blob: bead08e38fc7e483be70c5dd73ef7605694b2420 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . F A T _ G E N --
-- --
-- S p e c --
-- --
-- Copyright (C) 1992-2025, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This generic package provides a target independent implementation of the
-- floating-point attributes that denote functions. The implementations here
-- are portable, but very slow. The runtime contains a set of instantiations
-- of this package for all predefined floating-point types, and these should
-- be replaced by efficient assembly language code where possible.
generic
type T is digits <>;
package System.Fat_Gen is
pragma Pure;
subtype UI is Integer;
-- The runtime representation of universal integer for the purposes of
-- this package is integer. The expander generates conversions for the
-- actual type used. For functions returning universal integer, there
-- is no problem, since the result always is in range of integer. For
-- input arguments, the expander has to do some special casing to deal
-- with the (very annoying) cases of out of range values. If we used
-- Long_Long_Integer to represent universal, then there would be no
-- problem, but the resulting inefficiency would be annoying.
function Adjacent (X, Towards : T) return T;
-- If ``Towards`` = ``X``, the function returns ``X``; oterwise, it yields
-- the machien number of the type *T* adjacent to ``X`` in the direction
-- ``Towards``, if that machine number exists.
function Ceiling (X : T) return T;
-- Truncate ``X``. If the truncation is equal to ``X`` return ``X``. If
-- ``X`` is less than zero, return the truncation, otherwise add one
-- to the truncation.
function Compose (Fraction : T; Exponent : UI) return T;
-- Decompose the ``Fraction`` into its fraction and exponent parts. Call
-- *Scaling* with the returned fraction part and ``Exponent``.
function Copy_Sign (Value, Sign : T) return T;
-- Take the absolute value of ``Value``. Negate the result if ``Sign`` is
-- less than zero.
function Exponent (X : T) return UI;
-- Decompose `X`` and return the exponent part.
function Floor (X : T) return T;
-- Truncate ``X``. If the truncation is equal to ``X`` return ``X``. If
-- ``X`` is greater than zero, return the truncation, otherwise subtract
-- one from the truncation.
function Fraction (X : T) return T;
-- Decompose `X`` and return the fraction part
function Leading_Part (X : T; Radix_Digits : UI) return T;
-- Return ``X`` if the ``Radix_Digits`` is larger than the type's machine
-- mantissa. Otherwise scale down and truncate ``X`` by the difference
-- between the exponent of ``X`` and ``Radix_Digits``, then scale the
-- result back up.
function Machine (X : T) return T;
-- Force ``X`` to be stored in memory and retrieve the result
function Machine_Rounding (X : T) return T;
-- Truncate the absolute value of ``X`` + 0.5. If ``X`` is negative, negate
-- the result.
function Model (X : T) return T;
-- If ``X`` is a model number of *T*, the function returns ``X``;
-- otherwise it yields the value obtained by rounding or truncating ``X``
-- to either one of the adjacent model numbers of *T*.
--
-- We treat *Model* as identical to *Machine*. This is true of IEEE and
-- other nice floating-point systems, but not necessarily true of all
-- systems.
function Pred (X : T) return T;
-- Return the machine number immediately below the value of ``X``.
--
-- If zero, return the negative of *Succ* (``X``).
--
-- If ``X`` = *T*'First, return negative infinity.
--
-- If ``X`` is already infinity, return ``X``.
--
-- Otherwise, subtract from ``X`` a number equivalent to the value of its
-- least significant bit.
function Remainder (X, Y : T) return T;
-- Return the remainder (n) of ``X`` divided by ``Y``.
-- If abs(n - ``X`` / ``Y``) = 1/2 then n is chosen to be even.
--
-- Calculate the modulus remainder: if abs(``X``) < abs(``Y``) then the
-- remainder is abs(``X``). Otherwise, decompose abs(``X``) and abs(``Y``).
-- Then:
--
-- .. code-block:: ada
--
-- P := Compose (Y_Frac, X_Exp);
-- K := X_Exp - Y_Exp;
-- Rem := |X|;
-- for J in reverse 0 .. K loop
-- if Rem >= P then
-- Rem := Rem - P;
-- end if;
-- P := P * 0.5;
-- end loop;
--
-- Return the IEEE remainder by adjusting result such that if
-- abs(n - X/Y) = 1/2 then n is even.
function Rounding (X : T) return T;
-- The function yields the integral value nearest to ``X``, rounding away
-- from zero if ``X`` lies exactly halfway between two integers.
--
-- The function truncates the absolute value of ``X`` + 0.5. If ``X`` is
-- negative, negate the result.
function Scaling (X : T; Adjustment : UI) return T;
-- Let v be the value ``X`` * *T*'Machine_RadixAdjustment. If v is a
-- machine number of the type *T*, or if abs(v) >= *T*'Model_Small, the
-- function yields v; otherwise, it yields either one of the machine
-- numbers of the type *T* adjacent to v.
--
-- If ``X`` or ``Adjustment`` equal zero, return ``X``. Otherwise, return
-- ``X`` * Machine_Radix ** ``Adjustment``.
function Succ (X : T) return T;
-- Returns the machine number immediately above the value of X.
--
-- If zero, return the smallest denormal.
--
-- If ``X`` = *T*'Last, return infinity.
--
-- If ``X`` is already infinity, return ``X``.
--
-- Otherwise, add to X a number equivalent to the value of its least
-- significant bit.
function Truncation (X : T) return T;
-- The function yields the value *Ceiling* (``X``) when ``X`` is negative,
-- and *Floor* (``X``) otherwise.
--
-- Return *T*'Machine (RM1 + N) - RM1 where N is abs(``X``) and
-- RM1 = radix ** (mantissa - 1). Negate the result where ``X`` is
-- negative.
function Unbiased_Rounding (X : T) return T;
-- The integral value nearest to ``X``, rounding toward the even integer
-- if ``X`` lies exactly halfway between two integers.
--
-- This function truncates abs(``X``). If the tail of the result is greater
-- than 0.5 add one to the result. If the tail equals 0.5, round to the
-- nearest even integer. Negate the result if ``X`` is negative.
function Valid (X : not null access T) return Boolean;
-- This function checks if the object of type *T* referenced by ``X`` is
-- valid, and returns True/False accordingly. The parameter is passed by
-- reference (access) here, as the object of type T may be an abnormal
-- value that cannot be passed in a floating-point register, and the whole
-- point of 'Valid is to prevent exceptions. Note that the object of
-- type *T* must have the natural alignment for type *T*.
--
-- If denormalized numbers are valid: return True unless ``X`` is infinity
-- or NaN. If denormalized numbers are not valid, return False if ``X`` is
-- a denormal number.
type S is new String (1 .. T'Size / Character'Size);
type P is access all S with Storage_Size => 0;
-- Buffer and access types used to initialize temporaries for validity
-- checks, if the value to be checked has reverse scalar storage order, or
-- is not known to be properly aligned (for example it appears in a packed
-- record). In this case, we cannot call Valid since Valid assumes proper
-- full alignment. Instead, we copy the value to a temporary location using
-- type S (we cannot simply do a copy of a T value, because the value might
-- be invalid, in which case it might not be possible to copy it through a
-- floating point register).
private
pragma Inline (Compose);
pragma Inline (Copy_Sign);
pragma Inline (Exponent);
pragma Inline (Fraction);
pragma Inline (Machine);
pragma Inline (Model);
pragma Inline (Valid);
end System.Fat_Gen;