| // Pass to fuse adjacent loads/stores into paired memory accesses. |
| // Copyright (C) 2023-2025 Free Software Foundation, Inc. |
| // |
| // This file is part of GCC. |
| // |
| // GCC is free software; you can redistribute it and/or modify it |
| // under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| // |
| // GCC is distributed in the hope that it will be useful, but |
| // WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| // General Public License for more details. |
| // |
| // You should have received a copy of the GNU General Public License |
| // along with GCC; see the file COPYING3. If not see |
| // <http://www.gnu.org/licenses/>. |
| |
| #define INCLUDE_ALGORITHM |
| #define INCLUDE_FUNCTIONAL |
| #define INCLUDE_LIST |
| #define INCLUDE_TYPE_TRAITS |
| #define INCLUDE_ARRAY |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "df.h" |
| #include "rtl-iter.h" |
| #include "rtl-ssa.h" |
| #include "cfgcleanup.h" |
| #include "tree-pass.h" |
| #include "ordered-hash-map.h" |
| #include "tree-dfa.h" |
| #include "fold-const.h" |
| #include "tree-hash-traits.h" |
| #include "print-tree.h" |
| #include "pair-fusion.h" |
| |
| using namespace rtl_ssa; |
| |
| // We pack these fields (load_p, fpsimd_p, and size) into an integer |
| // (LFS) which we use as part of the key into the main hash tables. |
| // |
| // The idea is that we group candidates together only if they agree on |
| // the fields below. Candidates that disagree on any of these |
| // properties shouldn't be merged together. |
| struct lfs_fields |
| { |
| bool load_p; |
| bool fpsimd_p; |
| unsigned size; |
| }; |
| |
| using insn_list_t = std::list<insn_info *>; |
| |
| // Information about the accesses at a given offset from a particular |
| // base. Stored in an access_group, see below. |
| struct access_record |
| { |
| poly_int64 offset; |
| std::list<insn_info *> cand_insns; |
| std::list<access_record>::iterator place; |
| |
| access_record (poly_int64 off) : offset (off) {} |
| }; |
| |
| // A group of accesses where adjacent accesses could be ldp/stp |
| // candidates. The splay tree supports efficient insertion, |
| // while the list supports efficient iteration. |
| struct access_group |
| { |
| splay_tree<access_record *> tree; |
| std::list<access_record> list; |
| |
| template<typename Alloc> |
| inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn); |
| }; |
| |
| // Test if this base candidate is viable according to HAZARDS. |
| bool |
| base_cand::viable () const |
| { |
| return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]); |
| } |
| |
| // Information about an alternate base. For a def_info D, it may |
| // instead be expressed as D = BASE + OFFSET. |
| struct alt_base |
| { |
| def_info *base; |
| poly_int64 offset; |
| }; |
| |
| // Virtual base class for load/store walkers used in alias analysis. |
| struct alias_walker |
| { |
| virtual bool conflict_p (int &budget) const = 0; |
| virtual insn_info *insn () const = 0; |
| virtual bool valid () const = 0; |
| virtual void advance () = 0; |
| }; |
| |
| |
| pair_fusion::pair_fusion () |
| { |
| calculate_dominance_info (CDI_DOMINATORS); |
| df_analyze (); |
| crtl->ssa = new rtl_ssa::function_info (cfun); |
| } |
| |
| pair_fusion::~pair_fusion () |
| { |
| if (crtl->ssa->perform_pending_updates ()) |
| cleanup_cfg (0); |
| |
| free_dominance_info (CDI_DOMINATORS); |
| |
| delete crtl->ssa; |
| crtl->ssa = nullptr; |
| } |
| |
| // This is the main function to start the pass. |
| void |
| pair_fusion::run () |
| { |
| if (!track_loads_p () && !track_stores_p ()) |
| return; |
| |
| for (auto bb : crtl->ssa->bbs ()) |
| process_block (bb); |
| } |
| |
| // State used by the pass for a given basic block. |
| struct pair_fusion_bb_info |
| { |
| using def_hash = nofree_ptr_hash<def_info>; |
| using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>; |
| using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>; |
| |
| // Map of <tree base, LFS> -> access_group. |
| ordered_hash_map<expr_key_t, access_group> expr_map; |
| |
| // Map of <RTL-SSA def_info *, LFS> -> access_group. |
| ordered_hash_map<def_key_t, access_group> def_map; |
| |
| // Given the def_info for an RTL base register, express it as an offset from |
| // some canonical base instead. |
| // |
| // Canonicalizing bases in this way allows us to identify adjacent accesses |
| // even if they see different base register defs. |
| hash_map<def_hash, alt_base> canon_base_map; |
| |
| static const size_t obstack_alignment = sizeof (void *); |
| |
| pair_fusion_bb_info (bb_info *bb, pair_fusion *d) |
| : m_bb (bb), m_pass (d), m_emitted_tombstone (false) |
| { |
| obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE, |
| obstack_alignment, obstack_chunk_alloc, |
| obstack_chunk_free); |
| } |
| ~pair_fusion_bb_info () |
| { |
| obstack_free (&m_obstack, nullptr); |
| |
| if (m_emitted_tombstone) |
| { |
| bitmap_release (&m_tombstone_bitmap); |
| bitmap_obstack_release (&m_bitmap_obstack); |
| } |
| } |
| |
| inline void track_access (insn_info *, bool load, rtx mem); |
| inline void transform (); |
| inline void cleanup_tombstones (); |
| |
| private: |
| obstack m_obstack; |
| bb_info *m_bb; |
| pair_fusion *m_pass; |
| |
| // State for keeping track of tombstone insns emitted for this BB. |
| bitmap_obstack m_bitmap_obstack; |
| bitmap_head m_tombstone_bitmap; |
| bool m_emitted_tombstone; |
| |
| inline splay_tree_node<access_record *> *node_alloc (access_record *); |
| |
| template<typename Map> |
| inline void traverse_base_map (Map &map); |
| inline void transform_for_base (int load_size, access_group &group); |
| |
| inline void merge_pairs (insn_list_t &, insn_list_t &, |
| bool load_p, unsigned access_size); |
| |
| inline bool try_fuse_pair (bool load_p, unsigned access_size, |
| insn_info *i1, insn_info *i2); |
| |
| inline bool fuse_pair (bool load_p, unsigned access_size, |
| int writeback, |
| insn_info *i1, insn_info *i2, |
| base_cand &base, |
| const insn_range_info &move_range); |
| |
| inline void track_tombstone (int uid); |
| |
| inline bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs); |
| }; |
| |
| splay_tree_node<access_record *> * |
| pair_fusion_bb_info::node_alloc (access_record *access) |
| { |
| using T = splay_tree_node<access_record *>; |
| void *addr = obstack_alloc (&m_obstack, sizeof (T)); |
| return new (addr) T (access); |
| } |
| |
| // Given a mem MEM, if the address has side effects, return a MEM that accesses |
| // the same address but without the side effects. Otherwise, return |
| // MEM unchanged. |
| static rtx |
| drop_writeback (rtx mem) |
| { |
| rtx addr = XEXP (mem, 0); |
| |
| if (!side_effects_p (addr)) |
| return mem; |
| |
| switch (GET_CODE (addr)) |
| { |
| case PRE_MODIFY: |
| addr = XEXP (addr, 1); |
| break; |
| case POST_MODIFY: |
| case POST_INC: |
| case POST_DEC: |
| addr = XEXP (addr, 0); |
| break; |
| case PRE_INC: |
| case PRE_DEC: |
| { |
| poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem)); |
| if (GET_CODE (addr) == PRE_DEC) |
| adjustment *= -1; |
| addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment); |
| break; |
| } |
| default: |
| gcc_unreachable (); |
| } |
| |
| return change_address (mem, GET_MODE (mem), addr); |
| } |
| |
| // Convenience wrapper around strip_offset that can also look through |
| // RTX_AUTOINC addresses. The interface is like strip_offset except we take a |
| // MEM so that we know the mode of the access. |
| static rtx |
| pair_mem_strip_offset (rtx mem, poly_int64 *offset) |
| { |
| rtx addr = XEXP (mem, 0); |
| |
| switch (GET_CODE (addr)) |
| { |
| case PRE_MODIFY: |
| case POST_MODIFY: |
| addr = strip_offset (XEXP (addr, 1), offset); |
| gcc_checking_assert (REG_P (addr)); |
| gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr)); |
| break; |
| case PRE_INC: |
| case POST_INC: |
| addr = XEXP (addr, 0); |
| *offset = GET_MODE_SIZE (GET_MODE (mem)); |
| gcc_checking_assert (REG_P (addr)); |
| break; |
| case PRE_DEC: |
| case POST_DEC: |
| addr = XEXP (addr, 0); |
| *offset = -GET_MODE_SIZE (GET_MODE (mem)); |
| gcc_checking_assert (REG_P (addr)); |
| break; |
| |
| default: |
| addr = strip_offset (addr, offset); |
| } |
| |
| return addr; |
| } |
| |
| // Return true if X is a PRE_{INC,DEC,MODIFY} rtx. |
| static bool |
| any_pre_modify_p (rtx x) |
| { |
| const auto code = GET_CODE (x); |
| return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY; |
| } |
| |
| // Return true if X is a POST_{INC,DEC,MODIFY} rtx. |
| static bool |
| any_post_modify_p (rtx x) |
| { |
| const auto code = GET_CODE (x); |
| return code == POST_INC || code == POST_DEC || code == POST_MODIFY; |
| } |
| |
| // Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these |
| // into an integer for use as a hash table key. |
| static int |
| encode_lfs (lfs_fields fields) |
| { |
| int size_log2 = exact_log2 (fields.size); |
| gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4); |
| return ((int)fields.load_p << 3) |
| | ((int)fields.fpsimd_p << 2) |
| | (size_log2 - 2); |
| } |
| |
| // Inverse of encode_lfs. |
| static lfs_fields |
| decode_lfs (int lfs) |
| { |
| bool load_p = (lfs & (1 << 3)); |
| bool fpsimd_p = (lfs & (1 << 2)); |
| unsigned size = 1U << ((lfs & 3) + 2); |
| return { load_p, fpsimd_p, size }; |
| } |
| |
| // Track the access INSN at offset OFFSET in this access group. |
| // ALLOC_NODE is used to allocate splay tree nodes. |
| template<typename Alloc> |
| void |
| access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn) |
| { |
| auto insert_before = [&](std::list<access_record>::iterator after) |
| { |
| auto it = list.emplace (after, offset); |
| it->cand_insns.push_back (insn); |
| it->place = it; |
| return &*it; |
| }; |
| |
| if (!list.size ()) |
| { |
| auto access = insert_before (list.end ()); |
| tree.insert_max_node (alloc_node (access)); |
| return; |
| } |
| |
| auto compare = [&](splay_tree_node<access_record *> *node) |
| { |
| return compare_sizes_for_sort (offset, node->value ()->offset); |
| }; |
| auto result = tree.lookup (compare); |
| splay_tree_node<access_record *> *node = tree.root (); |
| if (result == 0) |
| node->value ()->cand_insns.push_back (insn); |
| else |
| { |
| auto it = node->value ()->place; |
| auto after = (result > 0) ? std::next (it) : it; |
| auto access = insert_before (after); |
| tree.insert_child (node, result > 0, alloc_node (access)); |
| } |
| } |
| |
| // Given a candidate access INSN (with mem MEM), see if it has a suitable |
| // MEM_EXPR base (i.e. a tree decl) relative to which we can track the access. |
| // LFS is used as part of the key to the hash table, see track_access. |
| bool |
| pair_fusion_bb_info::track_via_mem_expr (insn_info *insn, rtx mem, |
| lfs_fields lfs) |
| { |
| if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)) |
| return false; |
| |
| poly_int64 offset; |
| tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem), |
| &offset); |
| if (!base_expr || !DECL_P (base_expr)) |
| return false; |
| |
| offset += MEM_OFFSET (mem); |
| |
| const machine_mode mem_mode = GET_MODE (mem); |
| const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant (); |
| |
| // Punt on misaligned offsets. Paired memory access instructions require |
| // offsets to be a multiple of the access size, and we believe that |
| // misaligned offsets on MEM_EXPR bases are likely to lead to misaligned |
| // offsets w.r.t. RTL bases. |
| if (!multiple_p (offset, mem_size)) |
| return false; |
| |
| const auto key = std::make_pair (base_expr, encode_lfs (lfs)); |
| access_group &group = expr_map.get_or_insert (key, NULL); |
| auto alloc = [&](access_record *access) { return node_alloc (access); }; |
| group.track (alloc, offset, insn); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[bb %u] tracking insn %d via ", |
| m_bb->index (), insn->uid ()); |
| print_node_brief (dump_file, "mem expr", base_expr, 0); |
| fprintf (dump_file, " [L=%d FP=%d, %smode, off=", |
| lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]); |
| print_dec (offset, dump_file); |
| fprintf (dump_file, "]\n"); |
| } |
| |
| return true; |
| } |
| |
| // Main function to begin pair discovery. Given a memory access INSN, |
| // determine whether it could be a candidate for fusing into a paired |
| // access, and if so, track it in the appropriate data structure for |
| // this basic block. LOAD_P is true if the access is a load, and MEM |
| // is the mem rtx that occurs in INSN. |
| void |
| pair_fusion_bb_info::track_access (insn_info *insn, bool load_p, rtx mem) |
| { |
| // We can't combine volatile MEMs, so punt on these. |
| if (MEM_VOLATILE_P (mem)) |
| return; |
| |
| // Ignore writeback accesses if the hook says to do so. |
| if (!m_pass->should_handle_writeback (writeback_type::EXISTING) |
| && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC) |
| return; |
| |
| const machine_mode mem_mode = GET_MODE (mem); |
| if (!m_pass->pair_operand_mode_ok_p (mem_mode)) |
| return; |
| |
| rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p); |
| |
| if (!m_pass->pair_reg_operand_ok_p (load_p, reg_op, mem_mode)) |
| return; |
| |
| // We want to segregate FP/SIMD accesses from GPR accesses. |
| const bool fpsimd_op_p = m_pass->fpsimd_op_p (reg_op, mem_mode, load_p); |
| |
| // Note pair_operand_mode_ok_p already rejected VL modes. |
| const unsigned mem_size = GET_MODE_SIZE (mem_mode).to_constant (); |
| const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size }; |
| |
| if (track_via_mem_expr (insn, mem, lfs)) |
| return; |
| |
| poly_int64 mem_off; |
| rtx addr = XEXP (mem, 0); |
| const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC; |
| rtx base = pair_mem_strip_offset (mem, &mem_off); |
| if (!REG_P (base)) |
| return; |
| |
| // Need to calculate two (possibly different) offsets: |
| // - Offset at which the access occurs. |
| // - Offset of the new base def. |
| poly_int64 access_off; |
| if (autoinc_p && any_post_modify_p (addr)) |
| access_off = 0; |
| else |
| access_off = mem_off; |
| |
| poly_int64 new_def_off = mem_off; |
| |
| // Punt on accesses relative to eliminable regs. Since we don't know the |
| // elimination offset pre-RA, we should postpone forming pairs on such |
| // accesses until after RA. |
| // |
| // As it stands, addresses in range for an individual load/store but not |
| // for a paired access are currently reloaded inefficiently, |
| // ending up with a separate base register for each pair. |
| // |
| // In theory LRA should make use of |
| // targetm.legitimize_address_displacement to promote sharing of |
| // bases among multiple (nearby) address reloads, but the current |
| // LRA code returns early from process_address_1 for operands that |
| // satisfy "m", even if they don't satisfy the real (relaxed) address |
| // constraint; this early return means we never get to the code |
| // that calls targetm.legitimize_address_displacement. |
| // |
| // So for now, it's better to punt when we can't be sure that the |
| // offset is in range for paired access. On aarch64, out-of-range cases |
| // can then be handled after RA by the out-of-range LDP/STP peepholes. |
| // Eventually, it would be nice to handle known out-of-range opportunities |
| // in the pass itself (for stack accesses, this would be in the post-RA pass). |
| if (!reload_completed |
| && (REGNO (base) == FRAME_POINTER_REGNUM |
| || REGNO (base) == ARG_POINTER_REGNUM)) |
| return; |
| |
| // Now need to find def of base register. |
| use_info *base_use = find_access (insn->uses (), REGNO (base)); |
| gcc_assert (base_use); |
| def_info *base_def = base_use->def (); |
| if (!base_def) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "base register (regno %d) of insn %d is undefined", |
| REGNO (base), insn->uid ()); |
| return; |
| } |
| |
| alt_base *canon_base = canon_base_map.get (base_def); |
| if (canon_base) |
| { |
| // Express this as the combined offset from the canonical base. |
| base_def = canon_base->base; |
| new_def_off += canon_base->offset; |
| access_off += canon_base->offset; |
| } |
| |
| if (autoinc_p) |
| { |
| auto def = find_access (insn->defs (), REGNO (base)); |
| gcc_assert (def); |
| |
| // Record that DEF = BASE_DEF + MEM_OFF. |
| if (dump_file) |
| { |
| pretty_printer pp; |
| pp_access (&pp, def, 0); |
| pp_string (&pp, " = "); |
| pp_access (&pp, base_def, 0); |
| fprintf (dump_file, "[bb %u] recording %s + ", |
| m_bb->index (), pp_formatted_text (&pp)); |
| print_dec (new_def_off, dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| |
| alt_base base_rec { base_def, new_def_off }; |
| if (canon_base_map.put (def, base_rec)) |
| gcc_unreachable (); // Base defs should be unique. |
| } |
| |
| // Punt on misaligned offsets. Paired memory accesses require offsets |
| // to be a multiple of the access size. |
| if (!multiple_p (mem_off, mem_size)) |
| return; |
| |
| const auto key = std::make_pair (base_def, encode_lfs (lfs)); |
| access_group &group = def_map.get_or_insert (key, NULL); |
| auto alloc = [&](access_record *access) { return node_alloc (access); }; |
| group.track (alloc, access_off, insn); |
| |
| if (dump_file) |
| { |
| pretty_printer pp; |
| pp_access (&pp, base_def, 0); |
| |
| fprintf (dump_file, "[bb %u] tracking insn %d via %s", |
| m_bb->index (), insn->uid (), pp_formatted_text (&pp)); |
| fprintf (dump_file, |
| " [L=%d, WB=%d, FP=%d, %smode, off=", |
| lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]); |
| print_dec (access_off, dump_file); |
| fprintf (dump_file, "]\n"); |
| } |
| } |
| |
| // Return the latest dataflow hazard before INSN. |
| // |
| // If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for |
| // dataflow purposes. This is needed when considering changing the RTL base of |
| // an access discovered through a MEM_EXPR base. |
| // |
| // If IGNORE_INSN is non-NULL, we should further ignore any hazards arising |
| // from that insn. |
| // |
| // IS_LOAD_STORE is true if INSN is one of the loads or stores in the |
| // candidate pair. We ignore any defs/uses of memory in such instructions |
| // as we deal with that separately, making use of alias disambiguation. |
| static insn_info * |
| latest_hazard_before (insn_info *insn, rtx *ignore, |
| insn_info *ignore_insn = nullptr, |
| bool is_load_store = true) |
| { |
| insn_info *result = nullptr; |
| |
| // If the insn can throw then it is at the end of a BB and we can't |
| // move it, model this by recording a hazard in the previous insn |
| // which will prevent moving the insn up. |
| if (cfun->can_throw_non_call_exceptions |
| && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX)) |
| return insn->prev_nondebug_insn (); |
| |
| if (!is_load_store |
| && accesses_include_memory (insn->defs ())) |
| return insn->prev_nondebug_insn (); |
| |
| // Return true if we registered the hazard. |
| auto hazard = [&](insn_info *h) -> bool |
| { |
| gcc_checking_assert (*h < *insn); |
| if (h == ignore_insn) |
| return false; |
| |
| if (!result || *h > *result) |
| result = h; |
| |
| return true; |
| }; |
| |
| rtx pat = PATTERN (insn->rtl ()); |
| auto ignore_use = [&](use_info *u) |
| { |
| if (u->is_mem ()) |
| return true; |
| |
| return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore); |
| }; |
| |
| // Find defs of uses in INSN (RaW). |
| for (auto use : insn->uses ()) |
| if (!ignore_use (use) && use->def ()) |
| hazard (use->def ()->insn ()); |
| |
| // Find previous defs (WaW) or previous uses (WaR) of defs in INSN. |
| for (auto def : insn->defs ()) |
| { |
| if (def->is_mem ()) |
| continue; |
| |
| if (def->prev_def ()) |
| { |
| hazard (def->prev_def ()->insn ()); // WaW |
| |
| auto set = dyn_cast<set_info *> (def->prev_def ()); |
| if (set && set->has_nondebug_insn_uses ()) |
| for (auto use : set->reverse_nondebug_insn_uses ()) |
| if (use->insn () != insn && hazard (use->insn ())) // WaR |
| break; |
| } |
| |
| if (!HARD_REGISTER_NUM_P (def->regno ())) |
| continue; |
| |
| // Also need to check backwards for call clobbers (WaW). |
| for (auto call_group : def->ebb ()->call_clobbers ()) |
| { |
| if (!call_group->clobbers (def->resource ())) |
| continue; |
| |
| auto clobber_insn = prev_call_clobbers (*call_group, def->insn (), |
| ignore_nothing ()); |
| if (clobber_insn) |
| hazard (clobber_insn); |
| } |
| |
| } |
| |
| return result; |
| } |
| |
| // Return the first dataflow hazard after INSN. |
| // |
| // If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for |
| // dataflow purposes. This is needed when considering changing the RTL base of |
| // an access discovered through a MEM_EXPR base. |
| // |
| // N.B. we ignore any defs/uses of memory here as we deal with that separately, |
| // making use of alias disambiguation. |
| static insn_info * |
| first_hazard_after (insn_info *insn, rtx *ignore) |
| { |
| insn_info *result = nullptr; |
| auto hazard = [insn, &result](insn_info *h) |
| { |
| gcc_checking_assert (*h > *insn); |
| if (!result || *h < *result) |
| result = h; |
| }; |
| |
| rtx pat = PATTERN (insn->rtl ()); |
| auto ignore_use = [&](use_info *u) |
| { |
| if (u->is_mem ()) |
| return true; |
| |
| return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore); |
| }; |
| |
| for (auto def : insn->defs ()) |
| { |
| if (def->is_mem ()) |
| continue; |
| |
| if (def->next_def ()) |
| hazard (def->next_def ()->insn ()); // WaW |
| |
| auto set = dyn_cast<set_info *> (def); |
| if (set && set->has_nondebug_insn_uses ()) |
| hazard (set->first_nondebug_insn_use ()->insn ()); // RaW |
| |
| if (!HARD_REGISTER_NUM_P (def->regno ())) |
| continue; |
| |
| // Also check for call clobbers of this def (WaW). |
| for (auto call_group : def->ebb ()->call_clobbers ()) |
| { |
| if (!call_group->clobbers (def->resource ())) |
| continue; |
| |
| auto clobber_insn = next_call_clobbers (*call_group, def->insn (), |
| ignore_nothing ()); |
| if (clobber_insn) |
| hazard (clobber_insn); |
| } |
| } |
| |
| // Find any subsequent defs of uses in INSN (WaR). |
| for (auto use : insn->uses ()) |
| { |
| if (ignore_use (use)) |
| continue; |
| |
| if (use->def ()) |
| { |
| auto def = use->def ()->next_def (); |
| if (def && def->insn () == insn) |
| def = def->next_def (); |
| |
| if (def) |
| hazard (def->insn ()); |
| } |
| |
| if (!HARD_REGISTER_NUM_P (use->regno ())) |
| continue; |
| |
| // Also need to handle call clobbers of our uses (again WaR). |
| // |
| // See restrict_movement_for_uses for why we don't need to check |
| // backwards for call clobbers. |
| for (auto call_group : use->ebb ()->call_clobbers ()) |
| { |
| if (!call_group->clobbers (use->resource ())) |
| continue; |
| |
| auto clobber_insn = next_call_clobbers (*call_group, use->insn (), |
| ignore_nothing ()); |
| if (clobber_insn) |
| hazard (clobber_insn); |
| } |
| } |
| |
| return result; |
| } |
| |
| // Return true iff R1 and R2 overlap. |
| static bool |
| ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2) |
| { |
| // If either range is empty, then their intersection is empty. |
| if (!r1 || !r2) |
| return false; |
| |
| // When do they not overlap? When one range finishes before the other |
| // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first). |
| // Inverting this, we get the below. |
| return *r1.last >= *r2.first && *r2.last >= *r1.first; |
| } |
| |
| // Get the range of insns that def feeds. |
| static insn_range_info get_def_range (def_info *def) |
| { |
| insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn (); |
| return { def->insn (), last }; |
| } |
| |
| // Given a def (of memory), return the downwards range within which we |
| // can safely move this def. |
| static insn_range_info |
| def_downwards_move_range (def_info *def) |
| { |
| auto range = get_def_range (def); |
| |
| auto set = dyn_cast<set_info *> (def); |
| if (!set || !set->has_any_uses ()) |
| return range; |
| |
| auto use = set->first_nondebug_insn_use (); |
| if (use) |
| range = move_earlier_than (range, use->insn ()); |
| |
| return range; |
| } |
| |
| // Given a def (of memory), return the upwards range within which we can |
| // safely move this def. |
| static insn_range_info |
| def_upwards_move_range (def_info *def) |
| { |
| def_info *prev = def->prev_def (); |
| insn_range_info range { prev->insn (), def->insn () }; |
| |
| auto set = dyn_cast<set_info *> (prev); |
| if (!set || !set->has_any_uses ()) |
| return range; |
| |
| auto use = set->last_nondebug_insn_use (); |
| if (use) |
| range = move_later_than (range, use->insn ()); |
| |
| return range; |
| } |
| |
| // Class that implements a state machine for building the changes needed to form |
| // a store pair instruction. This allows us to easily build the changes in |
| // program order, as required by rtl-ssa. |
| struct store_change_builder |
| { |
| enum class state |
| { |
| FIRST, |
| INSERT, |
| FIXUP_USE, |
| LAST, |
| DONE |
| }; |
| |
| enum class action |
| { |
| TOMBSTONE, |
| CHANGE, |
| INSERT, |
| FIXUP_USE |
| }; |
| |
| struct change |
| { |
| action type; |
| insn_info *insn; |
| }; |
| |
| bool done () const { return m_state == state::DONE; } |
| |
| store_change_builder (insn_info *insns[2], |
| insn_info *repurpose, |
| insn_info *dest) |
| : m_state (state::FIRST), m_insns { insns[0], insns[1] }, |
| m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {} |
| |
| change get_change () const |
| { |
| switch (m_state) |
| { |
| case state::FIRST: |
| return { |
| m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE, |
| m_insns[0] |
| }; |
| case state::LAST: |
| return { |
| m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE, |
| m_insns[1] |
| }; |
| case state::INSERT: |
| return { action::INSERT, m_dest }; |
| case state::FIXUP_USE: |
| return { action::FIXUP_USE, m_use->insn () }; |
| case state::DONE: |
| break; |
| } |
| |
| gcc_unreachable (); |
| } |
| |
| // Transition to the next state. |
| void advance () |
| { |
| switch (m_state) |
| { |
| case state::FIRST: |
| if (m_repurpose) |
| m_state = state::LAST; |
| else |
| m_state = state::INSERT; |
| break; |
| case state::INSERT: |
| { |
| def_info *def = memory_access (m_insns[0]->defs ()); |
| while (*def->next_def ()->insn () <= *m_dest) |
| def = def->next_def (); |
| |
| // Now we know DEF feeds the insertion point for the new stp. |
| // Look for any uses of DEF that will consume the new stp. |
| gcc_assert (*def->insn () <= *m_dest |
| && *def->next_def ()->insn () > *m_dest); |
| |
| auto set = as_a<set_info *> (def); |
| for (auto use : set->nondebug_insn_uses ()) |
| if (*use->insn () > *m_dest) |
| { |
| m_use = use; |
| break; |
| } |
| |
| if (m_use) |
| m_state = state::FIXUP_USE; |
| else |
| m_state = state::LAST; |
| break; |
| } |
| case state::FIXUP_USE: |
| m_use = m_use->next_nondebug_insn_use (); |
| if (!m_use) |
| m_state = state::LAST; |
| break; |
| case state::LAST: |
| m_state = state::DONE; |
| break; |
| case state::DONE: |
| gcc_unreachable (); |
| } |
| } |
| |
| private: |
| state m_state; |
| |
| // Original candidate stores. |
| insn_info *m_insns[2]; |
| |
| // If non-null, this is a candidate insn to change into an stp. Otherwise we |
| // are deleting both original insns and inserting a new insn for the stp. |
| insn_info *m_repurpose; |
| |
| // Destionation of the stp, it will be placed immediately after m_dest. |
| insn_info *m_dest; |
| |
| // Current nondebug use that needs updating due to stp insertion. |
| use_info *m_use; |
| }; |
| |
| // Given candidate store insns FIRST and SECOND, see if we can re-purpose one |
| // of them (together with its def of memory) for the stp insn. If so, return |
| // that insn. Otherwise, return null. |
| static insn_info * |
| try_repurpose_store (insn_info *first, |
| insn_info *second, |
| const insn_range_info &move_range) |
| { |
| def_info * const defs[2] = { |
| memory_access (first->defs ()), |
| memory_access (second->defs ()) |
| }; |
| |
| if (move_range.includes (first) |
| || ranges_overlap_p (move_range, def_downwards_move_range (defs[0]))) |
| return first; |
| |
| if (move_range.includes (second) |
| || ranges_overlap_p (move_range, def_upwards_move_range (defs[1]))) |
| return second; |
| |
| return nullptr; |
| } |
| |
| // Generate the RTL pattern for a "tombstone"; used temporarily during this pass |
| // to replace stores that are marked for deletion where we can't immediately |
| // delete the store (since there are uses of mem hanging off the store). |
| // |
| // These are deleted at the end of the pass and uses re-parented appropriately |
| // at this point. |
| static rtx |
| gen_tombstone (void) |
| { |
| return gen_rtx_CLOBBER (VOIDmode, |
| gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode))); |
| } |
| |
| // Go through the reg notes rooted at NOTE, dropping those that we should drop, |
| // and preserving those that we want to keep by prepending them to (and |
| // returning) RESULT. EH_REGION is used to make sure we have at most one |
| // REG_EH_REGION note in the resulting list. FR_EXPR is used to return any |
| // REG_FRAME_RELATED_EXPR note we find, as these can need special handling in |
| // combine_reg_notes. |
| static rtx |
| filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr) |
| { |
| for (; note; note = XEXP (note, 1)) |
| { |
| switch (REG_NOTE_KIND (note)) |
| { |
| case REG_DEAD: |
| // REG_DEAD notes aren't required to be maintained. |
| case REG_EQUAL: |
| case REG_EQUIV: |
| case REG_UNUSED: |
| case REG_NOALIAS: |
| // These can all be dropped. For REG_EQU{AL,IV} they cannot apply to |
| // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see |
| // rtl-ssa/changes.cc:update_notes. |
| // |
| // Similarly, REG_NOALIAS cannot apply to a parallel. |
| case REG_INC: |
| // When we form the pair insn, the reg update is implemented |
| // as just another SET in the parallel, so isn't really an |
| // auto-increment in the RTL sense, hence we drop the note. |
| break; |
| case REG_EH_REGION: |
| gcc_assert (!*eh_region); |
| *eh_region = true; |
| result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result); |
| break; |
| case REG_CFA_DEF_CFA: |
| case REG_CFA_OFFSET: |
| case REG_CFA_RESTORE: |
| result = alloc_reg_note (REG_NOTE_KIND (note), |
| copy_rtx (XEXP (note, 0)), |
| result); |
| break; |
| case REG_FRAME_RELATED_EXPR: |
| gcc_assert (!*fr_expr); |
| *fr_expr = copy_rtx (XEXP (note, 0)); |
| break; |
| default: |
| // Unexpected REG_NOTE kind. |
| gcc_unreachable (); |
| } |
| } |
| |
| return result; |
| } |
| |
| // Return the notes that should be attached to a combination of I1 and I2, where |
| // *I1 < *I2. LOAD_P is true for loads. |
| static rtx |
| combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p) |
| { |
| // Temporary storage for REG_FRAME_RELATED_EXPR notes. |
| rtx fr_expr[2] = {}; |
| |
| bool found_eh_region = false; |
| rtx result = NULL_RTX; |
| result = filter_notes (REG_NOTES (i2->rtl ()), result, |
| &found_eh_region, fr_expr + 1); |
| result = filter_notes (REG_NOTES (i1->rtl ()), result, |
| &found_eh_region, fr_expr); |
| |
| if (!load_p) |
| { |
| // Simple frame-related sp-relative saves don't need CFI notes, but when |
| // we combine them into an stp we will need a CFI note as dwarf2cfi can't |
| // interpret the unspec pair representation directly. |
| if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0]) |
| fr_expr[0] = copy_rtx (PATTERN (i1->rtl ())); |
| if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1]) |
| fr_expr[1] = copy_rtx (PATTERN (i2->rtl ())); |
| } |
| |
| rtx fr_pat = NULL_RTX; |
| if (fr_expr[0] && fr_expr[1]) |
| { |
| // Combining two frame-related insns, need to construct |
| // a REG_FRAME_RELATED_EXPR note which represents the combined |
| // operation. |
| RTX_FRAME_RELATED_P (fr_expr[1]) = 1; |
| fr_pat = gen_rtx_PARALLEL (VOIDmode, |
| gen_rtvec (2, fr_expr[0], fr_expr[1])); |
| } |
| else |
| fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1]; |
| |
| if (fr_pat) |
| result = alloc_reg_note (REG_FRAME_RELATED_EXPR, |
| fr_pat, result); |
| |
| return result; |
| } |
| |
| // Given two memory accesses in PATS, at least one of which is of a |
| // writeback form, extract two non-writeback memory accesses addressed |
| // relative to the initial value of the base register, and output these |
| // in PATS. Return an rtx that represents the overall change to the |
| // base register. |
| static rtx |
| extract_writebacks (bool load_p, rtx pats[2], int changed) |
| { |
| rtx base_reg = NULL_RTX; |
| poly_int64 current_offset = 0; |
| |
| poly_int64 offsets[2]; |
| |
| for (int i = 0; i < 2; i++) |
| { |
| rtx mem = XEXP (pats[i], load_p); |
| rtx reg = XEXP (pats[i], !load_p); |
| |
| rtx addr = XEXP (mem, 0); |
| const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC; |
| |
| poly_int64 offset; |
| rtx this_base = pair_mem_strip_offset (mem, &offset); |
| gcc_assert (REG_P (this_base)); |
| if (base_reg) |
| gcc_assert (rtx_equal_p (base_reg, this_base)); |
| else |
| base_reg = this_base; |
| |
| // If we changed base for the current insn, then we already |
| // derived the correct mem for this insn from the effective |
| // address of the other access. |
| if (i == changed) |
| { |
| gcc_checking_assert (!autoinc_p); |
| offsets[i] = offset; |
| continue; |
| } |
| |
| if (autoinc_p && any_pre_modify_p (addr)) |
| current_offset += offset; |
| |
| poly_int64 this_off = current_offset; |
| if (!autoinc_p) |
| this_off += offset; |
| |
| offsets[i] = this_off; |
| rtx new_mem = change_address (mem, GET_MODE (mem), |
| plus_constant (GET_MODE (base_reg), |
| base_reg, this_off)); |
| pats[i] = load_p |
| ? gen_rtx_SET (reg, new_mem) |
| : gen_rtx_SET (new_mem, reg); |
| |
| if (autoinc_p && any_post_modify_p (addr)) |
| current_offset += offset; |
| } |
| |
| if (known_eq (current_offset, 0)) |
| return NULL_RTX; |
| |
| return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg), |
| base_reg, current_offset)); |
| } |
| |
| // INSNS contains either {nullptr, pair insn} (when promoting an existing |
| // non-writeback pair) or contains the candidate insns used to form the pair |
| // (when fusing a new pair). |
| // |
| // PAIR_RANGE specifies where we want to form the final pair. |
| // INITIAL_OFFSET gives the current base offset for the pair. |
| // Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback. |
| // ACCESS_SIZE gives the access size for a single arm of the pair. |
| // BASE_DEF gives the initial def of the base register consumed by the pair. |
| // |
| // Given the above, this function looks for a trailing destructive update of the |
| // base register. If there is one, we choose the first such update after |
| // PAIR_DST that is still in the same BB as our pair. We return the new def in |
| // *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT. |
| insn_info * |
| pair_fusion::find_trailing_add (insn_info *insns[2], |
| const insn_range_info &pair_range, |
| int initial_writeback, |
| rtx *writeback_effect, |
| def_info **add_def, |
| def_info *base_def, |
| poly_int64 initial_offset, |
| unsigned access_size) |
| { |
| // Punt on frame-related insns, it is better to be conservative and |
| // not try to form writeback pairs here, and means we don't have to |
| // worry about the writeback case in forming REG_FRAME_RELATED_EXPR |
| // notes (see combine_reg_notes). |
| if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ())) |
| || RTX_FRAME_RELATED_P (insns[1]->rtl ())) |
| return nullptr; |
| |
| insn_info *pair_dst = pair_range.singleton (); |
| gcc_assert (pair_dst); |
| |
| def_info *def = base_def->next_def (); |
| |
| // In the case that either of the initial pair insns had writeback, |
| // then there will be intervening defs of the base register. |
| // Skip over these. |
| for (int i = 0; i < 2; i++) |
| if (initial_writeback & (1 << i)) |
| { |
| gcc_assert (def->insn () == insns[i]); |
| def = def->next_def (); |
| } |
| |
| if (!def || def->bb () != pair_dst->bb ()) |
| return nullptr; |
| |
| // DEF should now be the first def of the base register after PAIR_DST. |
| insn_info *cand = def->insn (); |
| gcc_assert (*cand > *pair_dst); |
| |
| const auto base_regno = base_def->regno (); |
| |
| // If CAND doesn't also use our base register, |
| // it can't destructively update it. |
| if (!find_access (cand->uses (), base_regno)) |
| return nullptr; |
| |
| auto rti = cand->rtl (); |
| |
| if (!INSN_P (rti)) |
| return nullptr; |
| |
| auto pat = PATTERN (rti); |
| if (GET_CODE (pat) != SET) |
| return nullptr; |
| |
| auto dest = XEXP (pat, 0); |
| if (!REG_P (dest) || REGNO (dest) != base_regno) |
| return nullptr; |
| |
| poly_int64 offset; |
| rtx rhs_base = strip_offset (XEXP (pat, 1), &offset); |
| if (!REG_P (rhs_base) |
| || REGNO (rhs_base) != base_regno |
| || !offset.is_constant ()) |
| return nullptr; |
| |
| // If the initial base offset is zero, we can handle any add offset |
| // (post-inc). Otherwise, we require the offsets to match (pre-inc). |
| if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset)) |
| return nullptr; |
| |
| auto off_hwi = offset.to_constant (); |
| |
| if (off_hwi % access_size != 0) |
| return nullptr; |
| |
| off_hwi /= access_size; |
| |
| if (!pair_mem_in_range_p (off_hwi)) |
| return nullptr; |
| |
| auto dump_prefix = [&]() |
| { |
| if (!insns[0]) |
| fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ()); |
| else |
| fprintf (dump_file, " (%d,%d)", |
| insns[0]->uid (), insns[1]->uid ()); |
| }; |
| |
| insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1], false); |
| if (!hazard || *hazard <= *pair_dst) |
| { |
| if (dump_file) |
| { |
| dump_prefix (); |
| fprintf (dump_file, |
| "folding in trailing add (%d) to use writeback form\n", |
| cand->uid ()); |
| } |
| |
| *add_def = def; |
| *writeback_effect = copy_rtx (pat); |
| return cand; |
| } |
| |
| if (dump_file) |
| { |
| dump_prefix (); |
| fprintf (dump_file, |
| "can't fold in trailing add (%d), hazard = %d\n", |
| cand->uid (), hazard->uid ()); |
| } |
| |
| return nullptr; |
| } |
| |
| // We just emitted a tombstone with uid UID, track it in a bitmap for |
| // this BB so we can easily identify it later when cleaning up tombstones. |
| void |
| pair_fusion_bb_info::track_tombstone (int uid) |
| { |
| if (!m_emitted_tombstone) |
| { |
| // Lazily initialize the bitmap for tracking tombstone insns. |
| bitmap_obstack_initialize (&m_bitmap_obstack); |
| bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack); |
| m_emitted_tombstone = true; |
| } |
| |
| if (!bitmap_set_bit (&m_tombstone_bitmap, uid)) |
| gcc_unreachable (); // Bit should have changed. |
| } |
| |
| // Reset the debug insn containing USE (the debug insn has been |
| // optimized away). |
| static void |
| reset_debug_use (use_info *use) |
| { |
| auto use_insn = use->insn (); |
| auto use_rtl = use_insn->rtl (); |
| insn_change change (use_insn); |
| change.new_uses = {}; |
| INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC (); |
| crtl->ssa->change_insn (change); |
| } |
| |
| // USE is a debug use that needs updating because DEF (a def of the same |
| // register) is being re-ordered over it. If BASE is non-null, then DEF |
| // is an update of the register BASE by a constant, given by WB_OFFSET, |
| // and we can preserve debug info by accounting for the change in side |
| // effects. |
| static void |
| fixup_debug_use (obstack_watermark &attempt, |
| use_info *use, |
| def_info *def, |
| rtx base, |
| poly_int64 wb_offset) |
| { |
| auto use_insn = use->insn (); |
| if (base) |
| { |
| auto use_rtl = use_insn->rtl (); |
| insn_change change (use_insn); |
| |
| gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base)); |
| change.new_uses = check_remove_regno_access (attempt, |
| change.new_uses, |
| use->regno ()); |
| |
| // The effect of the writeback is to add WB_OFFSET to BASE. If |
| // we're re-ordering DEF below USE, then we update USE by adding |
| // WB_OFFSET to it. Otherwise, if we're re-ordering DEF above |
| // USE, we update USE by undoing the effect of the writeback |
| // (subtracting WB_OFFSET). |
| use_info *new_use; |
| if (*def->insn () > *use_insn) |
| { |
| // We now need USE_INSN to consume DEF. Create a new use of DEF. |
| // |
| // N.B. this means until we call change_insns for the main change |
| // group we will temporarily have a debug use consuming a def that |
| // comes after it, but RTL-SSA doesn't currently support updating |
| // debug insns as part of the main change group (together with |
| // nondebug changes), so we will have to live with this update |
| // leaving the IR being temporarily inconsistent. It seems to |
| // work out OK once the main change group is applied. |
| wb_offset *= -1; |
| new_use = crtl->ssa->create_use (attempt, |
| use_insn, |
| as_a<set_info *> (def)); |
| } |
| else |
| new_use = find_access (def->insn ()->uses (), use->regno ()); |
| |
| change.new_uses = insert_access (attempt, new_use, change.new_uses); |
| |
| if (dump_file) |
| { |
| const char *dir = (*def->insn () < *use_insn) ? "down" : "up"; |
| pretty_printer pp; |
| pp_string (&pp, "["); |
| pp_access (&pp, use, 0); |
| pp_string (&pp, "]"); |
| pp_string (&pp, " due to wb def "); |
| pp_string (&pp, "["); |
| pp_access (&pp, def, 0); |
| pp_string (&pp, "]"); |
| fprintf (dump_file, |
| " i%d: fix up debug use %s re-ordered %s, " |
| "sub r%u -> r%u + ", |
| use_insn->uid (), pp_formatted_text (&pp), |
| dir, REGNO (base), REGNO (base)); |
| print_dec (wb_offset, dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| |
| insn_propagation prop (use_rtl, base, |
| plus_constant (GET_MODE (base), base, wb_offset)); |
| if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl))) |
| crtl->ssa->change_insn (change); |
| else |
| { |
| if (dump_file) |
| fprintf (dump_file, " i%d: RTL substitution failed (%s)" |
| ", resetting debug insn", use_insn->uid (), |
| prop.failure_reason); |
| reset_debug_use (use); |
| } |
| } |
| else |
| { |
| if (dump_file) |
| { |
| pretty_printer pp; |
| pp_string (&pp, "["); |
| pp_access (&pp, use, 0); |
| pp_string (&pp, "] due to re-ordered load def ["); |
| pp_access (&pp, def, 0); |
| pp_string (&pp, "]"); |
| fprintf (dump_file, " i%d: resetting debug use %s\n", |
| use_insn->uid (), pp_formatted_text (&pp)); |
| } |
| reset_debug_use (use); |
| } |
| } |
| |
| // Update debug uses when folding in a trailing add insn to form a |
| // writeback pair. |
| // |
| // ATTEMPT is used to allocate RTL-SSA temporaries for the changes, |
| // the final pair is placed immediately after PAIR_DST, TRAILING_ADD |
| // is a trailing add insn which is being folded into the pair to make it |
| // use writeback addressing, and WRITEBACK_EFFECT is the pattern for |
| // TRAILING_ADD. |
| static void |
| fixup_debug_uses_trailing_add (obstack_watermark &attempt, |
| insn_info *pair_dst, |
| insn_info *trailing_add, |
| rtx writeback_effect) |
| { |
| rtx base = SET_DEST (writeback_effect); |
| |
| poly_int64 wb_offset; |
| rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset); |
| gcc_checking_assert (rtx_equal_p (base, base2)); |
| |
| auto defs = trailing_add->defs (); |
| gcc_checking_assert (defs.size () == 1); |
| def_info *def = defs[0]; |
| |
| if (auto set = safe_dyn_cast<set_info *> (def->prev_def ())) |
| for (auto use : iterate_safely (set->debug_insn_uses ())) |
| if (*use->insn () > *pair_dst) |
| // DEF is getting re-ordered above USE, fix up USE accordingly. |
| fixup_debug_use (attempt, use, def, base, wb_offset); |
| } |
| |
| // Called from fuse_pair, fixes up any debug uses that will be affected |
| // by the changes. |
| // |
| // ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for |
| // the changes, INSNS gives the candidate insns: at this point the use/def |
| // information should still be as on entry to fuse_pair, but the patterns may |
| // have changed, hence we pass ORIG_RTL which contains the original patterns |
| // for the candidate insns. |
| // |
| // The final pair will be placed immediately after PAIR_DST, LOAD_P is true if |
| // it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had |
| // writeback, and WRITEBACK_EFFECT is an rtx describing the overall update to |
| // the base register in the final pair (if any). BASE_REGNO gives the register |
| // number of the base register used in the final pair. |
| static void |
| fixup_debug_uses (obstack_watermark &attempt, |
| insn_info *insns[2], |
| rtx orig_rtl[2], |
| insn_info *pair_dst, |
| insn_info *trailing_add, |
| bool load_p, |
| int writeback, |
| rtx writeback_effect, |
| unsigned base_regno) |
| { |
| // USE is a debug use that needs updating because DEF (a def of the |
| // resource) is being re-ordered over it. If WRITEBACK_PAT is non-NULL, |
| // then it gives the original RTL pattern for DEF's insn, and DEF is a |
| // writeback update of the base register. |
| // |
| // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use. |
| auto update_debug_use = [&](use_info *use, def_info *def, |
| rtx writeback_pat) |
| { |
| poly_int64 offset = 0; |
| rtx base = NULL_RTX; |
| if (writeback_pat) |
| { |
| rtx mem = XEXP (writeback_pat, load_p); |
| gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) |
| == RTX_AUTOINC); |
| |
| base = pair_mem_strip_offset (mem, &offset); |
| gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno); |
| } |
| fixup_debug_use (attempt, use, def, base, offset); |
| }; |
| |
| // Reset any debug uses of mem over which we re-ordered a store. |
| // |
| // It would be nice to try and preserve debug info here, but it seems that |
| // would require doing alias analysis to see if the store aliases with the |
| // debug use, which seems a little extravagant just to preserve debug info. |
| if (!load_p) |
| { |
| auto def = memory_access (insns[0]->defs ()); |
| auto last_def = memory_access (insns[1]->defs ()); |
| for (; def != last_def; def = def->next_def ()) |
| { |
| auto set = as_a<set_info *> (def); |
| for (auto use : iterate_safely (set->debug_insn_uses ())) |
| { |
| if (dump_file) |
| fprintf (dump_file, " i%d: resetting debug use of mem\n", |
| use->insn ()->uid ()); |
| reset_debug_use (use); |
| } |
| } |
| } |
| |
| // Now let's take care of register uses, starting with debug uses |
| // attached to defs from our first insn. |
| for (auto def : insns[0]->defs ()) |
| { |
| auto set = dyn_cast<set_info *> (def); |
| if (!set || set->is_mem () || !set->first_debug_insn_use ()) |
| continue; |
| |
| def_info *defs[2] = { |
| def, |
| find_access (insns[1]->defs (), def->regno ()) |
| }; |
| |
| rtx writeback_pats[2] = {}; |
| if (def->regno () == base_regno) |
| for (int i = 0; i < 2; i++) |
| if (writeback & (1 << i)) |
| { |
| gcc_checking_assert (defs[i]); |
| writeback_pats[i] = orig_rtl[i]; |
| } |
| |
| // Now that we've characterized the defs involved, go through the |
| // debug uses and determine how to update them (if needed). |
| for (auto use : iterate_safely (set->debug_insn_uses ())) |
| { |
| if (*pair_dst < *use->insn () && defs[1]) |
| // We're re-ordering defs[1] above a previous use of the |
| // same resource. |
| update_debug_use (use, defs[1], writeback_pats[1]); |
| else if (*pair_dst >= *use->insn ()) |
| // We're re-ordering defs[0] below its use. |
| update_debug_use (use, defs[0], writeback_pats[0]); |
| } |
| } |
| |
| // Now let's look at registers which are def'd by the second insn |
| // but not by the first insn, there may still be debug uses of a |
| // previous def which can be affected by moving the second insn up. |
| for (auto def : insns[1]->defs ()) |
| { |
| // This should be M log N where N is the number of defs in |
| // insns[0] and M is the number of defs in insns[1]. |
| if (def->is_mem () || find_access (insns[0]->defs (), def->regno ())) |
| continue; |
| |
| auto prev_set = safe_dyn_cast<set_info *> (def->prev_def ()); |
| if (!prev_set) |
| continue; |
| |
| rtx writeback_pat = NULL_RTX; |
| if (def->regno () == base_regno && (writeback & 2)) |
| writeback_pat = orig_rtl[1]; |
| |
| // We have a def in insns[1] which isn't def'd by the first insn. |
| // Look to the previous def and see if it has any debug uses. |
| for (auto use : iterate_safely (prev_set->debug_insn_uses ())) |
| if (*pair_dst < *use->insn ()) |
| // We're ordering DEF above a previous use of the same register. |
| update_debug_use (use, def, writeback_pat); |
| } |
| |
| if ((writeback & 2) && !writeback_effect) |
| { |
| // If the second insn initially had writeback but the final |
| // pair does not, then there may be trailing debug uses of the |
| // second writeback def which need re-parenting: do that. |
| auto def = find_access (insns[1]->defs (), base_regno); |
| gcc_assert (def); |
| auto set = as_a<set_info *> (def); |
| for (auto use : iterate_safely (set->debug_insn_uses ())) |
| { |
| insn_change change (use->insn ()); |
| change.new_uses = check_remove_regno_access (attempt, |
| change.new_uses, |
| base_regno); |
| auto new_use = find_access (insns[0]->uses (), base_regno); |
| |
| // N.B. insns must have already shared a common base due to writeback. |
| gcc_assert (new_use); |
| |
| if (dump_file) |
| fprintf (dump_file, |
| " i%d: cancelling wb, re-parenting trailing debug use\n", |
| use->insn ()->uid ()); |
| |
| change.new_uses = insert_access (attempt, new_use, change.new_uses); |
| crtl->ssa->change_insn (change); |
| } |
| } |
| else if (trailing_add) |
| fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add, |
| writeback_effect); |
| } |
| |
| // Try and actually fuse the pair given by insns I1 and I2. |
| // |
| // Here we've done enough analysis to know this is safe, we only |
| // reject the pair at this stage if either the tuning policy says to, |
| // or recog fails on the final pair insn. |
| // |
| // LOAD_P is true for loads, ACCESS_SIZE gives the access size of each |
| // candidate insn. Bit i of WRITEBACK is set if the ith insn (in program |
| // order) uses writeback. |
| // |
| // BASE gives the chosen base candidate for the pair and MOVE_RANGE is |
| // a singleton range which says where to place the pair. |
| bool |
| pair_fusion_bb_info::fuse_pair (bool load_p, |
| unsigned access_size, |
| int writeback, |
| insn_info *i1, insn_info *i2, |
| base_cand &base, |
| const insn_range_info &move_range) |
| { |
| auto attempt = crtl->ssa->new_change_attempt (); |
| |
| auto make_change = [&attempt](insn_info *insn) |
| { |
| return crtl->ssa->change_alloc<insn_change> (attempt, insn); |
| }; |
| auto make_delete = [&attempt](insn_info *insn) |
| { |
| return crtl->ssa->change_alloc<insn_change> (attempt, |
| insn, |
| insn_change::DELETE); |
| }; |
| |
| insn_info *first = (*i1 < *i2) ? i1 : i2; |
| insn_info *second = (first == i1) ? i2 : i1; |
| |
| insn_info *pair_dst = move_range.singleton (); |
| gcc_assert (pair_dst); |
| |
| insn_info *insns[2] = { first, second }; |
| |
| auto_vec<insn_change *> changes; |
| auto_vec<int, 3> tombstone_uids; |
| |
| rtx pats[2] = { |
| PATTERN (first->rtl ()), |
| PATTERN (second->rtl ()) |
| }; |
| |
| // Make copies of the patterns as we might need to refer to the original RTL |
| // later, for example when updating debug uses (which is after we've updated |
| // one or both of the patterns in the candidate insns). |
| rtx orig_rtl[2]; |
| for (int i = 0; i < 2; i++) |
| orig_rtl[i] = copy_rtx (pats[i]); |
| |
| use_array input_uses[2] = { first->uses (), second->uses () }; |
| def_array input_defs[2] = { first->defs (), second->defs () }; |
| |
| int changed_insn = -1; |
| if (base.from_insn != -1) |
| { |
| // If we're not already using a shared base, we need |
| // to re-write one of the accesses to use the base from |
| // the other insn. |
| gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1); |
| changed_insn = !base.from_insn; |
| |
| rtx base_pat = pats[base.from_insn]; |
| rtx change_pat = pats[changed_insn]; |
| rtx base_mem = XEXP (base_pat, load_p); |
| rtx change_mem = XEXP (change_pat, load_p); |
| |
| const bool lower_base_p = (insns[base.from_insn] == i1); |
| HOST_WIDE_INT adjust_amt = access_size; |
| if (!lower_base_p) |
| adjust_amt *= -1; |
| |
| rtx change_reg = XEXP (change_pat, !load_p); |
| rtx effective_base = drop_writeback (base_mem); |
| rtx adjusted_addr = plus_constant (Pmode, |
| XEXP (effective_base, 0), |
| adjust_amt); |
| rtx new_mem = replace_equiv_address_nv (change_mem, adjusted_addr); |
| rtx new_set = load_p |
| ? gen_rtx_SET (change_reg, new_mem) |
| : gen_rtx_SET (new_mem, change_reg); |
| |
| pats[changed_insn] = new_set; |
| |
| auto keep_use = [&](use_info *u) |
| { |
| return refers_to_regno_p (u->regno (), u->regno () + 1, |
| change_pat, &XEXP (change_pat, load_p)); |
| }; |
| |
| // Drop any uses that only occur in the old address. |
| input_uses[changed_insn] = filter_accesses (attempt, |
| input_uses[changed_insn], |
| keep_use); |
| } |
| |
| rtx writeback_effect = NULL_RTX; |
| if (writeback) |
| writeback_effect = extract_writebacks (load_p, pats, changed_insn); |
| |
| const auto base_regno = base.def->regno (); |
| |
| if (base.from_insn == -1 && (writeback & 1)) |
| { |
| // If the first of the candidate insns had a writeback form, we'll need to |
| // drop the use of the updated base register from the second insn's uses. |
| // |
| // N.B. we needn't worry about the base register occurring as a store |
| // operand, as we checked that there was no non-address true dependence |
| // between the insns in try_fuse_pair. |
| gcc_checking_assert (find_access (input_uses[1], base_regno)); |
| input_uses[1] = check_remove_regno_access (attempt, |
| input_uses[1], |
| base_regno); |
| } |
| |
| // Go through and drop uses that only occur in register notes, |
| // as we won't be preserving those. |
| for (int i = 0; i < 2; i++) |
| { |
| auto rti = insns[i]->rtl (); |
| if (!REG_NOTES (rti)) |
| continue; |
| |
| input_uses[i] = remove_note_accesses (attempt, input_uses[i]); |
| } |
| |
| // Get the uses that the pair instruction would have, and punt if |
| // the unpaired instructions use different definitions of the same |
| // register. That would normally be caught as a side-effect of |
| // hazard detection below, but this check also deals with cases |
| // in which one use is undefined and the other isn't. |
| auto new_uses = merge_access_arrays (attempt, |
| drop_memory_access (input_uses[0]), |
| drop_memory_access (input_uses[1])); |
| if (!new_uses.is_valid ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " rejecting pair: i%d and i%d use different definiitions of" |
| " the same register\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return false; |
| } |
| |
| // Edge case: if the first insn is a writeback load and the |
| // second insn is a non-writeback load which transfers into the base |
| // register, then we should drop the writeback altogether as the |
| // update of the base register from the second load should prevail. |
| // |
| // For example: |
| // ldr x2, [x1], #8 |
| // ldr x1, [x1] |
| // --> |
| // ldp x2, x1, [x1] |
| if (writeback == 1 |
| && load_p |
| && find_access (input_defs[1], base_regno)) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " load pair: i%d has wb but subsequent i%d has non-wb " |
| "update of base (r%d), dropping wb\n", |
| insns[0]->uid (), insns[1]->uid (), base_regno); |
| gcc_assert (writeback_effect); |
| writeback_effect = NULL_RTX; |
| } |
| |
| // So far the patterns have been in instruction order, |
| // now we want them in offset order. |
| if (i1 != first) |
| std::swap (pats[0], pats[1]); |
| |
| poly_int64 offsets[2]; |
| for (int i = 0; i < 2; i++) |
| { |
| rtx mem = XEXP (pats[i], load_p); |
| gcc_checking_assert (MEM_P (mem)); |
| rtx base = strip_offset (XEXP (mem, 0), offsets + i); |
| gcc_checking_assert (REG_P (base)); |
| gcc_checking_assert (base_regno == REGNO (base)); |
| } |
| |
| // If either of the original insns had writeback, but the resulting pair insn |
| // does not (can happen e.g. in the load pair edge case above, or if the |
| // writeback effects cancel out), then drop the def (s) of the base register |
| // as appropriate. |
| // |
| // Also drop the first def in the case that both of the original insns had |
| // writeback. The second def could well have uses, but the first def should |
| // only be used by the second insn (and we dropped that use above). |
| for (int i = 0; i < 2; i++) |
| if ((!writeback_effect && (writeback & (1 << i))) |
| || (i == 0 && writeback == 3)) |
| input_defs[i] = check_remove_regno_access (attempt, |
| input_defs[i], |
| base_regno); |
| |
| // If we don't currently have a writeback pair, and we don't have |
| // a load that clobbers the base register, look for a trailing destructive |
| // update of the base register and try and fold it in to make this into a |
| // writeback pair. |
| insn_info *trailing_add = nullptr; |
| if (m_pass->should_handle_writeback (writeback_type::ALL) |
| && !writeback_effect |
| && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1, |
| XEXP (pats[0], 0), nullptr) |
| && !refers_to_regno_p (base_regno, base_regno + 1, |
| XEXP (pats[1], 0), nullptr)))) |
| { |
| def_info *add_def; |
| trailing_add = m_pass->find_trailing_add (insns, move_range, writeback, |
| &writeback_effect, |
| &add_def, base.def, offsets[0], |
| access_size); |
| if (trailing_add) |
| { |
| // The def of the base register from the trailing add should prevail. |
| input_defs[0] = insert_access (attempt, add_def, input_defs[0]); |
| gcc_assert (input_defs[0].is_valid ()); |
| } |
| } |
| |
| // Now that we know what base mem we're going to use, check if it's OK |
| // with the pair mem policy. |
| rtx first_mem = XEXP (pats[0], load_p); |
| if (!m_pass->pair_mem_ok_with_policy (first_mem, load_p)) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "punting on pair (%d,%d), pair mem policy says no\n", |
| i1->uid (), i2->uid ()); |
| return false; |
| } |
| |
| rtx reg_notes = combine_reg_notes (first, second, load_p); |
| |
| rtx pair_pat = m_pass->gen_pair (pats, writeback_effect, load_p); |
| insn_change *pair_change = nullptr; |
| auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) { |
| rtx_insn *rti = change->insn ()->rtl (); |
| validate_unshare_change (rti, &PATTERN (rti), pair_pat, true); |
| validate_change (rti, ®_NOTES (rti), reg_notes, true); |
| }; |
| |
| // Turn CHANGE into a memory definition tombstone. |
| auto make_tombstone = [&](insn_change *change) |
| { |
| tombstone_uids.quick_push (change->insn ()->uid ()); |
| rtx_insn *rti = change->insn ()->rtl (); |
| validate_change (rti, &PATTERN (rti), gen_tombstone (), true); |
| validate_change (rti, ®_NOTES (rti), NULL_RTX, true); |
| change->new_uses = use_array (); |
| }; |
| |
| if (load_p) |
| { |
| changes.safe_push (make_delete (first)); |
| pair_change = make_change (second); |
| changes.safe_push (pair_change); |
| |
| pair_change->move_range = move_range; |
| pair_change->new_defs = merge_access_arrays (attempt, |
| input_defs[0], |
| input_defs[1]); |
| gcc_assert (pair_change->new_defs.is_valid ()); |
| |
| pair_change->new_uses = new_uses; |
| set_pair_pat (pair_change); |
| } |
| else |
| { |
| using Action = store_change_builder::action; |
| insn_info *store_to_change = try_repurpose_store (first, second, |
| move_range); |
| store_change_builder builder (insns, store_to_change, pair_dst); |
| insn_change *change; |
| set_info *new_set = nullptr; |
| for (; !builder.done (); builder.advance ()) |
| { |
| auto action = builder.get_change (); |
| change = (action.type == Action::INSERT) |
| ? nullptr : make_change (action.insn); |
| switch (action.type) |
| { |
| case Action::CHANGE: |
| { |
| set_pair_pat (change); |
| change->new_uses = new_uses; |
| auto d1 = drop_memory_access (input_defs[0]); |
| auto d2 = drop_memory_access (input_defs[1]); |
| change->new_defs = merge_access_arrays (attempt, d1, d2); |
| gcc_assert (change->new_defs.is_valid ()); |
| def_info *store_def = memory_access (change->insn ()->defs ()); |
| change->new_defs = insert_access (attempt, |
| store_def, |
| change->new_defs); |
| gcc_assert (change->new_defs.is_valid ()); |
| change->move_range = move_range; |
| pair_change = change; |
| break; |
| } |
| case Action::TOMBSTONE: |
| { |
| make_tombstone (change); |
| break; |
| } |
| case Action::INSERT: |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| " stp: cannot re-purpose candidate stores\n"); |
| |
| auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat); |
| change = make_change (new_insn); |
| change->move_range = move_range; |
| change->new_uses = new_uses; |
| gcc_assert (change->new_uses.is_valid ()); |
| |
| auto d1 = drop_memory_access (input_defs[0]); |
| auto d2 = drop_memory_access (input_defs[1]); |
| change->new_defs = merge_access_arrays (attempt, d1, d2); |
| gcc_assert (change->new_defs.is_valid ()); |
| |
| new_set = crtl->ssa->create_set (attempt, new_insn, memory); |
| change->new_defs = insert_access (attempt, new_set, |
| change->new_defs); |
| gcc_assert (change->new_defs.is_valid ()); |
| pair_change = change; |
| break; |
| } |
| case Action::FIXUP_USE: |
| { |
| // This use now needs to consume memory from our stp. |
| if (dump_file) |
| fprintf (dump_file, |
| " stp: changing i%d to use mem from new stp " |
| "(after i%d)\n", |
| action.insn->uid (), pair_dst->uid ()); |
| change->new_uses = drop_memory_access (change->new_uses); |
| gcc_assert (new_set); |
| auto new_use = crtl->ssa->create_use (attempt, action.insn, |
| new_set); |
| change->new_uses = insert_access (attempt, new_use, |
| change->new_uses); |
| break; |
| } |
| } |
| changes.safe_push (change); |
| } |
| } |
| |
| if (trailing_add) |
| { |
| if (auto *mem_def = memory_access (trailing_add->defs())) |
| { |
| auto *change = make_change (trailing_add); |
| change->new_defs = insert_access (attempt, mem_def, def_array ()); |
| make_tombstone (change); |
| changes.safe_push (change); |
| } |
| else |
| changes.safe_push (make_delete (trailing_add)); |
| } |
| else if ((writeback & 2) && !writeback_effect) |
| { |
| // The second insn initially had writeback but now the pair does not, |
| // need to update any nondebug uses of the base register def in the |
| // second insn. We'll take care of debug uses later. |
| auto def = find_access (insns[1]->defs (), base_regno); |
| gcc_assert (def); |
| auto set = dyn_cast<set_info *> (def); |
| if (set && set->has_nondebug_uses ()) |
| { |
| auto orig_use = find_access (insns[0]->uses (), base_regno); |
| for (auto use : set->nondebug_insn_uses ()) |
| { |
| auto change = make_change (use->insn ()); |
| change->new_uses = check_remove_regno_access (attempt, |
| change->new_uses, |
| base_regno); |
| change->new_uses = insert_access (attempt, |
| orig_use, |
| change->new_uses); |
| changes.safe_push (change); |
| } |
| } |
| } |
| |
| auto ignore = ignore_changing_insns (changes); |
| for (unsigned i = 0; i < changes.length (); i++) |
| gcc_assert (changes[i]->move_range.singleton () |
| && rtl_ssa::restrict_movement (*changes[i], ignore)); |
| |
| // Check the pair pattern is recog'd. |
| if (!rtl_ssa::recog (attempt, *pair_change, ignore)) |
| { |
| if (dump_file) |
| fprintf (dump_file, " failed to form pair, recog failed\n"); |
| |
| // Free any reg notes we allocated. |
| while (reg_notes) |
| { |
| rtx next = XEXP (reg_notes, 1); |
| free_EXPR_LIST_node (reg_notes); |
| reg_notes = next; |
| } |
| cancel_changes (0); |
| return false; |
| } |
| |
| gcc_assert (crtl->ssa->verify_insn_changes (changes)); |
| |
| // Fix up any debug uses that will be affected by the changes. |
| if (MAY_HAVE_DEBUG_INSNS) |
| fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add, |
| load_p, writeback, writeback_effect, base_regno); |
| |
| confirm_change_group (); |
| crtl->ssa->change_insns (changes); |
| |
| for (auto uid : tombstone_uids) |
| track_tombstone (uid); |
| |
| return true; |
| } |
| |
| // Return true if STORE_INSN may modify mem rtx MEM. Make sure we keep |
| // within our BUDGET for alias analysis. |
| static bool |
| store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget) |
| { |
| if (!budget) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "exceeded budget, assuming store %d aliases with mem ", |
| store_insn->uid ()); |
| print_simple_rtl (dump_file, mem); |
| fprintf (dump_file, "\n"); |
| } |
| |
| return true; |
| } |
| |
| budget--; |
| return memory_modified_in_insn_p (mem, store_insn->rtl ()); |
| } |
| |
| // Return true if LOAD may be modified by STORE. Make sure we keep |
| // within our BUDGET for alias analysis. |
| static bool |
| load_modified_by_store_p (insn_info *load, |
| insn_info *store, |
| int &budget) |
| { |
| gcc_checking_assert (budget >= 0); |
| |
| if (!budget) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "exceeded budget, assuming load %d aliases with store %d\n", |
| load->uid (), store->uid ()); |
| } |
| return true; |
| } |
| |
| // It isn't safe to re-order stores over calls. |
| if (CALL_P (load->rtl ())) |
| return true; |
| |
| budget--; |
| |
| // Iterate over all MEMs in the load, seeing if any alias with |
| // our store. |
| subrtx_var_iterator::array_type array; |
| rtx pat = PATTERN (load->rtl ()); |
| FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST) |
| if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ())) |
| return true; |
| |
| return false; |
| } |
| |
| // Implement some common functionality used by both store_walker |
| // and load_walker. |
| template<bool reverse> |
| class def_walker : public alias_walker |
| { |
| protected: |
| using def_iter_t = typename std::conditional<reverse, |
| reverse_def_iterator, def_iterator>::type; |
| |
| static use_info *start_use_chain (def_iter_t &def_iter) |
| { |
| set_info *set = nullptr; |
| for (; *def_iter; def_iter++) |
| { |
| set = dyn_cast<set_info *> (*def_iter); |
| if (!set) |
| continue; |
| |
| use_info *use = reverse |
| ? set->last_nondebug_insn_use () |
| : set->first_nondebug_insn_use (); |
| |
| if (use) |
| return use; |
| } |
| |
| return nullptr; |
| } |
| |
| def_iter_t def_iter; |
| insn_info *limit; |
| |
| // Array of register uses from the candidate insn which occur in MEMs. |
| use_array cand_addr_uses; |
| |
| def_walker (def_info *def, insn_info *limit, use_array addr_uses) : |
| def_iter (def), limit (limit), cand_addr_uses (addr_uses) {} |
| |
| virtual bool iter_valid () const { return *def_iter; } |
| |
| // Implemented in {load,store}_walker. |
| virtual bool alias_conflict_p (int &budget) const = 0; |
| |
| // Return true if the current (walking) INSN () uses a register R inside a |
| // MEM, where R is also used inside a MEM by the (static) candidate insn, and |
| // those uses see different definitions of that register. In this case we |
| // can't rely on RTL alias analysis, and for now we conservatively assume that |
| // there is an alias conflict. See PR116783. |
| bool addr_reg_conflict_p () const |
| { |
| use_array curr_insn_uses = insn ()->uses (); |
| auto cand_use_iter = cand_addr_uses.begin (); |
| auto insn_use_iter = curr_insn_uses.begin (); |
| while (cand_use_iter != cand_addr_uses.end () |
| && insn_use_iter != curr_insn_uses.end ()) |
| { |
| auto insn_use = *insn_use_iter; |
| auto cand_use = *cand_use_iter; |
| if (insn_use->regno () > cand_use->regno ()) |
| cand_use_iter++; |
| else if (insn_use->regno () < cand_use->regno ()) |
| insn_use_iter++; |
| else |
| { |
| // As it stands I believe the alias code (memory_modified_in_insn_p) |
| // doesn't look at insn notes such as REG_EQU{IV,AL}, so it should |
| // be safe to skip over uses that only occur in notes. |
| if (insn_use->includes_address_uses () |
| && !insn_use->only_occurs_in_notes () |
| && insn_use->def () != cand_use->def ()) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "assuming aliasing of cand i%d and i%d:\n" |
| "-> insns see different defs of common addr reg r%u\n" |
| "-> ", |
| cand_use->insn ()->uid (), insn_use->insn ()->uid (), |
| insn_use->regno ()); |
| |
| // Note that while the following sequence could be made more |
| // concise by eliding pp_string calls into the pp_printf |
| // calls, doing so triggers -Wformat-diag. |
| pretty_printer pp; |
| pp_string (&pp, "["); |
| pp_access (&pp, cand_use, 0); |
| pp_string (&pp, "] in "); |
| pp_printf (&pp, "i%d", cand_use->insn ()->uid ()); |
| pp_string (&pp, " vs ["); |
| pp_access (&pp, insn_use, 0); |
| pp_string (&pp, "] in "); |
| pp_printf (&pp, "i%d", insn_use->insn ()->uid ()); |
| fprintf (dump_file, "%s\n", pp_formatted_text (&pp)); |
| } |
| return true; |
| } |
| |
| cand_use_iter++; |
| insn_use_iter++; |
| } |
| } |
| |
| return false; |
| } |
| |
| public: |
| insn_info *insn () const override { return (*def_iter)->insn (); } |
| void advance () override { def_iter++; } |
| bool valid () const override final |
| { |
| if (!iter_valid ()) |
| return false; |
| |
| if (reverse) |
| return *(insn ()) > *limit; |
| else |
| return *(insn ()) < *limit; |
| } |
| |
| bool conflict_p (int &budget) const override final |
| { |
| if (addr_reg_conflict_p ()) |
| return true; |
| |
| return alias_conflict_p (budget); |
| } |
| }; |
| |
| // alias_walker that iterates over stores. |
| template<bool reverse, typename InsnPredicate> |
| class store_walker : public def_walker<reverse> |
| { |
| rtx cand_mem; |
| InsnPredicate tombstone_p; |
| |
| public: |
| store_walker (def_info *mem_def, rtx mem, |
| use_array addr_uses, |
| insn_info *limit_insn, |
| InsnPredicate tombstone_fn) : |
| def_walker<reverse> (mem_def, limit_insn, addr_uses), |
| cand_mem (mem), tombstone_p (tombstone_fn) {} |
| |
| bool alias_conflict_p (int &budget) const override final |
| { |
| if (tombstone_p (this->insn ())) |
| return false; |
| |
| return store_modifies_mem_p (cand_mem, this->insn (), budget); |
| } |
| }; |
| |
| // alias_walker that iterates over loads. |
| template<bool reverse> |
| class load_walker : public def_walker<reverse> |
| { |
| using Base = def_walker<reverse>; |
| using use_iter_t = typename std::conditional<reverse, |
| reverse_use_iterator, nondebug_insn_use_iterator>::type; |
| |
| use_iter_t use_iter; |
| insn_info *cand_store; |
| |
| bool iter_valid () const override final { return *use_iter; } |
| |
| public: |
| void advance () override final |
| { |
| use_iter++; |
| if (*use_iter) |
| return; |
| this->def_iter++; |
| use_iter = Base::start_use_chain (this->def_iter); |
| } |
| |
| insn_info *insn () const override final |
| { |
| return (*use_iter)->insn (); |
| } |
| |
| bool alias_conflict_p (int &budget) const override final |
| { |
| return load_modified_by_store_p (insn (), cand_store, budget); |
| } |
| |
| load_walker (def_info *def, insn_info *store, use_array addr_uses, |
| insn_info *limit_insn) |
| : Base (def, limit_insn, addr_uses), |
| use_iter (Base::start_use_chain (this->def_iter)), |
| cand_store (store) {} |
| }; |
| |
| // Process our alias_walkers in a round-robin fashion, proceeding until |
| // nothing more can be learned from alias analysis. |
| // |
| // We try to maintain the invariant that if a walker becomes invalid, we |
| // set its pointer to null. |
| void |
| pair_fusion::do_alias_analysis (insn_info *alias_hazards[4], |
| alias_walker *walkers[4], |
| bool load_p) |
| { |
| const int n_walkers = 2 + (2 * !load_p); |
| int budget = pair_mem_alias_check_limit (); |
| |
| auto next_walker = [walkers,n_walkers](int current) -> int { |
| for (int j = 1; j <= n_walkers; j++) |
| { |
| int idx = (current + j) % n_walkers; |
| if (walkers[idx]) |
| return idx; |
| } |
| return -1; |
| }; |
| |
| int i = -1; |
| for (int j = 0; j < n_walkers; j++) |
| { |
| alias_hazards[j] = nullptr; |
| if (!walkers[j]) |
| continue; |
| |
| if (!walkers[j]->valid ()) |
| walkers[j] = nullptr; |
| else if (i == -1) |
| i = j; |
| } |
| |
| while (i >= 0) |
| { |
| int insn_i = i % 2; |
| int paired_i = (i & 2) + !insn_i; |
| int pair_fst = (i & 2); |
| int pair_snd = (i & 2) + 1; |
| |
| if (walkers[i]->conflict_p (budget)) |
| { |
| alias_hazards[i] = walkers[i]->insn (); |
| |
| // We got an aliasing conflict for this {load,store} walker, |
| // so we don't need to walk any further. |
| walkers[i] = nullptr; |
| |
| // If we have a pair of alias conflicts that prevent |
| // forming the pair, stop. There's no need to do further |
| // analysis. |
| if (alias_hazards[paired_i] |
| && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd])) |
| return; |
| |
| if (!load_p) |
| { |
| int other_pair_fst = (pair_fst ? 0 : 2); |
| int other_paired_i = other_pair_fst + !insn_i; |
| |
| int x_pair_fst = (i == pair_fst) ? i : other_paired_i; |
| int x_pair_snd = (i == pair_fst) ? other_paired_i : i; |
| |
| // Similarly, handle the case where we have a {load,store} |
| // or {store,load} alias hazard pair that prevents forming |
| // the pair. |
| if (alias_hazards[other_paired_i] |
| && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd]) |
| return; |
| } |
| } |
| |
| if (walkers[i]) |
| { |
| walkers[i]->advance (); |
| |
| if (!walkers[i]->valid ()) |
| walkers[i] = nullptr; |
| } |
| |
| i = next_walker (i); |
| } |
| } |
| |
| // Given INSNS (in program order) which are known to be adjacent, look |
| // to see if either insn has a suitable RTL (register) base that we can |
| // use to form a pair. Push these to BASE_CANDS if we find any. CAND_MEMs |
| // gives the relevant mems from the candidate insns, ACCESS_SIZE gives the |
| // size of a single candidate access, and REVERSED says whether the accesses |
| // are inverted in offset order. |
| // |
| // Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback |
| // addressing. |
| int |
| pair_fusion::get_viable_bases (insn_info *insns[2], |
| vec<base_cand> &base_cands, |
| rtx cand_mems[2], |
| unsigned access_size, |
| bool reversed) |
| { |
| // We discovered this pair through a common base. Need to ensure that |
| // we have a common base register that is live at both locations. |
| def_info *base_defs[2] = {}; |
| int writeback = 0; |
| for (int i = 0; i < 2; i++) |
| { |
| const bool is_lower = (i == reversed); |
| poly_int64 poly_off; |
| rtx base = pair_mem_strip_offset (cand_mems[i], &poly_off); |
| if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC) |
| writeback |= (1 << i); |
| |
| if (!REG_P (base) || !poly_off.is_constant ()) |
| continue; |
| |
| // Punt on accesses relative to eliminable regs. See the comment in |
| // pair_fusion_bb_info::track_access for a detailed explanation of this. |
| if (!reload_completed |
| && (REGNO (base) == FRAME_POINTER_REGNUM |
| || REGNO (base) == ARG_POINTER_REGNUM)) |
| continue; |
| |
| HOST_WIDE_INT base_off = poly_off.to_constant (); |
| |
| // It should be unlikely that we ever punt here, since MEM_EXPR offset |
| // alignment should be a good proxy for register offset alignment. |
| if (base_off % access_size != 0) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "base not viable, offset misaligned (insn %d)\n", |
| insns[i]->uid ()); |
| continue; |
| } |
| |
| base_off /= access_size; |
| |
| if (!is_lower) |
| base_off--; |
| |
| if (!pair_mem_in_range_p (base_off)) |
| continue; |
| |
| use_info *use = find_access (insns[i]->uses (), REGNO (base)); |
| gcc_assert (use); |
| base_defs[i] = use->def (); |
| } |
| |
| if (!base_defs[0] && !base_defs[1]) |
| { |
| if (dump_file) |
| fprintf (dump_file, "no viable base register for pair (%d,%d)\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return writeback; |
| } |
| |
| for (int i = 0; i < 2; i++) |
| if ((writeback & (1 << i)) && !base_defs[i]) |
| { |
| if (dump_file) |
| fprintf (dump_file, "insn %d has writeback but base isn't viable\n", |
| insns[i]->uid ()); |
| return writeback; |
| } |
| |
| if (writeback == 3 |
| && base_defs[0]->regno () != base_defs[1]->regno ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "pair (%d,%d): double writeback with distinct regs (%d,%d): " |
| "punting\n", |
| insns[0]->uid (), insns[1]->uid (), |
| base_defs[0]->regno (), base_defs[1]->regno ()); |
| return writeback; |
| } |
| |
| if (base_defs[0] && base_defs[1] |
| && base_defs[0]->regno () == base_defs[1]->regno ()) |
| { |
| // Easy case: insns already share the same base reg. |
| base_cands.quick_push (base_defs[0]); |
| return writeback; |
| } |
| |
| // Otherwise, we know that one of the bases must change. |
| // |
| // Note that if there is writeback we must use the writeback base |
| // (we know now there is exactly one). |
| for (int i = 0; i < 2; i++) |
| if (base_defs[i] && (!writeback || (writeback & (1 << i)))) |
| base_cands.quick_push (base_cand { base_defs[i], i }); |
| |
| return writeback; |
| } |
| |
| // Given two adjacent memory accesses of the same size, I1 and I2, try |
| // and see if we can merge them into a paired access. |
| // |
| // ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true |
| // if the accesses are both loads, otherwise they are both stores. |
| bool |
| pair_fusion_bb_info::try_fuse_pair (bool load_p, unsigned access_size, |
| insn_info *i1, insn_info *i2) |
| { |
| if (dump_file) |
| fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n", |
| load_p, i1->uid (), i2->uid ()); |
| |
| insn_info *insns[2]; |
| bool reversed = false; |
| if (*i1 < *i2) |
| { |
| insns[0] = i1; |
| insns[1] = i2; |
| } |
| else |
| { |
| insns[0] = i2; |
| insns[1] = i1; |
| reversed = true; |
| } |
| |
| rtx cand_mems[2]; |
| rtx reg_ops[2]; |
| rtx pats[2]; |
| for (int i = 0; i < 2; i++) |
| { |
| pats[i] = PATTERN (insns[i]->rtl ()); |
| cand_mems[i] = XEXP (pats[i], load_p); |
| reg_ops[i] = XEXP (pats[i], !load_p); |
| } |
| |
| if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1])) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "punting on load pair due to reg conflcits (%d,%d)\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return false; |
| } |
| |
| if (cfun->can_throw_non_call_exceptions |
| && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX) |
| && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX)) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "can't combine insns with EH side effects (%d,%d)\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return false; |
| } |
| |
| auto_vec<base_cand, 2> base_cands (2); |
| |
| int writeback = m_pass->get_viable_bases (insns, base_cands, cand_mems, |
| access_size, reversed); |
| if (base_cands.is_empty ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, "no viable base for pair (%d,%d)\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return false; |
| } |
| |
| // Punt on frame-related insns with writeback. We probably won't see |
| // these in practice, but this is conservative and ensures we don't |
| // have to worry about these later on. |
| if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ()) |
| || RTX_FRAME_RELATED_P (i2->rtl ()))) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "rejecting pair (%d,%d): frame-related insn with writeback\n", |
| i1->uid (), i2->uid ()); |
| return false; |
| } |
| |
| rtx *ignore = &XEXP (pats[1], load_p); |
| for (auto use : insns[1]->uses ()) |
| if (!use->is_mem () |
| && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore) |
| && use->def () && use->def ()->insn () == insns[0]) |
| { |
| // N.B. we allow a true dependence on the base address, as this |
| // happens in the case of auto-inc accesses. Consider a post-increment |
| // load followed by a regular indexed load, for example. |
| if (dump_file) |
| fprintf (dump_file, |
| "%d has non-address true dependence on %d, rejecting pair\n", |
| insns[1]->uid (), insns[0]->uid ()); |
| return false; |
| } |
| |
| unsigned i = 0; |
| while (i < base_cands.length ()) |
| { |
| base_cand &cand = base_cands[i]; |
| |
| rtx *ignore[2] = {}; |
| for (int j = 0; j < 2; j++) |
| if (cand.from_insn == !j) |
| ignore[j] = &XEXP (cand_mems[j], 0); |
| |
| insn_info *h = first_hazard_after (insns[0], ignore[0]); |
| if (h && *h < *insns[1]) |
| cand.hazards[0] = h; |
| |
| h = latest_hazard_before (insns[1], ignore[1]); |
| if (h && *h > *insns[0]) |
| cand.hazards[1] = h; |
| |
| if (!cand.viable ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "pair (%d,%d): rejecting base %d due to dataflow " |
| "hazards (%d,%d)\n", |
| insns[0]->uid (), |
| insns[1]->uid (), |
| cand.def->regno (), |
| cand.hazards[0]->uid (), |
| cand.hazards[1]->uid ()); |
| |
| base_cands.ordered_remove (i); |
| } |
| else |
| i++; |
| } |
| |
| if (base_cands.is_empty ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "can't form pair (%d,%d) due to dataflow hazards\n", |
| insns[0]->uid (), insns[1]->uid ()); |
| return false; |
| } |
| |
| insn_info *alias_hazards[4] = {}; |
| |
| // First def of memory after the first insn, and last def of memory |
| // before the second insn, respectively. |
| def_info *mem_defs[2] = {}; |
| if (load_p) |
| { |
| if (!MEM_READONLY_P (cand_mems[0])) |
| { |
| mem_defs[0] = memory_access (insns[0]->uses ())->def (); |
| gcc_checking_assert (mem_defs[0]); |
| mem_defs[0] = mem_defs[0]->next_def (); |
| } |
| if (!MEM_READONLY_P (cand_mems[1])) |
| { |
| mem_defs[1] = memory_access (insns[1]->uses ())->def (); |
| gcc_checking_assert (mem_defs[1]); |
| } |
| } |
| else |
| { |
| mem_defs[0] = memory_access (insns[0]->defs ())->next_def (); |
| mem_defs[1] = memory_access (insns[1]->defs ())->prev_def (); |
| gcc_checking_assert (mem_defs[0]); |
| gcc_checking_assert (mem_defs[1]); |
| } |
| |
| auto tombstone_p = [&](insn_info *insn) -> bool { |
| return m_emitted_tombstone |
| && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()); |
| }; |
| |
| auto_vec<access_info *, 2> addr_use_vec[2]; |
| use_array addr_uses[2]; |
| |
| // Collect the lists of register uses that occur in the candidate MEMs. |
| for (int i = 0; i < 2; i++) |
| { |
| // N.B. it's safe for us to ignore uses that only occur in notes |
| // here (e.g. in a REG_EQUIV expression) since we only pass the |
| // MEM down to the alias machinery, so it can't see any insn-level |
| // notes. |
| for (auto use : insns[i]->uses ()) |
| if (use->is_reg () |
| && use->includes_address_uses () |
| && !use->only_occurs_in_notes ()) |
| addr_use_vec[i].safe_push (use); |
| |
| addr_uses[i] = use_array (addr_use_vec[i]); |
| } |
| |
| store_walker<false, decltype(tombstone_p)> |
| forward_store_walker (mem_defs[0], cand_mems[0], addr_uses[0], insns[1], |
| tombstone_p); |
| |
| store_walker<true, decltype(tombstone_p)> |
| backward_store_walker (mem_defs[1], cand_mems[1], addr_uses[1], insns[0], |
| tombstone_p); |
| |
| alias_walker *walkers[4] = {}; |
| if (mem_defs[0]) |
| walkers[0] = &forward_store_walker; |
| if (mem_defs[1]) |
| walkers[1] = &backward_store_walker; |
| |
| if (load_p && (mem_defs[0] || mem_defs[1])) |
| m_pass->do_alias_analysis (alias_hazards, walkers, load_p); |
| else |
| { |
| // We want to find any loads hanging off the first store. |
| mem_defs[0] = memory_access (insns[0]->defs ()); |
| load_walker<false> forward_load_walker (mem_defs[0], insns[0], |
| addr_uses[0], insns[1]); |
| load_walker<true> backward_load_walker (mem_defs[1], insns[1], |
| addr_uses[1], insns[0]); |
| walkers[2] = &forward_load_walker; |
| walkers[3] = &backward_load_walker; |
| m_pass->do_alias_analysis (alias_hazards, walkers, load_p); |
| // Now consolidate hazards back down. |
| if (alias_hazards[2] |
| && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0]))) |
| alias_hazards[0] = alias_hazards[2]; |
| |
| if (alias_hazards[3] |
| && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1]))) |
| alias_hazards[1] = alias_hazards[3]; |
| } |
| |
| if (alias_hazards[0] && alias_hazards[1] |
| && *alias_hazards[0] <= *alias_hazards[1]) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n", |
| i1->uid (), i2->uid (), |
| alias_hazards[0]->uid (), alias_hazards[1]->uid ()); |
| return false; |
| } |
| |
| // Now narrow the hazards on each base candidate using |
| // the alias hazards. |
| i = 0; |
| while (i < base_cands.length ()) |
| { |
| base_cand &cand = base_cands[i]; |
| if (alias_hazards[0] && (!cand.hazards[0] |
| || *alias_hazards[0] < *cand.hazards[0])) |
| cand.hazards[0] = alias_hazards[0]; |
| if (alias_hazards[1] && (!cand.hazards[1] |
| || *alias_hazards[1] > *cand.hazards[1])) |
| cand.hazards[1] = alias_hazards[1]; |
| |
| if (cand.viable ()) |
| i++; |
| else |
| { |
| if (dump_file) |
| fprintf (dump_file, "pair (%d,%d): rejecting base %d due to " |
| "alias/dataflow hazards (%d,%d)", |
| insns[0]->uid (), insns[1]->uid (), |
| cand.def->regno (), |
| cand.hazards[0]->uid (), |
| cand.hazards[1]->uid ()); |
| |
| base_cands.ordered_remove (i); |
| } |
| } |
| |
| if (base_cands.is_empty ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "cannot form pair (%d,%d) due to alias/dataflow hazards", |
| insns[0]->uid (), insns[1]->uid ()); |
| |
| return false; |
| } |
| |
| base_cand *base = &base_cands[0]; |
| if (base_cands.length () > 1) |
| { |
| // If there are still multiple viable bases, it makes sense |
| // to choose one that allows us to reduce register pressure, |
| // for loads this means moving further down, for stores this |
| // means moving further up. |
| gcc_checking_assert (base_cands.length () == 2); |
| const int hazard_i = !load_p; |
| if (base->hazards[hazard_i]) |
| { |
| if (!base_cands[1].hazards[hazard_i]) |
| base = &base_cands[1]; |
| else if (load_p |
| && *base_cands[1].hazards[hazard_i] |
| > *(base->hazards[hazard_i])) |
| base = &base_cands[1]; |
| else if (!load_p |
| && *base_cands[1].hazards[hazard_i] |
| < *(base->hazards[hazard_i])) |
| base = &base_cands[1]; |
| } |
| } |
| |
| // Otherwise, hazards[0] > hazards[1]. |
| // Pair can be formed anywhere in (hazards[1], hazards[0]). |
| insn_range_info range (insns[0], insns[1]); |
| if (base->hazards[1]) |
| range.first = base->hazards[1]; |
| if (base->hazards[0]) |
| range.last = base->hazards[0]->prev_nondebug_insn (); |
| |
| // If the second insn can throw, narrow the move range to exactly that insn. |
| // This prevents us trying to move the second insn from the end of the BB. |
| if (cfun->can_throw_non_call_exceptions |
| && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX)) |
| { |
| gcc_assert (range.includes (insns[1])); |
| range = insn_range_info (insns[1]); |
| } |
| |
| // Placement strategy: push loads down and pull stores up, this should |
| // help register pressure by reducing live ranges. |
| if (load_p) |
| range.first = range.last; |
| else |
| range.last = range.first; |
| |
| if (dump_file) |
| { |
| auto print_hazard = [](insn_info *i) |
| { |
| if (i) |
| fprintf (dump_file, "%d", i->uid ()); |
| else |
| fprintf (dump_file, "-"); |
| }; |
| auto print_pair = [print_hazard](insn_info **i) |
| { |
| print_hazard (i[0]); |
| fprintf (dump_file, ","); |
| print_hazard (i[1]); |
| }; |
| |
| fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (", |
| load_p, insns[0]->uid (), insns[1]->uid (), |
| base->def->regno ()); |
| print_pair (base->hazards); |
| fprintf (dump_file, "), move_range: (%d,%d)\n", |
| range.first->uid (), range.last->uid ()); |
| } |
| |
| return fuse_pair (load_p, access_size, writeback, |
| i1, i2, *base, range); |
| } |
| |
| static void |
| dump_insn_list (FILE *f, const insn_list_t &l) |
| { |
| fprintf (f, "("); |
| |
| auto i = l.begin (); |
| auto end = l.end (); |
| |
| if (i != end) |
| fprintf (f, "%d", (*i)->uid ()); |
| i++; |
| |
| for (; i != end; i++) |
| fprintf (f, ", %d", (*i)->uid ()); |
| |
| fprintf (f, ")"); |
| } |
| |
| DEBUG_FUNCTION void |
| debug (const insn_list_t &l) |
| { |
| dump_insn_list (stderr, l); |
| fprintf (stderr, "\n"); |
| } |
| |
| // LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all insns |
| // in LEFT_LIST are known to be adjacent to those in RIGHT_LIST. |
| // |
| // This function traverses the resulting 2D matrix of possible pair candidates |
| // and attempts to merge them into pairs. |
| // |
| // The algorithm is straightforward: if we consider a combined list of |
| // candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program order, |
| // then we advance through X until we reach a crossing point (where X[i] and |
| // X[i+1] come from different source lists). |
| // |
| // At this point we know X[i] and X[i+1] are adjacent accesses, and we try to |
| // fuse them into a pair. If this succeeds, we remove X[i] and X[i+1] from |
| // their original lists and continue as above. |
| // |
| // In the failure case, we advance through the source list containing X[i] and |
| // continue as above (proceeding to the next crossing point). |
| // |
| // The rationale for skipping over groups of consecutive candidates from the |
| // same source list is as follows: |
| // |
| // In the store case, the insns in the group can't be re-ordered over each |
| // other as they are guaranteed to store to the same location, so we're |
| // guaranteed not to lose opportunities by doing this. |
| // |
| // In the load case, subsequent loads from the same location are either |
| // redundant (in which case they should have been cleaned up by an earlier |
| // optimization pass) or there is an intervening aliasing hazard, in which case |
| // we can't re-order them anyway, so provided earlier passes have cleaned up |
| // redundant loads, we shouldn't miss opportunities by doing this. |
| void |
| pair_fusion_bb_info::merge_pairs (insn_list_t &left_list, |
| insn_list_t &right_list, |
| bool load_p, |
| unsigned access_size) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p); |
| dump_insn_list (dump_file, left_list); |
| fprintf (dump_file, " x "); |
| dump_insn_list (dump_file, right_list); |
| fprintf (dump_file, "\n"); |
| } |
| |
| auto iter_l = left_list.begin (); |
| auto iter_r = right_list.begin (); |
| |
| while (iter_l != left_list.end () && iter_r != right_list.end ()) |
| { |
| auto next_l = std::next (iter_l); |
| auto next_r = std::next (iter_r); |
| if (**iter_l < **iter_r |
| && next_l != left_list.end () |
| && **next_l < **iter_r) |
| iter_l = next_l; |
| else if (**iter_r < **iter_l |
| && next_r != right_list.end () |
| && **next_r < **iter_l) |
| iter_r = next_r; |
| else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r)) |
| { |
| left_list.erase (iter_l); |
| iter_l = next_l; |
| right_list.erase (iter_r); |
| iter_r = next_r; |
| } |
| else if (**iter_l < **iter_r) |
| iter_l = next_l; |
| else |
| iter_r = next_r; |
| } |
| } |
| |
| // Iterate over the accesses in GROUP, looking for adjacent sets |
| // of accesses. If we find two sets of adjacent accesses, call |
| // merge_pairs. |
| void |
| pair_fusion_bb_info::transform_for_base (int encoded_lfs, |
| access_group &group) |
| { |
| const auto lfs = decode_lfs (encoded_lfs); |
| const unsigned access_size = lfs.size; |
| |
| bool skip_next = true; |
| access_record *prev_access = nullptr; |
| |
| for (auto &access : group.list) |
| { |
| if (skip_next) |
| skip_next = false; |
| else if (known_eq (access.offset, prev_access->offset + access_size)) |
| { |
| merge_pairs (prev_access->cand_insns, |
| access.cand_insns, |
| lfs.load_p, |
| access_size); |
| skip_next = access.cand_insns.empty (); |
| } |
| prev_access = &access; |
| } |
| } |
| |
| // If we emitted tombstone insns for this BB, iterate through the BB |
| // and remove all the tombstone insns, being sure to reparent any uses |
| // of mem to previous defs when we do this. |
| void |
| pair_fusion_bb_info::cleanup_tombstones () |
| { |
| // No need to do anything if we didn't emit a tombstone insn for this BB. |
| if (!m_emitted_tombstone) |
| return; |
| |
| for (auto insn : iterate_safely (m_bb->nondebug_insns ())) |
| { |
| if (!insn->is_real () |
| || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ())) |
| continue; |
| |
| auto set = as_a<set_info *> (memory_access (insn->defs ())); |
| if (set->has_any_uses ()) |
| { |
| auto prev_set = as_a<set_info *> (set->prev_def ()); |
| while (set->first_use ()) |
| crtl->ssa->reparent_use (set->first_use (), prev_set); |
| } |
| |
| // Now set has no uses, we can delete it. |
| insn_change change (insn, insn_change::DELETE); |
| crtl->ssa->change_insn (change); |
| } |
| } |
| |
| template<typename Map> |
| void |
| pair_fusion_bb_info::traverse_base_map (Map &map) |
| { |
| for (auto kv : map) |
| { |
| const auto &key = kv.first; |
| auto &value = kv.second; |
| transform_for_base (key.second, value); |
| } |
| } |
| |
| void |
| pair_fusion_bb_info::transform () |
| { |
| traverse_base_map (expr_map); |
| traverse_base_map (def_map); |
| } |
| |
| // Given an existing pair insn INSN, look for a trailing update of |
| // the base register which we can fold in to make this pair use |
| // a writeback addressing mode. |
| void |
| pair_fusion::try_promote_writeback (insn_info *insn, bool load_p) |
| { |
| rtx regs[2]; |
| |
| rtx mem = destructure_pair (regs, PATTERN (insn->rtl ()), load_p); |
| gcc_checking_assert (MEM_P (mem)); |
| |
| poly_int64 offset; |
| rtx base = strip_offset (XEXP (mem, 0), &offset); |
| gcc_assert (REG_P (base)); |
| |
| const auto access_size = GET_MODE_SIZE (GET_MODE (mem)).to_constant () / 2; |
| |
| if (find_access (insn->defs (), REGNO (base))) |
| { |
| gcc_assert (load_p); |
| if (dump_file) |
| fprintf (dump_file, |
| "ldp %d clobbers base r%d, can't promote to writeback\n", |
| insn->uid (), REGNO (base)); |
| return; |
| } |
| |
| auto base_use = find_access (insn->uses (), REGNO (base)); |
| gcc_assert (base_use); |
| |
| if (!base_use->def ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "found pair (i%d, L=%d): but base r%d is upwards exposed\n", |
| insn->uid (), load_p, REGNO (base)); |
| return; |
| } |
| |
| auto base_def = base_use->def (); |
| |
| rtx wb_effect = NULL_RTX; |
| def_info *add_def; |
| const insn_range_info pair_range (insn); |
| insn_info *insns[2] = { nullptr, insn }; |
| insn_info *trailing_add |
| = find_trailing_add (insns, pair_range, 0, &wb_effect, |
| &add_def, base_def, offset, |
| access_size); |
| if (!trailing_add) |
| return; |
| |
| auto attempt = crtl->ssa->new_change_attempt (); |
| |
| insn_change pair_change (insn); |
| insn_change del_change (trailing_add, insn_change::DELETE); |
| insn_change *changes[] = { &pair_change, &del_change }; |
| |
| rtx pair_pat = gen_promote_writeback_pair (wb_effect, mem, regs, load_p); |
| validate_unshare_change (insn->rtl (), &PATTERN (insn->rtl ()), pair_pat, |
| true); |
| |
| // The pair must gain the def of the base register from the add. |
| pair_change.new_defs = insert_access (attempt, |
| add_def, |
| pair_change.new_defs); |
| gcc_assert (pair_change.new_defs.is_valid ()); |
| |
| auto ignore = ignore_changing_insns (changes); |
| for (unsigned i = 0; i < ARRAY_SIZE (changes); i++) |
| gcc_assert (changes[i]->move_range.singleton () |
| && rtl_ssa::restrict_movement (*changes[i], ignore)); |
| |
| if (!rtl_ssa::recog (attempt, pair_change, ignore)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "i%d: recog failed on wb pair, bailing out\n", |
| insn->uid ()); |
| cancel_changes (0); |
| return; |
| } |
| |
| gcc_assert (crtl->ssa->verify_insn_changes (changes)); |
| |
| if (MAY_HAVE_DEBUG_INSNS) |
| fixup_debug_uses_trailing_add (attempt, insn, trailing_add, wb_effect); |
| |
| confirm_change_group (); |
| crtl->ssa->change_insns (changes); |
| } |
| |
| // Main function for the pass. Iterate over the insns in BB looking |
| // for load/store candidates. If running after RA, also try and promote |
| // non-writeback pairs to use writeback addressing. Then try to fuse |
| // candidates into pairs. |
| void pair_fusion::process_block (bb_info *bb) |
| { |
| const bool track_loads = track_loads_p (); |
| const bool track_stores = track_stores_p (); |
| |
| pair_fusion_bb_info bb_state (bb, this); |
| |
| for (auto insn : bb->nondebug_insns ()) |
| { |
| rtx_insn *rti = insn->rtl (); |
| |
| if (!rti || !INSN_P (rti)) |
| continue; |
| |
| rtx pat = PATTERN (rti); |
| bool load_p; |
| if (reload_completed |
| && should_handle_writeback (writeback_type::ALL) |
| && pair_mem_insn_p (rti, load_p)) |
| try_promote_writeback (insn, load_p); |
| |
| if (GET_CODE (pat) != SET) |
| continue; |
| |
| if (track_stores && MEM_P (XEXP (pat, 0))) |
| bb_state.track_access (insn, false, XEXP (pat, 0)); |
| else if (track_loads && MEM_P (XEXP (pat, 1))) |
| bb_state.track_access (insn, true, XEXP (pat, 1)); |
| } |
| |
| bb_state.transform (); |
| bb_state.cleanup_tombstones (); |
| } |