|  | /* Code translation -- generate GCC trees from gfc_code. | 
|  | Copyright (C) 2002-2025 Free Software Foundation, Inc. | 
|  | Contributed by Paul Brook | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 3, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with GCC; see the file COPYING3.  If not see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "config.h" | 
|  | #include "system.h" | 
|  | #include "coretypes.h" | 
|  | #include "options.h" | 
|  | #include "tree.h" | 
|  | #include "gfortran.h" | 
|  | #include "gimple-expr.h"	/* For create_tmp_var_raw.  */ | 
|  | #include "trans.h" | 
|  | #include "stringpool.h" | 
|  | #include "fold-const.h" | 
|  | #include "tree-iterator.h" | 
|  | #include "trans-stmt.h" | 
|  | #include "trans-array.h" | 
|  | #include "trans-types.h" | 
|  | #include "trans-const.h" | 
|  |  | 
|  | /* Naming convention for backend interface code: | 
|  |  | 
|  | gfc_trans_*	translate gfc_code into STMT trees. | 
|  |  | 
|  | gfc_conv_*	expression conversion | 
|  |  | 
|  | gfc_get_*	get a backend tree representation of a decl or type  */ | 
|  |  | 
|  | const char gfc_msg_fault[] = N_("Array reference out of bounds"); | 
|  |  | 
|  |  | 
|  | /* Advance along TREE_CHAIN n times.  */ | 
|  |  | 
|  | tree | 
|  | gfc_advance_chain (tree t, int n) | 
|  | { | 
|  | for (; n > 0; n--) | 
|  | { | 
|  | gcc_assert (t != NULL_TREE); | 
|  | t = DECL_CHAIN (t); | 
|  | } | 
|  | return t; | 
|  | } | 
|  |  | 
|  | void | 
|  | gfc_locus_from_location (locus *where, location_t loc) | 
|  | { | 
|  | where->nextc = (gfc_char_t *) -1; | 
|  | where->u.location = loc; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int num_var; | 
|  |  | 
|  | #define MAX_PREFIX_LEN 20 | 
|  |  | 
|  | static tree | 
|  | create_var_debug_raw (tree type, const char *prefix) | 
|  | { | 
|  | /* Space for prefix + "_" + 10-digit-number + \0.  */ | 
|  | char name_buf[MAX_PREFIX_LEN + 1 + 10 + 1]; | 
|  | tree t; | 
|  | int i; | 
|  |  | 
|  | if (prefix == NULL) | 
|  | prefix = "gfc"; | 
|  | else | 
|  | gcc_assert (strlen (prefix) <= MAX_PREFIX_LEN); | 
|  |  | 
|  | for (i = 0; prefix[i] != 0; i++) | 
|  | name_buf[i] = gfc_wide_toupper (prefix[i]); | 
|  |  | 
|  | snprintf (name_buf + i, sizeof (name_buf) - i, "_%d", num_var++); | 
|  |  | 
|  | t = build_decl (input_location, VAR_DECL, get_identifier (name_buf), type); | 
|  |  | 
|  | /* Not setting this causes some regressions.  */ | 
|  | DECL_ARTIFICIAL (t) = 1; | 
|  |  | 
|  | /* We want debug info for it.  */ | 
|  | DECL_IGNORED_P (t) = 0; | 
|  | /* It should not be nameless.  */ | 
|  | DECL_NAMELESS (t) = 0; | 
|  |  | 
|  | /* Make the variable writable.  */ | 
|  | TREE_READONLY (t) = 0; | 
|  |  | 
|  | DECL_EXTERNAL (t) = 0; | 
|  | TREE_STATIC (t) = 0; | 
|  | TREE_USED (t) = 1; | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  | /* Creates a variable declaration with a given TYPE.  */ | 
|  |  | 
|  | tree | 
|  | gfc_create_var_np (tree type, const char *prefix) | 
|  | { | 
|  | tree t; | 
|  |  | 
|  | if (flag_debug_aux_vars) | 
|  | return create_var_debug_raw (type, prefix); | 
|  |  | 
|  | t = create_tmp_var_raw (type, prefix); | 
|  |  | 
|  | /* No warnings for anonymous variables.  */ | 
|  | if (prefix == NULL) | 
|  | suppress_warning (t); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Like above, but also adds it to the current scope.  */ | 
|  |  | 
|  | tree | 
|  | gfc_create_var (tree type, const char *prefix) | 
|  | { | 
|  | tree tmp; | 
|  |  | 
|  | tmp = gfc_create_var_np (type, prefix); | 
|  |  | 
|  | pushdecl (tmp); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If the expression is not constant, evaluate it now.  We assign the | 
|  | result of the expression to an artificially created variable VAR, and | 
|  | return a pointer to the VAR_DECL node for this variable.  */ | 
|  |  | 
|  | tree | 
|  | gfc_evaluate_now_loc (location_t loc, tree expr, stmtblock_t * pblock) | 
|  | { | 
|  | tree var; | 
|  |  | 
|  | if (CONSTANT_CLASS_P (expr)) | 
|  | return expr; | 
|  |  | 
|  | var = gfc_create_var (TREE_TYPE (expr), NULL); | 
|  | gfc_add_modify_loc (loc, pblock, var, expr); | 
|  |  | 
|  | return var; | 
|  | } | 
|  |  | 
|  |  | 
|  | tree | 
|  | gfc_evaluate_now (tree expr, stmtblock_t * pblock) | 
|  | { | 
|  | return gfc_evaluate_now_loc (input_location, expr, pblock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Returns a fresh pointer variable pointing to the same data as EXPR, adding | 
|  | in BLOCK the initialization code that makes it point to EXPR.  */ | 
|  |  | 
|  | tree | 
|  | gfc_evaluate_data_ref_now (tree expr, stmtblock_t *block) | 
|  | { | 
|  | tree t = expr; | 
|  |  | 
|  | STRIP_NOPS (t); | 
|  |  | 
|  | /* If EXPR can be used as lhs of an assignment, we have to take the address | 
|  | of EXPR.  Otherwise, reassigning the pointer would retarget it to some | 
|  | other data without EXPR being retargetted as well.  */ | 
|  | bool lvalue_p = DECL_P (t) || REFERENCE_CLASS_P (t) || INDIRECT_REF_P (t); | 
|  |  | 
|  | tree value; | 
|  | if (lvalue_p) | 
|  | { | 
|  | value = gfc_build_addr_expr (NULL_TREE, expr); | 
|  | value = gfc_evaluate_now (value, block); | 
|  | return build_fold_indirect_ref_loc (input_location, value); | 
|  | } | 
|  | else | 
|  | return gfc_evaluate_now (expr, block); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Like gfc_evaluate_now, but add the created variable to the | 
|  | function scope.  */ | 
|  |  | 
|  | tree | 
|  | gfc_evaluate_now_function_scope (tree expr, stmtblock_t * pblock) | 
|  | { | 
|  | tree var; | 
|  | var = gfc_create_var_np (TREE_TYPE (expr), NULL); | 
|  | gfc_add_decl_to_function (var); | 
|  | gfc_add_modify (pblock, var, expr); | 
|  |  | 
|  | return var; | 
|  | } | 
|  |  | 
|  | /* Build a MODIFY_EXPR node and add it to a given statement block PBLOCK. | 
|  | A MODIFY_EXPR is an assignment: | 
|  | LHS <- RHS.  */ | 
|  |  | 
|  | void | 
|  | gfc_add_modify_loc (location_t loc, stmtblock_t * pblock, tree lhs, tree rhs) | 
|  | { | 
|  | tree tmp; | 
|  |  | 
|  | tree t1, t2; | 
|  | t1 = TREE_TYPE (rhs); | 
|  | t2 = TREE_TYPE (lhs); | 
|  | /* Make sure that the types of the rhs and the lhs are compatible | 
|  | for scalar assignments.  We should probably have something | 
|  | similar for aggregates, but right now removing that check just | 
|  | breaks everything.  */ | 
|  | gcc_checking_assert (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2) | 
|  | || AGGREGATE_TYPE_P (TREE_TYPE (lhs))); | 
|  |  | 
|  | tmp = fold_build2_loc (loc, MODIFY_EXPR, void_type_node, lhs, | 
|  | rhs); | 
|  | gfc_add_expr_to_block (pblock, tmp); | 
|  | } | 
|  |  | 
|  |  | 
|  | void | 
|  | gfc_add_modify (stmtblock_t * pblock, tree lhs, tree rhs) | 
|  | { | 
|  | gfc_add_modify_loc (input_location, pblock, lhs, rhs); | 
|  | } | 
|  |  | 
|  | tree | 
|  | gfc_trans_force_lval (stmtblock_t *pblock, tree e) | 
|  | { | 
|  | if (VAR_P (e)) | 
|  | return e; | 
|  |  | 
|  | tree v = gfc_create_var (TREE_TYPE (e), NULL); | 
|  | gfc_add_modify (pblock, v, e); | 
|  | return v; | 
|  | } | 
|  |  | 
|  | /* Create a new scope/binding level and initialize a block.  Care must be | 
|  | taken when translating expressions as any temporaries will be placed in | 
|  | the innermost scope.  */ | 
|  |  | 
|  | void | 
|  | gfc_start_block (stmtblock_t * block) | 
|  | { | 
|  | /* Start a new binding level.  */ | 
|  | pushlevel (); | 
|  | block->has_scope = 1; | 
|  |  | 
|  | /* The block is empty.  */ | 
|  | block->head = NULL_TREE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Initialize a block without creating a new scope.  */ | 
|  |  | 
|  | void | 
|  | gfc_init_block (stmtblock_t * block) | 
|  | { | 
|  | block->head = NULL_TREE; | 
|  | block->has_scope = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Sometimes we create a scope but it turns out that we don't actually | 
|  | need it.  This function merges the scope of BLOCK with its parent. | 
|  | Only variable decls will be merged, you still need to add the code.  */ | 
|  |  | 
|  | void | 
|  | gfc_merge_block_scope (stmtblock_t * block) | 
|  | { | 
|  | tree decl; | 
|  | tree next; | 
|  |  | 
|  | gcc_assert (block->has_scope); | 
|  | block->has_scope = 0; | 
|  |  | 
|  | /* Remember the decls in this scope.  */ | 
|  | decl = getdecls (); | 
|  | poplevel (0, 0); | 
|  |  | 
|  | /* Add them to the parent scope.  */ | 
|  | while (decl != NULL_TREE) | 
|  | { | 
|  | next = DECL_CHAIN (decl); | 
|  | DECL_CHAIN (decl) = NULL_TREE; | 
|  |  | 
|  | pushdecl (decl); | 
|  | decl = next; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Finish a scope containing a block of statements.  */ | 
|  |  | 
|  | tree | 
|  | gfc_finish_block (stmtblock_t * stmtblock) | 
|  | { | 
|  | tree decl; | 
|  | tree expr; | 
|  | tree block; | 
|  |  | 
|  | expr = stmtblock->head; | 
|  | if (!expr) | 
|  | expr = build_empty_stmt (input_location); | 
|  |  | 
|  | stmtblock->head = NULL_TREE; | 
|  |  | 
|  | if (stmtblock->has_scope) | 
|  | { | 
|  | decl = getdecls (); | 
|  |  | 
|  | if (decl) | 
|  | { | 
|  | block = poplevel (1, 0); | 
|  | expr = build3_v (BIND_EXPR, decl, expr, block); | 
|  | } | 
|  | else | 
|  | poplevel (0, 0); | 
|  | } | 
|  |  | 
|  | return expr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Build an ADDR_EXPR and cast the result to TYPE.  If TYPE is NULL, the | 
|  | natural type is used.  */ | 
|  |  | 
|  | tree | 
|  | gfc_build_addr_expr (tree type, tree t) | 
|  | { | 
|  | tree base_type = TREE_TYPE (t); | 
|  | tree natural_type; | 
|  |  | 
|  | if (type && POINTER_TYPE_P (type) | 
|  | && TREE_CODE (base_type) == ARRAY_TYPE | 
|  | && TYPE_MAIN_VARIANT (TREE_TYPE (type)) | 
|  | == TYPE_MAIN_VARIANT (TREE_TYPE (base_type))) | 
|  | { | 
|  | tree min_val = size_zero_node; | 
|  | tree type_domain = TYPE_DOMAIN (base_type); | 
|  | if (type_domain && TYPE_MIN_VALUE (type_domain)) | 
|  | min_val = TYPE_MIN_VALUE (type_domain); | 
|  | t = fold (build4_loc (input_location, ARRAY_REF, TREE_TYPE (type), | 
|  | t, min_val, NULL_TREE, NULL_TREE)); | 
|  | natural_type = type; | 
|  | } | 
|  | else | 
|  | natural_type = build_pointer_type (base_type); | 
|  |  | 
|  | if (INDIRECT_REF_P (t)) | 
|  | { | 
|  | if (!type) | 
|  | type = natural_type; | 
|  | t = TREE_OPERAND (t, 0); | 
|  | natural_type = TREE_TYPE (t); | 
|  | } | 
|  | else | 
|  | { | 
|  | tree base = get_base_address (t); | 
|  | if (base && DECL_P (base)) | 
|  | TREE_ADDRESSABLE (base) = 1; | 
|  | t = fold_build1_loc (input_location, ADDR_EXPR, natural_type, t); | 
|  | } | 
|  |  | 
|  | if (type && natural_type != type) | 
|  | t = convert (type, t); | 
|  |  | 
|  | return t; | 
|  | } | 
|  |  | 
|  |  | 
|  | static tree | 
|  | get_array_span (tree type, tree decl) | 
|  | { | 
|  | tree span; | 
|  |  | 
|  | /* Component references are guaranteed to have a reliable value for | 
|  | 'span'. Likewise indirect references since they emerge from the | 
|  | conversion of a CFI descriptor or the hidden dummy descriptor.  */ | 
|  | if (TREE_CODE (decl) == COMPONENT_REF | 
|  | && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))) | 
|  | return gfc_conv_descriptor_span_get (decl); | 
|  | else if (INDIRECT_REF_P (decl) | 
|  | && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))) | 
|  | return gfc_conv_descriptor_span_get (decl); | 
|  |  | 
|  | /* Return the span for deferred character length array references.  */ | 
|  | if (type | 
|  | && (TREE_CODE (type) == ARRAY_TYPE || TREE_CODE (type) == INTEGER_TYPE) | 
|  | && TYPE_STRING_FLAG (type)) | 
|  | { | 
|  | if (TREE_CODE (decl) == PARM_DECL) | 
|  | decl = build_fold_indirect_ref_loc (input_location, decl); | 
|  | if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))) | 
|  | span = gfc_conv_descriptor_span_get (decl); | 
|  | else | 
|  | span = gfc_get_character_len_in_bytes (type); | 
|  | span = (span && !integer_zerop (span)) | 
|  | ? (fold_convert (gfc_array_index_type, span)) : (NULL_TREE); | 
|  | } | 
|  | /* Likewise for class array or pointer array references.  */ | 
|  | else if (TREE_CODE (decl) == FIELD_DECL | 
|  | || VAR_OR_FUNCTION_DECL_P (decl) | 
|  | || TREE_CODE (decl) == PARM_DECL) | 
|  | { | 
|  | if (GFC_DECL_CLASS (decl)) | 
|  | { | 
|  | /* When a temporary is in place for the class array, then the | 
|  | original class' declaration is stored in the saved | 
|  | descriptor.  */ | 
|  | if (DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl)) | 
|  | decl = GFC_DECL_SAVED_DESCRIPTOR (decl); | 
|  | else | 
|  | { | 
|  | /* Allow for dummy arguments and other good things.  */ | 
|  | if (POINTER_TYPE_P (TREE_TYPE (decl))) | 
|  | decl = build_fold_indirect_ref_loc (input_location, decl); | 
|  |  | 
|  | /* Check if '_data' is an array descriptor.  If it is not, | 
|  | the array must be one of the components of the class | 
|  | object, so return a null span.  */ | 
|  | if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE ( | 
|  | gfc_class_data_get (decl)))) | 
|  | return NULL_TREE; | 
|  | } | 
|  | span = gfc_class_vtab_size_get (decl); | 
|  | /* For unlimited polymorphic entities then _len component needs | 
|  | to be multiplied with the size.  */ | 
|  | span = gfc_resize_class_size_with_len (NULL, decl, span); | 
|  | } | 
|  | else if (GFC_DECL_PTR_ARRAY_P (decl)) | 
|  | { | 
|  | if (TREE_CODE (decl) == PARM_DECL) | 
|  | decl = build_fold_indirect_ref_loc (input_location, decl); | 
|  | span = gfc_conv_descriptor_span_get (decl); | 
|  | } | 
|  | else | 
|  | span = NULL_TREE; | 
|  | } | 
|  | else | 
|  | span = NULL_TREE; | 
|  |  | 
|  | return span; | 
|  | } | 
|  |  | 
|  |  | 
|  | tree | 
|  | gfc_build_spanned_array_ref (tree base, tree offset, tree span) | 
|  | { | 
|  | tree type; | 
|  | tree tmp; | 
|  | type = TREE_TYPE (TREE_TYPE (base)); | 
|  | offset = fold_build2_loc (input_location, MULT_EXPR, | 
|  | gfc_array_index_type, | 
|  | offset, span); | 
|  | tmp = gfc_build_addr_expr (pvoid_type_node, base); | 
|  | tmp = fold_build_pointer_plus_loc (input_location, tmp, offset); | 
|  | tmp = fold_convert (build_pointer_type (type), tmp); | 
|  | if ((TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != ARRAY_TYPE) | 
|  | || !TYPE_STRING_FLAG (type)) | 
|  | tmp = build_fold_indirect_ref_loc (input_location, tmp); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Build an ARRAY_REF with its natural type. | 
|  | NON_NEGATIVE_OFFSET indicates if it’s true that OFFSET can’t be negative, | 
|  | and thus that an ARRAY_REF can safely be generated.  If it’s false, we | 
|  | have to play it safe and use pointer arithmetic.  */ | 
|  |  | 
|  | tree | 
|  | gfc_build_array_ref (tree base, tree offset, tree decl, | 
|  | bool non_negative_offset, tree vptr) | 
|  | { | 
|  | tree type = TREE_TYPE (base); | 
|  | tree span = NULL_TREE; | 
|  |  | 
|  | if (GFC_ARRAY_TYPE_P (type) && GFC_TYPE_ARRAY_RANK (type) == 0) | 
|  | { | 
|  | gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0); | 
|  |  | 
|  | return fold_convert (TYPE_MAIN_VARIANT (type), base); | 
|  | } | 
|  |  | 
|  | /* Scalar coarray, there is nothing to do.  */ | 
|  | if (TREE_CODE (type) != ARRAY_TYPE) | 
|  | { | 
|  | gcc_assert (decl == NULL_TREE); | 
|  | gcc_assert (integer_zerop (offset)); | 
|  | return base; | 
|  | } | 
|  |  | 
|  | type = TREE_TYPE (type); | 
|  |  | 
|  | if (DECL_P (base)) | 
|  | TREE_ADDRESSABLE (base) = 1; | 
|  |  | 
|  | /* Strip NON_LVALUE_EXPR nodes.  */ | 
|  | STRIP_TYPE_NOPS (offset); | 
|  |  | 
|  | /* If decl or vptr are non-null, pointer arithmetic for the array reference | 
|  | is likely. Generate the 'span' for the array reference.  */ | 
|  | if (vptr) | 
|  | { | 
|  | span = gfc_vptr_size_get (vptr); | 
|  |  | 
|  | /* Check if this is an unlimited polymorphic object carrying a character | 
|  | payload. In this case, the 'len' field is non-zero.  */ | 
|  | if (decl && GFC_CLASS_TYPE_P (TREE_TYPE (decl))) | 
|  | span = gfc_resize_class_size_with_len (NULL, decl, span); | 
|  | } | 
|  | else if (decl) | 
|  | span = get_array_span (type, decl); | 
|  |  | 
|  | /* If a non-null span has been generated reference the element with | 
|  | pointer arithmetic.  */ | 
|  | if (span != NULL_TREE) | 
|  | return gfc_build_spanned_array_ref (base, offset, span); | 
|  | /* Else use a straightforward array reference if possible.  */ | 
|  | else if (non_negative_offset) | 
|  | return build4_loc (input_location, ARRAY_REF, type, base, offset, | 
|  | NULL_TREE, NULL_TREE); | 
|  | /* Otherwise use pointer arithmetic.  */ | 
|  | else | 
|  | { | 
|  | gcc_assert (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE); | 
|  | tree min = NULL_TREE; | 
|  | if (TYPE_DOMAIN (TREE_TYPE (base)) | 
|  | && !integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (base))))) | 
|  | min = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (base))); | 
|  |  | 
|  | tree zero_based_index | 
|  | = min ? fold_build2_loc (input_location, MINUS_EXPR, | 
|  | gfc_array_index_type, | 
|  | fold_convert (gfc_array_index_type, offset), | 
|  | fold_convert (gfc_array_index_type, min)) | 
|  | : fold_convert (gfc_array_index_type, offset); | 
|  |  | 
|  | tree elt_size = fold_convert (gfc_array_index_type, | 
|  | TYPE_SIZE_UNIT (type)); | 
|  |  | 
|  | tree offset_bytes = fold_build2_loc (input_location, MULT_EXPR, | 
|  | gfc_array_index_type, | 
|  | zero_based_index, elt_size); | 
|  |  | 
|  | tree base_addr = gfc_build_addr_expr (pvoid_type_node, base); | 
|  |  | 
|  | tree ptr = fold_build_pointer_plus_loc (input_location, base_addr, | 
|  | offset_bytes); | 
|  | return build1_loc (input_location, INDIRECT_REF, type, | 
|  | fold_convert (build_pointer_type (type), ptr)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate a call to print a runtime error possibly including multiple | 
|  | arguments and a locus.  */ | 
|  |  | 
|  | static tree | 
|  | trans_runtime_error_vararg (tree errorfunc, locus* where, const char* msgid, | 
|  | va_list ap) | 
|  | { | 
|  | stmtblock_t block; | 
|  | tree tmp; | 
|  | tree arg, arg2; | 
|  | tree *argarray; | 
|  | tree fntype; | 
|  | char *message; | 
|  | const char *p; | 
|  | int nargs, i; | 
|  | location_t loc; | 
|  |  | 
|  | /* Compute the number of extra arguments from the format string.  */ | 
|  | for (p = msgid, nargs = 0; *p; p++) | 
|  | if (*p == '%') | 
|  | { | 
|  | p++; | 
|  | if (*p != '%') | 
|  | nargs++; | 
|  | } | 
|  |  | 
|  | /* The code to generate the error.  */ | 
|  | gfc_start_block (&block); | 
|  |  | 
|  | if (where) | 
|  | { | 
|  | location_t loc = gfc_get_location (where); | 
|  | message = xasprintf ("At line %d of file %s",  LOCATION_LINE (loc), | 
|  | LOCATION_FILE (loc)); | 
|  | } | 
|  | else | 
|  | message = xasprintf ("In file '%s', around line %d", | 
|  | gfc_source_file, LOCATION_LINE (input_location)); | 
|  |  | 
|  | arg = gfc_build_addr_expr (pchar_type_node, | 
|  | gfc_build_localized_cstring_const (message)); | 
|  | free (message); | 
|  |  | 
|  | message = xasprintf ("%s", _(msgid)); | 
|  | arg2 = gfc_build_addr_expr (pchar_type_node, | 
|  | gfc_build_localized_cstring_const (message)); | 
|  | free (message); | 
|  |  | 
|  | /* Build the argument array.  */ | 
|  | argarray = XALLOCAVEC (tree, nargs + 2); | 
|  | argarray[0] = arg; | 
|  | argarray[1] = arg2; | 
|  | for (i = 0; i < nargs; i++) | 
|  | argarray[2 + i] = va_arg (ap, tree); | 
|  |  | 
|  | /* Build the function call to runtime_(warning,error)_at; because of the | 
|  | variable number of arguments, we can't use build_call_expr_loc dinput_location, | 
|  | irectly.  */ | 
|  | fntype = TREE_TYPE (errorfunc); | 
|  |  | 
|  | loc = where ? gfc_get_location (where) : input_location; | 
|  | tmp = fold_build_call_array_loc (loc, TREE_TYPE (fntype), | 
|  | fold_build1_loc (loc, ADDR_EXPR, | 
|  | build_pointer_type (fntype), | 
|  | errorfunc), | 
|  | nargs + 2, argarray); | 
|  | gfc_add_expr_to_block (&block, tmp); | 
|  |  | 
|  | return gfc_finish_block (&block); | 
|  | } | 
|  |  | 
|  |  | 
|  | tree | 
|  | gfc_trans_runtime_error (bool error, locus* where, const char* msgid, ...) | 
|  | { | 
|  | va_list ap; | 
|  | tree result; | 
|  |  | 
|  | va_start (ap, msgid); | 
|  | result = trans_runtime_error_vararg (error | 
|  | ? gfor_fndecl_runtime_error_at | 
|  | : gfor_fndecl_runtime_warning_at, | 
|  | where, msgid, ap); | 
|  | va_end (ap); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate a runtime error if COND is true.  */ | 
|  |  | 
|  | void | 
|  | gfc_trans_runtime_check (bool error, bool once, tree cond, stmtblock_t * pblock, | 
|  | locus * where, const char * msgid, ...) | 
|  | { | 
|  | va_list ap; | 
|  | stmtblock_t block; | 
|  | tree body; | 
|  | tree tmp; | 
|  | tree tmpvar = NULL; | 
|  |  | 
|  | if (integer_zerop (cond)) | 
|  | return; | 
|  |  | 
|  | if (once) | 
|  | { | 
|  | tmpvar = gfc_create_var (boolean_type_node, "print_warning"); | 
|  | TREE_STATIC (tmpvar) = 1; | 
|  | DECL_INITIAL (tmpvar) = boolean_true_node; | 
|  | gfc_add_expr_to_block (pblock, tmpvar); | 
|  | } | 
|  |  | 
|  | gfc_start_block (&block); | 
|  |  | 
|  | /* For error, runtime_error_at already implies PRED_NORETURN.  */ | 
|  | if (!error && once) | 
|  | gfc_add_expr_to_block (&block, build_predict_expr (PRED_FORTRAN_WARN_ONCE, | 
|  | NOT_TAKEN)); | 
|  |  | 
|  | /* The code to generate the error.  */ | 
|  | va_start (ap, msgid); | 
|  | gfc_add_expr_to_block (&block, | 
|  | trans_runtime_error_vararg | 
|  | (error ? gfor_fndecl_runtime_error_at | 
|  | : gfor_fndecl_runtime_warning_at, | 
|  | where, msgid, ap)); | 
|  | va_end (ap); | 
|  |  | 
|  | if (once) | 
|  | gfc_add_modify (&block, tmpvar, boolean_false_node); | 
|  |  | 
|  | body = gfc_finish_block (&block); | 
|  |  | 
|  | if (integer_onep (cond)) | 
|  | { | 
|  | gfc_add_expr_to_block (pblock, body); | 
|  | } | 
|  | else | 
|  | { | 
|  | location_t loc = where ? gfc_get_location (where) : input_location; | 
|  | if (once) | 
|  | cond = fold_build2_loc (loc, TRUTH_AND_EXPR, boolean_type_node, tmpvar, | 
|  | fold_convert (boolean_type_node, cond)); | 
|  |  | 
|  | tmp = fold_build3_loc (loc, COND_EXPR, void_type_node, cond, body, | 
|  | build_empty_stmt (loc)); | 
|  | gfc_add_expr_to_block (pblock, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static tree | 
|  | trans_os_error_at (locus* where, const char* msgid, ...) | 
|  | { | 
|  | va_list ap; | 
|  | tree result; | 
|  |  | 
|  | va_start (ap, msgid); | 
|  | result = trans_runtime_error_vararg (gfor_fndecl_os_error_at, | 
|  | where, msgid, ap); | 
|  | va_end (ap); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Call malloc to allocate size bytes of memory, with special conditions: | 
|  | + if size == 0, return a malloced area of size 1, | 
|  | + if malloc returns NULL, issue a runtime error.  */ | 
|  | tree | 
|  | gfc_call_malloc (stmtblock_t * block, tree type, tree size) | 
|  | { | 
|  | tree tmp, malloc_result, null_result, res, malloc_tree; | 
|  | stmtblock_t block2; | 
|  |  | 
|  | /* Create a variable to hold the result.  */ | 
|  | res = gfc_create_var (prvoid_type_node, NULL); | 
|  |  | 
|  | /* Call malloc.  */ | 
|  | gfc_start_block (&block2); | 
|  |  | 
|  | if (size == NULL_TREE) | 
|  | size = build_int_cst (size_type_node, 1); | 
|  |  | 
|  | size = fold_convert (size_type_node, size); | 
|  | size = fold_build2_loc (input_location, MAX_EXPR, size_type_node, size, | 
|  | build_int_cst (size_type_node, 1)); | 
|  |  | 
|  | malloc_tree = builtin_decl_explicit (BUILT_IN_MALLOC); | 
|  | gfc_add_modify (&block2, res, | 
|  | fold_convert (prvoid_type_node, | 
|  | build_call_expr_loc (input_location, | 
|  | malloc_tree, 1, size))); | 
|  |  | 
|  | /* Optionally check whether malloc was successful.  */ | 
|  | if (gfc_option.rtcheck & GFC_RTCHECK_MEM) | 
|  | { | 
|  | null_result = fold_build2_loc (input_location, EQ_EXPR, | 
|  | logical_type_node, res, | 
|  | build_int_cst (pvoid_type_node, 0)); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | null_result, | 
|  | trans_os_error_at (NULL, | 
|  | "Error allocating %lu bytes", | 
|  | fold_convert | 
|  | (long_unsigned_type_node, | 
|  | size)), | 
|  | build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&block2, tmp); | 
|  | } | 
|  |  | 
|  | malloc_result = gfc_finish_block (&block2); | 
|  | gfc_add_expr_to_block (block, malloc_result); | 
|  |  | 
|  | if (type != NULL) | 
|  | res = fold_convert (type, res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Allocate memory, using an optional status argument. | 
|  |  | 
|  | This function follows the following pseudo-code: | 
|  |  | 
|  | void * | 
|  | allocate (size_t size, integer_type stat) | 
|  | { | 
|  | void *newmem; | 
|  |  | 
|  | if (stat requested) | 
|  | stat = 0; | 
|  |  | 
|  | // if cond == NULL_NULL: | 
|  | newmem = malloc (MAX (size, 1)); | 
|  | // otherwise: | 
|  | newmem = <cond> ? <alt_alloc> : malloc (MAX (size, 1)) | 
|  | if (newmem == NULL) | 
|  | { | 
|  | if (stat) | 
|  | *stat = LIBERROR_NO_MEMORY; | 
|  | else | 
|  | runtime_error ("Allocation would exceed memory limit"); | 
|  | } | 
|  | return newmem; | 
|  | }  */ | 
|  | void | 
|  | gfc_allocate_using_malloc (stmtblock_t * block, tree pointer, | 
|  | tree size, tree status, tree cond, tree alt_alloc, | 
|  | tree extra_success_expr) | 
|  | { | 
|  | tree tmp, error_cond; | 
|  | stmtblock_t on_error; | 
|  | tree status_type = status ? TREE_TYPE (status) : NULL_TREE; | 
|  | bool cond_is_true = cond == boolean_true_node; | 
|  |  | 
|  | /* If successful and stat= is given, set status to 0.  */ | 
|  | if (status != NULL_TREE) | 
|  | gfc_add_expr_to_block (block, | 
|  | fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | status, build_int_cst (status_type, 0))); | 
|  |  | 
|  | /* The allocation itself.  */ | 
|  | size = fold_convert (size_type_node, size); | 
|  | tmp = fold_build2_loc (input_location, MAX_EXPR, size_type_node, | 
|  | size, build_int_cst (size_type_node, 1)); | 
|  |  | 
|  | if (!cond_is_true) | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_MALLOC), 1, tmp); | 
|  | else | 
|  | tmp = alt_alloc; | 
|  |  | 
|  | if (!cond_is_true && cond) | 
|  | tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond, | 
|  | alt_alloc, tmp); | 
|  |  | 
|  | gfc_add_modify (block, pointer, fold_convert (TREE_TYPE (pointer), tmp)); | 
|  |  | 
|  | /* What to do in case of error.  */ | 
|  | gfc_start_block (&on_error); | 
|  | if (status != NULL_TREE) | 
|  | { | 
|  | tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, status, | 
|  | build_int_cst (status_type, LIBERROR_NO_MEMORY)); | 
|  | gfc_add_expr_to_block (&on_error, tmp); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Here, os_error_at already implies PRED_NORETURN.  */ | 
|  | tree lusize = fold_convert (long_unsigned_type_node, size); | 
|  | tmp = trans_os_error_at (NULL, "Error allocating %lu bytes", lusize); | 
|  | gfc_add_expr_to_block (&on_error, tmp); | 
|  | } | 
|  |  | 
|  | error_cond = fold_build2_loc (input_location, EQ_EXPR, | 
|  | logical_type_node, pointer, | 
|  | build_int_cst (prvoid_type_node, 0)); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | gfc_unlikely (error_cond, PRED_FORTRAN_FAIL_ALLOC), | 
|  | gfc_finish_block (&on_error), | 
|  | extra_success_expr | 
|  | ? extra_success_expr | 
|  | : build_empty_stmt (input_location)); | 
|  |  | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Allocate memory, using an optional status argument. | 
|  |  | 
|  | This function follows the following pseudo-code: | 
|  |  | 
|  | void * | 
|  | allocate (size_t size, void** token, int *stat, char* errmsg, int errlen) | 
|  | { | 
|  | void *newmem; | 
|  |  | 
|  | newmem = _caf_register (size, regtype, token, &stat, errmsg, errlen); | 
|  | return newmem; | 
|  | }  */ | 
|  | void | 
|  | gfc_allocate_using_caf_lib (stmtblock_t * block, tree pointer, tree size, | 
|  | tree token, tree status, tree errmsg, tree errlen, | 
|  | gfc_coarray_regtype alloc_type) | 
|  | { | 
|  | tree tmp, pstat; | 
|  |  | 
|  | gcc_assert (token != NULL_TREE); | 
|  |  | 
|  | /* The allocation itself.  */ | 
|  | if (status == NULL_TREE) | 
|  | pstat  = null_pointer_node; | 
|  | else | 
|  | pstat  = gfc_build_addr_expr (NULL_TREE, status); | 
|  |  | 
|  | if (errmsg == NULL_TREE) | 
|  | { | 
|  | gcc_assert(errlen == NULL_TREE); | 
|  | errmsg = null_pointer_node; | 
|  | errlen = integer_zero_node; | 
|  | } | 
|  |  | 
|  | size = fold_convert (size_type_node, size); | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | gfor_fndecl_caf_register, 7, | 
|  | fold_build2_loc (input_location, | 
|  | MAX_EXPR, size_type_node, size, size_one_node), | 
|  | build_int_cst (integer_type_node, alloc_type), | 
|  | token, gfc_build_addr_expr (pvoid_type_node, pointer), | 
|  | pstat, errmsg, errlen); | 
|  |  | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  |  | 
|  | /* It guarantees memory consistency within the same segment */ | 
|  | tmp = gfc_build_string_const (strlen ("memory")+1, "memory"), | 
|  | tmp = build5_loc (input_location, ASM_EXPR, void_type_node, | 
|  | gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, | 
|  | tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); | 
|  | ASM_VOLATILE_P (tmp) = 1; | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate code for an ALLOCATE statement when the argument is an | 
|  | allocatable variable.  If the variable is currently allocated, it is an | 
|  | error to allocate it again. | 
|  |  | 
|  | This function follows the following pseudo-code: | 
|  |  | 
|  | void * | 
|  | allocate_allocatable (void *mem, size_t size, integer_type stat) | 
|  | { | 
|  | if (mem == NULL) | 
|  | return allocate (size, stat); | 
|  | else | 
|  | { | 
|  | if (stat) | 
|  | stat = LIBERROR_ALLOCATION; | 
|  | else | 
|  | runtime_error ("Attempting to allocate already allocated variable"); | 
|  | } | 
|  | } | 
|  |  | 
|  | expr must be set to the original expression being allocated for its locus | 
|  | and variable name in case a runtime error has to be printed.  */ | 
|  | void | 
|  | gfc_allocate_allocatable (stmtblock_t * block, tree mem, tree size, | 
|  | tree token, tree status, tree errmsg, tree errlen, | 
|  | tree label_finish, gfc_expr* expr, int corank, | 
|  | tree cond, tree alt_alloc, tree extra_success_expr) | 
|  | { | 
|  | stmtblock_t alloc_block; | 
|  | tree tmp, null_mem, alloc, error; | 
|  | tree type = TREE_TYPE (mem); | 
|  | symbol_attribute caf_attr; | 
|  | bool need_assign = false, refs_comp = false; | 
|  | gfc_coarray_regtype caf_alloc_type = GFC_CAF_COARRAY_ALLOC; | 
|  |  | 
|  | size = fold_convert (size_type_node, size); | 
|  | null_mem = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR, | 
|  | logical_type_node, mem, | 
|  | build_int_cst (type, 0)), | 
|  | PRED_FORTRAN_REALLOC); | 
|  |  | 
|  | /* If mem is NULL, we call gfc_allocate_using_malloc or | 
|  | gfc_allocate_using_lib.  */ | 
|  | gfc_start_block (&alloc_block); | 
|  |  | 
|  | if (flag_coarray == GFC_FCOARRAY_LIB) | 
|  | caf_attr = gfc_caf_attr (expr, true, &refs_comp); | 
|  |  | 
|  | if (flag_coarray == GFC_FCOARRAY_LIB | 
|  | && (corank > 0 || caf_attr.codimension)) | 
|  | { | 
|  | tree cond2, sub_caf_tree; | 
|  | gfc_se se; | 
|  | bool compute_special_caf_types_size = false; | 
|  |  | 
|  | if (expr->ts.type == BT_DERIVED | 
|  | && expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV | 
|  | && expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE) | 
|  | { | 
|  | compute_special_caf_types_size = true; | 
|  | caf_alloc_type = GFC_CAF_LOCK_ALLOC; | 
|  | } | 
|  | else if (expr->ts.type == BT_DERIVED | 
|  | && expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV | 
|  | && expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE) | 
|  | { | 
|  | compute_special_caf_types_size = true; | 
|  | caf_alloc_type = GFC_CAF_EVENT_ALLOC; | 
|  | } | 
|  | else if (!caf_attr.coarray_comp && refs_comp) | 
|  | /* Only allocatable components in a derived type coarray can be | 
|  | allocate only.  */ | 
|  | caf_alloc_type = GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY; | 
|  |  | 
|  | gfc_init_se (&se, NULL); | 
|  | sub_caf_tree = gfc_get_ultimate_alloc_ptr_comps_caf_token (&se, expr); | 
|  | if (sub_caf_tree == NULL_TREE) | 
|  | sub_caf_tree = token; | 
|  |  | 
|  | /* When mem is an array ref, then strip the .data-ref.  */ | 
|  | if (TREE_CODE (mem) == COMPONENT_REF | 
|  | && !(GFC_ARRAY_TYPE_P (TREE_TYPE (mem)))) | 
|  | tmp = TREE_OPERAND (mem, 0); | 
|  | else | 
|  | tmp = mem; | 
|  |  | 
|  | if (!(GFC_ARRAY_TYPE_P (TREE_TYPE (tmp)) | 
|  | && TYPE_LANG_SPECIFIC (TREE_TYPE (tmp))->corank == 0) | 
|  | && !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (tmp))) | 
|  | { | 
|  | symbol_attribute attr; | 
|  |  | 
|  | gfc_clear_attr (&attr); | 
|  | tmp = gfc_conv_scalar_to_descriptor (&se, mem, attr); | 
|  | need_assign = true; | 
|  | } | 
|  | gfc_add_block_to_block (&alloc_block, &se.pre); | 
|  |  | 
|  | /* In the front end, we represent the lock variable as pointer. However, | 
|  | the FE only passes the pointer around and leaves the actual | 
|  | representation to the library. Hence, we have to convert back to the | 
|  | number of elements.  */ | 
|  | if (compute_special_caf_types_size) | 
|  | size = fold_build2_loc (input_location, TRUNC_DIV_EXPR, size_type_node, | 
|  | size, TYPE_SIZE_UNIT (ptr_type_node)); | 
|  |  | 
|  | gfc_allocate_using_caf_lib (&alloc_block, tmp, size, sub_caf_tree, | 
|  | status, errmsg, errlen, caf_alloc_type); | 
|  | if (need_assign) | 
|  | gfc_add_modify (&alloc_block, mem, fold_convert (TREE_TYPE (mem), | 
|  | gfc_conv_descriptor_data_get (tmp))); | 
|  | if (status != NULL_TREE) | 
|  | { | 
|  | TREE_USED (label_finish) = 1; | 
|  | tmp = build1_v (GOTO_EXPR, label_finish); | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | status, build_zero_cst (TREE_TYPE (status))); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | gfc_unlikely (cond2, PRED_FORTRAN_FAIL_ALLOC), | 
|  | tmp, build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&alloc_block, tmp); | 
|  | } | 
|  | } | 
|  | else | 
|  | gfc_allocate_using_malloc (&alloc_block, mem, size, status, | 
|  | cond, alt_alloc, extra_success_expr); | 
|  |  | 
|  | alloc = gfc_finish_block (&alloc_block); | 
|  |  | 
|  | /* If mem is not NULL, we issue a runtime error or set the | 
|  | status variable.  */ | 
|  | if (expr) | 
|  | { | 
|  | tree varname; | 
|  |  | 
|  | gcc_assert (expr->expr_type == EXPR_VARIABLE && expr->symtree); | 
|  | varname = gfc_build_cstring_const (expr->symtree->name); | 
|  | varname = gfc_build_addr_expr (pchar_type_node, varname); | 
|  |  | 
|  | error = gfc_trans_runtime_error (true, &expr->where, | 
|  | "Attempting to allocate already" | 
|  | " allocated variable '%s'", | 
|  | varname); | 
|  | } | 
|  | else | 
|  | error = gfc_trans_runtime_error (true, NULL, | 
|  | "Attempting to allocate already allocated" | 
|  | " variable"); | 
|  |  | 
|  | if (status != NULL_TREE) | 
|  | { | 
|  | tree status_type = TREE_TYPE (status); | 
|  |  | 
|  | error = fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | status, build_int_cst (status_type, LIBERROR_ALLOCATION)); | 
|  | } | 
|  |  | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, null_mem, | 
|  | error, alloc); | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Free a given variable.  */ | 
|  |  | 
|  | tree | 
|  | gfc_call_free (tree var) | 
|  | { | 
|  | return build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_FREE), | 
|  | 1, fold_convert (pvoid_type_node, var)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate the data reference to the finalization procedure pointer associated | 
|  | with the expression passed as argument in EXPR.  */ | 
|  |  | 
|  | static void | 
|  | get_final_proc_ref (gfc_se *se, gfc_expr *expr, tree class_container) | 
|  | { | 
|  | gfc_expr *final_wrapper = NULL; | 
|  |  | 
|  | gcc_assert (expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS); | 
|  |  | 
|  | bool using_class_container = false; | 
|  | if (expr->ts.type == BT_DERIVED) | 
|  | gfc_is_finalizable (expr->ts.u.derived, &final_wrapper); | 
|  | else if (class_container) | 
|  | { | 
|  | using_class_container = true; | 
|  | se->expr = gfc_class_vtab_final_get (class_container); | 
|  | } | 
|  | else | 
|  | { | 
|  | final_wrapper = gfc_copy_expr (expr); | 
|  | gfc_add_vptr_component (final_wrapper); | 
|  | gfc_add_final_component (final_wrapper); | 
|  | } | 
|  |  | 
|  | if (!using_class_container) | 
|  | { | 
|  | gcc_assert (final_wrapper->expr_type == EXPR_VARIABLE); | 
|  |  | 
|  | gfc_conv_expr (se, final_wrapper); | 
|  | } | 
|  |  | 
|  | if (POINTER_TYPE_P (TREE_TYPE (se->expr))) | 
|  | se->expr = build_fold_indirect_ref_loc (input_location, se->expr); | 
|  |  | 
|  | if (expr->ts.type != BT_DERIVED && !using_class_container) | 
|  | gfc_free_expr (final_wrapper); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate the code to obtain the value of the element size of the expression | 
|  | passed as argument in EXPR.  */ | 
|  |  | 
|  | static void | 
|  | get_elem_size (gfc_se *se, gfc_expr *expr, tree class_container) | 
|  | { | 
|  | gcc_assert (expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS); | 
|  |  | 
|  | if (expr->ts.type == BT_DERIVED) | 
|  | { | 
|  | se->expr = gfc_typenode_for_spec (&expr->ts); | 
|  | se->expr = TYPE_SIZE_UNIT (se->expr); | 
|  | se->expr = fold_convert (gfc_array_index_type, se->expr); | 
|  | } | 
|  | else if (class_container) | 
|  | se->expr = gfc_class_vtab_size_get (class_container); | 
|  | else | 
|  | { | 
|  | gfc_expr *class_size = gfc_copy_expr (expr); | 
|  | gfc_add_vptr_component (class_size); | 
|  | gfc_add_size_component (class_size); | 
|  |  | 
|  | gfc_conv_expr (se, class_size); | 
|  | gcc_assert (se->post.head == NULL_TREE); | 
|  | gfc_free_expr (class_size); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate the data reference (array) descriptor corresponding to the | 
|  | expression passed as argument in VAR.  */ | 
|  |  | 
|  | static void | 
|  | get_var_descr (gfc_se *se, gfc_expr *var, tree class_container) | 
|  | { | 
|  | gfc_se tmp_se; | 
|  |  | 
|  | gcc_assert (var); | 
|  |  | 
|  | gfc_init_se (&tmp_se, NULL); | 
|  |  | 
|  | if (var->ts.type == BT_DERIVED) | 
|  | { | 
|  | tmp_se.want_pointer = 1; | 
|  | if (var->rank) | 
|  | { | 
|  | tmp_se.descriptor_only = 1; | 
|  | gfc_conv_expr_descriptor (&tmp_se, var); | 
|  | } | 
|  | else | 
|  | gfc_conv_expr (&tmp_se, var); | 
|  | } | 
|  | else if (class_container) | 
|  | tmp_se.expr = gfc_class_data_get (class_container); | 
|  | else | 
|  | { | 
|  | gfc_expr *array_expr; | 
|  |  | 
|  | array_expr = gfc_copy_expr (var); | 
|  |  | 
|  | tmp_se.want_pointer = 1; | 
|  | if (array_expr->rank) | 
|  | { | 
|  | gfc_add_class_array_ref (array_expr); | 
|  | tmp_se.descriptor_only = 1; | 
|  | gfc_conv_expr_descriptor (&tmp_se, array_expr); | 
|  | } | 
|  | else | 
|  | { | 
|  | gfc_add_data_component (array_expr); | 
|  | gfc_conv_expr (&tmp_se, array_expr); | 
|  | gcc_assert (tmp_se.post.head == NULL_TREE); | 
|  | } | 
|  | gfc_free_expr (array_expr); | 
|  | } | 
|  |  | 
|  | if (var->rank == 0) | 
|  | { | 
|  | if (var->ts.type == BT_DERIVED | 
|  | || !gfc_is_coarray (var)) | 
|  | { | 
|  | /* No copy back needed, hence set attr's allocatable/pointer | 
|  | to zero.  */ | 
|  | symbol_attribute attr; | 
|  | gfc_clear_attr (&attr); | 
|  | tmp_se.expr = gfc_conv_scalar_to_descriptor (&tmp_se, tmp_se.expr, | 
|  | attr); | 
|  | } | 
|  | gcc_assert (tmp_se.post.head == NULL_TREE); | 
|  | } | 
|  |  | 
|  | if (!POINTER_TYPE_P (TREE_TYPE (tmp_se.expr))) | 
|  | tmp_se.expr = gfc_build_addr_expr (NULL, tmp_se.expr); | 
|  |  | 
|  | gfc_add_block_to_block (&se->pre, &tmp_se.pre); | 
|  | gfc_add_block_to_block (&se->post, &tmp_se.post); | 
|  | se->expr = tmp_se.expr; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | get_vptr (gfc_se *se, gfc_expr *expr, tree class_container) | 
|  | { | 
|  | if (class_container) | 
|  | se->expr = gfc_class_vptr_get (class_container); | 
|  | else | 
|  | { | 
|  | gfc_expr *vptr_expr = gfc_copy_expr (expr); | 
|  | gfc_add_vptr_component (vptr_expr); | 
|  |  | 
|  | gfc_se tmp_se; | 
|  | gfc_init_se (&tmp_se, NULL); | 
|  | tmp_se.want_pointer = 1; | 
|  | gfc_conv_expr (&tmp_se, vptr_expr); | 
|  | gfc_free_expr (vptr_expr); | 
|  |  | 
|  | gfc_add_block_to_block (&se->pre, &tmp_se.pre); | 
|  | gfc_add_block_to_block (&se->post, &tmp_se.post); | 
|  | se->expr = tmp_se.expr; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | gfc_add_comp_finalizer_call (stmtblock_t *block, tree decl, gfc_component *comp, | 
|  | bool fini_coarray) | 
|  | { | 
|  | gfc_se se; | 
|  | stmtblock_t block2; | 
|  | tree final_fndecl, size, array, tmp, cond; | 
|  | symbol_attribute attr; | 
|  | gfc_expr *final_expr = NULL; | 
|  |  | 
|  | if (comp->ts.type != BT_DERIVED && comp->ts.type != BT_CLASS) | 
|  | return false; | 
|  |  | 
|  | gfc_init_block (&block2); | 
|  |  | 
|  | if (comp->ts.type == BT_DERIVED) | 
|  | { | 
|  | if (comp->attr.pointer) | 
|  | return false; | 
|  |  | 
|  | gfc_is_finalizable (comp->ts.u.derived, &final_expr); | 
|  | if (!final_expr) | 
|  | return false; | 
|  |  | 
|  | gfc_init_se (&se, NULL); | 
|  | gfc_conv_expr (&se, final_expr); | 
|  | final_fndecl = se.expr; | 
|  | size = gfc_typenode_for_spec (&comp->ts); | 
|  | size = TYPE_SIZE_UNIT (size); | 
|  | size = fold_convert (gfc_array_index_type, size); | 
|  |  | 
|  | array = decl; | 
|  | } | 
|  | else /* comp->ts.type == BT_CLASS.  */ | 
|  | { | 
|  | if (CLASS_DATA (comp)->attr.class_pointer) | 
|  | return false; | 
|  |  | 
|  | gfc_is_finalizable (CLASS_DATA (comp)->ts.u.derived, &final_expr); | 
|  | final_fndecl = gfc_class_vtab_final_get (decl); | 
|  | size = gfc_class_vtab_size_get (decl); | 
|  | array = gfc_class_data_get (decl); | 
|  | } | 
|  |  | 
|  | if (comp->attr.allocatable | 
|  | || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable)) | 
|  | { | 
|  | tmp = GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (array)) | 
|  | ?  gfc_conv_descriptor_data_get (array) : array; | 
|  | cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | tmp, fold_convert (TREE_TYPE (tmp), | 
|  | null_pointer_node)); | 
|  | } | 
|  | else | 
|  | cond = logical_true_node; | 
|  |  | 
|  | if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (array))) | 
|  | { | 
|  | gfc_clear_attr (&attr); | 
|  | gfc_init_se (&se, NULL); | 
|  | array = gfc_conv_scalar_to_descriptor (&se, array, attr); | 
|  | gfc_add_block_to_block (&block2, &se.pre); | 
|  | gcc_assert (se.post.head == NULL_TREE); | 
|  | } | 
|  |  | 
|  | if (!POINTER_TYPE_P (TREE_TYPE (array))) | 
|  | array = gfc_build_addr_expr (NULL, array); | 
|  |  | 
|  | if (!final_expr) | 
|  | { | 
|  | tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | final_fndecl, | 
|  | fold_convert (TREE_TYPE (final_fndecl), | 
|  | null_pointer_node)); | 
|  | cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, | 
|  | logical_type_node, cond, tmp); | 
|  | } | 
|  |  | 
|  | if (POINTER_TYPE_P (TREE_TYPE (final_fndecl))) | 
|  | final_fndecl = build_fold_indirect_ref_loc (input_location, final_fndecl); | 
|  |  | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | final_fndecl, 3, array, | 
|  | size, fini_coarray ? boolean_true_node | 
|  | : boolean_false_node); | 
|  | gfc_add_expr_to_block (&block2, tmp); | 
|  | tmp = gfc_finish_block (&block2); | 
|  |  | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp, | 
|  | build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add a call to the finalizer, using the passed *expr. Returns | 
|  | true when a finalizer call has been inserted.  */ | 
|  |  | 
|  | bool | 
|  | gfc_add_finalizer_call (stmtblock_t *block, gfc_expr *expr2, | 
|  | tree class_container) | 
|  | { | 
|  | tree tmp; | 
|  | gfc_ref *ref; | 
|  | gfc_expr *expr; | 
|  |  | 
|  | if (!expr2 || (expr2->ts.type != BT_DERIVED && expr2->ts.type != BT_CLASS)) | 
|  | return false; | 
|  |  | 
|  | /* Finalization of these temporaries is made by explicit calls in | 
|  | resolve.cc(generate_component_assignments).  */ | 
|  | if (expr2->expr_type == EXPR_VARIABLE | 
|  | && expr2->symtree->n.sym->name[0] == '_' | 
|  | && expr2->ts.type == BT_DERIVED | 
|  | && expr2->ts.u.derived->attr.defined_assign_comp) | 
|  | return false; | 
|  |  | 
|  | if (expr2->ts.type == BT_DERIVED | 
|  | && !gfc_is_finalizable (expr2->ts.u.derived, NULL)) | 
|  | return false; | 
|  |  | 
|  | /* If we have a class array, we need go back to the class | 
|  | container.  */ | 
|  | expr = gfc_copy_expr (expr2); | 
|  |  | 
|  | if (expr->ref && expr->ref->next && !expr->ref->next->next | 
|  | && expr->ref->next->type == REF_ARRAY | 
|  | && expr->ref->type == REF_COMPONENT | 
|  | && strcmp (expr->ref->u.c.component->name, "_data") == 0) | 
|  | { | 
|  | gfc_free_ref_list (expr->ref); | 
|  | expr->ref = NULL; | 
|  | } | 
|  | else | 
|  | for (ref = expr->ref; ref; ref = ref->next) | 
|  | if (ref->next && ref->next->next && !ref->next->next->next | 
|  | && ref->next->next->type == REF_ARRAY | 
|  | && ref->next->type == REF_COMPONENT | 
|  | && strcmp (ref->next->u.c.component->name, "_data") == 0) | 
|  | { | 
|  | gfc_free_ref_list (ref->next); | 
|  | ref->next = NULL; | 
|  | } | 
|  |  | 
|  | if (expr->ts.type == BT_CLASS && (!expr2->rank || !expr2->corank) | 
|  | && !expr2->ref && CLASS_DATA (expr2->symtree->n.sym)->as) | 
|  | { | 
|  | expr->rank = CLASS_DATA (expr2->symtree->n.sym)->as->rank; | 
|  | expr->corank = CLASS_DATA (expr2->symtree->n.sym)->as->corank; | 
|  | } | 
|  |  | 
|  | stmtblock_t tmp_block; | 
|  | gfc_start_block (&tmp_block); | 
|  |  | 
|  | gfc_se final_se; | 
|  | gfc_init_se (&final_se, NULL); | 
|  | get_final_proc_ref (&final_se, expr, class_container); | 
|  | gfc_add_block_to_block (block, &final_se.pre); | 
|  |  | 
|  | gfc_se size_se; | 
|  | gfc_init_se (&size_se, NULL); | 
|  | get_elem_size (&size_se, expr, class_container); | 
|  | gfc_add_block_to_block (&tmp_block, &size_se.pre); | 
|  |  | 
|  | gfc_se desc_se; | 
|  | gfc_init_se (&desc_se, NULL); | 
|  | get_var_descr (&desc_se, expr, class_container); | 
|  | gfc_add_block_to_block (&tmp_block, &desc_se.pre); | 
|  |  | 
|  | tmp = build_call_expr_loc (input_location, final_se.expr, 3, | 
|  | desc_se.expr, size_se.expr, | 
|  | boolean_false_node); | 
|  |  | 
|  | gfc_add_expr_to_block (&tmp_block, tmp); | 
|  |  | 
|  | gfc_add_block_to_block (&tmp_block, &desc_se.post); | 
|  | gfc_add_block_to_block (&tmp_block, &size_se.post); | 
|  |  | 
|  | tmp = gfc_finish_block (&tmp_block); | 
|  |  | 
|  | if (expr->ts.type == BT_CLASS | 
|  | && !gfc_is_finalizable (expr->ts.u.derived, NULL)) | 
|  | { | 
|  | tree cond; | 
|  |  | 
|  | tree ptr = gfc_build_addr_expr (NULL_TREE, final_se.expr); | 
|  |  | 
|  | cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | ptr, build_int_cst (TREE_TYPE (ptr), 0)); | 
|  |  | 
|  | /* For CLASS(*) not only sym->_vtab->_final can be NULL | 
|  | but already sym->_vtab itself.  */ | 
|  | if (UNLIMITED_POLY (expr)) | 
|  | { | 
|  | tree cond2; | 
|  | gfc_se vptr_se; | 
|  |  | 
|  | gfc_init_se (&vptr_se, NULL); | 
|  | get_vptr (&vptr_se, expr, class_container); | 
|  |  | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | vptr_se.expr, | 
|  | build_int_cst (TREE_TYPE (vptr_se.expr), 0)); | 
|  | cond = fold_build2_loc (input_location, TRUTH_ANDIF_EXPR, | 
|  | logical_type_node, cond2, cond); | 
|  | } | 
|  |  | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond, tmp, build_empty_stmt (input_location)); | 
|  | } | 
|  |  | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  | gfc_add_block_to_block (block, &final_se.post); | 
|  | gfc_free_expr (expr); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* F2018 (7.5.6.3): "When an intrinsic assignment statement is executed | 
|  | (10.2.1.3), if the variable is not an unallocated allocatable variable, | 
|  | it is finalized after evaluation of expr and before the definition of | 
|  | the variable. If the variable is an allocated allocatable variable, or | 
|  | has an allocated allocatable subobject, that would be deallocated by | 
|  | intrinsic assignment, the finalization occurs before the deallocation */ | 
|  |  | 
|  | bool | 
|  | gfc_assignment_finalizer_call (gfc_se *lse, gfc_expr *expr1, bool init_flag) | 
|  | { | 
|  | symbol_attribute lhs_attr; | 
|  | tree final_expr; | 
|  | tree ptr; | 
|  | tree cond; | 
|  | gfc_se se; | 
|  | gfc_symbol *sym = expr1->symtree->n.sym; | 
|  | gfc_ref *ref = expr1->ref; | 
|  | stmtblock_t final_block; | 
|  | gfc_init_block (&final_block); | 
|  | gfc_expr *finalize_expr; | 
|  | bool class_array_ref; | 
|  |  | 
|  | /* We have to exclude vtable procedures (_copy and _final especially), uses | 
|  | of gfc_trans_assignment_1 in initialization and allocation before trying | 
|  | to build a final call.  */ | 
|  | if (!expr1->must_finalize | 
|  | || sym->attr.artificial | 
|  | || sym->ns->proc_name->attr.artificial | 
|  | || init_flag) | 
|  | return false; | 
|  |  | 
|  | class_array_ref = ref && ref->type == REF_COMPONENT | 
|  | && !strcmp (ref->u.c.component->name, "_data") | 
|  | && ref->next && ref->next->type == REF_ARRAY | 
|  | && !ref->next->next; | 
|  |  | 
|  | if (class_array_ref) | 
|  | { | 
|  | finalize_expr = gfc_lval_expr_from_sym (sym); | 
|  | finalize_expr->must_finalize = 1; | 
|  | ref = NULL; | 
|  | } | 
|  | else | 
|  | finalize_expr = gfc_copy_expr (expr1); | 
|  |  | 
|  | /* F2018 7.5.6.2: Only finalizable entities are finalized.  */ | 
|  | if (!(expr1->ts.type == BT_DERIVED | 
|  | && gfc_is_finalizable (expr1->ts.u.derived, NULL)) | 
|  | && expr1->ts.type != BT_CLASS) | 
|  | return false; | 
|  |  | 
|  | if (!gfc_may_be_finalized (sym->ts)) | 
|  | return false; | 
|  |  | 
|  | gfc_init_block (&final_block); | 
|  | bool finalizable = gfc_add_finalizer_call (&final_block, finalize_expr); | 
|  | gfc_free_expr (finalize_expr); | 
|  |  | 
|  | if (!finalizable) | 
|  | return false; | 
|  |  | 
|  | lhs_attr = gfc_expr_attr (expr1); | 
|  |  | 
|  | /* Check allocatable/pointer is allocated/associated.  */ | 
|  | if (lhs_attr.allocatable || lhs_attr.pointer) | 
|  | { | 
|  | if (expr1->ts.type == BT_CLASS) | 
|  | { | 
|  | ptr = gfc_get_class_from_gfc_expr (expr1); | 
|  | gcc_assert (ptr != NULL_TREE); | 
|  | ptr = gfc_class_data_get (ptr); | 
|  | if (lhs_attr.dimension) | 
|  | ptr = gfc_conv_descriptor_data_get (ptr); | 
|  | } | 
|  | else | 
|  | { | 
|  | gfc_init_se (&se, NULL); | 
|  | if (expr1->rank) | 
|  | { | 
|  | gfc_conv_expr_descriptor (&se, expr1); | 
|  | ptr = gfc_conv_descriptor_data_get (se.expr); | 
|  | } | 
|  | else | 
|  | { | 
|  | gfc_conv_expr (&se, expr1); | 
|  | ptr = gfc_build_addr_expr (NULL_TREE, se.expr); | 
|  | } | 
|  | } | 
|  |  | 
|  | cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | ptr, build_zero_cst (TREE_TYPE (ptr))); | 
|  | final_expr = build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond, gfc_finish_block (&final_block), | 
|  | build_empty_stmt (input_location)); | 
|  | } | 
|  | else | 
|  | final_expr = gfc_finish_block (&final_block); | 
|  |  | 
|  | /* Check optional present.  */ | 
|  | if (sym->attr.optional) | 
|  | { | 
|  | cond = gfc_conv_expr_present (sym); | 
|  | final_expr = build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond, final_expr, | 
|  | build_empty_stmt (input_location)); | 
|  | } | 
|  |  | 
|  | gfc_add_expr_to_block (&lse->finalblock, final_expr); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Finalize a TREE expression using the finalizer wrapper. The result is | 
|  | fixed in order to prevent repeated calls.  */ | 
|  |  | 
|  | void | 
|  | gfc_finalize_tree_expr (gfc_se *se, gfc_symbol *derived, | 
|  | symbol_attribute attr, int rank) | 
|  | { | 
|  | tree vptr, final_fndecl, desc, tmp, size, is_final; | 
|  | tree data_ptr, data_null, cond; | 
|  | gfc_symbol *vtab; | 
|  | gfc_se post_se; | 
|  | bool is_class = GFC_CLASS_TYPE_P (TREE_TYPE (se->expr)); | 
|  |  | 
|  | if (attr.pointer) | 
|  | return; | 
|  |  | 
|  | /* Derived type function results with components that have defined | 
|  | assignements are handled in resolve.cc(generate_component_assignments)  */ | 
|  | if (derived && (derived->attr.is_c_interop | 
|  | || derived->attr.is_iso_c | 
|  | || derived->attr.is_bind_c | 
|  | || derived->attr.defined_assign_comp)) | 
|  | return; | 
|  |  | 
|  | if (is_class) | 
|  | { | 
|  | if (!VAR_P (se->expr)) | 
|  | { | 
|  | desc = gfc_evaluate_now (se->expr, &se->pre); | 
|  | se->expr = desc; | 
|  | } | 
|  | desc = gfc_class_data_get (se->expr); | 
|  | vptr = gfc_class_vptr_get (se->expr); | 
|  | } | 
|  | else if (derived && gfc_is_finalizable (derived, NULL)) | 
|  | { | 
|  | if (!derived->components && (!rank || attr.elemental)) | 
|  | { | 
|  | /* Any attempt to assign zero length entities, causes the gimplifier | 
|  | all manner of problems. Instead, a variable is created to act as | 
|  | as the argument for the final call.  */ | 
|  | desc = gfc_create_var (TREE_TYPE (se->expr), "zero"); | 
|  | } | 
|  | else if (se->direct_byref) | 
|  | { | 
|  | desc = gfc_evaluate_now (se->expr, &se->finalblock); | 
|  | if (derived->attr.alloc_comp) | 
|  | { | 
|  | /* Need to copy allocated components and not finalize.  */ | 
|  | tmp = gfc_copy_alloc_comp_no_fini (derived, se->expr, desc, rank, 0); | 
|  | gfc_add_expr_to_block (&se->finalblock, tmp); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | desc = gfc_evaluate_now (se->expr, &se->pre); | 
|  | se->expr = gfc_evaluate_now (desc, &se->pre); | 
|  | if (derived->attr.alloc_comp) | 
|  | { | 
|  | /* Need to copy allocated components and not finalize.  */ | 
|  | tmp = gfc_copy_alloc_comp_no_fini (derived, se->expr, desc, rank, 0); | 
|  | gfc_add_expr_to_block (&se->pre, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | vtab = gfc_find_derived_vtab (derived); | 
|  | if (vtab->backend_decl == NULL_TREE) | 
|  | vptr = gfc_get_symbol_decl (vtab); | 
|  | else | 
|  | vptr = vtab->backend_decl; | 
|  | vptr = gfc_build_addr_expr (NULL, vptr); | 
|  | } | 
|  | else | 
|  | return; | 
|  |  | 
|  | size = gfc_vptr_size_get (vptr); | 
|  | final_fndecl = gfc_vptr_final_get (vptr); | 
|  | is_final = fold_build2_loc (input_location, NE_EXPR, | 
|  | logical_type_node, | 
|  | final_fndecl, | 
|  | fold_convert (TREE_TYPE (final_fndecl), | 
|  | null_pointer_node)); | 
|  |  | 
|  | final_fndecl = build_fold_indirect_ref_loc (input_location, | 
|  | final_fndecl); | 
|  | if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) | 
|  | { | 
|  | if (is_class || attr.elemental) | 
|  | desc = gfc_conv_scalar_to_descriptor (se, desc, attr); | 
|  | else | 
|  | { | 
|  | gfc_init_se (&post_se, NULL); | 
|  | desc = gfc_conv_scalar_to_descriptor (&post_se, desc, attr); | 
|  | gfc_add_expr_to_block (&se->pre, gfc_finish_block (&post_se.pre)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (derived && !derived->components) | 
|  | { | 
|  | /* All the conditions below break down for zero length derived types.  */ | 
|  | tmp = build_call_expr_loc (input_location, final_fndecl, 3, | 
|  | gfc_build_addr_expr (NULL, desc), | 
|  | size, boolean_false_node); | 
|  | gfc_add_expr_to_block (&se->finalblock, tmp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!VAR_P (desc)) | 
|  | { | 
|  | tmp = gfc_create_var (TREE_TYPE (desc), "res"); | 
|  | if (se->direct_byref) | 
|  | gfc_add_modify (&se->finalblock, tmp, desc); | 
|  | else | 
|  | gfc_add_modify (&se->pre, tmp, desc); | 
|  | desc = tmp; | 
|  | } | 
|  |  | 
|  | data_ptr = gfc_conv_descriptor_data_get (desc); | 
|  | data_null = fold_convert (TREE_TYPE (data_ptr), null_pointer_node); | 
|  | cond = fold_build2_loc (input_location, NE_EXPR, | 
|  | logical_type_node, data_ptr, data_null); | 
|  | is_final = fold_build2_loc (input_location, TRUTH_AND_EXPR, | 
|  | logical_type_node, is_final, cond); | 
|  | tmp = build_call_expr_loc (input_location, final_fndecl, 3, | 
|  | gfc_build_addr_expr (NULL, desc), | 
|  | size, boolean_false_node); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, | 
|  | void_type_node, is_final, tmp, | 
|  | build_empty_stmt (input_location)); | 
|  |  | 
|  | if (is_class && se->ss && se->ss->loop) | 
|  | { | 
|  | gfc_add_expr_to_block (&se->loop->post, tmp); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, | 
|  | void_type_node, cond, | 
|  | gfc_call_free (data_ptr), | 
|  | build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&se->loop->post, tmp); | 
|  | gfc_add_modify (&se->loop->post, data_ptr, data_null); | 
|  | } | 
|  | else | 
|  | { | 
|  | gfc_add_expr_to_block (&se->finalblock, tmp); | 
|  |  | 
|  | /* Let the scalarizer take care of freeing of temporary arrays.  */ | 
|  | if (attr.allocatable && !(se->loop && se->loop->temp_dim)) | 
|  | { | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, | 
|  | void_type_node, cond, | 
|  | gfc_call_free (data_ptr), | 
|  | build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&se->finalblock, tmp); | 
|  | gfc_add_modify (&se->finalblock, data_ptr, data_null); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* User-deallocate; we emit the code directly from the front-end, and the | 
|  | logic is the same as the previous library function: | 
|  |  | 
|  | void | 
|  | deallocate (void *pointer, GFC_INTEGER_4 * stat) | 
|  | { | 
|  | if (!pointer) | 
|  | { | 
|  | if (stat) | 
|  | *stat = 1; | 
|  | else | 
|  | runtime_error ("Attempt to DEALLOCATE unallocated memory."); | 
|  | } | 
|  | else | 
|  | { | 
|  | free (pointer); | 
|  | if (stat) | 
|  | *stat = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | In this front-end version, status doesn't have to be GFC_INTEGER_4. | 
|  | Moreover, if CAN_FAIL is true, then we will not emit a runtime error, | 
|  | even when no status variable is passed to us (this is used for | 
|  | unconditional deallocation generated by the front-end at end of | 
|  | each procedure). | 
|  |  | 
|  | If a runtime-message is possible, `expr' must point to the original | 
|  | expression being deallocated for its locus and variable name. | 
|  |  | 
|  | For coarrays, "pointer" must be the array descriptor and not its | 
|  | "data" component. | 
|  |  | 
|  | COARRAY_DEALLOC_MODE gives the mode unregister coarrays.  Available modes are | 
|  | the ones of GFC_CAF_DEREGTYPE, -1 when the mode for deregistration is to be | 
|  | analyzed and set by this routine, and -2 to indicate that a non-coarray is to | 
|  | be deallocated.  */ | 
|  | tree | 
|  | gfc_deallocate_with_status (tree pointer, tree status, tree errmsg, tree errlen, | 
|  | tree label_finish, bool can_fail, gfc_expr *expr, | 
|  | int coarray_dealloc_mode, tree class_container, | 
|  | tree add_when_allocated, tree caf_token, | 
|  | bool unalloc_ok) | 
|  | { | 
|  | stmtblock_t null, non_null; | 
|  | tree cond, tmp, error; | 
|  | tree status_type = NULL_TREE; | 
|  | tree token = NULL_TREE; | 
|  | tree descr = NULL_TREE; | 
|  | gfc_coarray_deregtype caf_dereg_type = GFC_CAF_COARRAY_DEREGISTER; | 
|  |  | 
|  | if (coarray_dealloc_mode >= GFC_CAF_COARRAY_ANALYZE) | 
|  | { | 
|  | if (flag_coarray == GFC_FCOARRAY_LIB) | 
|  | { | 
|  | if (caf_token) | 
|  | { | 
|  | token = caf_token; | 
|  | if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer))) | 
|  | pointer = gfc_conv_descriptor_data_get (pointer); | 
|  | } | 
|  | else | 
|  | { | 
|  | tree caf_type, caf_decl = pointer; | 
|  | pointer = gfc_conv_descriptor_data_get (caf_decl); | 
|  | caf_type = TREE_TYPE (caf_decl); | 
|  | STRIP_NOPS (pointer); | 
|  | if (GFC_DESCRIPTOR_TYPE_P (caf_type)) | 
|  | token = gfc_conv_descriptor_token (caf_decl); | 
|  | else if (DECL_LANG_SPECIFIC (caf_decl) | 
|  | && GFC_DECL_TOKEN (caf_decl) != NULL_TREE) | 
|  | token = GFC_DECL_TOKEN (caf_decl); | 
|  | else | 
|  | { | 
|  | gcc_assert (GFC_ARRAY_TYPE_P (caf_type) | 
|  | && GFC_TYPE_ARRAY_CAF_TOKEN (caf_type) | 
|  | != NULL_TREE); | 
|  | token = GFC_TYPE_ARRAY_CAF_TOKEN (caf_type); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (coarray_dealloc_mode == GFC_CAF_COARRAY_ANALYZE) | 
|  | { | 
|  | bool comp_ref; | 
|  | if (expr && !gfc_caf_attr (expr, false, &comp_ref).coarray_comp | 
|  | && comp_ref) | 
|  | caf_dereg_type = GFC_CAF_COARRAY_DEALLOCATE_ONLY; | 
|  | // else do a deregister as set by default. | 
|  | } | 
|  | else | 
|  | caf_dereg_type = (enum gfc_coarray_deregtype) coarray_dealloc_mode; | 
|  | } | 
|  | else if (flag_coarray == GFC_FCOARRAY_SINGLE | 
|  | && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer))) | 
|  | pointer = gfc_conv_descriptor_data_get (pointer); | 
|  | } | 
|  | else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer))) | 
|  | { | 
|  | descr = pointer; | 
|  | pointer = gfc_conv_descriptor_data_get (pointer); | 
|  | } | 
|  |  | 
|  | cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, pointer, | 
|  | build_int_cst (TREE_TYPE (pointer), 0)); | 
|  |  | 
|  | /* When POINTER is NULL, we set STATUS to 1 if it's present, otherwise | 
|  | we emit a runtime error.  */ | 
|  | gfc_start_block (&null); | 
|  | if (!can_fail) | 
|  | { | 
|  | tree varname; | 
|  |  | 
|  | gcc_assert (expr && expr->expr_type == EXPR_VARIABLE && expr->symtree); | 
|  |  | 
|  | varname = gfc_build_cstring_const (expr->symtree->name); | 
|  | varname = gfc_build_addr_expr (pchar_type_node, varname); | 
|  |  | 
|  | error = gfc_trans_runtime_error (true, &expr->where, | 
|  | "Attempt to DEALLOCATE unallocated '%s'", | 
|  | varname); | 
|  | } | 
|  | else | 
|  | error = build_empty_stmt (input_location); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | tree cond2; | 
|  |  | 
|  | status_type = TREE_TYPE (TREE_TYPE (status)); | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | status, build_int_cst (TREE_TYPE (status), 0)); | 
|  | tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | fold_build1_loc (input_location, INDIRECT_REF, | 
|  | status_type, status), | 
|  | build_int_cst (status_type, unalloc_ok ? 0 : 1)); | 
|  | error = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond2, tmp, error); | 
|  | } | 
|  |  | 
|  | gfc_add_expr_to_block (&null, error); | 
|  |  | 
|  | /* When POINTER is not NULL, we free it.  */ | 
|  | gfc_start_block (&non_null); | 
|  | if (add_when_allocated) | 
|  | gfc_add_expr_to_block (&non_null, add_when_allocated); | 
|  | gfc_add_finalizer_call (&non_null, expr, class_container); | 
|  | if (coarray_dealloc_mode == GFC_CAF_COARRAY_NOCOARRAY | 
|  | || flag_coarray != GFC_FCOARRAY_LIB) | 
|  | { | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_FREE), 1, | 
|  | fold_convert (pvoid_type_node, pointer)); | 
|  | if (flag_openmp_allocators && coarray_dealloc_mode < GFC_CAF_COARRAY_ANALYZE) | 
|  | { | 
|  | tree cond, omp_tmp; | 
|  | if (descr) | 
|  | cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, | 
|  | gfc_conv_descriptor_version (descr), | 
|  | integer_one_node); | 
|  | else | 
|  | cond = gfc_omp_call_is_alloc (pointer); | 
|  | omp_tmp = builtin_decl_explicit (BUILT_IN_GOMP_FREE); | 
|  | omp_tmp = build_call_expr_loc (input_location, omp_tmp, 2, pointer, | 
|  | build_zero_cst (ptr_type_node)); | 
|  | tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond, | 
|  | omp_tmp, tmp); | 
|  | } | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | gfc_add_modify (&non_null, pointer, build_int_cst (TREE_TYPE (pointer), | 
|  | 0)); | 
|  | if (flag_openmp_allocators && descr) | 
|  | gfc_add_modify (&non_null, gfc_conv_descriptor_version (descr), | 
|  | integer_zero_node); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | /* We set STATUS to zero if it is present.  */ | 
|  | tree status_type = TREE_TYPE (TREE_TYPE (status)); | 
|  | tree cond2; | 
|  |  | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | status, | 
|  | build_int_cst (TREE_TYPE (status), 0)); | 
|  | tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | fold_build1_loc (input_location, INDIRECT_REF, | 
|  | status_type, status), | 
|  | build_int_cst (status_type, 0)); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | gfc_unlikely (cond2, PRED_FORTRAN_FAIL_ALLOC), | 
|  | tmp, build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | tree cond2, pstat = null_pointer_node; | 
|  |  | 
|  | if (errmsg == NULL_TREE) | 
|  | { | 
|  | gcc_assert (errlen == NULL_TREE); | 
|  | errmsg = null_pointer_node; | 
|  | errlen = integer_zero_node; | 
|  | } | 
|  | else | 
|  | { | 
|  | gcc_assert (errlen != NULL_TREE); | 
|  | if (!POINTER_TYPE_P (TREE_TYPE (errmsg))) | 
|  | errmsg = gfc_build_addr_expr (NULL_TREE, errmsg); | 
|  | } | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | gcc_assert (status_type == integer_type_node); | 
|  | pstat = status; | 
|  | } | 
|  |  | 
|  | token = gfc_build_addr_expr  (NULL_TREE, token); | 
|  | gcc_assert (caf_dereg_type > GFC_CAF_COARRAY_ANALYZE); | 
|  | tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_deregister, 5, | 
|  | token, | 
|  | build_int_cst (integer_type_node, | 
|  | caf_dereg_type), | 
|  | pstat, errmsg, errlen); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  |  | 
|  | /* It guarantees memory consistency within the same segment */ | 
|  | tmp = gfc_build_string_const (strlen ("memory")+1, "memory"), | 
|  | tmp = build5_loc (input_location, ASM_EXPR, void_type_node, | 
|  | gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, | 
|  | tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); | 
|  | ASM_VOLATILE_P (tmp) = 1; | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | tree stat = build_fold_indirect_ref_loc (input_location, status); | 
|  | tree nullify = fold_build2_loc (input_location, MODIFY_EXPR, | 
|  | void_type_node, pointer, | 
|  | build_int_cst (TREE_TYPE (pointer), | 
|  | 0)); | 
|  |  | 
|  | TREE_USED (label_finish) = 1; | 
|  | tmp = build1_v (GOTO_EXPR, label_finish); | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | stat, build_zero_cst (TREE_TYPE (stat))); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | gfc_unlikely (cond2, PRED_FORTRAN_REALLOC), | 
|  | tmp, nullify); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | } | 
|  | else | 
|  | gfc_add_modify (&non_null, pointer, build_int_cst (TREE_TYPE (pointer), | 
|  | 0)); | 
|  | } | 
|  |  | 
|  | return fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, | 
|  | gfc_finish_block (&null), | 
|  | gfc_finish_block (&non_null)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Generate code for deallocation of allocatable scalars (variables or | 
|  | components). Before the object itself is freed, any allocatable | 
|  | subcomponents are being deallocated.  */ | 
|  |  | 
|  | tree | 
|  | gfc_deallocate_scalar_with_status (tree pointer, tree status, tree label_finish, | 
|  | bool can_fail, gfc_expr *expr, | 
|  | gfc_typespec ts, tree class_container, | 
|  | bool coarray, bool unalloc_ok, tree errmsg, | 
|  | tree errmsg_len) | 
|  | { | 
|  | stmtblock_t null, non_null; | 
|  | tree cond, tmp, error; | 
|  | bool finalizable, comp_ref; | 
|  | gfc_coarray_deregtype caf_dereg_type = GFC_CAF_COARRAY_DEREGISTER; | 
|  |  | 
|  | if (coarray && expr && !gfc_caf_attr (expr, false, &comp_ref).coarray_comp | 
|  | && comp_ref) | 
|  | caf_dereg_type = GFC_CAF_COARRAY_DEALLOCATE_ONLY; | 
|  |  | 
|  | cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, pointer, | 
|  | build_int_cst (TREE_TYPE (pointer), 0)); | 
|  |  | 
|  | /* When POINTER is NULL, we set STATUS to 1 if it's present, otherwise | 
|  | we emit a runtime error.  */ | 
|  | gfc_start_block (&null); | 
|  | if (!can_fail) | 
|  | { | 
|  | tree varname; | 
|  |  | 
|  | gcc_assert (expr && expr->expr_type == EXPR_VARIABLE && expr->symtree); | 
|  |  | 
|  | varname = gfc_build_cstring_const (expr->symtree->name); | 
|  | varname = gfc_build_addr_expr (pchar_type_node, varname); | 
|  |  | 
|  | error = gfc_trans_runtime_error (true, &expr->where, | 
|  | "Attempt to DEALLOCATE unallocated '%s'", | 
|  | varname); | 
|  | } | 
|  | else | 
|  | error = build_empty_stmt (input_location); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | tree status_type = TREE_TYPE (TREE_TYPE (status)); | 
|  | tree cond2; | 
|  |  | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | status, build_int_cst (TREE_TYPE (status), 0)); | 
|  | tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | fold_build1_loc (input_location, INDIRECT_REF, | 
|  | status_type, status), | 
|  | build_int_cst (status_type, unalloc_ok ? 0 : 1)); | 
|  | error = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond2, tmp, error); | 
|  | } | 
|  | gfc_add_expr_to_block (&null, error); | 
|  |  | 
|  | /* When POINTER is not NULL, we free it.  */ | 
|  | gfc_start_block (&non_null); | 
|  |  | 
|  | /* Free allocatable components.  */ | 
|  | finalizable = gfc_add_finalizer_call (&non_null, expr, class_container); | 
|  | if (!finalizable && ts.type == BT_DERIVED && ts.u.derived->attr.alloc_comp) | 
|  | { | 
|  | int caf_mode = coarray | 
|  | ? ((caf_dereg_type == GFC_CAF_COARRAY_DEALLOCATE_ONLY | 
|  | ? GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY : 0) | 
|  | | GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | 
|  | | GFC_STRUCTURE_CAF_MODE_IN_COARRAY) | 
|  | : 0; | 
|  | if (coarray && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (pointer))) | 
|  | tmp = gfc_conv_descriptor_data_get (pointer); | 
|  | else | 
|  | tmp = build_fold_indirect_ref_loc (input_location, pointer); | 
|  | tmp = gfc_deallocate_alloc_comp (ts.u.derived, tmp, 0, caf_mode); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | } | 
|  |  | 
|  | if (!coarray || flag_coarray == GFC_FCOARRAY_SINGLE) | 
|  | { | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_FREE), 1, | 
|  | fold_convert (pvoid_type_node, pointer)); | 
|  | if (flag_openmp_allocators) | 
|  | { | 
|  | tree cond, omp_tmp; | 
|  | cond = gfc_omp_call_is_alloc (pointer); | 
|  | omp_tmp = builtin_decl_explicit (BUILT_IN_GOMP_FREE); | 
|  | omp_tmp = build_call_expr_loc (input_location, omp_tmp, 2, pointer, | 
|  | build_zero_cst (ptr_type_node)); | 
|  | tmp = build3_loc (input_location, COND_EXPR, TREE_TYPE (tmp), cond, | 
|  | omp_tmp, tmp); | 
|  | } | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | /* We set STATUS to zero if it is present.  */ | 
|  | tree status_type = TREE_TYPE (TREE_TYPE (status)); | 
|  | tree cond2; | 
|  |  | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | status, | 
|  | build_int_cst (TREE_TYPE (status), 0)); | 
|  | tmp = fold_build2_loc (input_location, MODIFY_EXPR, status_type, | 
|  | fold_build1_loc (input_location, INDIRECT_REF, | 
|  | status_type, status), | 
|  | build_int_cst (status_type, 0)); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | cond2, tmp, build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | tree token; | 
|  | tree pstat = null_pointer_node, perrmsg = null_pointer_node, | 
|  | perrlen = size_zero_node; | 
|  | gfc_se se; | 
|  |  | 
|  | gfc_init_se (&se, NULL); | 
|  | token = gfc_get_ultimate_alloc_ptr_comps_caf_token (&se, expr); | 
|  | gcc_assert (token != NULL_TREE); | 
|  |  | 
|  | if (status != NULL_TREE && !integer_zerop (status)) | 
|  | { | 
|  | gcc_assert (TREE_TYPE (TREE_TYPE (status)) == integer_type_node); | 
|  | pstat = status; | 
|  | } | 
|  |  | 
|  | if (errmsg != NULL_TREE) | 
|  | { | 
|  | perrmsg = errmsg; | 
|  | perrlen = errmsg_len; | 
|  | } | 
|  |  | 
|  | tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_deregister, 5, | 
|  | token, | 
|  | build_int_cst (integer_type_node, | 
|  | caf_dereg_type), | 
|  | pstat, perrmsg, perrlen); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  |  | 
|  | /* It guarantees memory consistency within the same segment.  */ | 
|  | tmp = gfc_build_string_const (strlen ("memory")+1, "memory"); | 
|  | tmp = build5_loc (input_location, ASM_EXPR, void_type_node, | 
|  | gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE, | 
|  | tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE); | 
|  | ASM_VOLATILE_P (tmp) = 1; | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  |  | 
|  | if (status != NULL_TREE) | 
|  | { | 
|  | tree stat = build_fold_indirect_ref_loc (input_location, status); | 
|  | tree cond2; | 
|  |  | 
|  | TREE_USED (label_finish) = 1; | 
|  | tmp = build1_v (GOTO_EXPR, label_finish); | 
|  | cond2 = fold_build2_loc (input_location, NE_EXPR, logical_type_node, | 
|  | stat, build_zero_cst (TREE_TYPE (stat))); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | gfc_unlikely (cond2, PRED_FORTRAN_REALLOC), | 
|  | tmp, build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (&non_null, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | return fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, | 
|  | gfc_finish_block (&null), | 
|  | gfc_finish_block (&non_null)); | 
|  | } | 
|  |  | 
|  | /* Reallocate MEM so it has SIZE bytes of data.  This behaves like the | 
|  | following pseudo-code: | 
|  |  | 
|  | void * | 
|  | internal_realloc (void *mem, size_t size) | 
|  | { | 
|  | res = realloc (mem, size); | 
|  | if (!res && size != 0) | 
|  | _gfortran_os_error ("Allocation would exceed memory limit"); | 
|  |  | 
|  | return res; | 
|  | }  */ | 
|  | tree | 
|  | gfc_call_realloc (stmtblock_t * block, tree mem, tree size) | 
|  | { | 
|  | tree res, nonzero, null_result, tmp; | 
|  | tree type = TREE_TYPE (mem); | 
|  |  | 
|  | /* Only evaluate the size once.  */ | 
|  | size = save_expr (fold_convert (size_type_node, size)); | 
|  |  | 
|  | /* Create a variable to hold the result.  */ | 
|  | res = gfc_create_var (type, NULL); | 
|  |  | 
|  | /* Call realloc and check the result.  */ | 
|  | tmp = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_REALLOC), 2, | 
|  | fold_convert (pvoid_type_node, mem), size); | 
|  | gfc_add_modify (block, res, fold_convert (type, tmp)); | 
|  | null_result = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, | 
|  | res, build_int_cst (pvoid_type_node, 0)); | 
|  | nonzero = fold_build2_loc (input_location, NE_EXPR, logical_type_node, size, | 
|  | build_int_cst (size_type_node, 0)); | 
|  | null_result = fold_build2_loc (input_location, TRUTH_AND_EXPR, logical_type_node, | 
|  | null_result, nonzero); | 
|  | tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, | 
|  | null_result, | 
|  | trans_os_error_at (NULL, | 
|  | "Error reallocating to %lu bytes", | 
|  | fold_convert | 
|  | (long_unsigned_type_node, size)), | 
|  | build_empty_stmt (input_location)); | 
|  | gfc_add_expr_to_block (block, tmp); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add an expression to another one, either at the front or the back.  */ | 
|  |  | 
|  | static void | 
|  | add_expr_to_chain (tree* chain, tree expr, bool front) | 
|  | { | 
|  | if (expr == NULL_TREE || IS_EMPTY_STMT (expr)) | 
|  | return; | 
|  |  | 
|  | if (*chain) | 
|  | { | 
|  | if (TREE_CODE (*chain) != STATEMENT_LIST) | 
|  | { | 
|  | tree tmp; | 
|  |  | 
|  | tmp = *chain; | 
|  | *chain = NULL_TREE; | 
|  | append_to_statement_list (tmp, chain); | 
|  | } | 
|  |  | 
|  | if (front) | 
|  | { | 
|  | tree_stmt_iterator i; | 
|  |  | 
|  | i = tsi_start (*chain); | 
|  | tsi_link_before (&i, expr, TSI_CONTINUE_LINKING); | 
|  | } | 
|  | else | 
|  | append_to_statement_list (expr, chain); | 
|  | } | 
|  | else | 
|  | *chain = expr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add a statement at the end of a block.  */ | 
|  |  | 
|  | void | 
|  | gfc_add_expr_to_block (stmtblock_t * block, tree expr) | 
|  | { | 
|  | gcc_assert (block); | 
|  | add_expr_to_chain (&block->head, expr, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add a statement at the beginning of a block.  */ | 
|  |  | 
|  | void | 
|  | gfc_prepend_expr_to_block (stmtblock_t * block, tree expr) | 
|  | { | 
|  | gcc_assert (block); | 
|  | add_expr_to_chain (&block->head, expr, true); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add a block the end of a block.  */ | 
|  |  | 
|  | void | 
|  | gfc_add_block_to_block (stmtblock_t * block, stmtblock_t * append) | 
|  | { | 
|  | gcc_assert (append); | 
|  | gcc_assert (!append->has_scope); | 
|  |  | 
|  | gfc_add_expr_to_block (block, append->head); | 
|  | append->head = NULL_TREE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Translate an executable statement. The tree cond is used by gfc_trans_do. | 
|  | This static function is wrapped by gfc_trans_code_cond and | 
|  | gfc_trans_code.  */ | 
|  |  | 
|  | static tree | 
|  | trans_code (gfc_code * code, tree cond) | 
|  | { | 
|  | stmtblock_t block; | 
|  | tree res; | 
|  |  | 
|  | if (!code) | 
|  | return build_empty_stmt (input_location); | 
|  |  | 
|  | gfc_start_block (&block); | 
|  |  | 
|  | /* Translate statements one by one into GENERIC trees until we reach | 
|  | the end of this gfc_code branch.  */ | 
|  | for (; code; code = code->next) | 
|  | { | 
|  | if (code->here != 0) | 
|  | { | 
|  | res = gfc_trans_label_here (code); | 
|  | gfc_add_expr_to_block (&block, res); | 
|  | } | 
|  |  | 
|  | input_location = gfc_get_location (&code->loc); | 
|  |  | 
|  | switch (code->op) | 
|  | { | 
|  | case EXEC_NOP: | 
|  | case EXEC_END_BLOCK: | 
|  | case EXEC_END_NESTED_BLOCK: | 
|  | case EXEC_END_PROCEDURE: | 
|  | res = NULL_TREE; | 
|  | break; | 
|  |  | 
|  | case EXEC_ASSIGN: | 
|  | res = gfc_trans_assign (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_LABEL_ASSIGN: | 
|  | res = gfc_trans_label_assign (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_POINTER_ASSIGN: | 
|  | res = gfc_trans_pointer_assign (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_INIT_ASSIGN: | 
|  | if (code->expr1->ts.type == BT_CLASS) | 
|  | res = gfc_trans_class_init_assign (code); | 
|  | else | 
|  | res = gfc_trans_init_assign (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_CONTINUE: | 
|  | res = NULL_TREE; | 
|  | break; | 
|  |  | 
|  | case EXEC_CRITICAL: | 
|  | res = gfc_trans_critical (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_CYCLE: | 
|  | res = gfc_trans_cycle (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_EXIT: | 
|  | res = gfc_trans_exit (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_GOTO: | 
|  | res = gfc_trans_goto (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_ENTRY: | 
|  | res = gfc_trans_entry (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_PAUSE: | 
|  | res = gfc_trans_pause (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_STOP: | 
|  | case EXEC_ERROR_STOP: | 
|  | res = gfc_trans_stop (code, code->op == EXEC_ERROR_STOP); | 
|  | break; | 
|  |  | 
|  | case EXEC_CALL: | 
|  | /* For MVBITS we've got the special exception that we need a | 
|  | dependency check, too.  */ | 
|  | { | 
|  | bool is_mvbits = false; | 
|  |  | 
|  | if (code->resolved_isym) | 
|  | { | 
|  | res = gfc_conv_intrinsic_subroutine (code); | 
|  | if (res != NULL_TREE) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (code->resolved_isym | 
|  | && code->resolved_isym->id == GFC_ISYM_MVBITS) | 
|  | is_mvbits = true; | 
|  |  | 
|  | res = gfc_trans_call (code, is_mvbits, NULL_TREE, | 
|  | NULL_TREE, false); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case EXEC_CALL_PPC: | 
|  | res = gfc_trans_call (code, false, NULL_TREE, | 
|  | NULL_TREE, false); | 
|  | break; | 
|  |  | 
|  | case EXEC_ASSIGN_CALL: | 
|  | res = gfc_trans_call (code, true, NULL_TREE, | 
|  | NULL_TREE, false); | 
|  | break; | 
|  |  | 
|  | case EXEC_RETURN: | 
|  | res = gfc_trans_return (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_IF: | 
|  | res = gfc_trans_if (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_ARITHMETIC_IF: | 
|  | res = gfc_trans_arithmetic_if (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_BLOCK: | 
|  | res = gfc_trans_block_construct (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_DO: | 
|  | res = gfc_trans_do (code, cond); | 
|  | break; | 
|  |  | 
|  | case EXEC_DO_CONCURRENT: | 
|  | res = gfc_trans_do_concurrent (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_DO_WHILE: | 
|  | res = gfc_trans_do_while (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_SELECT: | 
|  | res = gfc_trans_select (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_SELECT_TYPE: | 
|  | res = gfc_trans_select_type (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_SELECT_RANK: | 
|  | res = gfc_trans_select_rank (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_FLUSH: | 
|  | res = gfc_trans_flush (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_SYNC_ALL: | 
|  | case EXEC_SYNC_IMAGES: | 
|  | case EXEC_SYNC_MEMORY: | 
|  | res = gfc_trans_sync (code, code->op); | 
|  | break; | 
|  |  | 
|  | case EXEC_LOCK: | 
|  | case EXEC_UNLOCK: | 
|  | res = gfc_trans_lock_unlock (code, code->op); | 
|  | break; | 
|  |  | 
|  | case EXEC_EVENT_POST: | 
|  | case EXEC_EVENT_WAIT: | 
|  | res = gfc_trans_event_post_wait (code, code->op); | 
|  | break; | 
|  |  | 
|  | case EXEC_FAIL_IMAGE: | 
|  | res = gfc_trans_fail_image (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_FORALL: | 
|  | res = gfc_trans_forall (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_FORM_TEAM: | 
|  | res = gfc_trans_form_team (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_CHANGE_TEAM: | 
|  | res = gfc_trans_change_team (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_END_TEAM: | 
|  | res = gfc_trans_end_team (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_SYNC_TEAM: | 
|  | res = gfc_trans_sync_team (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_WHERE: | 
|  | res = gfc_trans_where (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_ALLOCATE: | 
|  | res = gfc_trans_allocate (code, NULL); | 
|  | break; | 
|  |  | 
|  | case EXEC_DEALLOCATE: | 
|  | res = gfc_trans_deallocate (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_OPEN: | 
|  | res = gfc_trans_open (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_CLOSE: | 
|  | res = gfc_trans_close (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_READ: | 
|  | res = gfc_trans_read (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_WRITE: | 
|  | res = gfc_trans_write (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_IOLENGTH: | 
|  | res = gfc_trans_iolength (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_BACKSPACE: | 
|  | res = gfc_trans_backspace (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_ENDFILE: | 
|  | res = gfc_trans_endfile (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_INQUIRE: | 
|  | res = gfc_trans_inquire (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_WAIT: | 
|  | res = gfc_trans_wait (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_REWIND: | 
|  | res = gfc_trans_rewind (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_TRANSFER: | 
|  | res = gfc_trans_transfer (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_DT_END: | 
|  | res = gfc_trans_dt_end (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_OMP_ALLOCATE: | 
|  | case EXEC_OMP_ALLOCATORS: | 
|  | case EXEC_OMP_ASSUME: | 
|  | case EXEC_OMP_ATOMIC: | 
|  | case EXEC_OMP_BARRIER: | 
|  | case EXEC_OMP_CANCEL: | 
|  | case EXEC_OMP_CANCELLATION_POINT: | 
|  | case EXEC_OMP_CRITICAL: | 
|  | case EXEC_OMP_DEPOBJ: | 
|  | case EXEC_OMP_DISPATCH: | 
|  | case EXEC_OMP_DISTRIBUTE: | 
|  | case EXEC_OMP_DISTRIBUTE_PARALLEL_DO: | 
|  | case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD: | 
|  | case EXEC_OMP_DISTRIBUTE_SIMD: | 
|  | case EXEC_OMP_DO: | 
|  | case EXEC_OMP_DO_SIMD: | 
|  | case EXEC_OMP_ERROR: | 
|  | case EXEC_OMP_FLUSH: | 
|  | case EXEC_OMP_INTEROP: | 
|  | case EXEC_OMP_LOOP: | 
|  | case EXEC_OMP_MASKED: | 
|  | case EXEC_OMP_MASKED_TASKLOOP: | 
|  | case EXEC_OMP_MASKED_TASKLOOP_SIMD: | 
|  | case EXEC_OMP_MASTER: | 
|  | case EXEC_OMP_MASTER_TASKLOOP: | 
|  | case EXEC_OMP_MASTER_TASKLOOP_SIMD: | 
|  | case EXEC_OMP_METADIRECTIVE: | 
|  | case EXEC_OMP_ORDERED: | 
|  | case EXEC_OMP_PARALLEL: | 
|  | case EXEC_OMP_PARALLEL_DO: | 
|  | case EXEC_OMP_PARALLEL_DO_SIMD: | 
|  | case EXEC_OMP_PARALLEL_LOOP: | 
|  | case EXEC_OMP_PARALLEL_MASKED: | 
|  | case EXEC_OMP_PARALLEL_MASKED_TASKLOOP: | 
|  | case EXEC_OMP_PARALLEL_MASKED_TASKLOOP_SIMD: | 
|  | case EXEC_OMP_PARALLEL_MASTER: | 
|  | case EXEC_OMP_PARALLEL_MASTER_TASKLOOP: | 
|  | case EXEC_OMP_PARALLEL_MASTER_TASKLOOP_SIMD: | 
|  | case EXEC_OMP_PARALLEL_SECTIONS: | 
|  | case EXEC_OMP_PARALLEL_WORKSHARE: | 
|  | case EXEC_OMP_SCOPE: | 
|  | case EXEC_OMP_SECTIONS: | 
|  | case EXEC_OMP_SIMD: | 
|  | case EXEC_OMP_SINGLE: | 
|  | case EXEC_OMP_TARGET: | 
|  | case EXEC_OMP_TARGET_DATA: | 
|  | case EXEC_OMP_TARGET_ENTER_DATA: | 
|  | case EXEC_OMP_TARGET_EXIT_DATA: | 
|  | case EXEC_OMP_TARGET_PARALLEL: | 
|  | case EXEC_OMP_TARGET_PARALLEL_DO: | 
|  | case EXEC_OMP_TARGET_PARALLEL_DO_SIMD: | 
|  | case EXEC_OMP_TARGET_PARALLEL_LOOP: | 
|  | case EXEC_OMP_TARGET_SIMD: | 
|  | case EXEC_OMP_TARGET_TEAMS: | 
|  | case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE: | 
|  | case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO: | 
|  | case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD: | 
|  | case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD: | 
|  | case EXEC_OMP_TARGET_TEAMS_LOOP: | 
|  | case EXEC_OMP_TARGET_UPDATE: | 
|  | case EXEC_OMP_TASK: | 
|  | case EXEC_OMP_TASKGROUP: | 
|  | case EXEC_OMP_TASKLOOP: | 
|  | case EXEC_OMP_TASKLOOP_SIMD: | 
|  | case EXEC_OMP_TASKWAIT: | 
|  | case EXEC_OMP_TASKYIELD: | 
|  | case EXEC_OMP_TEAMS: | 
|  | case EXEC_OMP_TEAMS_DISTRIBUTE: | 
|  | case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO: | 
|  | case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD: | 
|  | case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD: | 
|  | case EXEC_OMP_TEAMS_LOOP: | 
|  | case EXEC_OMP_TILE: | 
|  | case EXEC_OMP_UNROLL: | 
|  | case EXEC_OMP_WORKSHARE: | 
|  | res = gfc_trans_omp_directive (code); | 
|  | break; | 
|  |  | 
|  | case EXEC_OACC_CACHE: | 
|  | case EXEC_OACC_WAIT: | 
|  | case EXEC_OACC_UPDATE: | 
|  | case EXEC_OACC_LOOP: | 
|  | case EXEC_OACC_HOST_DATA: | 
|  | case EXEC_OACC_DATA: | 
|  | case EXEC_OACC_KERNELS: | 
|  | case EXEC_OACC_KERNELS_LOOP: | 
|  | case EXEC_OACC_PARALLEL: | 
|  | case EXEC_OACC_PARALLEL_LOOP: | 
|  | case EXEC_OACC_SERIAL: | 
|  | case EXEC_OACC_SERIAL_LOOP: | 
|  | case EXEC_OACC_ENTER_DATA: | 
|  | case EXEC_OACC_EXIT_DATA: | 
|  | case EXEC_OACC_ATOMIC: | 
|  | case EXEC_OACC_DECLARE: | 
|  | res = gfc_trans_oacc_directive (code); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gfc_internal_error ("gfc_trans_code(): Bad statement code"); | 
|  | } | 
|  |  | 
|  | input_location = gfc_get_location (&code->loc); | 
|  |  | 
|  | if (res != NULL_TREE && ! IS_EMPTY_STMT (res)) | 
|  | { | 
|  | if (TREE_CODE (res) != STATEMENT_LIST) | 
|  | SET_EXPR_LOCATION (res, input_location); | 
|  |  | 
|  | /* Add the new statement to the block.  */ | 
|  | gfc_add_expr_to_block (&block, res); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the finished block.  */ | 
|  | return gfc_finish_block (&block); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Translate an executable statement with condition, cond.  The condition is | 
|  | used by gfc_trans_do to test for IO result conditions inside implied | 
|  | DO loops of READ and WRITE statements.  See build_dt in trans-io.cc.  */ | 
|  |  | 
|  | tree | 
|  | gfc_trans_code_cond (gfc_code * code, tree cond) | 
|  | { | 
|  | return trans_code (code, cond); | 
|  | } | 
|  |  | 
|  | /* Translate an executable statement without condition.  */ | 
|  |  | 
|  | tree | 
|  | gfc_trans_code (gfc_code * code) | 
|  | { | 
|  | return trans_code (code, NULL_TREE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This function is called after a complete program unit has been parsed | 
|  | and resolved.  */ | 
|  |  | 
|  | void | 
|  | gfc_generate_code (gfc_namespace * ns) | 
|  | { | 
|  | ompws_flags = 0; | 
|  | if (ns->is_block_data) | 
|  | { | 
|  | gfc_generate_block_data (ns); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gfc_generate_function_code (ns); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This function is called after a complete module has been parsed | 
|  | and resolved.  */ | 
|  |  | 
|  | void | 
|  | gfc_generate_module_code (gfc_namespace * ns) | 
|  | { | 
|  | gfc_namespace *n; | 
|  | struct module_htab_entry *entry; | 
|  |  | 
|  | gcc_assert (ns->proc_name->backend_decl == NULL); | 
|  | ns->proc_name->backend_decl | 
|  | = build_decl (gfc_get_location (&ns->proc_name->declared_at), | 
|  | NAMESPACE_DECL, get_identifier (ns->proc_name->name), | 
|  | void_type_node); | 
|  | entry = gfc_find_module (ns->proc_name->name); | 
|  | if (entry->namespace_decl) | 
|  | /* Buggy sourcecode, using a module before defining it?  */ | 
|  | entry->decls->empty (); | 
|  | entry->namespace_decl = ns->proc_name->backend_decl; | 
|  |  | 
|  | gfc_generate_module_vars (ns); | 
|  |  | 
|  | /* We need to generate all module function prototypes first, to allow | 
|  | sibling calls.  */ | 
|  | for (n = ns->contained; n; n = n->sibling) | 
|  | { | 
|  | gfc_entry_list *el; | 
|  |  | 
|  | if (!n->proc_name) | 
|  | continue; | 
|  |  | 
|  | gfc_create_function_decl (n, false); | 
|  | DECL_CONTEXT (n->proc_name->backend_decl) = ns->proc_name->backend_decl; | 
|  | gfc_module_add_decl (entry, n->proc_name->backend_decl); | 
|  | for (el = ns->entries; el; el = el->next) | 
|  | { | 
|  | DECL_CONTEXT (el->sym->backend_decl) = ns->proc_name->backend_decl; | 
|  | gfc_module_add_decl (entry, el->sym->backend_decl); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (n = ns->contained; n; n = n->sibling) | 
|  | { | 
|  | if (!n->proc_name) | 
|  | continue; | 
|  |  | 
|  | gfc_generate_function_code (n); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Initialize an init/cleanup block with existing code.  */ | 
|  |  | 
|  | void | 
|  | gfc_start_wrapped_block (gfc_wrapped_block* block, tree code) | 
|  | { | 
|  | gcc_assert (block); | 
|  |  | 
|  | block->init = NULL_TREE; | 
|  | block->code = code; | 
|  | block->cleanup = NULL_TREE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Add a new pair of initializers/clean-up code.  */ | 
|  |  | 
|  | void | 
|  | gfc_add_init_cleanup (gfc_wrapped_block* block, tree init, tree cleanup, | 
|  | bool back) | 
|  | { | 
|  | gcc_assert (block); | 
|  |  | 
|  | /* The new pair of init/cleanup should be "wrapped around" the existing | 
|  | block of code, thus the initialization is added to the front and the | 
|  | cleanup to the back.  */ | 
|  | add_expr_to_chain (&block->init, init, !back); | 
|  | add_expr_to_chain (&block->cleanup, cleanup, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Finish up a wrapped block by building a corresponding try-finally expr.  */ | 
|  |  | 
|  | tree | 
|  | gfc_finish_wrapped_block (gfc_wrapped_block* block) | 
|  | { | 
|  | tree result; | 
|  |  | 
|  | gcc_assert (block); | 
|  |  | 
|  | /* Build the final expression.  For this, just add init and body together, | 
|  | and put clean-up with that into a TRY_FINALLY_EXPR.  */ | 
|  | result = block->init; | 
|  | add_expr_to_chain (&result, block->code, false); | 
|  | if (block->cleanup) | 
|  | result = build2_loc (input_location, TRY_FINALLY_EXPR, void_type_node, | 
|  | result, block->cleanup); | 
|  |  | 
|  | /* Clear the block.  */ | 
|  | block->init = NULL_TREE; | 
|  | block->code = NULL_TREE; | 
|  | block->cleanup = NULL_TREE; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Helper function for marking a boolean expression tree as unlikely.  */ | 
|  |  | 
|  | tree | 
|  | gfc_unlikely (tree cond, enum br_predictor predictor) | 
|  | { | 
|  | tree tmp; | 
|  |  | 
|  | if (optimize) | 
|  | { | 
|  | cond = fold_convert (long_integer_type_node, cond); | 
|  | tmp = build_zero_cst (long_integer_type_node); | 
|  | cond = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_EXPECT), | 
|  | 3, cond, tmp, | 
|  | build_int_cst (integer_type_node, | 
|  | predictor)); | 
|  | } | 
|  | return cond; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Helper function for marking a boolean expression tree as likely.  */ | 
|  |  | 
|  | tree | 
|  | gfc_likely (tree cond, enum br_predictor predictor) | 
|  | { | 
|  | tree tmp; | 
|  |  | 
|  | if (optimize) | 
|  | { | 
|  | cond = fold_convert (long_integer_type_node, cond); | 
|  | tmp = build_one_cst (long_integer_type_node); | 
|  | cond = build_call_expr_loc (input_location, | 
|  | builtin_decl_explicit (BUILT_IN_EXPECT), | 
|  | 3, cond, tmp, | 
|  | build_int_cst (integer_type_node, | 
|  | predictor)); | 
|  | } | 
|  | return cond; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Get the string length for a deferred character length component.  */ | 
|  |  | 
|  | bool | 
|  | gfc_deferred_strlen (gfc_component *c, tree *decl) | 
|  | { | 
|  | char name[GFC_MAX_SYMBOL_LEN+9]; | 
|  | gfc_component *strlen; | 
|  | if (!(c->ts.type == BT_CHARACTER | 
|  | && (c->ts.deferred || c->attr.pdt_string))) | 
|  | return false; | 
|  | sprintf (name, "_%s_length", c->name); | 
|  | for (strlen = c; strlen; strlen = strlen->next) | 
|  | if (strcmp (strlen->name, name) == 0) | 
|  | break; | 
|  | *decl = strlen ? strlen->backend_decl : NULL_TREE; | 
|  | return strlen != NULL; | 
|  | } |