| // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Package heap provides heap operations for any type that implements | 
 | // heap.Interface. A heap is a tree with the property that each node is the | 
 | // minimum-valued node in its subtree. | 
 | // | 
 | // The minimum element in the tree is the root, at index 0. | 
 | // | 
 | // A heap is a common way to implement a priority queue. To build a priority | 
 | // queue, implement the Heap interface with the (negative) priority as the | 
 | // ordering for the Less method, so Push adds items while Pop removes the | 
 | // highest-priority item from the queue. The Examples include such an | 
 | // implementation; the file example_pq_test.go has the complete source. | 
 | // | 
 | package heap | 
 |  | 
 | import "sort" | 
 |  | 
 | // The Interface type describes the requirements | 
 | // for a type using the routines in this package. | 
 | // Any type that implements it may be used as a | 
 | // min-heap with the following invariants (established after | 
 | // Init has been called or if the data is empty or sorted): | 
 | // | 
 | //	!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len() | 
 | // | 
 | // Note that Push and Pop in this interface are for package heap's | 
 | // implementation to call. To add and remove things from the heap, | 
 | // use heap.Push and heap.Pop. | 
 | type Interface interface { | 
 | 	sort.Interface | 
 | 	Push(x any) // add x as element Len() | 
 | 	Pop() any   // remove and return element Len() - 1. | 
 | } | 
 |  | 
 | // Init establishes the heap invariants required by the other routines in this package. | 
 | // Init is idempotent with respect to the heap invariants | 
 | // and may be called whenever the heap invariants may have been invalidated. | 
 | // The complexity is O(n) where n = h.Len(). | 
 | func Init(h Interface) { | 
 | 	// heapify | 
 | 	n := h.Len() | 
 | 	for i := n/2 - 1; i >= 0; i-- { | 
 | 		down(h, i, n) | 
 | 	} | 
 | } | 
 |  | 
 | // Push pushes the element x onto the heap. | 
 | // The complexity is O(log n) where n = h.Len(). | 
 | func Push(h Interface, x any) { | 
 | 	h.Push(x) | 
 | 	up(h, h.Len()-1) | 
 | } | 
 |  | 
 | // Pop removes and returns the minimum element (according to Less) from the heap. | 
 | // The complexity is O(log n) where n = h.Len(). | 
 | // Pop is equivalent to Remove(h, 0). | 
 | func Pop(h Interface) any { | 
 | 	n := h.Len() - 1 | 
 | 	h.Swap(0, n) | 
 | 	down(h, 0, n) | 
 | 	return h.Pop() | 
 | } | 
 |  | 
 | // Remove removes and returns the element at index i from the heap. | 
 | // The complexity is O(log n) where n = h.Len(). | 
 | func Remove(h Interface, i int) any { | 
 | 	n := h.Len() - 1 | 
 | 	if n != i { | 
 | 		h.Swap(i, n) | 
 | 		if !down(h, i, n) { | 
 | 			up(h, i) | 
 | 		} | 
 | 	} | 
 | 	return h.Pop() | 
 | } | 
 |  | 
 | // Fix re-establishes the heap ordering after the element at index i has changed its value. | 
 | // Changing the value of the element at index i and then calling Fix is equivalent to, | 
 | // but less expensive than, calling Remove(h, i) followed by a Push of the new value. | 
 | // The complexity is O(log n) where n = h.Len(). | 
 | func Fix(h Interface, i int) { | 
 | 	if !down(h, i, h.Len()) { | 
 | 		up(h, i) | 
 | 	} | 
 | } | 
 |  | 
 | func up(h Interface, j int) { | 
 | 	for { | 
 | 		i := (j - 1) / 2 // parent | 
 | 		if i == j || !h.Less(j, i) { | 
 | 			break | 
 | 		} | 
 | 		h.Swap(i, j) | 
 | 		j = i | 
 | 	} | 
 | } | 
 |  | 
 | func down(h Interface, i0, n int) bool { | 
 | 	i := i0 | 
 | 	for { | 
 | 		j1 := 2*i + 1 | 
 | 		if j1 >= n || j1 < 0 { // j1 < 0 after int overflow | 
 | 			break | 
 | 		} | 
 | 		j := j1 // left child | 
 | 		if j2 := j1 + 1; j2 < n && h.Less(j2, j1) { | 
 | 			j = j2 // = 2*i + 2  // right child | 
 | 		} | 
 | 		if !h.Less(j, i) { | 
 | 			break | 
 | 		} | 
 | 		h.Swap(i, j) | 
 | 		i = j | 
 | 	} | 
 | 	return i > i0 | 
 | } |