blob: 393349b18fcbaad90b4093b1c09c018b8ceb3be2 [file] [log] [blame]
/* Implement looping actions for CHILL.
Copyright (C) 1992, 1993, 1994, 1998, 1999, 2000
Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "tree.h"
#include "ch-tree.h"
#include "lex.h"
#include "flags.h"
#include "actions.h"
#include "input.h"
#include "obstack.h"
#include "assert.h"
#include "rtl.h"
#include "toplev.h"
/* if the user codes '-flocal-loop-counter' on the command line,
ch-actions.c (lang_decode_option) will set this flag. */
int flag_local_loop_counter = 1;
/* forward declarations */
static int declare_temps PARAMS ((void));
static int initialize_iter_var PARAMS ((void));
static void maybe_skip_loop PARAMS ((void));
static int bottom_loop_end_check PARAMS ((void));
static int increment_temps PARAMS ((void));
static tree build_temporary_variable PARAMS ((const char *, tree));
static tree maybe_make_for_temp PARAMS ((tree, const char *, tree));
#if 0
static tree chill_unsigned_type PARAMS ((tree));
#endif
/* In terms of the parameters passed to build_loop_iterator,
* there are several types of loops. They are encoded by
* the ITER_TYPE enumeration.
*
* 1) DO FOR EVER; ... OD
* indicated by a NULL_TREE start_exp, step_exp and end_exp,
* condition == NULL, in_flag = 0, and ever_flag == 1 in the
* first ITERATOR.
*
* 2) DO WHILE cond; ... OD
* indicated by NULL_TREE start_exp, step_exp and end_exp,
* in_flag = 0, and condition != NULL.
*
* 3) DO; ... OD
* indicated by NULL_TREEs in start_exp, step_exp and end_exp,
* condition != NULL, in_flag == 0 and ever_flag == 0. This
* is not really a loop, but a compound statement.
*
* 4) DO FOR user_var := start_exp
* [DOWN] TO end_exp BY step_exp; ... DO
* indicated by non-NULL_TREE start_exp, step_exp and end_exp.
*
* 5) DO FOR user_var [DOWN] IN discrete_mode; ... OD
* indicated by in_flag == 1. start_exp is a non-NULL_TREE
* discrete mode, with an optional down_flag.
*
* 6) DO FOR user_var [DOWN] IN powerset_expr; ... OD
* indicated by in_flag == 1. start_exp is a non-NULL_TREE
* powerset mode, with an optional down_flag.
*
* 7) DO FOR user_var [DOWN] IN location; ... OD
* indicated by in_flag == 1. start_exp is a non-NULL_TREE
* location mode, with an optional down_flag.
*/
typedef enum
{
DO_FOREVER,
DO_OD,
DO_STEP,
DO_POWERSET,
DO_LOC,
DO_LOC_VARYING
} ITER_TYPE;
typedef struct iterator
{
/* These variables only have meaning in the first ITERATOR structure. */
ITER_TYPE itype; /* type of this iterator */
int error_flag; /* TRUE if no loop was started due to
user error */
int down_flag; /* TRUE if DOWN was coded */
/* These variables have meaning in every ITERATOR structure. */
tree user_var; /* user's explicit iteration variable */
tree start_exp; /* user's start expression
or IN expression of a FOR .. IN*/
tree step_exp; /* user's step expression */
tree end_exp; /* user's end expression */
tree start_temp; /* temp holding evaluated start_exp */
tree end_temp; /* temp holding evaluated end_exp */
tree step_temp; /* temp holding evaluated step_exp */
tree powerset_temp; /* temp holding user's initial powerset expression */
tree loc_ptr_temp; /* temp holding count for LOC enumeration ptr */
tree iter_var; /* hidden variable for the loop */
tree iter_type; /* hidden variable's type */
tree stepin_type; /* saved type for a DO FOR IN loop */
tree base_type; /* LOC enumeration base type */
struct iterator *next; /* ptr to next iterator for this loop */
} ITERATOR;
/*
* There's an entry like this for each nested DO loop.
* The list is maintained by push_loop_block
* and pop_loop_block.
*/
typedef struct loop {
struct loop *nxt_level; /* pointer to enclosing loop */
ITERATOR *iter_list; /* iterators for the current loop */
} LOOP;
static LOOP *loopstack = (LOOP *)0;
/*
Here is a CHILL DO FOR statement:
DO FOR user_var := start_exp BY step_exp [DOWN] TO end_exp
WHILE condition;
For this loop to be 'safe', like a Pascal FOR loop, the start,
end, and increment expressions are computed once, before the
assignment to the iteration variable and saved in temporaries,
before the first assignment of the iteration variable, so the
following works:
FOR i := (i+1) TO (i+10) DO
To prevent changes to the start/end/step expressions from
effecting the loop's termination, and to make the loop end-check
as simple as possible, we evaluate the step expression into
a temporary and compute a hidden iteration count before entering
the loop's body. User code cannot effect the counter, and the
end-loop check simply decrements the counter and checks for zero.
The whole phrase FOR iter := ... TO end_exp can be repeated
multiple times, with different user-iteration variables. This
is discussed later.
The loop counter calculations need careful design since a loop
from MININT TO MAXINT must work, in the precision of integers.
Here's how it works, in C:
0) The DO ... OD loop is simply a block with
its own scope.
1) The DO FOR EVER is simply implemented:
loop_top:
.
. body of loop
.
goto loop_top
end_loop:
2) The DO WHILE is also simple:
loop_top:
if (!condition) goto end_loop
.
. body of loop
.
goto loop_top
end_loop:
3) The DO FOR [while condition] loop (no DOWN)
push a new scope,
decl iter_var
step_temp = step_exp
start_temp = start_exp
end_temp = end_exp
if (end_exp < start_exp) goto end_loop
// following line is all unsigned arithmetic
iter_var = (end_exp - start_exp) / step_exp
user_var = start_temp
loop_top:
if (!condition) goto end_loop
.
. body of loop
.
if (iter_var == 0) goto end_loop
iter_var--
user_var += step_temp
goto loop_top
end_loop:
pop scope
4) The for [while condition] loop (with DOWN)
push a new scope,
decl iter
step_temp = step_exp
start_temp = start_exp
end_temp = end_exp
if (end_exp > start_exp) goto end_loop
// following line is all unsigned arithmetic
iter_var = (start_exp - end_exp) / step_exp
user_var = start_temp
loop_top:
if (!condition) goto end_loop
.
. body of loop
.
if (iter_var == 0) goto end_loop
iter_var--
user_var -= step_temp
goto loop_top
end_loop:
pop scope
5) The range loop, which iterates over a mode's possible
values, works just like the above step loops, but with
the start and end values taken from the mode's lower
and upper domain values.
6) The FOR IN loop, where a location enumeration is
specified (see spec on page 81 of Z.200, bottom
of page 186):
push a new scope,
decl iter_var as an unsigned integer
loc_ptr_temp as pointer to a composite base type
if array is varying
iter_var = array's length field
else
iter_var = sizeof array / sizeof base_type
loc_ptr_temp = &of highest or lowest indexable entry
loop_top:
if (!condition) goto end_loop
.
. body of loop
.
iter_var--
if (iter_var == 0) goto end_loop
loc_ptr_temp +/-= sizeof array base_type
goto loop_top
end_loop:
pop scope
7) The DO FOR (DOWN) IN powerset_exp
push a new scope,
decl iterator as basetype of powerset
powerset_temp := save_expr (start_exp)
iter_var := DOWN ? length : 0
loop_top:
if (DOWN)
iter_var := __ffsetclrpowerset (powerset_temp, length,
iter_var);
else
iter_var := __ffsetclrpowerset (powrset_temp, iter_var, 0);
if (iter_var < 0) goto end_loop;
user_var = iter_var + min_value;
if (!condition) goto end_loop
if (!DOWN) iter_var +:= 1;
.
. body of loop
.
goto loop_top
end_loop:
pop scope
So, here's the general DO FOR schema, as implemented here:
expand_start_loop -- start the loop's control scope
-- start scope for synthesized loop variables
declare_temps -- create, initialize temporary variables
maybe_skip_loop -- skip loop if end conditions unsatisfiable
initialize_iter_var -- initialize the iteration counter
-- initialize user's loop variable
expand_start_loop -- generate top-of-loop label
top_loop_end_check -- generate while code and/or
powerset find-a-bit function call
.
.
. user's loop body code
.
.
bottom_loop_end_check -- exit if counter has become zero
increment_temps -- update temps for next iteration
expand_end_loop -- generate jump back to top of loop
expand_end_cond -- generate label for end of conditional
-- end of scope for synthesized loop variables
free_iterators -- free up iterator space
When there are two or more iterator phrases, each of the
above loop steps must act upon all iterators. For example,
the 'increment_temps' step must increment all temporaries
(associated with all iterators).
NOTE: Z.200, section 10.1 says that a block is ...
"the actions statement list in a do action, including any
loop counter and while control". This means that an exp-
ression in a WHILE control can include references to the
loop counters created for the loop's exclusive use.
Example:
DCL a (1:10) INT;
DCL j INT;
DO FOR j IN a WHILE j > 0;
...
OD;
The 'j' referenced in the while is the loc-identity 'j'
created inside the loop's scope, and NOT the 'j' declared
before the loop.
*/
/*
* The following routines are called directly by the
* CHILL parser.
*/
void
push_loop_block ()
{
LOOP *temp = (LOOP *)xmalloc (sizeof (LOOP));
/* push a new loop onto the stack */
temp->nxt_level = loopstack;
temp->iter_list = (ITERATOR *)0;
loopstack = temp;
}
void
pop_loop_block ()
{
LOOP *do_temp = loopstack;
ITERATOR *ip;
/* pop loop block off the list */
loopstack = do_temp->nxt_level;
/* free the loop's iterator blocks */
ip = do_temp->iter_list;
while (ip != NULL)
{
ITERATOR *temp = ip->next;
free (ip);
ip = temp;
}
free (do_temp);
}
void
begin_loop_scope ()
{
pushlevel (1);
if (pass >= 2)
{
declare_temps ();
clear_last_expr ();
push_momentary ();
expand_start_bindings (0);
}
push_handler ();
}
void
end_loop_scope (opt_label)
tree opt_label;
{
if (opt_label)
possibly_define_exit_label (opt_label);
if (pass == 2)
{
expand_end_bindings (getdecls (), kept_level_p (), 0);
pop_momentary ();
}
poplevel (kept_level_p (), 1, 0);
}
/* we need the above 2 functions somehow modified for initialising
of non-value arrays */
void
nonvalue_begin_loop_scope ()
{
pushlevel (0); /* this happens only in pass 2 */
declare_temps ();
clear_last_expr ();
push_momentary ();
expand_start_bindings (0);
}
void
nonvalue_end_loop_scope ()
{
expand_end_bindings (getdecls (), kept_level_p (), 0);
pop_momentary ();
poplevel (kept_level_p (), 1, 0);
}
/* The iterator structure records all aspects of a
* 'FOR i := start [DOWN] TO end' clause or
* 'FOR i IN modename' or 'FOR i IN powerset' clause.
* It's saved on the iter_list of the current LOOP.
*/
void
build_loop_iterator (user_var, start_exp, step_exp, end_exp,
down_flag, in_flag, ever_flag)
tree user_var, start_exp, step_exp, end_exp;
int down_flag, in_flag, ever_flag;
{
ITERATOR *ip = (ITERATOR *)xmalloc (sizeof (ITERATOR));
/* chain this iterator onto the current loop */
if (loopstack->iter_list == NULL)
loopstack->iter_list = ip;
else
{
ITERATOR *temp = loopstack->iter_list;
while (temp->next != NULL)
temp = temp->next;
temp->next = ip;
}
ip->user_var = user_var;
ip->start_exp = start_exp;
ip->step_exp = step_exp;
ip->end_exp = end_exp;
ip->start_temp = NULL_TREE;
ip->end_temp = NULL_TREE;
ip->step_temp = NULL_TREE;
ip->down_flag = down_flag;
ip->powerset_temp = NULL_TREE;
ip->iter_var = NULL_TREE;
ip->iter_type = NULL_TREE;
ip->stepin_type = NULL_TREE;
ip->loc_ptr_temp = NULL_TREE;
ip->error_flag = 1; /* assume error will be found */
ip->next = (ITERATOR *)0;
if (ever_flag)
ip->itype = DO_FOREVER;
else if (in_flag && start_exp != NULL_TREE)
{
if (TREE_CODE (start_exp) == ERROR_MARK)
return;
if (TREE_TYPE (start_exp) == NULL_TREE)
{
if (TREE_CODE (start_exp) == CONSTRUCTOR)
error ("modeless tuple not allowed in this context");
else
error ("IN expression does not have a mode");
return;
}
if (TREE_CODE (TREE_TYPE (start_exp)) == SET_TYPE)
{
if (CH_BOOLS_TYPE_P (TREE_TYPE (start_exp)))
{
sorry ("location enumeration for BOOLS");
return;
}
ip->itype = DO_POWERSET;
}
else if (discrete_type_p (TREE_TYPE (ip->start_exp)))
{
/* range enumeration */
tree type = TREE_TYPE (ip->start_exp);
/* save the original type for later use in determine to do a
rangecheck or not */
ip->stepin_type = type;
ip->itype = DO_STEP;
if (ip->down_flag)
{
ip->start_exp = build_chill_upper (type);
ip->end_exp = build_chill_lower (type);
}
else
{
ip->start_exp = build_chill_lower (type);
ip->end_exp = build_chill_upper (type);
}
}
else if (TREE_CODE (TREE_TYPE (ip->start_exp)) == ARRAY_TYPE)
{
if (TYPE_PACKED (TREE_TYPE (ip->start_exp)))
{
sorry ("location enumeration for bit-packed arrays");
return;
}
ip->itype = DO_LOC;
}
else if (chill_varying_type_p (TREE_TYPE (ip->start_exp)))
ip->itype = DO_LOC_VARYING;
else
{
error ("loop's IN expression is not a composite object");
return;
}
}
else
ip->itype = DO_STEP;
if (ip->itype == DO_STEP)
{
struct ch_class class;
if (ip->step_exp == NULL_TREE)
ip->step_exp = integer_one_node;
if (! discrete_type_p (TREE_TYPE (ip->start_exp)))
{
error ("start expr must have discrete mode");
return;
}
if (TREE_CODE (TREE_TYPE (ip->start_exp)) == ENUMERAL_TYPE
&& CH_ENUM_IS_NUMBERED (TREE_TYPE (ip->start_exp)))
{
error ("DO FOR start expression is a numbered SET");
return;
}
if (TREE_CODE (ip->end_exp) == ERROR_MARK)
return;
if (TREE_CODE (TREE_TYPE (ip->end_exp)) == ENUMERAL_TYPE
&& CH_ENUM_IS_NUMBERED (TREE_TYPE (ip->end_exp)))
{
error ("TO expression is a numbered SET");
return;
}
if (! discrete_type_p (TREE_TYPE (ip->end_exp)))
{
error ("TO expr must have discrete mode");
return;
}
if (! CH_COMPATIBLE_CLASSES (ip->start_exp, ip->end_exp))
{
error ("start expr and TO expr must be compatible");
return;
}
if (step_exp != NULL_TREE)
{
if (TREE_CODE (step_exp) == ERROR_MARK)
return;
if (! discrete_type_p (TREE_TYPE (step_exp)))
{
error ("BY expr must have discrete mode");
return;
}
if (! CH_COMPATIBLE_CLASSES (ip->start_exp, step_exp))
{
error ("start expr and BY expr must be compatible");
return;
}
}
if (! flag_local_loop_counter)
{
/* In this case, it's a previously-declared VAR_DECL node. */
tree id_node = ip->user_var;
if (TREE_CODE (ip->user_var) == IDENTIFIER_NODE)
ip->user_var = lookup_name (ip->user_var);
/* Chill 1984 allows the name to be a defining occurrence,
but does not require it. */
if (ip->user_var == NULL_TREE)
{
warning ("loop identifier undeclared");
ip->user_var = id_node;
/* We declare a local name below. */
}
else
{
if (TREE_CODE (TREE_TYPE (ip->user_var)) == REFERENCE_TYPE)
ip->user_var = convert_from_reference (ip->user_var);
if (! CH_COMPATIBLE_CLASSES (ip->start_exp, ip->user_var))
{
error ("loop variable incompatible with start expression");
return;
}
class = chill_expr_class (ip->user_var);
}
}
/* Otherwise, declare a new name. */
if (TREE_CODE (ip->user_var) == IDENTIFIER_NODE)
{
class = CH_RESULTING_CLASS (chill_expr_class (ip->start_exp),
chill_expr_class (ip->end_exp));
if (step_exp)
class = CH_RESULTING_CLASS (class, chill_expr_class (step_exp));
/* Integer literals noramally have type 'long long'
(see convert_integer in lex.c). That is usually overkill. */
if (class.kind == CH_DERIVED_CLASS
&& class.mode == long_long_integer_type_node
&& int_fits_type_p (ip->start_exp, integer_type_node)
&& int_fits_type_p (ip->end_exp, integer_type_node))
class.mode = integer_type_node;
}
if (TREE_CODE (ip->start_exp) == INTEGER_CST
&& TREE_CODE (ip->end_exp) == INTEGER_CST
&& compare_int_csts (ip->down_flag ? LT_EXPR : GT_EXPR,
ip->start_exp, ip->end_exp))
warning ("body of DO FOR will never execute");
ip->start_exp = convert_to_class (class, ip->start_exp);
ip->end_exp = convert_to_class (class, ip->end_exp);
ip->step_exp = convert_to_class (class, ip->step_exp);
if (TREE_CODE (ip->step_exp) != INTEGER_CST)
{
/* generate runtime check for negative BY expr */
ip->step_exp =
check_range (ip->step_exp, ip->step_exp,
integer_zero_node, NULL_TREE);
}
else if (compare_int_csts (LE_EXPR, ip->step_exp, integer_zero_node))
{
error ("BY expression is negative or zero");
return;
}
}
ip->error_flag = 0; /* no errors! */
}
void
build_loop_start (start_label)
tree start_label;
{
ITERATOR *firstp = loopstack->iter_list;
if (firstp->error_flag)
return;
maybe_skip_loop ();
if (initialize_iter_var ())
return;
/* use the label as an 'exit' label,
'goto' needs another sort of label */
expand_start_loop (start_label != NULL_TREE);
}
/*
* Called after the last action of the loop body
* has been parsed.
*/
void
build_loop_end ()
{
ITERATOR *ip = loopstack->iter_list;
emit_line_note (input_filename, lineno);
if (ip->error_flag)
return;
if (bottom_loop_end_check ())
return;
if (increment_temps ())
return;
expand_end_loop ();
for (; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_LOC_VARYING:
case DO_STEP:
expand_end_cond ();
break;
default:
break;
}
}
}
/*
* Reserve space for any loop-control temporaries, initialize them
*/
static int
declare_temps ()
{
ITERATOR *firstp = loopstack->iter_list, *ip;
tree start_ptr;
for (ip = firstp; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_FOREVER:
break;
case DO_STEP:
ip->iter_type
= type_for_size (TYPE_PRECISION (TREE_TYPE (ip->start_exp)), 1);
/* create, initialize temporaries if expressions aren't constant */
ip->start_temp = maybe_make_for_temp (ip->start_exp, "for_start",
TREE_TYPE (ip->start_exp));
ip->end_temp = maybe_make_for_temp (ip->end_exp, "for_end",
TREE_TYPE (ip->end_exp));
/* this is just the step-expression */
ip->step_temp = maybe_make_for_temp (ip->step_exp, "for_step",
TREE_TYPE (ip->step_exp));
if (TREE_CODE (ip->user_var) == IDENTIFIER_NODE)
{
/* (re-)declare the user's iteration variable in the
loop's scope. */
tree id_node = ip->user_var;
ip->user_var =
decl_temp1 (id_node, TREE_TYPE (ip->start_exp), 0, NULL_TREE,
0, 0);
CH_DERIVED_FLAG (ip->user_var) = CH_DERIVED_FLAG (ip->start_exp);
pushdecl (ip->user_var);
}
ip->iter_var =
decl_temp1 (get_unique_identifier ("iter_var"),
ip->iter_type, 0, NULL_TREE, 0, 0);
break;
case DO_POWERSET:
/* the user's powerset-expression */
ip->powerset_temp = save_expr (ip->start_exp);
mark_addressable (ip->powerset_temp);
ip->iter_type = integer_type_node;
ip->iter_var = decl_temp1 (get_unique_identifier ("iter_var"),
ip->iter_type, 0,
!ip->down_flag ? integer_zero_node
: powersetlen (ip->powerset_temp),
0, 0);
if (flag_local_loop_counter)
{
/* declare the user's iteration variable in the loop's scope. */
/* in this case, it's just an IDENTIFIER_NODE */
ip->user_var =
decl_temp1 (ip->user_var,
TYPE_DOMAIN (TREE_TYPE (ip->start_exp)),
0, NULL_TREE, 0, 0);
pushdecl (ip->user_var);
}
else
{
/* in this case, it's a previously-declared VAR_DECL node */
ip->user_var = lookup_name (ip->user_var);
}
break;
case DO_LOC:
case DO_LOC_VARYING:
ip->iter_type = chill_unsigned_type_node;
/* create the counter temp */
ip->iter_var =
build_temporary_variable ("iter_var", ip->iter_type);
if (!CH_LOCATION_P (ip->start_exp))
ip->start_exp
= decl_temp1 (get_unique_identifier ("iter_loc"),
TREE_TYPE (ip->start_exp), 0,
ip->start_exp, 0, 0);
if (ip->itype == DO_LOC)
{
tree array_type = TREE_TYPE (ip->start_exp);
tree ptr_type;
tree temp;
/* FIXME: check for array type in ip->start_exp */
/* create pointer temporary */
ip->base_type = TREE_TYPE (array_type);
ptr_type = build_pointer_type (ip->base_type);
ip->loc_ptr_temp =
build_temporary_variable ("loc_ptr_tmp", ptr_type);
/* declare the user's iteration variable in
the loop's scope, as an expression, to be
passed to build_component_ref later */
save_expr_under_name (ip->user_var,
build1 (INDIRECT_REF, ip->base_type,
ip->loc_ptr_temp));
/* FIXME: see stor_layout */
ip->step_temp = size_in_bytes (ip->base_type);
temp = TYPE_DOMAIN (array_type);
/* pointer to first array entry to look at */
start_ptr = build1 (ADDR_EXPR, ptr_type, ip->start_exp);
mark_addressable (ip->start_exp);
ip->start_temp = ip->down_flag ?
fold (build (PLUS_EXPR, ptr_type,
start_ptr,
fold (build (MULT_EXPR, integer_type_node, ip->step_temp,
fold (build (MINUS_EXPR, integer_type_node,
TYPE_MAX_VALUE (temp),
TYPE_MIN_VALUE (temp)))))))
: start_ptr;
}
else
{
tree array_length =
convert (integer_type_node,
build_component_ref (ip->start_exp, var_length_id));
tree array_type = TREE_TYPE (TREE_CHAIN (
TYPE_FIELDS (TREE_TYPE (ip->start_exp))));
tree array_data_ptr =
build_component_ref (ip->start_exp, var_data_id);
tree ptr_type;
if (TREE_CODE (TREE_TYPE (array_type)) == BOOLEAN_TYPE)
{
error ("can't iterate through array of BOOL");
firstp->error_flag = 1;
return firstp->error_flag;
}
/* create pointer temporary */
ip->base_type = TREE_TYPE (array_type);
ptr_type = build_pointer_type (ip->base_type);
ip->loc_ptr_temp =
build_temporary_variable ("loc_ptr_temp", ptr_type);
/* declare the user's iteration variable in
the loop's scope, as an expression, to be
passed to build_component_ref later */
save_expr_under_name (ip->user_var,
build1 (INDIRECT_REF, ip->base_type,
ip->loc_ptr_temp));
/* FIXME: see stor_layout */
ip->step_temp = size_in_bytes (ip->base_type);
/* pointer to first array entry to look at */
start_ptr = build1 (ADDR_EXPR, ptr_type, array_data_ptr);
mark_addressable (array_data_ptr);
ip->start_temp = ip->down_flag ?
fold (build (PLUS_EXPR, ptr_type,
start_ptr,
fold (build (MULT_EXPR, integer_type_node, ip->step_temp,
fold (build (MINUS_EXPR, integer_type_node,
array_length,
integer_one_node))))))
: start_ptr;
}
default:
;
}
}
return firstp->error_flag;
}
/*
* Initialize the hidden iteration-control variables,
* and the user's explicit loop variable.
*/
static int
initialize_iter_var ()
{
ITERATOR *firstp = loopstack->iter_list, *ip;
for (ip = firstp; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
tree array_type, array_length;
case DO_FOREVER:
break;
case DO_STEP:
{
tree count;
count = build (MINUS_EXPR, ip->iter_type,
convert (ip->iter_type,
ip->down_flag ? ip->start_temp : ip->end_temp),
convert (ip->iter_type,
ip->down_flag ? ip->end_temp : ip->start_temp));
count = fold (build (TRUNC_DIV_EXPR, ip->iter_type,
fold (count),
ip->step_temp));
/* The count in this case is actually one less than the
number of iterations, to avoid overflow problems
if we iterate *all* the values of iter_type. */
/* initialize the loop's hidden counter variable */
expand_expr_stmt (
build_chill_modify_expr (ip->iter_var, count));
/* initialize user's variable */
expand_expr_stmt (
build_chill_modify_expr (ip->user_var, ip->start_temp));
}
break;
case DO_POWERSET:
break;
case DO_LOC:
array_type = TREE_TYPE (ip->start_exp);
array_length = fold (build (TRUNC_DIV_EXPR, integer_type_node,
size_in_bytes (array_type),
size_in_bytes (TREE_TYPE (array_type))));
goto do_loc_common;
case DO_LOC_VARYING:
array_length
= convert (integer_type_node,
build_component_ref (ip->start_exp, var_length_id));
do_loc_common:
expand_expr_stmt (build_chill_modify_expr (ip->iter_var,
array_length));
expand_expr_stmt (
build_chill_modify_expr (ip->loc_ptr_temp,
ip->start_temp));
break;
default:
;
}
}
return firstp->error_flag;
}
/* Generate code to skip the whole loop, if start expression not
* <= end expression (or >= for DOWN loops). This comparison must
* *NOT* be done in unsigned mode, or it will fail.
* Also, skip processing an empty VARYING array.
*/
static void
maybe_skip_loop ()
{
ITERATOR *firstp = loopstack->iter_list, *ip;
for (ip = firstp; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_STEP:
expand_start_cond (
build_compare_discrete_expr (ip->down_flag ? GE_EXPR : LE_EXPR,
ip->start_temp, ip->end_temp), 0);
break;
case DO_LOC_VARYING:
{ tree array_length =
convert (integer_type_node,
build_component_ref (ip->start_exp, var_length_id));
expand_start_cond (
build (NE_EXPR, TREE_TYPE (array_length),
array_length, integer_zero_node), 0);
break;
}
default:
break;
}
}
}
/*
* Check at the top of the loop for a termination
*/
void
top_loop_end_check (condition)
tree condition;
{
ITERATOR *ip;
for (ip = loopstack->iter_list; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_FOREVER:
case DO_STEP:
break;
case DO_POWERSET:
{
tree temp1;
const char *func_name;
tree user_type = TREE_TYPE (ip->user_var);
if (ip->down_flag)
func_name = "__flsetclrpowerset";
else
func_name = "__ffsetclrpowerset";
temp1 = lookup_name (get_identifier (func_name));
if (ip->down_flag)
temp1 = build_chill_function_call (temp1,
tree_cons (NULL_TREE, force_addr_of (ip->powerset_temp),
tree_cons (NULL_TREE, ip->iter_var,
tree_cons (NULL_TREE, integer_zero_node, NULL_TREE))));
else
temp1 = build_chill_function_call (temp1,
tree_cons (NULL_TREE, force_addr_of (ip->powerset_temp),
tree_cons (NULL_TREE, powersetlen (ip->powerset_temp),
tree_cons (NULL_TREE, ip->iter_var, NULL_TREE))));
expand_assignment (ip->iter_var, temp1, 0, 0);
expand_exit_loop_if_false (0, build (GE_EXPR, boolean_type_node,
ip->iter_var,
integer_zero_node));
temp1 = TYPE_MIN_VALUE
(TYPE_DOMAIN (TREE_TYPE (ip->powerset_temp)));
expand_assignment (ip->user_var,
build (PLUS_EXPR, user_type,
convert (user_type, ip->iter_var),
convert (user_type, temp1)),
0, 0);
}
break;
case DO_LOC:
case DO_LOC_VARYING:
break;
default:
;
}
}
emit_line_note (input_filename, lineno);
/* now, exit the loop if the condition isn't TRUE. */
if (condition)
expand_exit_loop_if_false (0, truthvalue_conversion (condition));
}
/*
* Check generated temporaries for loop's end
*/
static int
bottom_loop_end_check ()
{
ITERATOR *firstp = loopstack->iter_list, *ip;
emit_line_note (input_filename, lineno);
/* now, generate code to check each loop counter for termination */
for (ip = firstp; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_FOREVER:
break;
case DO_STEP:
/* exit if it's zero */
expand_exit_loop_if_false (0,
build (NE_EXPR, boolean_type_node,
ip->iter_var,
integer_zero_node));
/* decrement iteration counter by one */
chill_expand_assignment (ip->iter_var, MINUS_EXPR, integer_one_node);
break;
case DO_LOC:
case DO_LOC_VARYING:
/* decrement iteration counter by one */
chill_expand_assignment (ip->iter_var, MINUS_EXPR, integer_one_node);
/* exit if it's zero */
expand_exit_loop_if_false (0,
build (NE_EXPR, boolean_type_node,
ip->iter_var,
integer_zero_node));
break;
case DO_POWERSET:
break;
default:
;
}
}
return firstp->error_flag;
}
/*
* increment the loop-control variables.
*/
static int
increment_temps ()
{
ITERATOR *firstp = loopstack->iter_list, *ip;
for (ip = firstp; ip != NULL; ip = ip->next)
{
switch (ip->itype)
{
case DO_FOREVER:
break;
case DO_STEP:
{
tree delta =
fold (build (ip->down_flag ? MINUS_EXPR : PLUS_EXPR,
TREE_TYPE (ip->user_var), ip->user_var,
ip->step_temp));
expand_expr_stmt (
build_chill_modify_expr (ip->user_var, delta));
}
break;
case DO_LOC:
case DO_LOC_VARYING:
/* This statement uses the C semantics, so that
the pointer is actually incremented by the
length of the object pointed to. */
{
enum tree_code op = ip->down_flag ? MINUS_EXPR : PLUS_EXPR;
tree el_type = TREE_TYPE (TREE_TYPE (ip->loc_ptr_temp));
chill_expand_assignment (ip->loc_ptr_temp, NOP_EXPR,
build (op,
TREE_TYPE (ip->loc_ptr_temp),
ip->loc_ptr_temp,
size_in_bytes (el_type)));
}
break;
case DO_POWERSET:
if (!ip->down_flag)
expand_assignment (ip->iter_var,
build (PLUS_EXPR, ip->iter_type,
ip->iter_var,
integer_one_node),
0, 0);
break;
default:
;
}
}
return firstp->error_flag;
}
/*
* Generate a (temporary) unique identifier_node of
* the form "__tmp_%s_%d"
*/
tree
get_unique_identifier (lead)
const char *lead;
{
char idbuf [256];
static int idcount = 0;
sprintf (idbuf, "__tmp_%s_%d", lead ? lead : "", idcount++);
return get_identifier (idbuf);
}
/*
* build a temporary variable, given its NAME and TYPE.
* The name will have a number appended to assure uniqueness.
* return its DECL node.
*/
static tree
build_temporary_variable (name, type)
const char *name;
tree type;
{
return decl_temp1 (get_unique_identifier (name), type, 0, NULL_TREE, 0, 0);
}
/*
* If the given expression isn't a constant, build a temp for it
* and evaluate the expression into the temp. Return the tree
* representing either the original constant expression or the
* temp which now contains the expression's value.
*/
static tree
maybe_make_for_temp (exp, temp_name, exp_type)
tree exp;
const char *temp_name;
tree exp_type;
{
tree result = exp;
if (exp != NULL_TREE)
{
/* if exp isn't constant, create a temporary for its value */
if (TREE_CONSTANT (exp))
{
/* FIXME: assure that TREE_TYPE (result) == ip->exp_type */
result = convert (exp_type, exp);
}
else {
/* build temp, assign the value */
result = decl_temp1 (get_unique_identifier (temp_name), exp_type, 0,
exp, 0, 0);
}
}
return result;
}
#if 0
/*
* Adapt the C unsigned_type function to CHILL - we need to
* account for any CHILL-specific integer types here. So far,
* the 16-bit integer type is the only one.
*/
static tree
chill_unsigned_type (type)
tree type;
{
extern tree chill_unsigned_type_node;
tree type1 = TYPE_MAIN_VARIANT (type);
if (type1 == chill_integer_type_node)
return chill_unsigned_type_node;
else
return unsigned_type (type);
}
#endif