh_elf_howto_table) |
| / sizeof (sh_elf_howto_table[0])); |
| i++) |
| if (sh_elf_howto_table[i].name != NULL |
| && strcasecmp (sh_elf_howto_table[i].name, r_name) == 0) |
| return &sh_elf_howto_table[i]; |
| } |
| |
| return NULL; |
| } |
| |
| /* Given an ELF reloc, fill in the howto field of a relent. */ |
| |
| static bfd_boolean |
| sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) |
| { |
| unsigned int r; |
| |
| r = ELF32_R_TYPE (dst->r_info); |
| |
| if (r >= R_SH_max |
| || (r >= R_SH_FIRST_INVALID_RELOC && r <= R_SH_LAST_INVALID_RELOC) |
| || (r >= R_SH_FIRST_INVALID_RELOC_2 && r <= R_SH_LAST_INVALID_RELOC_2) |
| || (r >= R_SH_FIRST_INVALID_RELOC_3 && r <= R_SH_LAST_INVALID_RELOC_3) |
| || (r >= R_SH_FIRST_INVALID_RELOC_4 && r <= R_SH_LAST_INVALID_RELOC_4) |
| || (r >= R_SH_FIRST_INVALID_RELOC_5 && r <= R_SH_LAST_INVALID_RELOC_5) |
| || (r >= R_SH_FIRST_INVALID_RELOC_6 && r <= R_SH_LAST_INVALID_RELOC_6)) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: unsupported relocation type %#x"), |
| abfd, r); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| cache_ptr->howto = get_howto_table (abfd) + r; |
| return TRUE; |
| } |
| |
| /* This function handles relaxing for SH ELF. See the corresponding |
| function in coff-sh.c for a description of what this does. FIXME: |
| There is a lot of duplication here between this code and the COFF |
| specific code. The format of relocs and symbols is wound deeply |
| into this code, but it would still be better if the duplication |
| could be eliminated somehow. Note in particular that although both |
| functions use symbols like R_SH_CODE, those symbols have different |
| values; in coff-sh.c they come from include/coff/sh.h, whereas here |
| they come from enum elf_sh_reloc_type in include/elf/sh.h. */ |
| |
| static bfd_boolean |
| sh_elf_relax_section (bfd *abfd, asection *sec, |
| struct bfd_link_info *link_info, bfd_boolean *again) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Rela *internal_relocs; |
| bfd_boolean have_code; |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_byte *contents = NULL; |
| Elf_Internal_Sym *isymbuf = NULL; |
| |
| *again = FALSE; |
| |
| if (bfd_link_relocatable (link_info) |
| || (sec->flags & SEC_RELOC) == 0 |
| || sec->reloc_count == 0) |
| return TRUE; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| |
| internal_relocs = (_bfd_elf_link_read_relocs |
| (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory)); |
| if (internal_relocs == NULL) |
| goto error_return; |
| |
| have_code = FALSE; |
| |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma laddr, paddr, symval; |
| unsigned short insn; |
| Elf_Internal_Rela *irelfn, *irelscan, *irelcount; |
| bfd_signed_vma foff; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE) |
| have_code = TRUE; |
| |
| if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES) |
| continue; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| } |
| } |
| |
| /* The r_addend field of the R_SH_USES reloc will point us to |
| the register load. The 4 is because the r_addend field is |
| computed as though it were a jump offset, which are based |
| from 4 bytes after the jump instruction. */ |
| laddr = irel->r_offset + 4 + irel->r_addend; |
| if (laddr >= sec->size) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES offset"), |
| abfd, (uint64_t) irel->r_offset); |
| continue; |
| } |
| insn = bfd_get_16 (abfd, contents + laddr); |
| |
| /* If the instruction is not mov.l NN,rN, we don't know what to |
| do. */ |
| if ((insn & 0xf000) != 0xd000) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": warning: " |
| "R_SH_USES points to unrecognized insn 0x%x"), |
| abfd, (uint64_t) irel->r_offset, insn); |
| continue; |
| } |
| |
| /* Get the address from which the register is being loaded. The |
| displacement in the mov.l instruction is quadrupled. It is a |
| displacement from four bytes after the movl instruction, but, |
| before adding in the PC address, two least significant bits |
| of the PC are cleared. We assume that the section is aligned |
| on a four byte boundary. */ |
| paddr = insn & 0xff; |
| paddr *= 4; |
| paddr += (laddr + 4) &~ (bfd_vma) 3; |
| if (paddr >= sec->size) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": warning: bad R_SH_USES load offset"), |
| abfd, (uint64_t) irel->r_offset); |
| continue; |
| } |
| |
| /* Get the reloc for the address from which the register is |
| being loaded. This reloc will tell us which function is |
| actually being called. */ |
| for (irelfn = internal_relocs; irelfn < irelend; irelfn++) |
| if (irelfn->r_offset == paddr |
| && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32) |
| break; |
| if (irelfn >= irelend) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": warning: could not find expected reloc"), |
| abfd, (uint64_t) paddr); |
| continue; |
| } |
| |
| /* Read this BFD's symbols if we haven't done so already. */ |
| if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto error_return; |
| } |
| |
| /* Get the value of the symbol referred to by the reloc. */ |
| if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| |
| isym = isymbuf + ELF32_R_SYM (irelfn->r_info); |
| if (isym->st_shndx |
| != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": warning: symbol in unexpected section"), |
| abfd, (uint64_t) paddr); |
| continue; |
| } |
| |
| symval = (isym->st_value |
| + sec->output_section->vma |
| + sec->output_offset); |
| } |
| else |
| { |
| unsigned long indx; |
| struct elf_link_hash_entry *h; |
| |
| indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info; |
| h = elf_sym_hashes (abfd)[indx]; |
| BFD_ASSERT (h != NULL); |
| if (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| { |
| /* This appears to be a reference to an undefined |
| symbol. Just ignore it--it will be caught by the |
| regular reloc processing. */ |
| continue; |
| } |
| |
| symval = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| } |
| |
| if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace) |
| symval += bfd_get_32 (abfd, contents + paddr); |
| else |
| symval += irelfn->r_addend; |
| |
| /* See if this function call can be shortened. */ |
| foff = (symval |
| - (irel->r_offset |
| + sec->output_section->vma |
| + sec->output_offset |
| + 4)); |
| /* A branch to an address beyond ours might be increased by an |
| .align that doesn't move when bytes behind us are deleted. |
| So, we add some slop in this calculation to allow for |
| that. */ |
| if (foff < -0x1000 || foff >= 0x1000 - 8) |
| { |
| /* After all that work, we can't shorten this function call. */ |
| continue; |
| } |
| |
| /* Shorten the function call. */ |
| |
| /* For simplicity of coding, we are going to modify the section |
| contents, the section relocs, and the BFD symbol table. We |
| must tell the rest of the code not to free up this |
| information. It would be possible to instead create a table |
| of changes which have to be made, as is done in coff-mips.c; |
| that would be more work, but would require less memory when |
| the linker is run. */ |
| |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| |
| /* Replace the jmp/jsr with a bra/bsr. */ |
| |
| /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and |
| replace the jmp/jsr with a bra/bsr. */ |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W); |
| /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info) |
| here, but that only checks if the symbol is an external symbol, |
| not if the symbol is in a different section. Besides, we need |
| a consistent meaning for the relocation, so we just assume here that |
| the value of the symbol is not available. */ |
| |
| /* We can't fully resolve this yet, because the external |
| symbol value may be changed by future relaxing. We let |
| the final link phase handle it. */ |
| if (bfd_get_16 (abfd, contents + irel->r_offset) & 0x0020) |
| bfd_put_16 (abfd, (bfd_vma) 0xa000, contents + irel->r_offset); |
| else |
| bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset); |
| |
| irel->r_addend = -4; |
| |
| /* When we calculated the symbol "value" we had an offset in the |
| DIR32's word in memory (we read and add it above). However, |
| the jsr we create does NOT have this offset encoded, so we |
| have to add it to the addend to preserve it. */ |
| irel->r_addend += bfd_get_32 (abfd, contents + paddr); |
| |
| /* See if there is another R_SH_USES reloc referring to the same |
| register load. */ |
| for (irelscan = internal_relocs; irelscan < irelend; irelscan++) |
| if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES |
| && laddr == irelscan->r_offset + 4 + irelscan->r_addend) |
| break; |
| if (irelscan < irelend) |
| { |
| /* Some other function call depends upon this register load, |
| and we have not yet converted that function call. |
| Indeed, we may never be able to convert it. There is |
| nothing else we can do at this point. */ |
| continue; |
| } |
| |
| /* Look for a R_SH_COUNT reloc on the location where the |
| function address is stored. Do this before deleting any |
| bytes, to avoid confusion about the address. */ |
| for (irelcount = internal_relocs; irelcount < irelend; irelcount++) |
| if (irelcount->r_offset == paddr |
| && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT) |
| break; |
| |
| /* Delete the register load. */ |
| if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2)) |
| goto error_return; |
| |
| /* That will change things, so, just in case it permits some |
| other function call to come within range, we should relax |
| again. Note that this is not required, and it may be slow. */ |
| *again = TRUE; |
| |
| /* Now check whether we got a COUNT reloc. */ |
| if (irelcount >= irelend) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": warning: " |
| "could not find expected COUNT reloc"), |
| abfd, (uint64_t) paddr); |
| continue; |
| } |
| |
| /* The number of uses is stored in the r_addend field. We've |
| just deleted one. */ |
| if (irelcount->r_addend == 0) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: %#" PRIx64 ": warning: bad count"), |
| abfd, (uint64_t) paddr); |
| continue; |
| } |
| |
| --irelcount->r_addend; |
| |
| /* If there are no more uses, we can delete the address. Reload |
| the address from irelfn, in case it was changed by the |
| previous call to sh_elf_relax_delete_bytes. */ |
| if (irelcount->r_addend == 0) |
| { |
| if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4)) |
| goto error_return; |
| } |
| |
| /* We've done all we can with that function call. */ |
| } |
| |
| /* Look for load and store instructions that we can align on four |
| byte boundaries. */ |
| if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4 |
| && have_code) |
| { |
| bfd_boolean swapped; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| goto error_return; |
| } |
| } |
| |
| if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents, |
| &swapped)) |
| goto error_return; |
| |
| if (swapped) |
| { |
| elf_section_data (sec)->relocs = internal_relocs; |
| elf_section_data (sec)->this_hdr.contents = contents; |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| { |
| if (! link_info->keep_memory) |
| free (isymbuf); |
| else |
| { |
| /* Cache the symbols for elf_link_input_bfd. */ |
| symtab_hdr->contents = (unsigned char *) isymbuf; |
| } |
| } |
| |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (! link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| if (internal_relocs != NULL |
| && elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return TRUE; |
| |
| error_return: |
| if (isymbuf != NULL |
| && symtab_hdr->contents != (unsigned char *) isymbuf) |
| free (isymbuf); |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| free (contents); |
| if (internal_relocs != NULL |
| && elf_section_data (sec)->relocs != internal_relocs) |
| free (internal_relocs); |
| |
| return FALSE; |
| } |
| |
| /* Delete some bytes from a section while relaxing. FIXME: There is a |
| lot of duplication between this function and sh_relax_delete_bytes |
| in coff-sh.c. */ |
| |
| static bfd_boolean |
| sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, |
| int count) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned int sec_shndx; |
| bfd_byte *contents; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Rela *irelalign; |
| bfd_vma toaddr; |
| Elf_Internal_Sym *isymbuf, *isym, *isymend; |
| struct elf_link_hash_entry **sym_hashes; |
| struct elf_link_hash_entry **end_hashes; |
| unsigned int symcount; |
| asection *o; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| |
| sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| contents = elf_section_data (sec)->this_hdr.contents; |
| |
| /* The deletion must stop at the next ALIGN reloc for an alignment |
| power larger than the number of bytes we are deleting. */ |
| |
| irelalign = NULL; |
| toaddr = sec->size; |
| |
| irel = elf_section_data (sec)->relocs; |
| irelend = irel + sec->reloc_count; |
| for (; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN |
| && irel->r_offset > addr |
| && count < (1 << irel->r_addend)) |
| { |
| irelalign = irel; |
| toaddr = irel->r_offset; |
| break; |
| } |
| } |
| |
| /* Actually delete the bytes. */ |
| memmove (contents + addr, contents + addr + count, |
| (size_t) (toaddr - addr - count)); |
| if (irelalign == NULL) |
| sec->size -= count; |
| else |
| { |
| int i; |
| |
| #define NOP_OPCODE (0x0009) |
| |
| BFD_ASSERT ((count & 1) == 0); |
| for (i = 0; i < count; i += 2) |
| bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i); |
| } |
| |
| /* Adjust all the relocs. */ |
| for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) |
| { |
| bfd_vma nraddr, stop; |
| bfd_vma start = 0; |
| int insn = 0; |
| int off, adjust, oinsn; |
| bfd_signed_vma voff = 0; |
| bfd_boolean overflow; |
| |
| /* Get the new reloc address. */ |
| nraddr = irel->r_offset; |
| if ((irel->r_offset > addr |
| && irel->r_offset < toaddr) |
| || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN |
| && irel->r_offset == toaddr)) |
| nraddr -= count; |
| |
| /* See if this reloc was for the bytes we have deleted, in which |
| case we no longer care about it. Don't delete relocs which |
| represent addresses, though. */ |
| if (irel->r_offset >= addr |
| && irel->r_offset < addr + count |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA |
| && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL) |
| irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), |
| (int) R_SH_NONE); |
| |
| /* If this is a PC relative reloc, see if the range it covers |
| includes the bytes we have deleted. */ |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_IND12W: |
| case R_SH_DIR8WPZ: |
| case R_SH_DIR8WPL: |
| start = irel->r_offset; |
| insn = bfd_get_16 (abfd, contents + nraddr); |
| break; |
| } |
| |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| start = stop = addr; |
| break; |
| |
| case R_SH_DIR32: |
| /* If this reloc is against a symbol defined in this |
| section, and the symbol will not be adjusted below, we |
| must check the addend to see it will put the value in |
| range to be adjusted, and hence must be changed. */ |
| if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) |
| { |
| isym = isymbuf + ELF32_R_SYM (irel->r_info); |
| if (isym->st_shndx == sec_shndx |
| && (isym->st_value <= addr |
| || isym->st_value >= toaddr)) |
| { |
| bfd_vma val; |
| |
| if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace) |
| { |
| val = bfd_get_32 (abfd, contents + nraddr); |
| val += isym->st_value; |
| if (val > addr && val < toaddr) |
| bfd_put_32 (abfd, val - count, contents + nraddr); |
| } |
| else |
| { |
| val = isym->st_value + irel->r_addend; |
| if (val > addr && val < toaddr) |
| irel->r_addend -= count; |
| } |
| } |
| } |
| start = stop = addr; |
| break; |
| |
| case R_SH_DIR8WPN: |
| off = insn & 0xff; |
| if (off & 0x80) |
| off -= 0x100; |
| stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| break; |
| |
| case R_SH_IND12W: |
| off = insn & 0xfff; |
| if (! off) |
| { |
| /* This has been made by previous relaxation. Since the |
| relocation will be against an external symbol, the |
| final relocation will just do the right thing. */ |
| start = stop = addr; |
| } |
| else |
| { |
| if (off & 0x800) |
| off -= 0x1000; |
| stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2); |
| |
| /* The addend will be against the section symbol, thus |
| for adjusting the addend, the relevant start is the |
| start of the section. |
| N.B. If we want to abandon in-place changes here and |
| test directly using symbol + addend, we have to take into |
| account that the addend has already been adjusted by -4. */ |
| if (stop > addr && stop < toaddr) |
| irel->r_addend -= count; |
| } |
| break; |
| |
| case R_SH_DIR8WPZ: |
| off = insn & 0xff; |
| stop = start + 4 + off * 2; |
| break; |
| |
| case R_SH_DIR8WPL: |
| off = insn & 0xff; |
| stop = (start & ~(bfd_vma) 3) + 4 + off * 4; |
| break; |
| |
| case R_SH_SWITCH8: |
| case R_SH_SWITCH16: |
| case R_SH_SWITCH32: |
| /* These relocs types represent |
| .word L2-L1 |
| The r_addend field holds the difference between the reloc |
| address and L1. That is the start of the reloc, and |
| adding in the contents gives us the top. We must adjust |
| both the r_offset field and the section contents. |
| N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset, |
| and the elf bfd r_offset is called r_vaddr. */ |
| |
| stop = irel->r_offset; |
| start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend); |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| irel->r_addend += count; |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| irel->r_addend -= count; |
| |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16) |
| voff = bfd_get_signed_16 (abfd, contents + nraddr); |
| else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8) |
| voff = bfd_get_8 (abfd, contents + nraddr); |
| else |
| voff = bfd_get_signed_32 (abfd, contents + nraddr); |
| stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
| |
| break; |
| |
| case R_SH_USES: |
| start = irel->r_offset; |
| stop = (bfd_vma) ((bfd_signed_vma) start |
| + (long) irel->r_addend |
| + 4); |
| break; |
| } |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| adjust = count; |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| adjust = - count; |
| else |
| adjust = 0; |
| |
| if (adjust != 0) |
| { |
| oinsn = insn; |
| overflow = FALSE; |
| switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info)) |
| { |
| default: |
| abort (); |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_DIR8WPZ: |
| insn += adjust / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| break; |
| |
| case R_SH_IND12W: |
| insn += adjust / 2; |
| if ((oinsn & 0xf000) != (insn & 0xf000)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| break; |
| |
| case R_SH_DIR8WPL: |
| BFD_ASSERT (adjust == count || count >= 4); |
| if (count >= 4) |
| insn += adjust / 4; |
| else |
| { |
| if ((irel->r_offset & 3) == 0) |
| ++insn; |
| } |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH8: |
| voff += adjust; |
| if (voff < 0 || voff >= 0xff) |
| overflow = TRUE; |
| bfd_put_8 (abfd, voff, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH16: |
| voff += adjust; |
| if (voff < - 0x8000 || voff >= 0x8000) |
| overflow = TRUE; |
| bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr); |
| break; |
| |
| case R_SH_SWITCH32: |
| voff += adjust; |
| bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr); |
| break; |
| |
| case R_SH_USES: |
| irel->r_addend += adjust; |
| break; |
| } |
| |
| if (overflow) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), |
| abfd, (uint64_t) irel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| irel->r_offset = nraddr; |
| } |
| |
| /* Look through all the other sections. If there contain any IMM32 |
| relocs against internal symbols which we are not going to adjust |
| below, we may need to adjust the addends. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irelscan, *irelscanend; |
| bfd_byte *ocontents; |
| |
| if (o == sec |
| || (o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0) |
| continue; |
| |
| /* We always cache the relocs. Perhaps, if info->keep_memory is |
| FALSE, we should free them, if we are permitted to, when we |
| leave sh_coff_relax_section. */ |
| internal_relocs = (_bfd_elf_link_read_relocs |
| (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE)); |
| if (internal_relocs == NULL) |
| return FALSE; |
| |
| ocontents = NULL; |
| irelscanend = internal_relocs + o->reloc_count; |
| for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++) |
| { |
| /* Dwarf line numbers use R_SH_SWITCH32 relocs. */ |
| if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32) |
| { |
| bfd_vma start, stop; |
| bfd_signed_vma voff; |
| |
| if (ocontents == NULL) |
| { |
| if (elf_section_data (o)->this_hdr.contents != NULL) |
| ocontents = elf_section_data (o)->this_hdr.contents; |
| else |
| { |
| /* We always cache the section contents. |
| Perhaps, if info->keep_memory is FALSE, we |
| should free them, if we are permitted to, |
| when we leave sh_coff_relax_section. */ |
| if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) |
| { |
| if (ocontents != NULL) |
| free (ocontents); |
| return FALSE; |
| } |
| |
| elf_section_data (o)->this_hdr.contents = ocontents; |
| } |
| } |
| |
| stop = irelscan->r_offset; |
| start |
| = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend); |
| |
| /* STOP is in a different section, so it won't change. */ |
| if (start > addr && start < toaddr) |
| irelscan->r_addend += count; |
| |
| voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset); |
| stop = (bfd_vma) ((bfd_signed_vma) start + voff); |
| |
| if (start > addr |
| && start < toaddr |
| && (stop <= addr || stop >= toaddr)) |
| bfd_put_signed_32 (abfd, (bfd_vma) voff + count, |
| ocontents + irelscan->r_offset); |
| else if (stop > addr |
| && stop < toaddr |
| && (start <= addr || start >= toaddr)) |
| bfd_put_signed_32 (abfd, (bfd_vma) voff - count, |
| ocontents + irelscan->r_offset); |
| } |
| |
| if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32) |
| continue; |
| |
| if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info) |
| continue; |
| |
| |
| isym = isymbuf + ELF32_R_SYM (irelscan->r_info); |
| if (isym->st_shndx == sec_shndx |
| && (isym->st_value <= addr |
| || isym->st_value >= toaddr)) |
| { |
| bfd_vma val; |
| |
| if (ocontents == NULL) |
| { |
| if (elf_section_data (o)->this_hdr.contents != NULL) |
| ocontents = elf_section_data (o)->this_hdr.contents; |
| else |
| { |
| /* We always cache the section contents. |
| Perhaps, if info->keep_memory is FALSE, we |
| should free them, if we are permitted to, |
| when we leave sh_coff_relax_section. */ |
| if (!bfd_malloc_and_get_section (abfd, o, &ocontents)) |
| { |
| if (ocontents != NULL) |
| free (ocontents); |
| return FALSE; |
| } |
| |
| elf_section_data (o)->this_hdr.contents = ocontents; |
| } |
| } |
| |
| val = bfd_get_32 (abfd, ocontents + irelscan->r_offset); |
| val += isym->st_value; |
| if (val > addr && val < toaddr) |
| bfd_put_32 (abfd, val - count, |
| ocontents + irelscan->r_offset); |
| } |
| } |
| } |
| |
| /* Adjust the local symbols defined in this section. */ |
| isymend = isymbuf + symtab_hdr->sh_info; |
| for (isym = isymbuf; isym < isymend; isym++) |
| { |
| if (isym->st_shndx == sec_shndx |
| && isym->st_value > addr |
| && isym->st_value < toaddr) |
| isym->st_value -= count; |
| } |
| |
| /* Now adjust the global symbols defined in this section. */ |
| symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) |
| - symtab_hdr->sh_info); |
| sym_hashes = elf_sym_hashes (abfd); |
| end_hashes = sym_hashes + symcount; |
| for (; sym_hashes < end_hashes; sym_hashes++) |
| { |
| struct elf_link_hash_entry *sym_hash = *sym_hashes; |
| if ((sym_hash->root.type == bfd_link_hash_defined |
| || sym_hash->root.type == bfd_link_hash_defweak) |
| && sym_hash->root.u.def.section == sec |
| && sym_hash->root.u.def.value > addr |
| && sym_hash->root.u.def.value < toaddr) |
| { |
| sym_hash->root.u.def.value -= count; |
| } |
| } |
| |
| /* See if we can move the ALIGN reloc forward. We have adjusted |
| r_offset for it already. */ |
| if (irelalign != NULL) |
| { |
| bfd_vma alignto, alignaddr; |
| |
| alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend); |
| alignaddr = BFD_ALIGN (irelalign->r_offset, |
| 1 << irelalign->r_addend); |
| if (alignto != alignaddr) |
| { |
| /* Tail recursion. */ |
| return sh_elf_relax_delete_bytes (abfd, sec, alignaddr, |
| (int) (alignto - alignaddr)); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Look for loads and stores which we can align to four byte |
| boundaries. This is like sh_align_loads in coff-sh.c. */ |
| |
| static bfd_boolean |
| sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, |
| Elf_Internal_Rela *internal_relocs, |
| bfd_byte *contents ATTRIBUTE_UNUSED, |
| bfd_boolean *pswapped) |
| { |
| Elf_Internal_Rela *irel, *irelend; |
| bfd_vma *labels = NULL; |
| bfd_vma *label, *label_end; |
| bfd_size_type amt; |
| |
| *pswapped = FALSE; |
| |
| irelend = internal_relocs + sec->reloc_count; |
| |
| /* Get all the addresses with labels on them. */ |
| amt = sec->reloc_count; |
| amt *= sizeof (bfd_vma); |
| labels = (bfd_vma *) bfd_malloc (amt); |
| if (labels == NULL) |
| goto error_return; |
| label_end = labels; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL) |
| { |
| *label_end = irel->r_offset; |
| ++label_end; |
| } |
| } |
| |
| /* Note that the assembler currently always outputs relocs in |
| address order. If that ever changes, this code will need to sort |
| the label values and the relocs. */ |
| |
| label = labels; |
| |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma start, stop; |
| |
| if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE) |
| continue; |
| |
| start = irel->r_offset; |
| |
| for (irel++; irel < irelend; irel++) |
| if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA) |
| break; |
| if (irel < irelend) |
| stop = irel->r_offset; |
| else |
| stop = sec->size; |
| |
| if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns, |
| internal_relocs, &label, |
| label_end, start, stop, pswapped)) |
| goto error_return; |
| } |
| |
| free (labels); |
| |
| return TRUE; |
| |
| error_return: |
| if (labels != NULL) |
| free (labels); |
| return FALSE; |
| } |
| |
| /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */ |
| |
| static bfd_boolean |
| sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs, |
| bfd_byte *contents, bfd_vma addr) |
| { |
| Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs; |
| unsigned short i1, i2; |
| Elf_Internal_Rela *irel, *irelend; |
| |
| /* Swap the instructions themselves. */ |
| i1 = bfd_get_16 (abfd, contents + addr); |
| i2 = bfd_get_16 (abfd, contents + addr + 2); |
| bfd_put_16 (abfd, (bfd_vma) i2, contents + addr); |
| bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2); |
| |
| /* Adjust all reloc addresses. */ |
| irelend = internal_relocs + sec->reloc_count; |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| enum elf_sh_reloc_type type; |
| int add; |
| |
| /* There are a few special types of relocs that we don't want to |
| adjust. These relocs do not apply to the instruction itself, |
| but are only associated with the address. */ |
| type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info); |
| if (type == R_SH_ALIGN |
| || type == R_SH_CODE |
| || type == R_SH_DATA |
| || type == R_SH_LABEL) |
| continue; |
| |
| /* If an R_SH_USES reloc points to one of the addresses being |
| swapped, we must adjust it. It would be incorrect to do this |
| for a jump, though, since we want to execute both |
| instructions after the jump. (We have avoided swapping |
| around a label, so the jump will not wind up executing an |
| instruction it shouldn't). */ |
| if (type == R_SH_USES) |
| { |
| bfd_vma off; |
| |
| off = irel->r_offset + 4 + irel->r_addend; |
| if (off == addr) |
| irel->r_offset += 2; |
| else if (off == addr + 2) |
| irel->r_offset -= 2; |
| } |
| |
| if (irel->r_offset == addr) |
| { |
| irel->r_offset += 2; |
| add = -2; |
| } |
| else if (irel->r_offset == addr + 2) |
| { |
| irel->r_offset -= 2; |
| add = 2; |
| } |
| else |
| add = 0; |
| |
| if (add != 0) |
| { |
| bfd_byte *loc; |
| unsigned short insn, oinsn; |
| bfd_boolean overflow; |
| |
| loc = contents + irel->r_offset; |
| overflow = FALSE; |
| switch (type) |
| { |
| default: |
| break; |
| |
| case R_SH_DIR8WPN: |
| case R_SH_DIR8WPZ: |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| break; |
| |
| case R_SH_IND12W: |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xf000) != (insn & 0xf000)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| break; |
| |
| case R_SH_DIR8WPL: |
| /* This reloc ignores the least significant 3 bits of |
| the program counter before adding in the offset. |
| This means that if ADDR is at an even address, the |
| swap will not affect the offset. If ADDR is an at an |
| odd address, then the instruction will be crossing a |
| four byte boundary, and must be adjusted. */ |
| if ((addr & 3) != 0) |
| { |
| insn = bfd_get_16 (abfd, loc); |
| oinsn = insn; |
| insn += add / 2; |
| if ((oinsn & 0xff00) != (insn & 0xff00)) |
| overflow = TRUE; |
| bfd_put_16 (abfd, (bfd_vma) insn, loc); |
| } |
| |
| break; |
| } |
| |
| if (overflow) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: %#" PRIx64 ": fatal: reloc overflow while relaxing"), |
| abfd, (uint64_t) irel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Describes one of the various PLT styles. */ |
| |
| struct elf_sh_plt_info |
| { |
| /* The template for the first PLT entry, or NULL if there is no special |
| first entry. */ |
| const bfd_byte *plt0_entry; |
| |
| /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL. */ |
| bfd_vma plt0_entry_size; |
| |
| /* Index I is the offset into PLT0_ENTRY of a pointer to |
| _GLOBAL_OFFSET_TABLE_ + I * 4. The value is MINUS_ONE |
| if there is no such pointer. */ |
| bfd_vma plt0_got_fields[3]; |
| |
| /* The template for a symbol's PLT entry. */ |
| const bfd_byte *symbol_entry; |
| |
| /* The size of SYMBOL_ENTRY in bytes. */ |
| bfd_vma symbol_entry_size; |
| |
| /* Byte offsets of fields in SYMBOL_ENTRY. Not all fields are used |
| on all targets. The comments by each member indicate the value |
| that the field must hold. */ |
| struct { |
| bfd_vma got_entry; /* the address of the symbol's .got.plt entry */ |
| bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */ |
| bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */ |
| bfd_boolean got20; /* TRUE if got_entry points to a movi20 |
| instruction (instead of a constant pool |
| entry). */ |
| } symbol_fields; |
| |
| /* The offset of the resolver stub from the start of SYMBOL_ENTRY. */ |
| bfd_vma symbol_resolve_offset; |
| |
| /* A different PLT layout which can be used for the first |
| MAX_SHORT_PLT entries. It must share the same plt0. NULL in |
| other cases. */ |
| const struct elf_sh_plt_info *short_plt; |
| }; |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define ELF_PLT_ENTRY_SIZE 28 |
| |
| /* First entry in an absolute procedure linkage table look like this. */ |
| |
| /* Note - this code has been "optimised" not to use r2. r2 is used by |
| GCC to return the address of large structures, so it should not be |
| corrupted here. This does mean however, that this PLT does not conform |
| to the SH PIC ABI. That spec says that r0 contains the type of the PLT |
| and r2 contains the GOT id. This version stores the GOT id in r0 and |
| ignores the type. Loaders can easily detect this difference however, |
| since the type will always be 0 or 8, and the GOT ids will always be |
| greater than or equal to 12. */ |
| static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x05, /* mov.l 2f,r0 */ |
| 0x60, 0x02, /* mov.l @r0,r0 */ |
| 0x2f, 0x06, /* mov.l r0,@-r15 */ |
| 0xd0, 0x03, /* mov.l 1f,r0 */ |
| 0x60, 0x02, /* mov.l @r0,r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x60, 0xf6, /* mov.l @r15+,r0 */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ |
| 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ |
| }; |
| |
| static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0x05, 0xd0, /* mov.l 2f,r0 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x06, 0x2f, /* mov.l r0,@-r15 */ |
| 0x03, 0xd0, /* mov.l 1f,r0 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0xf6, 0x60, /* mov.l @r15+,r0 */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */ |
| 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */ |
| }; |
| |
| /* Sebsequent entries in an absolute procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x04, /* mov.l 1f,r0 */ |
| 0x60, 0x02, /* mov.l @(r0,r12),r0 */ |
| 0xd1, 0x02, /* mov.l 0f,r1 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x60, 0x13, /* mov r1,r0 */ |
| 0xd1, 0x03, /* mov.l 2f,r1 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0x04, 0xd0, /* mov.l 1f,r0 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x02, 0xd1, /* mov.l 0f,r1 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x13, 0x60, /* mov r1,r0 */ |
| 0x03, 0xd1, /* mov.l 2f,r1 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| /* Entries in a PIC procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x04, /* mov.l 1f,r0 */ |
| 0x00, 0xce, /* mov.l @(r0,r12),r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0x50, 0xc2, /* mov.l @(8,r12),r0 */ |
| 0xd1, 0x03, /* mov.l 2f,r1 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x50, 0xc1, /* mov.l @(4,r12),r0 */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] = |
| { |
| 0x04, 0xd0, /* mov.l 1f,r0 */ |
| 0xce, 0x00, /* mov.l @(r0,r12),r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0xc2, 0x50, /* mov.l @(8,r12),r0 */ |
| 0x03, 0xd1, /* mov.l 2f,r1 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0xc1, 0x50, /* mov.l @(4,r12),r0 */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */ |
| 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */ |
| }; |
| |
| static const struct elf_sh_plt_info elf_sh_plts[2][2] = { |
| { |
| { |
| /* Big-endian non-PIC. */ |
| elf_sh_plt0_entry_be, |
| ELF_PLT_ENTRY_SIZE, |
| { MINUS_ONE, 24, 20 }, |
| elf_sh_plt_entry_be, |
| ELF_PLT_ENTRY_SIZE, |
| { 20, 16, 24, FALSE }, |
| 8, |
| NULL |
| }, |
| { |
| /* Little-endian non-PIC. */ |
| elf_sh_plt0_entry_le, |
| ELF_PLT_ENTRY_SIZE, |
| { MINUS_ONE, 24, 20 }, |
| elf_sh_plt_entry_le, |
| ELF_PLT_ENTRY_SIZE, |
| { 20, 16, 24, FALSE }, |
| 8, |
| NULL |
| }, |
| }, |
| { |
| { |
| /* Big-endian PIC. */ |
| elf_sh_plt0_entry_be, |
| ELF_PLT_ENTRY_SIZE, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| elf_sh_pic_plt_entry_be, |
| ELF_PLT_ENTRY_SIZE, |
| { 20, MINUS_ONE, 24, FALSE }, |
| 8, |
| NULL |
| }, |
| { |
| /* Little-endian PIC. */ |
| elf_sh_plt0_entry_le, |
| ELF_PLT_ENTRY_SIZE, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| elf_sh_pic_plt_entry_le, |
| ELF_PLT_ENTRY_SIZE, |
| { 20, MINUS_ONE, 24, FALSE }, |
| 8, |
| NULL |
| }, |
| } |
| }; |
| |
| #define VXWORKS_PLT_HEADER_SIZE 12 |
| #define VXWORKS_PLT_ENTRY_SIZE 24 |
| |
| static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] = |
| { |
| 0xd1, 0x01, /* mov.l @(8,pc),r1 */ |
| 0x61, 0x12, /* mov.l @r1,r1 */ |
| 0x41, 0x2b, /* jmp @r1 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */ |
| }; |
| |
| static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] = |
| { |
| 0x01, 0xd1, /* mov.l @(8,pc),r1 */ |
| 0x12, 0x61, /* mov.l @r1,r1 */ |
| 0x2b, 0x41, /* jmp @r1 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */ |
| }; |
| |
| static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x01, /* mov.l @(8,pc),r0 */ |
| 0x60, 0x02, /* mov.l @r0,r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */ |
| 0xd0, 0x01, /* mov.l @(8,pc),r0 */ |
| 0xa0, 0x00, /* bra PLT (We need to fix the offset.) */ |
| 0x00, 0x09, /* nop */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] = |
| { |
| 0x01, 0xd0, /* mov.l @(8,pc),r0 */ |
| 0x02, 0x60, /* mov.l @r0,r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */ |
| 0x01, 0xd0, /* mov.l @(8,pc),r0 */ |
| 0x00, 0xa0, /* bra PLT (We need to fix the offset.) */ |
| 0x09, 0x00, /* nop */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x01, /* mov.l @(8,pc),r0 */ |
| 0x00, 0xce, /* mov.l @(r0,r12),r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */ |
| 0xd0, 0x01, /* mov.l @(8,pc),r0 */ |
| 0x51, 0xc2, /* mov.l @(8,r12),r1 */ |
| 0x41, 0x2b, /* jmp @r1 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| }; |
| |
| static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] = |
| { |
| 0x01, 0xd0, /* mov.l @(8,pc),r0 */ |
| 0xce, 0x00, /* mov.l @(r0,r12),r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */ |
| 0x01, 0xd0, /* mov.l @(8,pc),r0 */ |
| 0xc2, 0x51, /* mov.l @(8,r12),r1 */ |
| 0x2b, 0x41, /* jmp @r1 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| }; |
| |
| static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = { |
| { |
| { |
| /* Big-endian non-PIC. */ |
| vxworks_sh_plt0_entry_be, |
| VXWORKS_PLT_HEADER_SIZE, |
| { MINUS_ONE, MINUS_ONE, 8 }, |
| vxworks_sh_plt_entry_be, |
| VXWORKS_PLT_ENTRY_SIZE, |
| { 8, 14, 20, FALSE }, |
| 12, |
| NULL |
| }, |
| { |
| /* Little-endian non-PIC. */ |
| vxworks_sh_plt0_entry_le, |
| VXWORKS_PLT_HEADER_SIZE, |
| { MINUS_ONE, MINUS_ONE, 8 }, |
| vxworks_sh_plt_entry_le, |
| VXWORKS_PLT_ENTRY_SIZE, |
| { 8, 14, 20, FALSE }, |
| 12, |
| NULL |
| }, |
| }, |
| { |
| { |
| /* Big-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| vxworks_sh_pic_plt_entry_be, |
| VXWORKS_PLT_ENTRY_SIZE, |
| { 8, MINUS_ONE, 20, FALSE }, |
| 12, |
| NULL |
| }, |
| { |
| /* Little-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| vxworks_sh_pic_plt_entry_le, |
| VXWORKS_PLT_ENTRY_SIZE, |
| { 8, MINUS_ONE, 20, FALSE }, |
| 12, |
| NULL |
| }, |
| } |
| }; |
| |
| /* FDPIC PLT entries. Two unimplemented optimizations for lazy |
| binding are to omit the lazy binding stub when linking with -z now |
| and to move lazy binding stubs into a separate region for better |
| cache behavior. */ |
| |
| #define FDPIC_PLT_ENTRY_SIZE 28 |
| #define FDPIC_PLT_LAZY_OFFSET 20 |
| |
| /* FIXME: The lazy binding stub requires a plt0 - which may need to be |
| duplicated if it is out of range, or which can be inlined. So |
| right now it is always inlined, which wastes a word per stub. It |
| might be easier to handle the duplication if we put the lazy |
| stubs separately. */ |
| |
| static const bfd_byte fdpic_sh_plt_entry_be[FDPIC_PLT_ENTRY_SIZE] = |
| { |
| 0xd0, 0x02, /* mov.l @(12,pc),r0 */ |
| 0x01, 0xce, /* mov.l @(r0,r12),r1 */ |
| 0x70, 0x04, /* add #4, r0 */ |
| 0x41, 0x2b, /* jmp @r1 */ |
| 0x0c, 0xce, /* mov.l @(r0,r12),r12 */ |
| 0x00, 0x09, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with offset of this symbol's funcdesc */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| 0x60, 0xc2, /* mov.l @r12,r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x53, 0xc1, /* mov.l @(4,r12),r3 */ |
| 0x00, 0x09, /* nop */ |
| }; |
| |
| static const bfd_byte fdpic_sh_plt_entry_le[FDPIC_PLT_ENTRY_SIZE] = |
| { |
| 0x02, 0xd0, /* mov.l @(12,pc),r0 */ |
| 0xce, 0x01, /* mov.l @(r0,r12),r1 */ |
| 0x04, 0x70, /* add #4, r0 */ |
| 0x2b, 0x41, /* jmp @r1 */ |
| 0xce, 0x0c, /* mov.l @(r0,r12),r12 */ |
| 0x09, 0x00, /* nop */ |
| 0, 0, 0, 0, /* 0: replaced with offset of this symbol's funcdesc */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| 0xc2, 0x60, /* mov.l @r12,r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0xc1, 0x53, /* mov.l @(4,r12),r3 */ |
| 0x09, 0x00, /* nop */ |
| }; |
| |
| static const struct elf_sh_plt_info fdpic_sh_plts[2] = { |
| { |
| /* Big-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh_plt_entry_be, |
| FDPIC_PLT_ENTRY_SIZE, |
| { 12, MINUS_ONE, 16, FALSE }, |
| FDPIC_PLT_LAZY_OFFSET, |
| NULL |
| }, |
| { |
| /* Little-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh_plt_entry_le, |
| FDPIC_PLT_ENTRY_SIZE, |
| { 12, MINUS_ONE, 16, FALSE }, |
| FDPIC_PLT_LAZY_OFFSET, |
| NULL |
| }, |
| }; |
| |
| /* On SH2A, we can use the movi20 instruction to generate shorter PLT |
| entries for the first 64K slots. We use the normal FDPIC PLT entry |
| past that point; we could also use movi20s, which might be faster, |
| but would not be any smaller. */ |
| |
| #define FDPIC_SH2A_PLT_ENTRY_SIZE 24 |
| #define FDPIC_SH2A_PLT_LAZY_OFFSET 16 |
| |
| static const bfd_byte fdpic_sh2a_plt_entry_be[FDPIC_SH2A_PLT_ENTRY_SIZE] = |
| { |
| 0, 0, 0, 0, /* movi20 #gotofffuncdesc,r0 */ |
| 0x01, 0xce, /* mov.l @(r0,r12),r1 */ |
| 0x70, 0x04, /* add #4, r0 */ |
| 0x41, 0x2b, /* jmp @r1 */ |
| 0x0c, 0xce, /* mov.l @(r0,r12),r12 */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| 0x60, 0xc2, /* mov.l @r12,r0 */ |
| 0x40, 0x2b, /* jmp @r0 */ |
| 0x53, 0xc1, /* mov.l @(4,r12),r3 */ |
| 0x00, 0x09, /* nop */ |
| }; |
| |
| static const bfd_byte fdpic_sh2a_plt_entry_le[FDPIC_SH2A_PLT_ENTRY_SIZE] = |
| { |
| 0, 0, 0, 0, /* movi20 #gotofffuncdesc,r0 */ |
| 0xce, 0x01, /* mov.l @(r0,r12),r1 */ |
| 0x04, 0x70, /* add #4, r0 */ |
| 0x2b, 0x41, /* jmp @r1 */ |
| 0xce, 0x0c, /* mov.l @(r0,r12),r12 */ |
| 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */ |
| 0xc2, 0x60, /* mov.l @r12,r0 */ |
| 0x2b, 0x40, /* jmp @r0 */ |
| 0xc1, 0x53, /* mov.l @(4,r12),r3 */ |
| 0x09, 0x00, /* nop */ |
| }; |
| |
| static const struct elf_sh_plt_info fdpic_sh2a_short_plt_be = { |
| /* Big-endian FDPIC, max index 64K. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh2a_plt_entry_be, |
| FDPIC_SH2A_PLT_ENTRY_SIZE, |
| { 0, MINUS_ONE, 12, TRUE }, |
| FDPIC_SH2A_PLT_LAZY_OFFSET, |
| NULL |
| }; |
| |
| static const struct elf_sh_plt_info fdpic_sh2a_short_plt_le = { |
| /* Little-endian FDPIC, max index 64K. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh2a_plt_entry_le, |
| FDPIC_SH2A_PLT_ENTRY_SIZE, |
| { 0, MINUS_ONE, 12, TRUE }, |
| FDPIC_SH2A_PLT_LAZY_OFFSET, |
| NULL |
| }; |
| |
| static const struct elf_sh_plt_info fdpic_sh2a_plts[2] = { |
| { |
| /* Big-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh_plt_entry_be, |
| FDPIC_PLT_ENTRY_SIZE, |
| { 12, MINUS_ONE, 16, FALSE }, |
| FDPIC_PLT_LAZY_OFFSET, |
| &fdpic_sh2a_short_plt_be |
| }, |
| { |
| /* Little-endian PIC. */ |
| NULL, |
| 0, |
| { MINUS_ONE, MINUS_ONE, MINUS_ONE }, |
| fdpic_sh_plt_entry_le, |
| FDPIC_PLT_ENTRY_SIZE, |
| { 12, MINUS_ONE, 16, FALSE }, |
| FDPIC_PLT_LAZY_OFFSET, |
| &fdpic_sh2a_short_plt_le |
| }, |
| }; |
| |
| /* Return the type of PLT associated with ABFD. PIC_P is true if |
| the object is position-independent. */ |
| |
| static const struct elf_sh_plt_info * |
| get_plt_info (bfd *abfd, bfd_boolean pic_p) |
| { |
| if (fdpic_object_p (abfd)) |
| { |
| /* If any input file requires SH2A we can use a shorter PLT |
| sequence. */ |
| if (sh_get_arch_from_bfd_mach (bfd_get_mach (abfd)) & arch_sh2a_base) |
| return &fdpic_sh2a_plts[!bfd_big_endian (abfd)]; |
| else |
| return &fdpic_sh_plts[!bfd_big_endian (abfd)]; |
| } |
| if (vxworks_object_p (abfd)) |
| return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)]; |
| return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)]; |
| } |
| |
| /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD. |
| VALUE is the field's value and CODE_P is true if VALUE refers to code, |
| not data. */ |
| |
| inline static void |
| install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED, |
| unsigned long value, bfd_byte *addr) |
| { |
| bfd_put_32 (output_bfd, value, addr); |
| } |
| |
| /* The number of PLT entries which can use a shorter PLT, if any. |
| Currently always 64K, since only SH-2A FDPIC uses this; a |
| 20-bit movi20 can address that many function descriptors below |
| _GLOBAL_OFFSET_TABLE_. */ |
| #define MAX_SHORT_PLT 65536 |
| |
| /* Return the index of the PLT entry at byte offset OFFSET. */ |
| |
| static bfd_vma |
| get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset) |
| { |
| bfd_vma plt_index = 0; |
| |
| offset -= info->plt0_entry_size; |
| if (info->short_plt != NULL) |
| { |
| if (offset > MAX_SHORT_PLT * info->short_plt->symbol_entry_size) |
| { |
| plt_index = MAX_SHORT_PLT; |
| offset -= MAX_SHORT_PLT * info->short_plt->symbol_entry_size; |
| } |
| else |
| info = info->short_plt; |
| } |
| return plt_index + offset / info->symbol_entry_size; |
| } |
| |
| /* Do the inverse operation. */ |
| |
| static bfd_vma |
| get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma plt_index) |
| { |
| bfd_vma offset = 0; |
| |
| if (info->short_plt != NULL) |
| { |
| if (plt_index > MAX_SHORT_PLT) |
| { |
| offset = MAX_SHORT_PLT * info->short_plt->symbol_entry_size; |
| plt_index -= MAX_SHORT_PLT; |
| } |
| else |
| info = info->short_plt; |
| } |
| return (offset + info->plt0_entry_size |
| + (plt_index * info->symbol_entry_size)); |
| } |
| |
| union gotref |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| }; |
| |
| /* sh ELF linker hash entry. */ |
| |
| struct elf_sh_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| bfd_signed_vma gotplt_refcount; |
| |
| /* A local function descriptor, for FDPIC. The refcount counts |
| R_SH_FUNCDESC, R_SH_GOTOFFFUNCDESC, and R_SH_GOTOFFFUNCDESC20 |
| relocations; the PLT and GOT entry are accounted |
| for separately. After adjust_dynamic_symbol, the offset is |
| MINUS_ONE if there is no local descriptor (dynamic linker |
| managed and no PLT entry, or undefined weak non-dynamic). |
| During check_relocs we do not yet know whether the local |
| descriptor will be canonical. */ |
| union gotref funcdesc; |
| |
| /* How many of the above refcounted relocations were R_SH_FUNCDESC, |
| and thus require fixups or relocations. */ |
| bfd_signed_vma abs_funcdesc_refcount; |
| |
| enum got_type { |
| GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE, GOT_FUNCDESC |
| } got_type; |
| }; |
| |
| #define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent)) |
| |
| struct sh_elf_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* got_type for each local got entry. */ |
| char *local_got_type; |
| |
| /* Function descriptor refcount and offset for each local symbol. */ |
| union gotref *local_funcdesc; |
| }; |
| |
| #define sh_elf_tdata(abfd) \ |
| ((struct sh_elf_obj_tdata *) (abfd)->tdata.any) |
| |
| #define sh_elf_local_got_type(abfd) \ |
| (sh_elf_tdata (abfd)->local_got_type) |
| |
| #define sh_elf_local_funcdesc(abfd) \ |
| (sh_elf_tdata (abfd)->local_funcdesc) |
| |
| #define is_sh_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == SH_ELF_DATA) |
| |
| /* Override the generic function because we need to store sh_elf_obj_tdata |
| as the specific tdata. */ |
| |
| static bfd_boolean |
| sh_elf_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct sh_elf_obj_tdata), |
| SH_ELF_DATA); |
| } |
| |
| /* sh ELF linker hash table. */ |
| |
| struct elf_sh_link_hash_table |
| { |
| struct elf_link_hash_table root; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdynbss; |
| asection *srelbss; |
| asection *sfuncdesc; |
| asection *srelfuncdesc; |
| asection *srofixup; |
| |
| /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ |
| asection *srelplt2; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| /* A counter or offset to track a TLS got entry. */ |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ldm_got; |
| |
| /* The type of PLT to use. */ |
| const struct elf_sh_plt_info *plt_info; |
| |
| /* True if the target system is VxWorks. */ |
| bfd_boolean vxworks_p; |
| |
| /* True if the target system uses FDPIC. */ |
| bfd_boolean fdpic_p; |
| }; |
| |
| /* Traverse an sh ELF linker hash table. */ |
| |
| #define sh_elf_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ |
| (info))) |
| |
| /* Get the sh ELF linker hash table from a link_info structure. */ |
| |
| #define sh_elf_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == SH_ELF_DATA ? ((struct elf_sh_link_hash_table *) ((p)->hash)) : NULL) |
| |
| /* Create an entry in an sh ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| struct elf_sh_link_hash_entry *ret = |
| (struct elf_sh_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == (struct elf_sh_link_hash_entry *) NULL) |
| ret = ((struct elf_sh_link_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct elf_sh_link_hash_entry))); |
| if (ret == (struct elf_sh_link_hash_entry *) NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct elf_sh_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret != (struct elf_sh_link_hash_entry *) NULL) |
| { |
| ret->dyn_relocs = NULL; |
| ret->gotplt_refcount = 0; |
| ret->funcdesc.refcount = 0; |
| ret->abs_funcdesc_refcount = 0; |
| ret->got_type = GOT_UNKNOWN; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| /* Create an sh ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| sh_elf_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_sh_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_sh_link_hash_table); |
| |
| ret = (struct elf_sh_link_hash_table *) bfd_zmalloc (amt); |
| if (ret == (struct elf_sh_link_hash_table *) NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| sh_elf_link_hash_newfunc, |
| sizeof (struct elf_sh_link_hash_entry), |
| SH_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->vxworks_p = vxworks_object_p (abfd); |
| ret->fdpic_p = fdpic_object_p (abfd); |
| |
| return &ret->root.root; |
| } |
| |
| static bfd_boolean |
| sh_elf_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info, asection *p) |
| { |
| struct elf_sh_link_hash_table *htab = sh_elf_hash_table (info); |
| |
| /* Non-FDPIC binaries do not need dynamic symbols for sections. */ |
| if (!htab->fdpic_p) |
| return TRUE; |
| |
| /* We need dynamic symbols for every section, since segments can |
| relocate independently. */ |
| switch (elf_section_data (p)->this_hdr.sh_type) |
| { |
| case SHT_PROGBITS: |
| case SHT_NOBITS: |
| /* If sh_type is yet undecided, assume it could be |
| SHT_PROGBITS/SHT_NOBITS. */ |
| case SHT_NULL: |
| return FALSE; |
| |
| /* There shouldn't be section relative relocations |
| against any other section. */ |
| default: |
| return TRUE; |
| } |
| } |
| |
| /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up |
| shortcuts to them in our hash table. */ |
| |
| static bfd_boolean |
| create_got_section (bfd *dynobj, struct bfd_link_info *info) |
| { |
| struct elf_sh_link_hash_table *htab; |
| |
| if (! _bfd_elf_create_got_section (dynobj, info)) |
| return FALSE; |
| |
| htab = sh_elf_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| htab->sfuncdesc = bfd_make_section_anyway_with_flags (dynobj, ".got.funcdesc", |
| (SEC_ALLOC | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED)); |
| if (htab->sfuncdesc == NULL |
| || !bfd_set_section_alignment (htab->sfuncdesc, 2)) |
| return FALSE; |
| |
| htab->srelfuncdesc = bfd_make_section_anyway_with_flags (dynobj, |
| ".rela.got.funcdesc", |
| (SEC_ALLOC | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED |
| | SEC_READONLY)); |
| if (htab->srelfuncdesc == NULL |
| || !bfd_set_section_alignment (htab->srelfuncdesc, 2)) |
| return FALSE; |
| |
| /* Also create .rofixup. */ |
| htab->srofixup = bfd_make_section_anyway_with_flags (dynobj, ".rofixup", |
| (SEC_ALLOC | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED |
| | SEC_READONLY)); |
| if (htab->srofixup == NULL |
| || !bfd_set_section_alignment (htab->srofixup, 2)) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| static bfd_boolean |
| sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) |
| { |
| struct elf_sh_link_hash_table *htab; |
| flagword flags, pltflags; |
| asection *s; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| int ptralign = 0; |
| |
| switch (bed->s->arch_size) |
| { |
| case 32: |
| ptralign = 2; |
| break; |
| |
| case 64: |
| ptralign = 3; |
| break; |
| |
| default: |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| htab = sh_elf_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| if (htab->root.dynamic_sections_created) |
| return TRUE; |
| |
| /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and |
| .rel[a].bss sections. */ |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| pltflags = flags; |
| pltflags |= SEC_CODE; |
| if (bed->plt_not_loaded) |
| pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS); |
| if (bed->plt_readonly) |
| pltflags |= SEC_READONLY; |
| |
| s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); |
| htab->root.splt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, bed->plt_alignment)) |
| return FALSE; |
| |
| if (bed->want_plt_sym) |
| { |
| /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the |
| .plt section. */ |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh = NULL; |
| |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s, |
| (bfd_vma) 0, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->def_regular = 1; |
| h->type = STT_OBJECT; |
| htab->root.hplt = h; |
| |
| if (bfd_link_pic (info) |
| && ! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| s = bfd_make_section_anyway_with_flags (abfd, |
| bed->default_use_rela_p |
| ? ".rela.plt" : ".rel.plt", |
| flags | SEC_READONLY); |
| htab->root.srelplt = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return FALSE; |
| |
| if (htab->root.sgot == NULL |
| && !create_got_section (abfd, info)) |
| return FALSE; |
| |
| if (bed->want_dynbss) |
| { |
| /* The .dynbss section is a place to put symbols which are defined |
| by dynamic objects, are referenced by regular objects, and are |
| not functions. We must allocate space for them in the process |
| image and use a R_*_COPY reloc to tell the dynamic linker to |
| initialize them at run time. The linker script puts the .dynbss |
| section into the .bss section of the final image. */ |
| s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", |
| SEC_ALLOC | SEC_LINKER_CREATED); |
| htab->sdynbss = s; |
| if (s == NULL) |
| return FALSE; |
| |
| /* The .rel[a].bss section holds copy relocs. This section is not |
| normally needed. We need to create it here, though, so that the |
| linker will map it to an output section. We can't just create it |
| only if we need it, because we will not know whether we need it |
| until we have seen all the input files, and the first time the |
| main linker code calls BFD after examining all the input files |
| (size_dynamic_sections) the input sections have already been |
| mapped to the output sections. If the section turns out not to |
| be needed, we can discard it later. We will never need this |
| section when generating a shared object, since they do not use |
| copy relocs. */ |
| if (! bfd_link_pic (info)) |
| { |
| s = bfd_make_section_anyway_with_flags (abfd, |
| (bed->default_use_rela_p |
| ? ".rela.bss" : ".rel.bss"), |
| flags | SEC_READONLY); |
| htab->srelbss = s; |
| if (s == NULL |
| || !bfd_set_section_alignment (s, ptralign)) |
| return FALSE; |
| } |
| } |
| |
| if (htab->vxworks_p) |
| { |
| if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Find dynamic relocs for H that apply to read-only sections. */ |
| |
| static asection * |
| readonly_dynrelocs (struct elf_link_hash_entry *h) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = sh_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| return p->sec; |
| } |
| return NULL; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_sh_link_hash_table *htab; |
| asection *s; |
| |
| htab = sh_elf_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (htab->root.dynobj != NULL |
| && (h->needs_plt |
| || h->is_weakalias |
| || (h->def_dynamic |
| && h->ref_regular |
| && !h->def_regular))); |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object. In such a case, we don't actually need to build |
| a procedure linkage table, and we can just do a REL32 |
| reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->is_weakalias) |
| { |
| struct elf_link_hash_entry *def = weakdef (h); |
| BFD_ASSERT (def->root.type == bfd_link_hash_defined); |
| h->root.u.def.section = def->root.u.def.section; |
| h->root.u.def.value = def->root.u.def.value; |
| if (info->nocopyreloc) |
| h->non_got_ref = def->non_got_ref; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (bfd_link_pic (info)) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (0 && info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| /* If we don't find any dynamic relocs in read-only sections, then |
| we'll be keeping the dynamic relocs and avoiding the copy reloc. */ |
| if (0 && !readonly_dynrelocs (h)) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| s = htab->sdynbss; |
| BFD_ASSERT (s != NULL); |
| |
| /* We must generate a R_SH_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. We need to remember the offset into the |
| .rela.bss section we are going to use. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) |
| { |
| asection *srel; |
| |
| srel = htab->srelbss; |
| BFD_ASSERT (srel != NULL); |
| srel->size += sizeof (Elf32_External_Rela); |
| h->needs_copy = 1; |
| } |
| |
| return _bfd_elf_adjust_dynamic_copy (info, h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_sh_link_hash_table *htab; |
| struct elf_sh_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = sh_elf_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| eh = (struct elf_sh_link_hash_entry *) h; |
| if ((h->got.refcount > 0 |
| || h->forced_local) |
| && eh->gotplt_refcount > 0) |
| { |
| /* The symbol has been forced local, or we have some direct got refs, |
| so treat all the gotplt refs as got refs. */ |
| h->got.refcount += eh->gotplt_refcount; |
| if (h->plt.refcount >= eh->gotplt_refcount) |
| h->plt.refcount -= eh->gotplt_refcount; |
| } |
| |
| if (htab->root.dynamic_sections_created |
| && h->plt.refcount > 0 |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->root.splt; |
| const struct elf_sh_plt_info *plt_info; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size += htab->plt_info->plt0_entry_size; |
| |
| h->plt.offset = s->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. Skip this for FDPIC, since the |
| function's address will be the address of the canonical |
| function descriptor. */ |
| if (!htab->fdpic_p && !bfd_link_pic (info) && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| |
| /* Make room for this entry. */ |
| plt_info = htab->plt_info; |
| if (plt_info->short_plt != NULL |
| && (get_plt_index (plt_info->short_plt, s->size) < MAX_SHORT_PLT)) |
| plt_info = plt_info->short_plt; |
| s->size += plt_info->symbol_entry_size; |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| if (!htab->fdpic_p) |
| htab->root.sgotplt->size += 4; |
| else |
| htab->root.sgotplt->size += 8; |
| |
| /* We also need to make an entry in the .rel.plt section. */ |
| htab->root.srelplt->size += sizeof (Elf32_External_Rela); |
| |
| if (htab->vxworks_p && !bfd_link_pic (info)) |
| { |
| /* VxWorks executables have a second set of relocations |
| for each PLT entry. They go in a separate relocation |
| section, which is processed by the kernel loader. */ |
| |
| /* There is a relocation for the initial PLT entry: |
| an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_. */ |
| if (h->plt.offset == htab->plt_info->plt0_entry_size) |
| htab->srelplt2->size += sizeof (Elf32_External_Rela); |
| |
| /* There are two extra relocations for each subsequent |
| PLT entry: an R_SH_DIR32 relocation for the GOT entry, |
| and an R_SH_DIR32 relocation for the PLT entry. */ |
| htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| if (h->got.refcount > 0) |
| { |
| asection *s; |
| bfd_boolean dyn; |
| enum got_type got_type = sh_elf_hash_entry (h)->got_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| s = htab->root.sgot; |
| h->got.offset = s->size; |
| s->size += 4; |
| /* R_SH_TLS_GD needs 2 consecutive GOT slots. */ |
| if (got_type == GOT_TLS_GD) |
| s->size += 4; |
| dyn = htab->root.dynamic_sections_created; |
| if (!dyn) |
| { |
| /* No dynamic relocations required. */ |
| if (htab->fdpic_p && !bfd_link_pic (info) |
| && h->root.type != bfd_link_hash_undefweak |
| && (got_type == GOT_NORMAL || got_type == GOT_FUNCDESC)) |
| htab->srofixup->size += 4; |
| } |
| /* No dynamic relocations required when IE->LE conversion happens. */ |
| else if (got_type == GOT_TLS_IE |
| && !h->def_dynamic |
| && !bfd_link_pic (info)) |
| ; |
| /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic, |
| R_SH_TLS_GD needs one if local symbol and two if global. */ |
| else if ((got_type == GOT_TLS_GD && h->dynindx == -1) |
| || got_type == GOT_TLS_IE) |
| htab->root.srelgot->size += sizeof (Elf32_External_Rela); |
| else if (got_type == GOT_TLS_GD) |
| htab->root.srelgot->size += 2 * sizeof (Elf32_External_Rela); |
| else if (got_type == GOT_FUNCDESC) |
| { |
| if (!bfd_link_pic (info) && SYMBOL_FUNCDESC_LOCAL (info, h)) |
| htab->srofixup->size += 4; |
| else |
| htab->root.srelgot->size += sizeof (Elf32_External_Rela); |
| } |
| else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (bfd_link_pic (info) |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| htab->root.srelgot->size += sizeof (Elf32_External_Rela); |
| else if (htab->fdpic_p |
| && !bfd_link_pic (info) |
| && got_type == GOT_NORMAL |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak)) |
| htab->srofixup->size += 4; |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| /* Allocate space for any dynamic relocations to function |
| descriptors, canonical or otherwise. We need to relocate the |
| reference unless it resolves to zero, which only happens for |
| undefined weak symbols (either non-default visibility, or when |
| static linking). Any GOT slot is accounted for elsewhere. */ |
| if (eh->abs_funcdesc_refcount > 0 |
| && (h->root.type != bfd_link_hash_undefweak |
| || (htab->root.dynamic_sections_created |
| && ! SYMBOL_CALLS_LOCAL (info, h)))) |
| { |
| if (!bfd_link_pic (info) && SYMBOL_FUNCDESC_LOCAL (info, h)) |
| htab->srofixup->size += eh->abs_funcdesc_refcount * 4; |
| else |
| htab->root.srelgot->size |
| += eh->abs_funcdesc_refcount * sizeof (Elf32_External_Rela); |
| } |
| |
| /* We must allocate a function descriptor if there are references to |
| a canonical descriptor (R_SH_GOTFUNCDESC or R_SH_FUNCDESC) and |
| the dynamic linker isn't going to allocate it. None of this |
| applies if we already created one in .got.plt, but if the |
| canonical function descriptor can be in this object, there |
| won't be a PLT entry at all. */ |
| if ((eh->funcdesc.refcount > 0 |
| || (h->got.offset != MINUS_ONE && eh->got_type == GOT_FUNCDESC)) |
| && h->root.type != bfd_link_hash_undefweak |
| && SYMBOL_FUNCDESC_LOCAL (info, h)) |
| { |
| /* Make room for this function descriptor. */ |
| eh->funcdesc.offset = htab->sfuncdesc->size; |
| htab->sfuncdesc->size += 8; |
| |
| /* We will need a relocation or two fixups to initialize the |
| function descriptor, so allocate those too. */ |
| if (!bfd_link_pic (info) && SYMBOL_CALLS_LOCAL (info, h)) |
| htab->srofixup->size += 8; |
| else |
| htab->srelfuncdesc->size += sizeof (Elf32_External_Rela); |
| } |
| |
| if (eh->dyn_relocs == NULL) |
| return TRUE; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (bfd_link_pic (info)) |
| { |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| if (htab->vxworks_p) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (eh->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) |
| eh->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| } |
| } |
| else |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->root.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| eh->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc = elf_section_data (p->sec)->sreloc; |
| sreloc->size += p->count * sizeof (Elf32_External_Rela); |
| |
| /* If we need relocations, we do not need fixups. */ |
| if (htab->fdpic_p && !bfd_link_pic (info)) |
| htab->srofixup->size -= 4 * (p->count - p->pc_count); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set DF_TEXTREL if we find any dynamic relocs that apply to |
| read-only sections. */ |
| |
| static bfd_boolean |
| maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) |
| { |
| asection *sec; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| sec = readonly_dynrelocs (h); |
| if (sec != NULL) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) info_p; |
| |
| info->flags |= DF_TEXTREL; |
| info->callbacks->minfo |
| (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), |
| sec->owner, h->root.root.string, sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* This function is called after all the input files have been read, |
| and the input sections have been assigned to output sections. |
| It's a convenient place to determine the PLT style. */ |
| |
| static bfd_boolean |
| sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) |
| { |
| sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, |
| bfd_link_pic (info)); |
| |
| if (sh_elf_hash_table (info)->fdpic_p && !bfd_link_relocatable (info) |
| && !bfd_elf_stack_segment_size (output_bfd, info, |
| "__stacksize", DEFAULT_STACK_SIZE)) |
| return FALSE; |
| return TRUE; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bfd_boolean |
| sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| struct elf_sh_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean relocs; |
| bfd *ibfd; |
| |
| htab = sh_elf_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| dynobj = htab->root.dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (htab->root.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (bfd_link_executable (info) && !info->nointerp) |
| { |
| s = bfd_get_linker_section (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| union gotref *local_funcdesc, *end_local_funcdesc; |
| char *local_got_type; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_sh_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = ((struct elf_dyn_relocs *) |
| elf_section_data (s)->local_dynrel); |
| p != NULL; |
| p = p->next) |
| { |
| if (! bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (htab->vxworks_p |
| && strcmp (p->sec->output_section->name, |
| ".tls_vars") == 0) |
| { |
| /* Relocations in vxworks .tls_vars sections are |
| handled specially by the loader. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * sizeof (Elf32_External_Rela); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| { |
| info->flags |= DF_TEXTREL; |
| info->callbacks->minfo (_("%pB: dynamic relocation in read-only section `%pA'\n"), |
| p->sec-
|