blob: 21eb212f6e079d015d0f925d254e772427d632c5 [file] [log] [blame]
/* Generate code from machine description to emit insns as rtl.
Copyright (C) 1987-2025 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "bconfig.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "errors.h"
#include "read-md.h"
#include "gensupport.h"
/* Data structure for recording the patterns of insns that have CLOBBERs.
We use this to output a function that adds these CLOBBERs to a
previously-allocated PARALLEL expression. */
struct clobber_pat
{
struct clobber_ent *insns;
rtvec pattern;
int first_clobber;
struct clobber_pat *next;
int has_hard_reg;
} *clobber_list;
/* Records one insn that uses the clobber list. */
struct clobber_ent
{
int code_number; /* Counts only insns. */
struct clobber_ent *next;
};
static void output_peephole2_scratches (rtx, FILE*);
/* True for <X>_optab if that optab isn't allowed to fail. */
static bool nofail_optabs[NUM_OPTABS];
/* A list of the md constructs that need a gen_* function. */
static vec<md_rtx_info> queue;
unsigned FIRST_CODE = (unsigned) expand_opcode::FIRST_CODE;
/* A structure used to generate code for a particular expansion. */
struct generator
{
generator (const md_rtx_info &info) : info (info) {}
void add_uint (uint64_t);
void add_opcode (expand_opcode opcode) { add_uint ((unsigned) opcode); }
void add_code (rtx_code code) { add_uint (FIRST_CODE + (unsigned) code); }
void add_match_operator (machine_mode, int, rtvec);
void add_exp (rtx);
void add_vec (rtvec);
const char *gen_table (FILE *, const char *);
const char *gen_exp (FILE *, rtx);
const char *gen_emit_seq (FILE *, rtvec);
/* The construct that we're expanding. */
const md_rtx_info info;
/* Used to build up the encoding of the expanded rtx sequence. */
auto_vec<uint8_t> bytes;
};
/* Add VALUE to the encoding using "BEB128" (big-endian version of LEB128).
This is slightly easier for the consumer. */
void
generator::add_uint (uint64_t value)
{
int shift = 0;
while ((value >> shift >> 7) > 0)
shift += 7;
do
{
bytes.safe_push (((value >> shift) & 127) | (shift > 0 ? 128 : 0));
shift -= 7;
}
while (shift >= 0);
}
/* Add the rtx expansion of a MATCH_OPERATOR or MATCH_OP_DUP. OPNO is the
number of the matched operand. MODE is the mode that the rtx should have,
or NUM_MACHINE_MODES if the operand's original mode should be retained.
VEC is the vector of suboperands, which replace those of the original
operand. */
void
generator::add_match_operator (machine_mode mode, int opno, rtvec vec)
{
if (mode != NUM_MACHINE_MODES)
{
add_opcode (expand_opcode::MATCH_OPERATOR_WITH_MODE);
add_uint (mode);
}
else
add_opcode (expand_opcode::MATCH_OPERATOR);
add_uint (opno);
for (int i = 0; i < GET_NUM_ELEM (vec); i++)
add_exp (RTVEC_ELT (vec, i));
}
/* Add the expansion of X to the encoding. */
void
generator::add_exp (rtx x)
{
if (x == 0)
{
add_opcode (expand_opcode::NO_RTX);
return;
}
auto code = GET_CODE (x);
switch (code)
{
case MATCH_OPERAND:
case MATCH_DUP:
add_opcode (expand_opcode::MATCH_OPERAND);
add_uint (XINT (x, 0));
return;
case MATCH_OP_DUP:
if (GET_MODE (x) == VOIDmode)
add_match_operator (NUM_MACHINE_MODES, XINT (x, 0), XVEC (x, 1));
else
add_match_operator (GET_MODE (x), XINT (x, 0), XVEC (x, 1));
return;
case MATCH_OPERATOR:
add_match_operator (GET_MODE (x), XINT (x, 0), XVEC (x, 2));
return;
case MATCH_PARALLEL:
case MATCH_PAR_DUP:
add_opcode (expand_opcode::MATCH_PARALLEL);
add_uint (XINT (x, 0));
return;
case MATCH_SCRATCH:
add_code (SCRATCH);
add_uint (GET_MODE (x));
return;
case CLOBBER:
if (REG_P (XEXP (x, 0)))
{
add_opcode (expand_opcode::CLOBBER_REG);
add_uint (GET_MODE (XEXP (x, 0)));
add_uint (REGNO (XEXP (x, 0)));
return;
}
break;
case CONST_INT:
add_code (CONST_INT);
add_uint (UINTVAL (x));
return;
case CONST_DOUBLE:
/* Handle `const_double_zero' rtx. */
if (CONST_DOUBLE_REAL_VALUE (x)->cl == rvc_zero)
{
add_code (CONST_DOUBLE);
add_uint (GET_MODE (x));
return;
}
/* Fall through. */
case CONST_FIXED:
case CONST_WIDE_INT:
/* These shouldn't be written in MD files. Instead, the appropriate
routines in varasm.cc should be called. */
gcc_unreachable ();
default:
break;
}
add_code (code);
if (!always_void_p (code))
add_uint (GET_MODE (x));
auto fmt = GET_RTX_FORMAT (code);
unsigned int len = GET_RTX_LENGTH (code);
for (unsigned int i = 0; i < len; i++)
{
if (fmt[i] == '0')
break;
switch (fmt[i])
{
case 'e': case 'u':
add_exp (XEXP (x, i));
break;
case 'i':
add_uint (XUINT (x, i));
break;
case 'L':
case 's':
fatal_at (info.loc, "'%s' rtxes are not supported in this context",
GET_RTX_NAME (code));
break;
case 'r':
add_uint (REGNO (x));
break;
case 'p':
/* We don't have a way of parsing polynomial offsets yet,
and hopefully never will. */
add_uint (SUBREG_BYTE (x).to_constant ());
break;
case 'E':
add_vec (XVEC (x, i));
break;
default:
gcc_unreachable ();
}
}
}
/* Add the expansion of rtx vector VEC to the encoding. */
void
generator::add_vec (rtvec vec)
{
add_uint (GET_NUM_ELEM (vec));
for (int i = 0; i < GET_NUM_ELEM (vec); ++i)
add_exp (RTVEC_ELT (vec, i));
}
/* Emit the encoding as a static C++ array called NAME. Return NAME. */
const char *
generator::gen_table (FILE *file, const char *name)
{
fprintf (file, " static const uint8_t %s[] = {", name);
for (size_t i = 0; i < bytes.length (); ++i)
fprintf (file, "%s%s 0x%02x",
i == 0 ? "" : ",",
i % 8 == 0 ? "\n " : "",
bytes[i]);
fprintf (file, "\n };\n");
return name;
}
/* Output the code necessary for generating rtx X and return the name
of the C++ array that contains the encoding. */
const char *
generator::gen_exp (FILE *file, rtx x)
{
add_exp (x);
return gen_table (file, "expand_encoding");
}
/* Output the code necessary for emitting each element of VEC as a separate
instruction. Return the name of the C++ array that contains the
encoding. */
const char *
generator::gen_emit_seq (FILE *file, rtvec vec)
{
add_vec (vec);
return gen_table (file, "expand_encoding");
}
/* Emit the given C code to the output file. The code is allowed to
fail if CAN_FAIL_P. NAME describes what we're generating,
for use in error messages. */
static void
emit_c_code (const char *code, bool can_fail_p, const char *name, FILE *file)
{
if (can_fail_p)
fprintf (file, "#define FAIL return (end_sequence (), nullptr)\n");
else
fprintf (file, "#define FAIL _Pragma (\"GCC error \\\"%s cannot FAIL\\\"\")"
" (void)0\n", name);
fprintf (file, "#define DONE return end_sequence ()\n");
rtx_reader_ptr->print_md_ptr_loc (code, file);
fprintf (file, "%s\n", code);
fprintf (file, "#undef DONE\n");
fprintf (file, "#undef FAIL\n");
}
/* Process the DEFINE_INSN in LOC, and queue it if it needs a gen_*
function. */
static void
maybe_queue_insn (const md_rtx_info &info)
{
/* See if the pattern for this insn ends with a group of CLOBBERs of (hard)
registers or MATCH_SCRATCHes. If so, store away the information for
later. */
rtx insn = info.def;
if (XVEC (insn, 1))
{
int has_hard_reg = 0;
rtvec pattern = XVEC (insn, 1);
/* Look though an explicit parallel. */
if (GET_NUM_ELEM (pattern) == 1
&& GET_CODE (RTVEC_ELT (pattern, 0)) == PARALLEL)
pattern = XVEC (RTVEC_ELT (pattern, 0), 0);
int i;
for (i = GET_NUM_ELEM (pattern) - 1; i > 0; i--)
{
if (GET_CODE (RTVEC_ELT (pattern, i)) != CLOBBER)
break;
if (REG_P (XEXP (RTVEC_ELT (pattern, i), 0)))
has_hard_reg = 1;
else if (GET_CODE (XEXP (RTVEC_ELT (pattern, i), 0)) != MATCH_SCRATCH)
break;
}
if (i != GET_NUM_ELEM (pattern) - 1)
{
struct clobber_pat *p;
struct clobber_ent *link = XNEW (struct clobber_ent);
int j;
link->code_number = info.index;
/* See if any previous CLOBBER_LIST entry is the same as this
one. */
for (p = clobber_list; p; p = p->next)
{
if (p->first_clobber != i + 1
|| GET_NUM_ELEM (p->pattern) != GET_NUM_ELEM (pattern))
continue;
for (j = i + 1; j < GET_NUM_ELEM (pattern); j++)
{
rtx old_rtx = XEXP (RTVEC_ELT (p->pattern, j), 0);
rtx new_rtx = XEXP (RTVEC_ELT (pattern, j), 0);
/* OLD and NEW_INSN are the same if both are to be a SCRATCH
of the same mode,
or if both are registers of the same mode and number. */
if (! (GET_CODE (old_rtx) == GET_CODE (new_rtx)
&& GET_MODE (old_rtx) == GET_MODE (new_rtx)
&& ((GET_CODE (old_rtx) == MATCH_SCRATCH
&& GET_CODE (new_rtx) == MATCH_SCRATCH)
|| (REG_P (old_rtx) && REG_P (new_rtx)
&& REGNO (old_rtx) == REGNO (new_rtx)))))
break;
}
if (j == GET_NUM_ELEM (pattern))
break;
}
if (p == 0)
{
p = XNEW (struct clobber_pat);
p->insns = 0;
p->pattern = pattern;
p->first_clobber = i + 1;
p->next = clobber_list;
p->has_hard_reg = has_hard_reg;
clobber_list = p;
}
link->next = p->insns;
p->insns = link;
}
}
/* Don't mention instructions whose names are the null string
or begin with '*'. They are in the machine description just
to be recognized. */
if (XSTR (insn, 0)[0] == 0 || XSTR (insn, 0)[0] == '*')
return;
queue.safe_push (info);
}
/* Output the function name, argument declarations, and initial function
body for a pattern called NAME, given that it has the properties
in STATS. Return the C++ expression for the operands array. */
static const char *
start_gen_insn (FILE *file, const char *name, const pattern_stats &stats)
{
fprintf (file, "rtx\ngen_%s (", name);
if (stats.num_generator_args)
for (int i = 0; i < stats.num_generator_args; i++)
fprintf (file, "%sconst rtx operand%d", i == 0 ? "" : ", ", i);
else
fprintf (file, "void");
fprintf (file, ")\n");
fprintf (file, "{\n");
if (stats.num_generator_args)
{
fprintf (file, " rtx operands[%d] ATTRIBUTE_UNUSED = {",
stats.num_operand_vars);
for (int i = 0; i < stats.num_generator_args; i++)
fprintf (file, "%s operand%d", i == 0 ? "" : ",", i);
fprintf (file, " };\n");
return "operands";
}
if (stats.num_operand_vars != 0)
{
fprintf (file, " rtx operands[%d] ATTRIBUTE_UNUSED;\n",
stats.num_operand_vars);
return "operands";
}
return "nullptr";
}
/* Generate the `gen_...' function for a DEFINE_INSN. */
static void
gen_insn (const md_rtx_info &info, FILE *file)
{
struct pattern_stats stats;
/* Find out how many operands this function has. */
rtx insn = info.def;
get_pattern_stats (&stats, XVEC (insn, 1));
if (stats.max_dup_opno > stats.max_opno)
fatal_at (info.loc, "match_dup operand number has no match_operand");
/* Output the function name and argument declarations. */
const char *operands = start_gen_insn (file, XSTR (insn, 0), stats);
/* Output code to construct and return the rtl for the instruction body. */
rtx pattern = add_implicit_parallel (XVEC (insn, 1));
const char *table = generator (info).gen_exp (file, pattern);
fprintf (file, " return expand_rtx (%s, %s);\n}\n\n", table, operands);
}
/* Process and queue the DEFINE_EXPAND in INFO. */
static void
queue_expand (const md_rtx_info &info)
{
rtx expand = info.def;
if (strlen (XSTR (expand, 0)) == 0)
fatal_at (info.loc, "define_expand lacks a name");
if (XVEC (expand, 1) == 0)
fatal_at (info.loc, "define_expand for %s lacks a pattern",
XSTR (expand, 0));
queue.safe_push (info);
}
/* Generate the `gen_...' function for a DEFINE_EXPAND. */
static void
gen_expand (const md_rtx_info &info, FILE *file)
{
struct pattern_stats stats;
/* Find out how many operands this function has. */
rtx expand = info.def;
get_pattern_stats (&stats, XVEC (expand, 1));
if (stats.min_scratch_opno != -1
&& stats.min_scratch_opno <= MAX (stats.max_opno, stats.max_dup_opno))
fatal_at (info.loc, "define_expand for %s needs to have match_scratch "
"numbers above all other operands", XSTR (expand, 0));
/* Output the function name and argument declarations. */
const char *operands = start_gen_insn (file, XSTR (expand, 0), stats);
/* If we don't have any C code to write, only one insn is being written,
and no MATCH_DUPs are present, we can just return the desired insn
like we do for a DEFINE_INSN. This saves memory. */
if ((XSTR (expand, 3) == 0 || *XSTR (expand, 3) == '\0')
&& stats.max_opno >= stats.max_dup_opno
&& XVECLEN (expand, 1) == 1)
{
rtx pattern = XVECEXP (expand, 1, 0);
const char *table = generator (info).gen_exp (file, pattern);
fprintf (file, " return expand_rtx (%s, %s);\n}\n\n", table, operands);
return;
}
fprintf (file, " start_sequence ();\n");
/* The fourth operand of DEFINE_EXPAND is some code to be executed
before the actual construction.
This code expects to refer to `operands'
just as the output-code in a DEFINE_INSN does,
but here `operands' is an automatic array.
So copy the operand values there before executing it. */
if (XSTR (expand, 3) && *XSTR (expand, 3))
{
fprintf (file, " {\n");
/* Output the special code to be executed before the sequence
is generated. */
optab_pattern p;
bool can_fail_p = true;
if (find_optab (&p, XSTR (expand, 0)))
{
gcc_assert (p.op < NUM_OPTABS);
if (nofail_optabs[p.op])
can_fail_p = false;
}
emit_c_code (XSTR (expand, 3), can_fail_p, XSTR (expand, 0), file);
fprintf (file, " }\n");
}
const char *table = generator (info).gen_emit_seq (file, XVEC (expand, 1));
fprintf (file, " return complete_seq (%s, %s);\n}\n\n", table, operands);
}
/* Process and queue the DEFINE_SPLIT or DEFINE_PEEPHOLE2 in INFO. */
static void
queue_split (const md_rtx_info &info)
{
rtx split = info.def;
if (XVEC (split, 0) == 0)
fatal_at (info.loc, "%s lacks a pattern",
GET_RTX_NAME (GET_CODE (split)));
if (XVEC (split, 2) == 0)
fatal_at (info.loc, "%s lacks a replacement pattern",
GET_RTX_NAME (GET_CODE (split)));
queue.safe_push (info);
}
/* Generate the `gen_...' function for a DEFINE_SPLIT or DEFINE_PEEPHOLE2. */
static void
gen_split (const md_rtx_info &info, FILE *file)
{
struct pattern_stats stats;
rtx split = info.def;
const char *const name =
((GET_CODE (split) == DEFINE_PEEPHOLE2) ? "peephole2" : "split");
const char *unused;
/* Find out how many operands this function has. */
get_pattern_stats (&stats, XVEC (split, 2));
unused = (stats.num_operand_vars == 0 ? " ATTRIBUTE_UNUSED" : "");
/* Output the prototype, function name and argument declarations. */
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
{
fprintf (file, "extern rtx_insn *gen_%s_%d (rtx_insn *, rtx *);\n",
name, info.index);
fprintf (file, "rtx_insn *\ngen_%s_%d (rtx_insn *curr_insn ATTRIBUTE_UNUSED,"
" rtx *operands%s)\n",
name, info.index, unused);
}
else
{
fprintf (file, "extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
info.index);
fprintf (file, "rtx_insn *\ngen_split_%d "
"(rtx_insn *curr_insn ATTRIBUTE_UNUSED, rtx *operands%s)\n",
info.index, unused);
}
fprintf (file, "{\n");
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
output_peephole2_scratches (split, file);
const char *fn = info.loc.filename;
for (const char *p = fn; *p; p++)
if (*p == '/')
fn = p + 1;
fprintf (file, " if (dump_file)\n");
fprintf (file, " fprintf (dump_file, \"Splitting with gen_%s_%d (%s:%d)\\n\");\n",
name, info.index, fn, info.loc.lineno);
fprintf (file, " start_sequence ();\n");
/* The fourth operand of DEFINE_SPLIT is some code to be executed
before the actual construction. */
if (XSTR (split, 3))
emit_c_code (XSTR (split, 3), true, name, file);
const char *table = generator (info).gen_emit_seq (file, XVEC (split, 2));
fprintf (file, " return complete_seq (%s, %s);\n}\n\n", table, "operands");
}
/* Write a function, `add_clobbers', that is given a PARALLEL of sufficient
size for the insn and an INSN_CODE, and inserts the required CLOBBERs at
the end of the vector. */
static void
output_add_clobbers (FILE *file)
{
struct clobber_pat *clobber;
struct clobber_ent *ent;
int i;
fprintf (file, "\n\nvoid\nadd_clobbers (rtx pattern ATTRIBUTE_UNUSED, int insn_code_number)\n");
fprintf (file, "{\n");
fprintf (file, " switch (insn_code_number)\n");
fprintf (file, " {\n");
for (clobber = clobber_list; clobber; clobber = clobber->next)
{
for (ent = clobber->insns; ent; ent = ent->next)
fprintf (file, " case %d:\n", ent->code_number);
for (i = clobber->first_clobber; i < GET_NUM_ELEM (clobber->pattern); i++)
{
fprintf (file, " XVECEXP (pattern, 0, %d) ="
" gen_rtx_CLOBBER (VOIDmode, ", i);
rtx x = XEXP (RTVEC_ELT (clobber->pattern, i), 0);
if (REG_P (x))
fprintf (file, "gen_rtx_REG (%smode, %d)",
GET_MODE_NAME (GET_MODE (x)), REGNO (x));
else
fprintf (file, "gen_rtx_SCRATCH (%smode)",
GET_MODE_NAME (GET_MODE (x)));
fprintf (file, ");\n");
}
fprintf (file, " break;\n\n");
}
fprintf (file, " default:\n");
fprintf (file, " gcc_unreachable ();\n");
fprintf (file, " }\n");
fprintf (file, "}\n");
}
/* Write a function, `added_clobbers_hard_reg_p' that is given an insn_code
number that will have clobbers added (as indicated by `recog') and returns
1 if those include a clobber of a hard reg or 0 if all of them just clobber
SCRATCH. */
static void
output_added_clobbers_hard_reg_p (FILE *file)
{
struct clobber_pat *clobber;
struct clobber_ent *ent;
int clobber_p;
bool used;
fprintf (file, "\n\nbool\nadded_clobbers_hard_reg_p (int insn_code_number)\n");
fprintf (file, "{\n");
fprintf (file, " switch (insn_code_number)\n");
fprintf (file, " {\n");
for (clobber_p = 0; clobber_p <= 1; clobber_p++)
{
used = false;
for (clobber = clobber_list; clobber; clobber = clobber->next)
if (clobber->has_hard_reg == clobber_p)
for (ent = clobber->insns; ent; ent = ent->next)
{
fprintf (file, " case %d:\n", ent->code_number);
used = true;
}
if (used)
fprintf (file, " return %s;\n\n", clobber_p ? "true" : "false");
}
fprintf (file, " default:\n");
fprintf (file, " gcc_unreachable ();\n");
fprintf (file, " }\n");
fprintf (file, "}\n");
}
/* Generate code to invoke find_free_register () as needed for the
scratch registers used by the peephole2 pattern in SPLIT. */
static void
output_peephole2_scratches (rtx split, FILE *file)
{
int i;
int insn_nr = 0;
bool first = true;
for (i = 0; i < XVECLEN (split, 0); i++)
{
rtx elt = XVECEXP (split, 0, i);
if (GET_CODE (elt) == MATCH_SCRATCH)
{
int last_insn_nr = insn_nr;
int cur_insn_nr = insn_nr;
int j;
for (j = i + 1; j < XVECLEN (split, 0); j++)
if (GET_CODE (XVECEXP (split, 0, j)) == MATCH_DUP)
{
if (XINT (XVECEXP (split, 0, j), 0) == XINT (elt, 0))
last_insn_nr = cur_insn_nr;
}
else if (GET_CODE (XVECEXP (split, 0, j)) != MATCH_SCRATCH)
cur_insn_nr++;
if (first)
{
fprintf (file, " HARD_REG_SET _regs_allocated;\n");
fprintf (file, " CLEAR_HARD_REG_SET (_regs_allocated);\n");
first = false;
}
fprintf (file, " if ((operands[%d] = peep2_find_free_register (%d, %d, \"%s\", %smode, &_regs_allocated)) == NULL_RTX)\n\
return NULL;\n",
XINT (elt, 0),
insn_nr, last_insn_nr,
XSTR (elt, 1),
GET_MODE_NAME (GET_MODE (elt)));
}
else if (GET_CODE (elt) != MATCH_DUP)
insn_nr++;
}
}
/* Print "arg<N>" parameter declarations for each argument N of ONAME. */
static void
print_overload_arguments (overloaded_name *oname, FILE *file)
{
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
fprintf (file, "%s%s arg%d", i == 0 ? "" : ", ", oname->arg_types[i], i);
}
/* Print code to test whether INSTANCE should be chosen, given that
argument N of the overload is available as "arg<N>". */
static void
print_overload_test (overloaded_instance *instance, FILE *file)
{
for (unsigned int i = 0; i < instance->arg_values.length (); ++i)
fprintf (file, "%sarg%d == %s", i == 0 ? " if (" : "\n && ",
i, instance->arg_values[i]);
fprintf (file, ")\n");
}
/* Emit a maybe_code_for_* function for ONAME. */
static void
handle_overloaded_code_for (overloaded_name *oname, FILE *file)
{
/* Print the function prototype. */
fprintf (file, "\ninsn_code\nmaybe_code_for_%s (", oname->name);
print_overload_arguments (oname, file);
fprintf (file, ")\n{\n");
/* Use a sequence of "if" statements for each instance. */
for (overloaded_instance *instance = oname->first_instance;
instance; instance = instance->next)
{
print_overload_test (instance, file);
fprintf (file, " return CODE_FOR_%s;\n", instance->name);
}
/* Return null if no match was found. */
fprintf (file, " return CODE_FOR_nothing;\n}\n");
}
/* Emit a maybe_gen_* function for ONAME. */
static void
handle_overloaded_gen (overloaded_name *oname, FILE *file)
{
unsigned HOST_WIDE_INT seen = 0;
/* All patterns must have the same number of operands. */
for (overloaded_instance *instance = oname->first_instance->next;
instance; instance = instance->next)
{
pattern_stats stats;
get_pattern_stats (&stats, XVEC (instance->insn, 1));
unsigned HOST_WIDE_INT mask
= HOST_WIDE_INT_1U << stats.num_generator_args;
if (seen & mask)
continue;
seen |= mask;
/* Print the function prototype. */
fprintf (file, "\nrtx\nmaybe_gen_%s (", oname->name);
print_overload_arguments (oname, file);
for (int i = 0; i < stats.num_generator_args; ++i)
fprintf (file, ", rtx x%d", i);
fprintf (file, ")\n{\n");
/* Use maybe_code_for_*, instead of duplicating the selection
logic here. */
fprintf (file, " insn_code code = maybe_code_for_%s (", oname->name);
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
fprintf (file, "%sarg%d", i == 0 ? "" : ", ", i);
fprintf (file, ");\n"
" if (code != CODE_FOR_nothing)\n"
" {\n"
" gcc_assert (insn_data[code].n_generator_args == %d);\n"
" return GEN_FCN (code) (", stats.num_generator_args);
for (int i = 0; i < stats.num_generator_args; ++i)
fprintf (file, "%sx%d", i == 0 ? "" : ", ", i);
fprintf (file, ");\n"
" }\n"
" else\n"
" return NULL_RTX;\n"
"}\n");
}
}
void
print_header (FILE *file)
{
fprintf (file, "/* Generated automatically by the program `genemit'\n\
from the machine description file `md'. */\n\n");
fprintf (file, "#define IN_TARGET_CODE 1\n");
fprintf (file, "#include \"config.h\"\n");
fprintf (file, "#include \"system.h\"\n");
fprintf (file, "#include \"coretypes.h\"\n");
fprintf (file, "#include \"backend.h\"\n");
fprintf (file, "#include \"predict.h\"\n");
fprintf (file, "#include \"tree.h\"\n");
fprintf (file, "#include \"rtl.h\"\n");
fprintf (file, "#include \"alias.h\"\n");
fprintf (file, "#include \"varasm.h\"\n");
fprintf (file, "#include \"stor-layout.h\"\n");
fprintf (file, "#include \"calls.h\"\n");
fprintf (file, "#include \"memmodel.h\"\n");
fprintf (file, "#include \"tm_p.h\"\n");
fprintf (file, "#include \"flags.h\"\n");
fprintf (file, "#include \"insn-config.h\"\n");
fprintf (file, "#include \"expmed.h\"\n");
fprintf (file, "#include \"dojump.h\"\n");
fprintf (file, "#include \"explow.h\"\n");
fprintf (file, "#include \"emit-rtl.h\"\n");
fprintf (file, "#include \"stmt.h\"\n");
fprintf (file, "#include \"expr.h\"\n");
fprintf (file, "#include \"insn-codes.h\"\n");
fprintf (file, "#include \"optabs.h\"\n");
fprintf (file, "#include \"dfp.h\"\n");
fprintf (file, "#include \"output.h\"\n");
fprintf (file, "#include \"recog.h\"\n");
fprintf (file, "#include \"df.h\"\n");
fprintf (file, "#include \"resource.h\"\n");
fprintf (file, "#include \"reload.h\"\n");
fprintf (file, "#include \"diagnostic-core.h\"\n");
fprintf (file, "#include \"regs.h\"\n");
fprintf (file, "#include \"tm-constrs.h\"\n");
fprintf (file, "#include \"ggc.h\"\n");
fprintf (file, "#include \"target.h\"\n\n");
}
auto_vec<FILE *, 10> output_files;
static bool
handle_arg (const char *arg)
{
if (arg[1] == 'O')
{
FILE *file = fopen (&arg[2], "w");
output_files.safe_push (file);
return true;
}
return false;
}
int
main (int argc, const char **argv)
{
progname = "genemit";
if (!init_rtx_reader_args_cb (argc, argv, handle_arg))
return (FATAL_EXIT_CODE);
#define DEF_INTERNAL_OPTAB_FN(NAME, FLAGS, OPTAB, TYPE) \
nofail_optabs[OPTAB##_optab] = true;
#include "internal-fn.def"
/* Assign sequential codes to all entries in the machine description
in parallel with the tables in insn-output.cc. */
md_rtx_info info;
if (output_files.is_empty ())
output_files.safe_push (stdout);
for (auto f : output_files)
print_header (f);
FILE *file = NULL;
unsigned file_idx;
/* Read the machine description. */
while (read_md_rtx (&info))
switch (GET_CODE (info.def))
{
case DEFINE_INSN:
maybe_queue_insn (info);
break;
case DEFINE_EXPAND:
queue_expand (info);
break;
case DEFINE_SPLIT:
case DEFINE_PEEPHOLE2:
queue_split (info);
break;
default:
break;
}
for (auto &info : queue)
{
file = choose_output (output_files, file_idx);
fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno);
switch (GET_CODE (info.def))
{
case DEFINE_INSN:
gen_insn (info, file);
break;
case DEFINE_EXPAND:
gen_expand (info, file);
break;
case DEFINE_SPLIT:
case DEFINE_PEEPHOLE2:
gen_split (info, file);
break;
default:
break;
}
}
file = choose_output (output_files, file_idx);
/* Write out the routines to add CLOBBERs to a pattern and say whether they
clobber a hard reg. */
output_add_clobbers (file);
output_added_clobbers_hard_reg_p (file);
for (overloaded_name *oname = rtx_reader_ptr->get_overloads ();
oname; oname = oname->next)
{
handle_overloaded_code_for (oname, file);
handle_overloaded_gen (oname, file);
}
int ret = SUCCESS_EXIT_CODE;
for (FILE *f : output_files)
if (fclose (f) != 0)
ret = FATAL_EXIT_CODE;
return ret;
}