| /* Symbolic offsets and ranges. |
| Copyright (C) 2023-2025 Free Software Foundation, Inc. |
| Contributed by David Malcolm <dmalcolm@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "analyzer/common.h" |
| |
| #include "sbitmap.h" |
| #include "ordered-hash-map.h" |
| |
| #include "analyzer/analyzer-logging.h" |
| #include "analyzer/supergraph.h" |
| #include "analyzer/call-string.h" |
| #include "analyzer/program-point.h" |
| #include "analyzer/store.h" |
| #include "analyzer/region-model.h" |
| #include "analyzer/constraint-manager.h" |
| #include "analyzer/analyzer-selftests.h" |
| #include "analyzer/ranges.h" |
| |
| #if ENABLE_ANALYZER |
| |
| namespace ana { |
| |
| /* class symbolic_byte_offset. */ |
| |
| symbolic_byte_offset::symbolic_byte_offset (int i, region_model_manager &mgr) |
| : m_num_bytes_sval (mgr.get_or_create_int_cst (size_type_node, i)) |
| { |
| } |
| |
| symbolic_byte_offset::symbolic_byte_offset (const svalue *num_bytes_sval) |
| : m_num_bytes_sval (num_bytes_sval) |
| { |
| } |
| |
| symbolic_byte_offset::symbolic_byte_offset (region_offset offset, |
| region_model_manager &mgr) |
| { |
| if (offset.concrete_p ()) |
| { |
| bit_offset_t num_bits = offset.get_bit_offset (); |
| gcc_assert (num_bits % BITS_PER_UNIT == 0); |
| byte_offset_t num_bytes = num_bits / BITS_PER_UNIT; |
| m_num_bytes_sval = mgr.get_or_create_int_cst (size_type_node, num_bytes); |
| } |
| else |
| m_num_bytes_sval = offset.get_symbolic_byte_offset (); |
| } |
| |
| void |
| symbolic_byte_offset::dump_to_pp (pretty_printer *pp, bool simple) const |
| { |
| pp_string (pp, "byte "); |
| m_num_bytes_sval->dump_to_pp (pp, simple); |
| } |
| |
| void |
| symbolic_byte_offset::dump (bool simple) const |
| { |
| tree_dump_pretty_printer pp (stderr); |
| dump_to_pp (&pp, simple); |
| pp_newline (&pp); |
| } |
| |
| std::unique_ptr<json::value> |
| symbolic_byte_offset::to_json () const |
| { |
| return m_num_bytes_sval->to_json (); |
| } |
| |
| tree |
| symbolic_byte_offset::maybe_get_constant () const |
| { |
| return m_num_bytes_sval->maybe_get_constant (); |
| } |
| |
| /* class symbolic_byte_range. */ |
| |
| symbolic_byte_range::symbolic_byte_range (region_offset start, |
| const svalue *num_bytes, |
| region_model_manager &mgr) |
| : m_start (start, mgr), |
| m_size (num_bytes) |
| { |
| } |
| |
| void |
| symbolic_byte_range::dump_to_pp (pretty_printer *pp, |
| bool simple, |
| region_model_manager &mgr) const |
| { |
| if (empty_p ()) |
| { |
| pp_string (pp, "empty"); |
| return; |
| } |
| |
| if (tree size_cst = m_size.maybe_get_constant ()) |
| if (integer_onep (size_cst)) |
| { |
| pp_string (pp, "byte "); |
| m_start.get_svalue ()->dump_to_pp (pp, simple); |
| return; |
| } |
| |
| pp_string (pp, "bytes "); |
| m_start.get_svalue ()->dump_to_pp (pp, simple); |
| pp_string (pp, " to "); |
| get_last_byte_offset (mgr).get_svalue ()->dump_to_pp (pp, simple); |
| } |
| |
| void |
| symbolic_byte_range::dump (bool simple, region_model_manager &mgr) const |
| { |
| tree_dump_pretty_printer pp (stderr); |
| dump_to_pp (&pp, simple, mgr); |
| pp_newline (&pp); |
| } |
| |
| std::unique_ptr<json::value> |
| symbolic_byte_range::to_json () const |
| { |
| auto obj = std::make_unique<json::object> (); |
| obj->set ("start", m_start.to_json ()); |
| obj->set ("size", m_size.to_json ()); |
| return obj; |
| } |
| |
| bool |
| symbolic_byte_range::empty_p () const |
| { |
| tree cst = m_size.maybe_get_constant (); |
| if (!cst) |
| return false; |
| return zerop (cst); |
| } |
| |
| symbolic_byte_offset |
| symbolic_byte_range::get_last_byte_offset (region_model_manager &mgr) const |
| { |
| gcc_assert (!empty_p ()); |
| const symbolic_byte_offset one (1, mgr); |
| return symbolic_byte_offset |
| (mgr.get_or_create_binop (size_type_node, |
| MINUS_EXPR, |
| get_next_byte_offset (mgr).get_svalue (), |
| one.get_svalue ())); |
| } |
| |
| symbolic_byte_offset |
| symbolic_byte_range::get_next_byte_offset (region_model_manager &mgr) const |
| { |
| return symbolic_byte_offset (mgr.get_or_create_binop (size_type_node, |
| PLUS_EXPR, |
| m_start.get_svalue (), |
| m_size.get_svalue ())); |
| } |
| |
| /* Attempt to determine if THIS range intersects OTHER, |
| using constraints from MODEL. */ |
| |
| tristate |
| symbolic_byte_range::intersection (const symbolic_byte_range &other, |
| const region_model &model) const |
| { |
| /* If either is empty, then there is no intersection. */ |
| if (empty_p ()) |
| return tristate::TS_FALSE; |
| if (other.empty_p ()) |
| return tristate::TS_FALSE; |
| |
| /* For brevity, consider THIS to be "range A", and OTHER to be "range B". */ |
| |
| region_model_manager *mgr = model.get_manager (); |
| |
| const svalue *first_sval_a = m_start.get_svalue (); |
| const svalue *first_sval_b = other.m_start.get_svalue (); |
| const svalue *last_sval_a = get_last_byte_offset (*mgr).get_svalue (); |
| const svalue *last_sval_b = other.get_last_byte_offset (*mgr).get_svalue (); |
| |
| if (m_size.get_svalue ()->get_kind () == SK_UNKNOWN |
| || other.m_size.get_svalue ()->get_kind () == SK_UNKNOWN) |
| { |
| if (first_sval_a == first_sval_b) |
| return tristate::TS_TRUE; |
| else |
| return tristate::TS_UNKNOWN; |
| } |
| |
| if (first_sval_a == first_sval_b) |
| return tristate::TS_TRUE; |
| |
| /* Is B fully before A? */ |
| tristate b_fully_before_a = model.eval_condition (last_sval_b, |
| LT_EXPR, |
| first_sval_a); |
| /* Is B fully after A? */ |
| tristate b_fully_after_a = model.eval_condition (first_sval_b, |
| GT_EXPR, |
| last_sval_a); |
| |
| if (b_fully_before_a.is_true () |
| || b_fully_after_a.is_true ()) |
| return tristate::TS_FALSE; |
| |
| if (b_fully_before_a.is_unknown () |
| || b_fully_after_a.is_unknown ()) |
| return tristate::TS_UNKNOWN; |
| |
| return tristate::TS_TRUE; |
| } |
| |
| #if CHECKING_P |
| |
| namespace selftest { |
| |
| static void test_intersects (void) |
| { |
| region_model_manager mgr; |
| region_model m (&mgr); |
| |
| /* Test various concrete ranges. */ |
| symbolic_byte_offset zero (0, mgr); |
| symbolic_byte_offset one (1, mgr); |
| symbolic_byte_offset five (5, mgr); |
| symbolic_byte_offset nine (9, mgr); |
| symbolic_byte_offset ten (10, mgr); |
| |
| symbolic_byte_range r0_9 (zero, ten); |
| symbolic_byte_range r0 (zero, one); |
| symbolic_byte_range r5_9 (five, five); |
| symbolic_byte_range r9 (nine, one); |
| symbolic_byte_range r10 (ten, one); |
| symbolic_byte_range r10_19 (ten, ten); |
| |
| ASSERT_EQ (r0_9.get_start_byte_offset (), zero); |
| ASSERT_EQ (r0_9.get_size_in_bytes (), ten); |
| ASSERT_EQ (r0_9.get_next_byte_offset (mgr), ten); |
| ASSERT_EQ (r0_9.get_last_byte_offset (mgr), nine); |
| |
| symbolic_byte_range concrete_empty (zero, zero); |
| ASSERT_TRUE (concrete_empty.empty_p ()); |
| |
| ASSERT_EQ (r0_9.intersection (r0, m), tristate::TS_TRUE); |
| ASSERT_EQ (r0.intersection (r0_9, m), tristate::TS_TRUE); |
| ASSERT_EQ (r0_9.intersection (r9, m), tristate::TS_TRUE); |
| ASSERT_EQ (r9.intersection (r0_9, m), tristate::TS_TRUE); |
| ASSERT_EQ (r0_9.intersection (r10, m), tristate::TS_FALSE); |
| ASSERT_EQ (r10.intersection (r0_9, m), tristate::TS_FALSE); |
| ASSERT_EQ (concrete_empty.intersection (r0_9, m), tristate::TS_FALSE); |
| ASSERT_EQ (r0_9.intersection (concrete_empty, m), tristate::TS_FALSE); |
| |
| ASSERT_EQ (r5_9.intersection (r0, m), tristate::TS_FALSE); |
| ASSERT_EQ (r0.intersection (r5_9, m), tristate::TS_FALSE); |
| ASSERT_EQ (r9.intersection (r5_9, m), tristate::TS_TRUE); |
| ASSERT_EQ (r10.intersection (r5_9, m), tristate::TS_FALSE); |
| |
| /* Test various symbolic ranges. */ |
| tree x = build_global_decl ("x", size_type_node); |
| const svalue *x_init_sval = m.get_rvalue (x, nullptr); |
| tree y = build_global_decl ("y", size_type_node); |
| const svalue *y_init_sval = m.get_rvalue (y, nullptr); |
| |
| symbolic_byte_range r0_x_minus_1 (zero, x_init_sval); |
| symbolic_byte_range rx (x_init_sval, one); |
| symbolic_byte_range r0_y_minus_1 (zero, y_init_sval); |
| symbolic_byte_range ry (y_init_sval, one); |
| symbolic_byte_range rx_x_plus_y_minus_1 (x_init_sval, y_init_sval); |
| |
| symbolic_byte_range symbolic_empty (x_init_sval, zero); |
| ASSERT_TRUE (symbolic_empty.empty_p ()); |
| |
| ASSERT_EQ (rx_x_plus_y_minus_1.get_start_byte_offset (), x_init_sval); |
| ASSERT_EQ (rx_x_plus_y_minus_1.get_size_in_bytes (), y_init_sval); |
| ASSERT_EQ |
| (rx_x_plus_y_minus_1.get_next_byte_offset (mgr).get_svalue ()->get_kind (), |
| SK_BINOP); |
| ASSERT_EQ |
| (rx_x_plus_y_minus_1.get_last_byte_offset (mgr).get_svalue ()->get_kind (), |
| SK_BINOP); |
| |
| ASSERT_EQ (rx.intersection (ry, m), tristate::TS_UNKNOWN); |
| ASSERT_EQ (rx.intersection (concrete_empty, m), tristate::TS_FALSE); |
| ASSERT_EQ (concrete_empty.intersection (rx, m), tristate::TS_FALSE); |
| ASSERT_EQ (rx.intersection (symbolic_empty, m), tristate::TS_FALSE); |
| ASSERT_EQ (symbolic_empty.intersection (rx, m), tristate::TS_FALSE); |
| ASSERT_EQ (r0_x_minus_1.intersection (r0, m), tristate::TS_TRUE); |
| #if 0 |
| ASSERT_EQ (r0_x_minus_1.intersection (rx, m), tristate::TS_FALSE); |
| /* Fails (with UNKNOWN): b_fully_after_a is UNKNOWN, when it could |
| be TRUE: last of A is (x - 1), but it's not necessarily true that |
| X > (x - 1), for the case where x is (unsigned)0. */ |
| #endif |
| ASSERT_EQ (r0_x_minus_1.intersection (r0_y_minus_1, m), tristate::TS_TRUE); |
| // TODO: etc |
| } |
| |
| /* Run all of the selftests within this file. */ |
| |
| void |
| analyzer_ranges_cc_tests () |
| { |
| test_intersects (); |
| } |
| |
| } // namespace selftest |
| |
| #endif /* CHECKING_P */ |
| |
| } // namespace ana |
| |
| #endif /* #if ENABLE_ANALYZER */ |