| /* Intel 80386/80486-specific support for 32-bit ELF |
| Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 |
| Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #include "sysdep.h" |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #include "elf-bfd.h" |
| #include "elf-vxworks.h" |
| #include "bfd_stdint.h" |
| #include "objalloc.h" |
| #include "hashtab.h" |
| |
| /* 386 uses REL relocations instead of RELA. */ |
| #define USE_REL 1 |
| |
| #include "elf/i386.h" |
| |
| static reloc_howto_type elf_howto_table[]= |
| { |
| HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_NONE", |
| TRUE, 0x00000000, 0x00000000, FALSE), |
| HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PC32", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOT32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PLT32", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_COPY", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GLOB_DAT", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_JUMP_SLOT", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_RELATIVE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOTOFF", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_GOTPC", |
| TRUE, 0xffffffff, 0xffffffff, TRUE), |
| |
| /* We have a gap in the reloc numbers here. |
| R_386_standard counts the number up to this point, and |
| R_386_ext_offset is the value to subtract from a reloc type of |
| R_386_16 thru R_386_PC8 to form an index into this table. */ |
| #define R_386_standard (R_386_GOTPC + 1) |
| #define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard) |
| |
| /* These relocs are a GNU extension. */ |
| HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_IE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTIE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GD", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LDM", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_16", |
| TRUE, 0xffff, 0xffff, FALSE), |
| HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_PC16", |
| TRUE, 0xffff, 0xffff, TRUE), |
| HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_8", |
| TRUE, 0xff, 0xff, FALSE), |
| HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, |
| bfd_elf_generic_reloc, "R_386_PC8", |
| TRUE, 0xff, 0xff, TRUE), |
| |
| #define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset) |
| #define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext) |
| /* These are common with Solaris TLS implementation. */ |
| HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LDO_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_IE_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_LE_32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_TPOFF32", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| EMPTY_HOWTO (38), |
| HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_GOTDESC", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_TLS_DESC_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL", |
| FALSE, 0, 0, FALSE), |
| HOWTO(R_386_TLS_DESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_TLS_DESC", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| HOWTO(R_386_IRELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| bfd_elf_generic_reloc, "R_386_IRELATIVE", |
| TRUE, 0xffffffff, 0xffffffff, FALSE), |
| |
| /* Another gap. */ |
| #define R_386_irelative (R_386_IRELATIVE + 1 - R_386_tls_offset) |
| #define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_irelative) |
| |
| /* GNU extension to record C++ vtable hierarchy. */ |
| HOWTO (R_386_GNU_VTINHERIT, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| NULL, /* special_function */ |
| "R_386_GNU_VTINHERIT", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE), /* pcrel_offset */ |
| |
| /* GNU extension to record C++ vtable member usage. */ |
| HOWTO (R_386_GNU_VTENTRY, /* type */ |
| 0, /* rightshift */ |
| 2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 0, /* bitsize */ |
| FALSE, /* pc_relative */ |
| 0, /* bitpos */ |
| complain_overflow_dont, /* complain_on_overflow */ |
| _bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| "R_386_GNU_VTENTRY", /* name */ |
| FALSE, /* partial_inplace */ |
| 0, /* src_mask */ |
| 0, /* dst_mask */ |
| FALSE) /* pcrel_offset */ |
| |
| #define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset) |
| |
| }; |
| |
| #ifdef DEBUG_GEN_RELOC |
| #define TRACE(str) \ |
| fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) |
| #else |
| #define TRACE(str) |
| #endif |
| |
| static reloc_howto_type * |
| elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| bfd_reloc_code_real_type code) |
| { |
| switch (code) |
| { |
| case BFD_RELOC_NONE: |
| TRACE ("BFD_RELOC_NONE"); |
| return &elf_howto_table[R_386_NONE]; |
| |
| case BFD_RELOC_32: |
| TRACE ("BFD_RELOC_32"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_CTOR: |
| TRACE ("BFD_RELOC_CTOR"); |
| return &elf_howto_table[R_386_32]; |
| |
| case BFD_RELOC_32_PCREL: |
| TRACE ("BFD_RELOC_PC32"); |
| return &elf_howto_table[R_386_PC32]; |
| |
| case BFD_RELOC_386_GOT32: |
| TRACE ("BFD_RELOC_386_GOT32"); |
| return &elf_howto_table[R_386_GOT32]; |
| |
| case BFD_RELOC_386_PLT32: |
| TRACE ("BFD_RELOC_386_PLT32"); |
| return &elf_howto_table[R_386_PLT32]; |
| |
| case BFD_RELOC_386_COPY: |
| TRACE ("BFD_RELOC_386_COPY"); |
| return &elf_howto_table[R_386_COPY]; |
| |
| case BFD_RELOC_386_GLOB_DAT: |
| TRACE ("BFD_RELOC_386_GLOB_DAT"); |
| return &elf_howto_table[R_386_GLOB_DAT]; |
| |
| case BFD_RELOC_386_JUMP_SLOT: |
| TRACE ("BFD_RELOC_386_JUMP_SLOT"); |
| return &elf_howto_table[R_386_JUMP_SLOT]; |
| |
| case BFD_RELOC_386_RELATIVE: |
| TRACE ("BFD_RELOC_386_RELATIVE"); |
| return &elf_howto_table[R_386_RELATIVE]; |
| |
| case BFD_RELOC_386_GOTOFF: |
| TRACE ("BFD_RELOC_386_GOTOFF"); |
| return &elf_howto_table[R_386_GOTOFF]; |
| |
| case BFD_RELOC_386_GOTPC: |
| TRACE ("BFD_RELOC_386_GOTPC"); |
| return &elf_howto_table[R_386_GOTPC]; |
| |
| /* These relocs are a GNU extension. */ |
| case BFD_RELOC_386_TLS_TPOFF: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF"); |
| return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_IE: |
| TRACE ("BFD_RELOC_386_TLS_IE"); |
| return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTIE: |
| TRACE ("BFD_RELOC_386_TLS_GOTIE"); |
| return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LE: |
| TRACE ("BFD_RELOC_386_TLS_LE"); |
| return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_GD: |
| TRACE ("BFD_RELOC_386_TLS_GD"); |
| return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset]; |
| |
| case BFD_RELOC_386_TLS_LDM: |
| TRACE ("BFD_RELOC_386_TLS_LDM"); |
| return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset]; |
| |
| case BFD_RELOC_16: |
| TRACE ("BFD_RELOC_16"); |
| return &elf_howto_table[R_386_16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_16_PCREL: |
| TRACE ("BFD_RELOC_16_PCREL"); |
| return &elf_howto_table[R_386_PC16 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8: |
| TRACE ("BFD_RELOC_8"); |
| return &elf_howto_table[R_386_8 - R_386_ext_offset]; |
| |
| case BFD_RELOC_8_PCREL: |
| TRACE ("BFD_RELOC_8_PCREL"); |
| return &elf_howto_table[R_386_PC8 - R_386_ext_offset]; |
| |
| /* Common with Sun TLS implementation. */ |
| case BFD_RELOC_386_TLS_LDO_32: |
| TRACE ("BFD_RELOC_386_TLS_LDO_32"); |
| return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_IE_32: |
| TRACE ("BFD_RELOC_386_TLS_IE_32"); |
| return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_LE_32: |
| TRACE ("BFD_RELOC_386_TLS_LE_32"); |
| return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPMOD32: |
| TRACE ("BFD_RELOC_386_TLS_DTPMOD32"); |
| return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DTPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_DTPOFF32"); |
| return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_TPOFF32: |
| TRACE ("BFD_RELOC_386_TLS_TPOFF32"); |
| return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_GOTDESC: |
| TRACE ("BFD_RELOC_386_TLS_GOTDESC"); |
| return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC_CALL: |
| TRACE ("BFD_RELOC_386_TLS_DESC_CALL"); |
| return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_TLS_DESC: |
| TRACE ("BFD_RELOC_386_TLS_DESC"); |
| return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset]; |
| |
| case BFD_RELOC_386_IRELATIVE: |
| TRACE ("BFD_RELOC_386_IRELATIVE"); |
| return &elf_howto_table[R_386_IRELATIVE - R_386_tls_offset]; |
| |
| case BFD_RELOC_VTABLE_INHERIT: |
| TRACE ("BFD_RELOC_VTABLE_INHERIT"); |
| return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset]; |
| |
| case BFD_RELOC_VTABLE_ENTRY: |
| TRACE ("BFD_RELOC_VTABLE_ENTRY"); |
| return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset]; |
| |
| default: |
| break; |
| } |
| |
| TRACE ("Unknown"); |
| return 0; |
| } |
| |
| static reloc_howto_type * |
| elf_i386_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *r_name) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
| if (elf_howto_table[i].name != NULL |
| && strcasecmp (elf_howto_table[i].name, r_name) == 0) |
| return &elf_howto_table[i]; |
| |
| return NULL; |
| } |
| |
| static reloc_howto_type * |
| elf_i386_rtype_to_howto (bfd *abfd, unsigned r_type) |
| { |
| unsigned int indx; |
| |
| if ((indx = r_type) >= R_386_standard |
| && ((indx = r_type - R_386_ext_offset) - R_386_standard |
| >= R_386_ext - R_386_standard) |
| && ((indx = r_type - R_386_tls_offset) - R_386_ext |
| >= R_386_irelative - R_386_ext) |
| && ((indx = r_type - R_386_vt_offset) - R_386_irelative |
| >= R_386_vt - R_386_irelative)) |
| { |
| (*_bfd_error_handler) (_("%B: invalid relocation type %d"), |
| abfd, (int) r_type); |
| indx = R_386_NONE; |
| } |
| BFD_ASSERT (elf_howto_table [indx].type == r_type); |
| return &elf_howto_table[indx]; |
| } |
| |
| static void |
| elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *cache_ptr, |
| Elf_Internal_Rela *dst) |
| { |
| unsigned int r_type = ELF32_R_TYPE (dst->r_info); |
| cache_ptr->howto = elf_i386_rtype_to_howto (abfd, r_type); |
| } |
| |
| /* Return whether a symbol name implies a local label. The UnixWare |
| 2.1 cc generates temporary symbols that start with .X, so we |
| recognize them here. FIXME: do other SVR4 compilers also use .X?. |
| If so, we should move the .X recognition into |
| _bfd_elf_is_local_label_name. */ |
| |
| static bfd_boolean |
| elf_i386_is_local_label_name (bfd *abfd, const char *name) |
| { |
| if (name[0] == '.' && name[1] == 'X') |
| return TRUE; |
| |
| return _bfd_elf_is_local_label_name (abfd, name); |
| } |
| |
| /* Support for core dump NOTE sections. */ |
| |
| static bfd_boolean |
| elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int offset; |
| size_t size; |
| |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return FALSE; |
| |
| /* pr_cursig */ |
| elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 20); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 28; |
| size = bfd_get_32 (abfd, note->descdata + 8); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 144: /* Linux/i386 */ |
| /* pr_cursig */ |
| elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); |
| |
| /* pr_pid */ |
| elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24); |
| |
| /* pr_reg */ |
| offset = 72; |
| size = 68; |
| |
| break; |
| } |
| } |
| |
| /* Make a ".reg/999" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bfd_boolean |
| elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| { |
| int pr_version = bfd_get_32 (abfd, note->descdata); |
| |
| if (pr_version != 1) |
| return FALSE; |
| |
| elf_tdata (abfd)->core_program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 8, 17); |
| elf_tdata (abfd)->core_command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 25, 81); |
| } |
| else |
| { |
| switch (note->descsz) |
| { |
| default: |
| return FALSE; |
| |
| case 124: /* Linux/i386 elf_prpsinfo. */ |
| elf_tdata (abfd)->core_pid |
| = bfd_get_32 (abfd, note->descdata + 12); |
| elf_tdata (abfd)->core_program |
| = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| elf_tdata (abfd)->core_command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| } |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| { |
| char *command = elf_tdata (abfd)->core_command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Functions for the i386 ELF linker. |
| |
| In order to gain some understanding of code in this file without |
| knowing all the intricate details of the linker, note the |
| following: |
| |
| Functions named elf_i386_* are called by external routines, other |
| functions are only called locally. elf_i386_* functions appear |
| in this file more or less in the order in which they are called |
| from external routines. eg. elf_i386_check_relocs is called |
| early in the link process, elf_i386_finish_dynamic_sections is |
| one of the last functions. */ |
| |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| |
| /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| copying dynamic variables from a shared lib into an app's dynbss |
| section, and instead use a dynamic relocation to point into the |
| shared lib. */ |
| #define ELIMINATE_COPY_RELOCS 1 |
| |
| /* The size in bytes of an entry in the procedure linkage table. */ |
| |
| #define PLT_ENTRY_SIZE 16 |
| |
| /* The first entry in an absolute procedure linkage table looks like |
| this. See the SVR4 ABI i386 supplement to see how this works. |
| Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_plt0_entry[12] = |
| { |
| 0xff, 0x35, /* pushl contents of address */ |
| 0, 0, 0, 0, /* replaced with address of .got + 4. */ |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0 /* replaced with address of .got + 8. */ |
| }; |
| |
| /* Subsequent entries in an absolute procedure linkage table look like |
| this. */ |
| |
| static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0x25, /* jmp indirect */ |
| 0, 0, 0, 0, /* replaced with address of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* The first entry in a PIC procedure linkage table look like this. |
| Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| |
| static const bfd_byte elf_i386_pic_plt0_entry[12] = |
| { |
| 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ |
| 0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */ |
| }; |
| |
| /* Subsequent entries in a PIC procedure linkage table look like this. */ |
| |
| static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] = |
| { |
| 0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 0x68, /* pushl immediate */ |
| 0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 0xe9, /* jmp relative */ |
| 0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| }; |
| |
| /* On VxWorks, the .rel.plt.unloaded section has absolute relocations |
| for the PLTResolve stub and then for each PLT entry. */ |
| #define PLTRESOLVE_RELOCS_SHLIB 0 |
| #define PLTRESOLVE_RELOCS 2 |
| #define PLT_NON_JUMP_SLOT_RELOCS 2 |
| |
| /* i386 ELF linker hash entry. */ |
| |
| struct elf_i386_link_hash_entry |
| { |
| struct elf_link_hash_entry elf; |
| |
| /* Track dynamic relocs copied for this symbol. */ |
| struct elf_dyn_relocs *dyn_relocs; |
| |
| #define GOT_UNKNOWN 0 |
| #define GOT_NORMAL 1 |
| #define GOT_TLS_GD 2 |
| #define GOT_TLS_IE 4 |
| #define GOT_TLS_IE_POS 5 |
| #define GOT_TLS_IE_NEG 6 |
| #define GOT_TLS_IE_BOTH 7 |
| #define GOT_TLS_GDESC 8 |
| #define GOT_TLS_GD_BOTH_P(type) \ |
| ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) |
| #define GOT_TLS_GD_P(type) \ |
| ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GDESC_P(type) \ |
| ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) |
| #define GOT_TLS_GD_ANY_P(type) \ |
| (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) |
| unsigned char tls_type; |
| |
| /* Offset of the GOTPLT entry reserved for the TLS descriptor, |
| starting at the end of the jump table. */ |
| bfd_vma tlsdesc_got; |
| }; |
| |
| #define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent)) |
| |
| struct elf_i386_obj_tdata |
| { |
| struct elf_obj_tdata root; |
| |
| /* tls_type for each local got entry. */ |
| char *local_got_tls_type; |
| |
| /* GOTPLT entries for TLS descriptors. */ |
| bfd_vma *local_tlsdesc_gotent; |
| }; |
| |
| #define elf_i386_tdata(abfd) \ |
| ((struct elf_i386_obj_tdata *) (abfd)->tdata.any) |
| |
| #define elf_i386_local_got_tls_type(abfd) \ |
| (elf_i386_tdata (abfd)->local_got_tls_type) |
| |
| #define elf_i386_local_tlsdesc_gotent(abfd) \ |
| (elf_i386_tdata (abfd)->local_tlsdesc_gotent) |
| |
| #define is_i386_elf(bfd) \ |
| (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| && elf_tdata (bfd) != NULL \ |
| && elf_object_id (bfd) == I386_ELF_DATA) |
| |
| static bfd_boolean |
| elf_i386_mkobject (bfd *abfd) |
| { |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_i386_obj_tdata), |
| I386_ELF_DATA); |
| } |
| |
| /* i386 ELF linker hash table. */ |
| |
| struct elf_i386_link_hash_table |
| { |
| struct elf_link_hash_table elf; |
| |
| /* Short-cuts to get to dynamic linker sections. */ |
| asection *sdynbss; |
| asection *srelbss; |
| |
| union |
| { |
| bfd_signed_vma refcount; |
| bfd_vma offset; |
| } tls_ldm_got; |
| |
| /* The amount of space used by the reserved portion of the sgotplt |
| section, plus whatever space is used by the jump slots. */ |
| bfd_vma sgotplt_jump_table_size; |
| |
| /* Small local sym cache. */ |
| struct sym_cache sym_cache; |
| |
| /* _TLS_MODULE_BASE_ symbol. */ |
| struct bfd_link_hash_entry *tls_module_base; |
| |
| /* Used by local STT_GNU_IFUNC symbols. */ |
| htab_t loc_hash_table; |
| void * loc_hash_memory; |
| |
| /* The (unloaded but important) .rel.plt.unloaded section on VxWorks. */ |
| asection *srelplt2; |
| |
| /* True if the target system is VxWorks. */ |
| int is_vxworks; |
| |
| /* The index of the next unused R_386_TLS_DESC slot in .rel.plt. */ |
| bfd_vma next_tls_desc_index; |
| |
| /* Value used to fill the last word of the first plt entry. */ |
| bfd_byte plt0_pad_byte; |
| }; |
| |
| /* Get the i386 ELF linker hash table from a link_info structure. */ |
| |
| #define elf_i386_hash_table(p) \ |
| (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ |
| == I386_ELF_DATA ? ((struct elf_i386_link_hash_table *) ((p)->hash)) : NULL) |
| |
| #define elf_i386_compute_jump_table_size(htab) \ |
| ((htab)->next_tls_desc_index * 4) |
| |
| /* Create an entry in an i386 ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| elf_i386_link_hash_newfunc (struct bfd_hash_entry *entry, |
| struct bfd_hash_table *table, |
| const char *string) |
| { |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (entry == NULL) |
| { |
| entry = (struct bfd_hash_entry *) |
| bfd_hash_allocate (table, sizeof (struct elf_i386_link_hash_entry)); |
| if (entry == NULL) |
| return entry; |
| } |
| |
| /* Call the allocation method of the superclass. */ |
| entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| if (entry != NULL) |
| { |
| struct elf_i386_link_hash_entry *eh; |
| |
| eh = (struct elf_i386_link_hash_entry *) entry; |
| eh->dyn_relocs = NULL; |
| eh->tls_type = GOT_UNKNOWN; |
| eh->tlsdesc_got = (bfd_vma) -1; |
| } |
| |
| return entry; |
| } |
| |
| /* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| as global symbol. We reuse indx and dynstr_index for local symbol |
| hash since they aren't used by global symbols in this backend. */ |
| |
| static hashval_t |
| elf_i386_local_htab_hash (const void *ptr) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) ptr; |
| return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| } |
| |
| /* Compare local hash entries. */ |
| |
| static int |
| elf_i386_local_htab_eq (const void *ptr1, const void *ptr2) |
| { |
| struct elf_link_hash_entry *h1 |
| = (struct elf_link_hash_entry *) ptr1; |
| struct elf_link_hash_entry *h2 |
| = (struct elf_link_hash_entry *) ptr2; |
| |
| return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| } |
| |
| /* Find and/or create a hash entry for local symbol. */ |
| |
| static struct elf_link_hash_entry * |
| elf_i386_get_local_sym_hash (struct elf_i386_link_hash_table *htab, |
| bfd *abfd, const Elf_Internal_Rela *rel, |
| bfd_boolean create) |
| { |
| struct elf_i386_link_hash_entry e, *ret; |
| asection *sec = abfd->sections; |
| hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| ELF32_R_SYM (rel->r_info)); |
| void **slot; |
| |
| e.elf.indx = sec->id; |
| e.elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| create ? INSERT : NO_INSERT); |
| |
| if (!slot) |
| return NULL; |
| |
| if (*slot) |
| { |
| ret = (struct elf_i386_link_hash_entry *) *slot; |
| return &ret->elf; |
| } |
| |
| ret = (struct elf_i386_link_hash_entry *) |
| objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| sizeof (struct elf_i386_link_hash_entry)); |
| if (ret) |
| { |
| memset (ret, 0, sizeof (*ret)); |
| ret->elf.indx = sec->id; |
| ret->elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| ret->elf.dynindx = -1; |
| *slot = ret; |
| } |
| return &ret->elf; |
| } |
| |
| /* Create an i386 ELF linker hash table. */ |
| |
| static struct bfd_link_hash_table * |
| elf_i386_link_hash_table_create (bfd *abfd) |
| { |
| struct elf_i386_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct elf_i386_link_hash_table); |
| |
| ret = (struct elf_i386_link_hash_table *) bfd_malloc (amt); |
| if (ret == NULL) |
| return NULL; |
| |
| if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| elf_i386_link_hash_newfunc, |
| sizeof (struct elf_i386_link_hash_entry), |
| I386_ELF_DATA)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| ret->sdynbss = NULL; |
| ret->srelbss = NULL; |
| ret->tls_ldm_got.refcount = 0; |
| ret->next_tls_desc_index = 0; |
| ret->sgotplt_jump_table_size = 0; |
| ret->sym_cache.abfd = NULL; |
| ret->is_vxworks = 0; |
| ret->srelplt2 = NULL; |
| ret->plt0_pad_byte = 0; |
| ret->tls_module_base = NULL; |
| |
| ret->loc_hash_table = htab_try_create (1024, |
| elf_i386_local_htab_hash, |
| elf_i386_local_htab_eq, |
| NULL); |
| ret->loc_hash_memory = objalloc_create (); |
| if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| return &ret->elf.root; |
| } |
| |
| /* Destroy an i386 ELF linker hash table. */ |
| |
| static void |
| elf_i386_link_hash_table_free (struct bfd_link_hash_table *hash) |
| { |
| struct elf_i386_link_hash_table *htab |
| = (struct elf_i386_link_hash_table *) hash; |
| |
| if (htab->loc_hash_table) |
| htab_delete (htab->loc_hash_table); |
| if (htab->loc_hash_memory) |
| objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| _bfd_generic_link_hash_table_free (hash); |
| } |
| |
| /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and |
| .rel.bss sections in DYNOBJ, and set up shortcuts to them in our |
| hash table. */ |
| |
| static bfd_boolean |
| elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| |
| if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| return FALSE; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); |
| if (!info->shared) |
| htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss"); |
| |
| if (!htab->sdynbss |
| || (!info->shared && !htab->srelbss)) |
| abort (); |
| |
| if (htab->is_vxworks |
| && !elf_vxworks_create_dynamic_sections (dynobj, info, |
| &htab->srelplt2)) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| /* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| |
| static void |
| elf_i386_copy_indirect_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *dir, |
| struct elf_link_hash_entry *ind) |
| { |
| struct elf_i386_link_hash_entry *edir, *eind; |
| |
| edir = (struct elf_i386_link_hash_entry *) dir; |
| eind = (struct elf_i386_link_hash_entry *) ind; |
| |
| if (eind->dyn_relocs != NULL) |
| { |
| if (edir->dyn_relocs != NULL) |
| { |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| /* Add reloc counts against the indirect sym to the direct sym |
| list. Merge any entries against the same section. */ |
| for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| struct elf_dyn_relocs *q; |
| |
| for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| if (q->sec == p->sec) |
| { |
| q->pc_count += p->pc_count; |
| q->count += p->count; |
| *pp = p->next; |
| break; |
| } |
| if (q == NULL) |
| pp = &p->next; |
| } |
| *pp = edir->dyn_relocs; |
| } |
| |
| edir->dyn_relocs = eind->dyn_relocs; |
| eind->dyn_relocs = NULL; |
| } |
| |
| if (ind->root.type == bfd_link_hash_indirect |
| && dir->got.refcount <= 0) |
| { |
| edir->tls_type = eind->tls_type; |
| eind->tls_type = GOT_UNKNOWN; |
| } |
| |
| if (ELIMINATE_COPY_RELOCS |
| && ind->root.type != bfd_link_hash_indirect |
| && dir->dynamic_adjusted) |
| { |
| /* If called to transfer flags for a weakdef during processing |
| of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| dir->ref_dynamic |= ind->ref_dynamic; |
| dir->ref_regular |= ind->ref_regular; |
| dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| dir->needs_plt |= ind->needs_plt; |
| dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| } |
| else |
| _bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| } |
| |
| typedef union |
| { |
| unsigned char c[2]; |
| uint16_t i; |
| } |
| i386_opcode16; |
| |
| /* Return TRUE if the TLS access code sequence support transition |
| from R_TYPE. */ |
| |
| static bfd_boolean |
| elf_i386_check_tls_transition (bfd *abfd, asection *sec, |
| bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int r_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend) |
| { |
| unsigned int val, type; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| bfd_vma offset; |
| |
| /* Get the section contents. */ |
| if (contents == NULL) |
| { |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| /* FIXME: How to better handle error condition? */ |
| if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| return FALSE; |
| |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| |
| offset = rel->r_offset; |
| switch (r_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_LDM: |
| if (offset < 2 || (rel + 1) >= relend) |
| return FALSE; |
| |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| if (r_type == R_386_TLS_GD) |
| { |
| /* Check transition from GD access model. Only |
| leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr |
| leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop |
| can transit to different access model. */ |
| if ((offset + 10) > sec->size || |
| (type != 0x8d && type != 0x04)) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if (type == 0x04) |
| { |
| /* leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr */ |
| if (offset < 3) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset - 3) != 0x8d) |
| return FALSE; |
| |
| if ((val & 0xc7) != 0x05 || val == (4 << 3)) |
| return FALSE; |
| } |
| else |
| { |
| /* leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop */ |
| if ((val & 0xf8) != 0x80 || (val & 7) == 4) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset + 9) != 0x90) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* Check transition from LD access model. Only |
| leal foo@tlsgd(%reg), %eax; call ___tls_get_addr |
| can transit to different access model. */ |
| if (type != 0x8d || (offset + 9) > sec->size) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if ((val & 0xf8) != 0x80 || (val & 7) == 4) |
| return FALSE; |
| } |
| |
| if (bfd_get_8 (abfd, contents + offset + 4) != 0xe8) |
| return FALSE; |
| |
| r_symndx = ELF32_R_SYM (rel[1].r_info); |
| if (r_symndx < symtab_hdr->sh_info) |
| return FALSE; |
| |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| /* Use strncmp to check ___tls_get_addr since ___tls_get_addr |
| may be versioned. */ |
| return (h != NULL |
| && h->root.root.string != NULL |
| && (ELF32_R_TYPE (rel[1].r_info) == R_386_PC32 |
| || ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32) |
| && (strncmp (h->root.root.string, "___tls_get_addr", |
| 15) == 0)); |
| |
| case R_386_TLS_IE: |
| /* Check transition from IE access model: |
| movl foo@indntpoff(%rip), %eax |
| movl foo@indntpoff(%rip), %reg |
| addl foo@indntpoff(%rip), %reg |
| */ |
| |
| if (offset < 1 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| /* Check "movl foo@tpoff(%rip), %eax" first. */ |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if (val == 0xa1) |
| return TRUE; |
| |
| if (offset < 2) |
| return FALSE; |
| |
| /* Check movl|addl foo@tpoff(%rip), %reg. */ |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return ((type == 0x8b || type == 0x03) |
| && (val & 0xc7) == 0x05); |
| |
| case R_386_TLS_GOTIE: |
| case R_386_TLS_IE_32: |
| /* Check transition from {IE_32,GOTIE} access model: |
| subl foo@{tpoff,gontoff}(%reg1), %reg2 |
| movl foo@{tpoff,gontoff}(%reg1), %reg2 |
| addl foo@{tpoff,gontoff}(%reg1), %reg2 |
| */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| if ((val & 0xc0) != 0x80 || (val & 7) == 4) |
| return FALSE; |
| |
| type = bfd_get_8 (abfd, contents + offset - 2); |
| return type == 0x8b || type == 0x2b || type == 0x03; |
| |
| case R_386_TLS_GOTDESC: |
| /* Check transition from GDesc access model: |
| leal x@tlsdesc(%ebx), %eax |
| |
| Make sure it's a leal adding ebx to a 32-bit offset |
| into any register, although it's probably almost always |
| going to be eax. */ |
| |
| if (offset < 2 || (offset + 4) > sec->size) |
| return FALSE; |
| |
| if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| return FALSE; |
| |
| val = bfd_get_8 (abfd, contents + offset - 1); |
| return (val & 0xc7) == 0x83; |
| |
| case R_386_TLS_DESC_CALL: |
| /* Check transition from GDesc access model: |
| call *x@tlsdesc(%rax) |
| */ |
| if (offset + 2 <= sec->size) |
| { |
| /* Make sure that it's a call *x@tlsdesc(%rax). */ |
| static i386_opcode16 call = { { 0xff, 0x10 } }; |
| return bfd_get_16 (abfd, contents + offset) == call.i; |
| } |
| |
| return FALSE; |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Return TRUE if the TLS access transition is OK or no transition |
| will be performed. Update R_TYPE if there is a transition. */ |
| |
| static bfd_boolean |
| elf_i386_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| asection *sec, bfd_byte *contents, |
| Elf_Internal_Shdr *symtab_hdr, |
| struct elf_link_hash_entry **sym_hashes, |
| unsigned int *r_type, int tls_type, |
| const Elf_Internal_Rela *rel, |
| const Elf_Internal_Rela *relend, |
| struct elf_link_hash_entry *h, |
| unsigned long r_symndx) |
| { |
| unsigned int from_type = *r_type; |
| unsigned int to_type = from_type; |
| bfd_boolean check = TRUE; |
| |
| /* Skip TLS transition for functions. */ |
| if (h != NULL |
| && (h->type == STT_FUNC |
| || h->type == STT_GNU_IFUNC)) |
| return TRUE; |
| |
| switch (from_type) |
| { |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (info->executable) |
| { |
| if (h == NULL) |
| to_type = R_386_TLS_LE_32; |
| else if (from_type != R_386_TLS_IE |
| && from_type != R_386_TLS_GOTIE) |
| to_type = R_386_TLS_IE_32; |
| } |
| |
| /* When we are called from elf_i386_relocate_section, CONTENTS |
| isn't NULL and there may be additional transitions based on |
| TLS_TYPE. */ |
| if (contents != NULL) |
| { |
| unsigned int new_to_type = to_type; |
| |
| if (info->executable |
| && h != NULL |
| && h->dynindx == -1 |
| && (tls_type & GOT_TLS_IE)) |
| new_to_type = R_386_TLS_LE_32; |
| |
| if (to_type == R_386_TLS_GD |
| || to_type == R_386_TLS_GOTDESC |
| || to_type == R_386_TLS_DESC_CALL) |
| { |
| if (tls_type == GOT_TLS_IE_POS) |
| new_to_type = R_386_TLS_GOTIE; |
| else if (tls_type & GOT_TLS_IE) |
| new_to_type = R_386_TLS_IE_32; |
| } |
| |
| /* We checked the transition before when we were called from |
| elf_i386_check_relocs. We only want to check the new |
| transition which hasn't been checked before. */ |
| check = new_to_type != to_type && from_type == to_type; |
| to_type = new_to_type; |
| } |
| |
| break; |
| |
| case R_386_TLS_LDM: |
| if (info->executable) |
| to_type = R_386_TLS_LE_32; |
| break; |
| |
| default: |
| return TRUE; |
| } |
| |
| /* Return TRUE if there is no transition. */ |
| if (from_type == to_type) |
| return TRUE; |
| |
| /* Check if the transition can be performed. */ |
| if (check |
| && ! elf_i386_check_tls_transition (abfd, sec, contents, |
| symtab_hdr, sym_hashes, |
| from_type, rel, relend)) |
| { |
| reloc_howto_type *from, *to; |
| const char *name; |
| |
| from = elf_i386_rtype_to_howto (abfd, from_type); |
| to = elf_i386_rtype_to_howto (abfd, to_type); |
| |
| if (h) |
| name = h->root.root.string; |
| else |
| { |
| struct elf_i386_link_hash_table *htab; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| name = "*unknown*"; |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| } |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: TLS transition from %s to %s against `%s' at 0x%lx " |
| "in section `%A' failed"), |
| abfd, sec, from->name, to->name, name, |
| (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| *r_type = to_type; |
| return TRUE; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| calculate needed space in the global offset table, procedure linkage |
| table, and dynamic reloc sections. */ |
| |
| static bfd_boolean |
| elf_i386_check_relocs (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_i386_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sreloc; |
| |
| if (info->relocatable) |
| return TRUE; |
| |
| BFD_ASSERT (is_i386_elf (abfd)); |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| |
| sreloc = NULL; |
| |
| rel_end = relocs + sec->reloc_count; |
| for (rel = relocs; rel < rel_end; rel++) |
| { |
| unsigned int r_type; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *isym; |
| const char *name; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| r_type = ELF32_R_TYPE (rel->r_info); |
| |
| if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
| abfd, |
| r_symndx); |
| return FALSE; |
| } |
| |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| /* A local symbol. */ |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_i386_get_local_sym_hash (htab, abfd, rel, TRUE); |
| if (h == NULL) |
| return FALSE; |
| |
| /* Fake a STT_GNU_IFUNC symbol. */ |
| h->type = STT_GNU_IFUNC; |
| h->def_regular = 1; |
| h->ref_regular = 1; |
| h->forced_local = 1; |
| h->root.type = bfd_link_hash_defined; |
| } |
| else |
| h = NULL; |
| } |
| else |
| { |
| isym = NULL; |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| |
| if (h != NULL) |
| { |
| /* Create the ifunc sections for static executables. If we |
| never see an indirect function symbol nor we are building |
| a static executable, those sections will be empty and |
| won't appear in output. */ |
| switch (r_type) |
| { |
| default: |
| break; |
| |
| case R_386_32: |
| case R_386_PC32: |
| case R_386_PLT32: |
| case R_386_GOT32: |
| case R_386_GOTOFF: |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info)) |
| return FALSE; |
| break; |
| } |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| /* It is referenced by a non-shared object. */ |
| h->ref_regular = 1; |
| h->needs_plt = 1; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| h->plt.refcount += 1; |
| |
| /* STT_GNU_IFUNC needs dynamic sections. */ |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| switch (r_type) |
| { |
| default: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't handled by %s"), abfd, |
| elf_howto_table[r_type].name, |
| name, __FUNCTION__); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| |
| case R_386_32: |
| h->non_got_ref = 1; |
| h->pointer_equality_needed = 1; |
| if (info->shared) |
| { |
| /* We must copy these reloc types into the |
| output file. Create a reloc section in |
| dynobj and make room for this reloc. */ |
| sreloc = _bfd_elf_create_ifunc_dyn_reloc |
| (abfd, info, sec, sreloc, |
| &((struct elf_i386_link_hash_entry *) h)->dyn_relocs); |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| break; |
| |
| case R_386_PC32: |
| h->non_got_ref = 1; |
| break; |
| |
| case R_386_PLT32: |
| break; |
| |
| case R_386_GOT32: |
| case R_386_GOTOFF: |
| h->got.refcount += 1; |
| if (htab->elf.sgot == NULL |
| && !_bfd_elf_create_got_section (htab->elf.dynobj, |
| info)) |
| return FALSE; |
| break; |
| } |
| |
| continue; |
| } |
| } |
| |
| if (! elf_i386_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, rel_end, h, r_symndx)) |
| return FALSE; |
| |
| switch (r_type) |
| { |
| case R_386_TLS_LDM: |
| htab->tls_ldm_got.refcount += 1; |
| goto create_got; |
| |
| case R_386_PLT32: |
| /* This symbol requires a procedure linkage table entry. We |
| actually build the entry in adjust_dynamic_symbol, |
| because this might be a case of linking PIC code which is |
| never referenced by a dynamic object, in which case we |
| don't need to generate a procedure linkage table entry |
| after all. */ |
| |
| /* If this is a local symbol, we resolve it directly without |
| creating a procedure linkage table entry. */ |
| if (h == NULL) |
| continue; |
| |
| h->needs_plt = 1; |
| h->plt.refcount += 1; |
| break; |
| |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| if (!info->executable) |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_386_GOT32: |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| /* This symbol requires a global offset table entry. */ |
| { |
| int tls_type, old_tls_type; |
| |
| switch (r_type) |
| { |
| default: |
| case R_386_GOT32: tls_type = GOT_NORMAL; break; |
| case R_386_TLS_GD: tls_type = GOT_TLS_GD; break; |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| tls_type = GOT_TLS_GDESC; break; |
| case R_386_TLS_IE_32: |
| if (ELF32_R_TYPE (rel->r_info) == r_type) |
| tls_type = GOT_TLS_IE_NEG; |
| else |
| /* If this is a GD->IE transition, we may use either of |
| R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */ |
| tls_type = GOT_TLS_IE; |
| break; |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| tls_type = GOT_TLS_IE_POS; break; |
| } |
| |
| if (h != NULL) |
| { |
| h->got.refcount += 1; |
| old_tls_type = elf_i386_hash_entry(h)->tls_type; |
| } |
| else |
| { |
| bfd_signed_vma *local_got_refcounts; |
| |
| /* This is a global offset table entry for a local symbol. */ |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| if (local_got_refcounts == NULL) |
| { |
| bfd_size_type size; |
| |
| size = symtab_hdr->sh_info; |
| size *= (sizeof (bfd_signed_vma) |
| + sizeof (bfd_vma) + sizeof(char)); |
| local_got_refcounts = (bfd_signed_vma *) |
| bfd_zalloc (abfd, size); |
| if (local_got_refcounts == NULL) |
| return FALSE; |
| elf_local_got_refcounts (abfd) = local_got_refcounts; |
| elf_i386_local_tlsdesc_gotent (abfd) |
| = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| elf_i386_local_got_tls_type (abfd) |
| = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| } |
| local_got_refcounts[r_symndx] += 1; |
| old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx]; |
| } |
| |
| if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) |
| tls_type |= old_tls_type; |
| /* If a TLS symbol is accessed using IE at least once, |
| there is no point to use dynamic model for it. */ |
| else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| && (! GOT_TLS_GD_ANY_P (old_tls_type) |
| || (tls_type & GOT_TLS_IE) == 0)) |
| { |
| if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type = old_tls_type; |
| else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| && GOT_TLS_GD_ANY_P (tls_type)) |
| tls_type |= old_tls_type; |
| else |
| { |
| if (h) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: `%s' accessed both as normal and " |
| "thread local symbol"), |
| abfd, name); |
| return FALSE; |
| } |
| } |
| |
| if (old_tls_type != tls_type) |
| { |
| if (h != NULL) |
| elf_i386_hash_entry (h)->tls_type = tls_type; |
| else |
| elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| } |
| } |
| /* Fall through */ |
| |
| case R_386_GOTOFF: |
| case R_386_GOTPC: |
| create_got: |
| if (htab->elf.sgot == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| if (!_bfd_elf_create_got_section (htab->elf.dynobj, info)) |
| return FALSE; |
| } |
| if (r_type != R_386_TLS_IE) |
| break; |
| /* Fall through */ |
| |
| case R_386_TLS_LE_32: |
| case R_386_TLS_LE: |
| if (info->executable) |
| break; |
| info->flags |= DF_STATIC_TLS; |
| /* Fall through */ |
| |
| case R_386_32: |
| case R_386_PC32: |
| if (h != NULL && info->executable) |
| { |
| /* If this reloc is in a read-only section, we might |
| need a copy reloc. We can't check reliably at this |
| stage whether the section is read-only, as input |
| sections have not yet been mapped to output sections. |
| Tentatively set the flag for now, and correct in |
| adjust_dynamic_symbol. */ |
| h->non_got_ref = 1; |
| |
| /* We may need a .plt entry if the function this reloc |
| refers to is in a shared lib. */ |
| h->plt.refcount += 1; |
| if (r_type != R_386_PC32) |
| h->pointer_equality_needed = 1; |
| } |
| |
| /* If we are creating a shared library, and this is a reloc |
| against a global symbol, or a non PC relative reloc |
| against a local symbol, then we need to copy the reloc |
| into the shared library. However, if we are linking with |
| -Bsymbolic, we do not need to copy a reloc against a |
| global symbol which is defined in an object we are |
| including in the link (i.e., DEF_REGULAR is set). At |
| this point we have not seen all the input files, so it is |
| possible that DEF_REGULAR is not set now but will be set |
| later (it is never cleared). In case of a weak definition, |
| DEF_REGULAR may be cleared later by a strong definition in |
| a shared library. We account for that possibility below by |
| storing information in the relocs_copied field of the hash |
| table entry. A similar situation occurs when creating |
| shared libraries and symbol visibility changes render the |
| symbol local. |
| |
| If on the other hand, we are creating an executable, we |
| may need to keep relocations for symbols satisfied by a |
| dynamic library if we manage to avoid copy relocs for the |
| symbol. */ |
| if ((info->shared |
| && (sec->flags & SEC_ALLOC) != 0 |
| && (r_type != R_386_PC32 |
| || (h != NULL |
| && (! SYMBOLIC_BIND (info, h) |
| || h->root.type == bfd_link_hash_defweak |
| || !h->def_regular)))) |
| || (ELIMINATE_COPY_RELOCS |
| && !info->shared |
| && (sec->flags & SEC_ALLOC) != 0 |
| && h != NULL |
| && (h->root.type == bfd_link_hash_defweak |
| || !h->def_regular))) |
| { |
| struct elf_dyn_relocs *p; |
| struct elf_dyn_relocs **head; |
| |
| /* We must copy these reloc types into the output file. |
| Create a reloc section in dynobj and make room for |
| this reloc. */ |
| if (sreloc == NULL) |
| { |
| if (htab->elf.dynobj == NULL) |
| htab->elf.dynobj = abfd; |
| |
| sreloc = _bfd_elf_make_dynamic_reloc_section |
| (sec, htab->elf.dynobj, 2, abfd, /*rela?*/ FALSE); |
| |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| |
| /* If this is a global symbol, we count the number of |
| relocations we need for this symbol. */ |
| if (h != NULL) |
| { |
| head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs; |
| } |
| else |
| { |
| /* Track dynamic relocs needed for local syms too. |
| We really need local syms available to do this |
| easily. Oh well. */ |
| void **vpp; |
| asection *s; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| if (isym == NULL) |
| return FALSE; |
| |
| s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| if (s == NULL) |
| s = sec; |
| |
| vpp = &elf_section_data (s)->local_dynrel; |
| head = (struct elf_dyn_relocs **)vpp; |
| } |
| |
| p = *head; |
| if (p == NULL || p->sec != sec) |
| { |
| bfd_size_type amt = sizeof *p; |
| p = (struct elf_dyn_relocs *) bfd_alloc (htab->elf.dynobj, |
| amt); |
| if (p == NULL) |
| return FALSE; |
| p->next = *head; |
| *head = p; |
| p->sec = sec; |
| p->count = 0; |
| p->pc_count = 0; |
| } |
| |
| p->count += 1; |
| if (r_type == R_386_PC32) |
| p->pc_count += 1; |
| } |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_386_GNU_VTINHERIT: |
| if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_386_GNU_VTENTRY: |
| BFD_ASSERT (h != NULL); |
| if (h != NULL |
| && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| static asection * |
| elf_i386_gc_mark_hook (asection *sec, |
| struct bfd_link_info *info, |
| Elf_Internal_Rela *rel, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| if (h != NULL) |
| switch (ELF32_R_TYPE (rel->r_info)) |
| { |
| case R_386_GNU_VTINHERIT: |
| case R_386_GNU_VTENTRY: |
| return NULL; |
| } |
| |
| return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| } |
| |
| /* Update the got entry reference counts for the section being removed. */ |
| |
| static bfd_boolean |
| elf_i386_gc_sweep_hook (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| const Elf_Internal_Rela *relocs) |
| { |
| struct elf_i386_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_signed_vma *local_got_refcounts; |
| const Elf_Internal_Rela *rel, *relend; |
| |
| if (info->relocatable) |
| return TRUE; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| elf_section_data (sec)->local_dynrel = NULL; |
| |
| symtab_hdr = &elf_symtab_hdr (abfd); |
| sym_hashes = elf_sym_hashes (abfd); |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| |
| relend = relocs + sec->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| { |
| unsigned long r_symndx; |
| unsigned int r_type; |
| struct elf_link_hash_entry *h = NULL; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| if (r_symndx >= symtab_hdr->sh_info) |
| { |
| h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| else |
| { |
| /* A local symbol. */ |
| Elf_Internal_Sym *isym; |
| |
| isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| abfd, r_symndx); |
| |
| /* Check relocation against local STT_GNU_IFUNC symbol. */ |
| if (isym != NULL |
| && ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| { |
| h = elf_i386_get_local_sym_hash (htab, abfd, rel, FALSE); |
| if (h == NULL) |
| abort (); |
| } |
| } |
| |
| if (h) |
| { |
| struct elf_i386_link_hash_entry *eh; |
| struct elf_dyn_relocs **pp; |
| struct elf_dyn_relocs *p; |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) |
| if (p->sec == sec) |
| { |
| /* Everything must go for SEC. */ |
| *pp = p->next; |
| break; |
| } |
| } |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (! elf_i386_tls_transition (info, abfd, sec, NULL, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, |
| rel, relend, h, r_symndx)) |
| return FALSE; |
| |
| switch (r_type) |
| { |
| case R_386_TLS_LDM: |
| if (htab->tls_ldm_got.refcount > 0) |
| htab->tls_ldm_got.refcount -= 1; |
| break; |
| |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_IE: |
| case R_386_TLS_GOTIE: |
| case R_386_GOT32: |
| if (h != NULL) |
| { |
| if (h->got.refcount > 0) |
| h->got.refcount -= 1; |
| if (h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| } |
| else if (local_got_refcounts != NULL) |
| { |
| if (local_got_refcounts[r_symndx] > 0) |
| local_got_refcounts[r_symndx] -= 1; |
| } |
| break; |
| |
| case R_386_32: |
| case R_386_PC32: |
| if (info->shared |
| && (h == NULL || h->type != STT_GNU_IFUNC)) |
| break; |
| /* Fall through */ |
| |
| case R_386_PLT32: |
| if (h != NULL) |
| { |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| break; |
| |
| case R_386_GOTOFF: |
| if (h != NULL && h->type == STT_GNU_IFUNC) |
| { |
| if (h->got.refcount > 0) |
| h->got.refcount -= 1; |
| if (h->plt.refcount > 0) |
| h->plt.refcount -= 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| static bfd_boolean |
| elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info, |
| struct elf_link_hash_entry *h) |
| { |
| struct elf_i386_link_hash_table *htab; |
| asection *s; |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (h->type == STT_GNU_IFUNC) |
| { |
| if (h->plt.refcount <= 0) |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| return TRUE; |
| } |
| |
| /* If this is a function, put it in the procedure linkage table. We |
| will fill in the contents of the procedure linkage table later, |
| when we know the address of the .got section. */ |
| if (h->type == STT_FUNC |
| || h->needs_plt) |
| { |
| if (h->plt.refcount <= 0 |
| || SYMBOL_CALLS_LOCAL (info, h) |
| || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This case can occur if we saw a PLT32 reloc in an input |
| file, but the symbol was never referred to by a dynamic |
| object, or if all references were garbage collected. In |
| such a case, we don't actually need to build a procedure |
| linkage table, and we can just do a PC32 reloc instead. */ |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| return TRUE; |
| } |
| else |
| /* It's possible that we incorrectly decided a .plt reloc was |
| needed for an R_386_PC32 reloc to a non-function sym in |
| check_relocs. We can't decide accurately between function and |
| non-function syms in check-relocs; Objects loaded later in |
| the link may change h->type. So fix it now. */ |
| h->plt.offset = (bfd_vma) -1; |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->u.weakdef != NULL) |
| { |
| BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| || h->u.weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| h->non_got_ref = h->u.weakdef->non_got_ref; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| /* If we are creating a shared library, we must presume that the |
| only references to the symbol are via the global offset table. |
| For such cases we need not do anything here; the relocations will |
| be handled correctly by relocate_section. */ |
| if (info->shared) |
| return TRUE; |
| |
| /* If there are no references to this symbol that do not use the |
| GOT, we don't need to generate a copy reloc. */ |
| if (!h->non_got_ref) |
| return TRUE; |
| |
| /* If -z nocopyreloc was given, we won't generate them either. */ |
| if (info->nocopyreloc) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* If there aren't any dynamic relocs in read-only sections, then |
| we can keep the dynamic relocs and avoid the copy reloc. This |
| doesn't work on VxWorks, where we can not have dynamic relocations |
| (other than copy and jump slot relocations) in an executable. */ |
| if (ELIMINATE_COPY_RELOCS && !htab->is_vxworks) |
| { |
| struct elf_i386_link_hash_entry * eh; |
| struct elf_dyn_relocs *p; |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| s = p->sec->output_section; |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| break; |
| } |
| |
| if (p == NULL) |
| { |
| h->non_got_ref = 0; |
| return TRUE; |
| } |
| } |
| |
| if (h->size == 0) |
| { |
| (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), |
| h->root.root.string); |
| return TRUE; |
| } |
| |
| /* We must allocate the symbol in our .dynbss section, which will |
| become part of the .bss section of the executable. There will be |
| an entry for this symbol in the .dynsym section. The dynamic |
| object will contain position independent code, so all references |
| from the dynamic object to this symbol will go through the global |
| offset table. The dynamic linker will use the .dynsym entry to |
| determine the address it must put in the global offset table, so |
| both the dynamic object and the regular object will refer to the |
| same memory location for the variable. */ |
| |
| /* We must generate a R_386_COPY reloc to tell the dynamic linker to |
| copy the initial value out of the dynamic object and into the |
| runtime process image. */ |
| if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| { |
| htab->srelbss->size += sizeof (Elf32_External_Rel); |
| h->needs_copy = 1; |
| } |
| |
| s = htab->sdynbss; |
| |
| return _bfd_elf_adjust_dynamic_copy (h, s); |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_i386_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct bfd_link_info *info; |
| struct elf_i386_link_hash_table *htab; |
| struct elf_i386_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_indirect) |
| return TRUE; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| /* When warning symbols are created, they **replace** the "real" |
| entry in the hash table, thus we never get to see the real |
| symbol in a hash traversal. So look at it now. */ |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| eh = (struct elf_i386_link_hash_entry *) h; |
| |
| info = (struct bfd_link_info *) inf; |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| here if it is defined and referenced in a non-shared object. */ |
| if (h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| &eh->dyn_relocs, |
| PLT_ENTRY_SIZE, 4); |
| else if (htab->elf.dynamic_sections_created |
| && h->plt.refcount > 0) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| if (info->shared |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| { |
| asection *s = htab->elf.splt; |
| |
| /* If this is the first .plt entry, make room for the special |
| first entry. */ |
| if (s->size == 0) |
| s->size += PLT_ENTRY_SIZE; |
| |
| h->plt.offset = s->size; |
| |
| /* If this symbol is not defined in a regular file, and we are |
| not generating a shared library, then set the symbol to this |
| location in the .plt. This is required to make function |
| pointers compare as equal between the normal executable and |
| the shared library. */ |
| if (! info->shared |
| && !h->def_regular) |
| { |
| h->root.u.def.section = s; |
| h->root.u.def.value = h->plt.offset; |
| } |
| |
| /* Make room for this entry. */ |
| s->size += PLT_ENTRY_SIZE; |
| |
| /* We also need to make an entry in the .got.plt section, which |
| will be placed in the .got section by the linker script. */ |
| htab->elf.sgotplt->size += 4; |
| |
| /* We also need to make an entry in the .rel.plt section. */ |
| htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| htab->next_tls_desc_index++; |
| |
| if (htab->is_vxworks && !info->shared) |
| { |
| /* VxWorks has a second set of relocations for each PLT entry |
| in executables. They go in a separate relocation section, |
| which is processed by the kernel loader. */ |
| |
| /* There are two relocations for the initial PLT entry: an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an |
| R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
| |
| if (h->plt.offset == PLT_ENTRY_SIZE) |
| htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| |
| /* There are two extra relocations for each subsequent PLT entry: |
| an R_386_32 relocation for the GOT entry, and an R_386_32 |
| relocation for the PLT entry. */ |
| |
| htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| } |
| else |
| { |
| h->plt.offset = (bfd_vma) -1; |
| h->needs_plt = 0; |
| } |
| |
| eh->tlsdesc_got = (bfd_vma) -1; |
| |
| /* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary, |
| make it a R_386_TLS_LE_32 requiring no TLS entry. */ |
| if (h->got.refcount > 0 |
| && info->executable |
| && h->dynindx == -1 |
| && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE)) |
| h->got.offset = (bfd_vma) -1; |
| else if (h->got.refcount > 0) |
| { |
| asection *s; |
| bfd_boolean dyn; |
| int tls_type = elf_i386_hash_entry(h)->tls_type; |
| |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| s = htab->elf.sgot; |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| eh->tlsdesc_got = htab->elf.sgotplt->size |
| - elf_i386_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 8; |
| h->got.offset = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (tls_type) |
| || GOT_TLS_GD_P (tls_type)) |
| { |
| h->got.offset = s->size; |
| s->size += 4; |
| /* R_386_TLS_GD needs 2 consecutive GOT slots. */ |
| if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH) |
| s->size += 4; |
| } |
| dyn = htab->elf.dynamic_sections_created; |
| /* R_386_TLS_IE_32 needs one dynamic relocation, |
| R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation, |
| (but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we |
| need two), R_386_TLS_GD needs one if local symbol and two if |
| global. */ |
| if (tls_type == GOT_TLS_IE_BOTH) |
| htab->elf.srelgot->size += 2 * sizeof (Elf32_External_Rel); |
| else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
| || (tls_type & GOT_TLS_IE)) |
| htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| else if (GOT_TLS_GD_P (tls_type)) |
| htab->elf.srelgot->size += 2 * sizeof (Elf32_External_Rel); |
| else if (! GOT_TLS_GDESC_P (tls_type) |
| && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (info->shared |
| || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| if (GOT_TLS_GDESC_P (tls_type)) |
| htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| } |
| else |
| h->got.offset = (bfd_vma) -1; |
| |
| if (eh->dyn_relocs == NULL) |
| return TRUE; |
| |
| /* In the shared -Bsymbolic case, discard space allocated for |
| dynamic pc-relative relocs against symbols which turn out to be |
| defined in regular objects. For the normal shared case, discard |
| space for pc-relative relocs that have become local due to symbol |
| visibility changes. */ |
| |
| if (info->shared) |
| { |
| /* The only reloc that uses pc_count is R_386_PC32, which will |
| appear on a call or on something like ".long foo - .". We |
| want calls to protected symbols to resolve directly to the |
| function rather than going via the plt. If people want |
| function pointer comparisons to work as expected then they |
| should avoid writing assembly like ".long foo - .". */ |
| if (SYMBOL_CALLS_LOCAL (info, h)) |
| { |
| struct elf_dyn_relocs **pp; |
| |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| p->count -= p->pc_count; |
| p->pc_count = 0; |
| if (p->count == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| if (htab->is_vxworks) |
| { |
| struct elf_dyn_relocs **pp; |
| for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| { |
| if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) |
| *pp = p->next; |
| else |
| pp = &p->next; |
| } |
| } |
| |
| /* Also discard relocs on undefined weak syms with non-default |
| visibility. */ |
| if (eh->dyn_relocs != NULL |
| && h->root.type == bfd_link_hash_undefweak) |
| { |
| if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| eh->dyn_relocs = NULL; |
| |
| /* Make sure undefined weak symbols are output as a dynamic |
| symbol in PIEs. */ |
| else if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| } |
| } |
| else if (ELIMINATE_COPY_RELOCS) |
| { |
| /* For the non-shared case, discard space for relocs against |
| symbols which turn out to need copy relocs or are not |
| dynamic. */ |
| |
| if (!h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || (htab->elf.dynamic_sections_created |
| && (h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined)))) |
| { |
| /* Make sure this symbol is output as a dynamic symbol. |
| Undefined weak syms won't yet be marked as dynamic. */ |
| if (h->dynindx == -1 |
| && !h->forced_local) |
| { |
| if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| /* If that succeeded, we know we'll be keeping all the |
| relocs. */ |
| if (h->dynindx != -1) |
| goto keep; |
| } |
| |
| eh->dyn_relocs = NULL; |
| |
| keep: ; |
| } |
| |
| /* Finally, allocate space. */ |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *sreloc; |
| |
| sreloc = elf_section_data (p->sec)->sreloc; |
| |
| BFD_ASSERT (sreloc != NULL); |
| sreloc->size += p->count * sizeof (Elf32_External_Rel); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Allocate space in .plt, .got and associated reloc sections for |
| local dynamic relocs. */ |
| |
| static bfd_boolean |
| elf_i386_allocate_local_dynrelocs (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| |
| if (h->type != STT_GNU_IFUNC |
| || !h->def_regular |
| || !h->ref_regular |
| || !h->forced_local |
| || h->root.type != bfd_link_hash_defined) |
| abort (); |
| |
| return elf_i386_allocate_dynrelocs (h, inf); |
| } |
| |
| /* Find any dynamic relocs that apply to read-only sections. */ |
| |
| static bfd_boolean |
| elf_i386_readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| { |
| struct elf_i386_link_hash_entry *eh; |
| struct elf_dyn_relocs *p; |
| |
| if (h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| /* Skip local IFUNC symbols. */ |
| if (h->forced_local && h->type == STT_GNU_IFUNC) |
| return TRUE; |
| |
| eh = (struct elf_i386_link_hash_entry *) h; |
| for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| { |
| asection *s = p->sec->output_section; |
| |
| if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| { |
| struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| |
| info->flags |= DF_TEXTREL; |
| |
| if (info->warn_shared_textrel && info->shared) |
| info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"), |
| p->sec->owner, h->root.root.string, |
| p->sec); |
| |
| /* Not an error, just cut short the traversal. */ |
| return FALSE; |
| } |
| } |
| return TRUE; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| struct bfd_link_info *info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean relocs; |
| bfd *ibfd; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| dynobj = htab->elf.dynobj; |
| if (dynobj == NULL) |
| abort (); |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (info->executable) |
| { |
| s = bfd_get_section_by_name (dynobj, ".interp"); |
| if (s == NULL) |
| abort (); |
| s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| } |
| } |
| |
| /* Set up .got offsets for local syms, and space for local dynamic |
| relocs. */ |
| for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) |
| { |
| bfd_signed_vma *local_got; |
| bfd_signed_vma *end_local_got; |
| char *local_tls_type; |
| bfd_vma *local_tlsdesc_gotent; |
| bfd_size_type locsymcount; |
| Elf_Internal_Shdr *symtab_hdr; |
| asection *srel; |
| |
| if (! is_i386_elf (ibfd)) |
| continue; |
| |
| for (s = ibfd->sections; s != NULL; s = s->next) |
| { |
| struct elf_dyn_relocs *p; |
| |
| for (p = ((struct elf_dyn_relocs *) |
| elf_section_data (s)->local_dynrel); |
| p != NULL; |
| p = p->next) |
| { |
| if (!bfd_is_abs_section (p->sec) |
| && bfd_is_abs_section (p->sec->output_section)) |
| { |
| /* Input section has been discarded, either because |
| it is a copy of a linkonce section or due to |
| linker script /DISCARD/, so we'll be discarding |
| the relocs too. */ |
| } |
| else if (htab->is_vxworks |
| && strcmp (p->sec->output_section->name, |
| ".tls_vars") == 0) |
| { |
| /* Relocations in vxworks .tls_vars sections are |
| handled specially by the loader. */ |
| } |
| else if (p->count != 0) |
| { |
| srel = elf_section_data (p->sec)->sreloc; |
| srel->size += p->count * sizeof (Elf32_External_Rel); |
| if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| { |
| info->flags |= DF_TEXTREL; |
| if (info->warn_shared_textrel && info->shared) |
| info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"), |
| p->sec->owner, p->sec); |
| break; |
| } |
| } |
| } |
| } |
| |
| local_got = elf_local_got_refcounts (ibfd); |
| if (!local_got) |
| continue; |
| |
| symtab_hdr = &elf_symtab_hdr (ibfd); |
| locsymcount = symtab_hdr->sh_info; |
| end_local_got = local_got + locsymcount; |
| local_tls_type = elf_i386_local_got_tls_type (ibfd); |
| local_tlsdesc_gotent = elf_i386_local_tlsdesc_gotent (ibfd); |
| s = htab->elf.sgot; |
| srel = htab->elf.srelgot; |
| for (; local_got < end_local_got; |
| ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
| { |
| *local_tlsdesc_gotent = (bfd_vma) -1; |
| if (*local_got > 0) |
| { |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| { |
| *local_tlsdesc_gotent = htab->elf.sgotplt->size |
| - elf_i386_compute_jump_table_size (htab); |
| htab->elf.sgotplt->size += 8; |
| *local_got = (bfd_vma) -2; |
| } |
| if (! GOT_TLS_GDESC_P (*local_tls_type) |
| || GOT_TLS_GD_P (*local_tls_type)) |
| { |
| *local_got = s->size; |
| s->size += 4; |
| if (GOT_TLS_GD_P (*local_tls_type) |
| || *local_tls_type == GOT_TLS_IE_BOTH) |
| s->size += 4; |
| } |
| if (info->shared |
| || GOT_TLS_GD_ANY_P (*local_tls_type) |
| || (*local_tls_type & GOT_TLS_IE)) |
| { |
| if (*local_tls_type == GOT_TLS_IE_BOTH) |
| srel->size += 2 * sizeof (Elf32_External_Rel); |
| else if (GOT_TLS_GD_P (*local_tls_type) |
| || ! GOT_TLS_GDESC_P (*local_tls_type)) |
| srel->size += sizeof (Elf32_External_Rel); |
| if (GOT_TLS_GDESC_P (*local_tls_type)) |
| htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| } |
| } |
| else |
| *local_got = (bfd_vma) -1; |
| } |
| } |
| |
| if (htab->tls_ldm_got.refcount > 0) |
| { |
| /* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM |
| relocs. */ |
| htab->tls_ldm_got.offset = htab->elf.sgot->size; |
| htab->elf.sgot->size += 8; |
| htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| } |
| else |
| htab->tls_ldm_got.offset = -1; |
| |
| /* Allocate global sym .plt and .got entries, and space for global |
| sym dynamic relocs. */ |
| elf_link_hash_traverse (&htab->elf, elf_i386_allocate_dynrelocs, info); |
| |
| /* Allocate .plt and .got entries, and space for local symbols. */ |
| htab_traverse (htab->loc_hash_table, |
| elf_i386_allocate_local_dynrelocs, |
| info); |
| |
| /* For every jump slot reserved in the sgotplt, reloc_count is |
| incremented. However, when we reserve space for TLS descriptors, |
| it's not incremented, so in order to compute the space reserved |
| for them, it suffices to multiply the reloc count by the jump |
| slot size. */ |
| if (htab->elf.srelplt) |
| htab->sgotplt_jump_table_size = htab->next_tls_desc_index * 4; |
| |
| if (htab->elf.sgotplt) |
| { |
| struct elf_link_hash_entry *got; |
| got = elf_link_hash_lookup (elf_hash_table (info), |
| "_GLOBAL_OFFSET_TABLE_", |
| FALSE, FALSE, FALSE); |
| |
| /* Don't allocate .got.plt section if there are no GOT nor PLT |
| entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ |
| if ((got == NULL |
| || !got->ref_regular_nonweak) |
| && (htab->elf.sgotplt->size |
| == get_elf_backend_data (output_bfd)->got_header_size) |
| && (htab->elf.splt == NULL |
| || htab->elf.splt->size == 0) |
| && (htab->elf.sgot == NULL |
| || htab->elf.sgot->size == 0) |
| && (htab->elf.iplt == NULL |
| || htab->elf.iplt->size == 0) |
| && (htab->elf.igotplt == NULL |
| || htab->elf.igotplt->size == 0)) |
| htab->elf.sgotplt->size = 0; |
| } |
| |
| /* We now have determined the sizes of the various dynamic sections. |
| Allocate memory for them. */ |
| relocs = FALSE; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| bfd_boolean strip_section = TRUE; |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| if (s == htab->elf.splt |
| || s == htab->elf.sgot |
| || s == htab->elf.sgotplt |
| || s == htab->elf.iplt |
| || s == htab->elf.igotplt |
| || s == htab->sdynbss) |
| { |
| /* Strip this section if we don't need it; see the |
| comment below. */ |
| /* We'd like to strip these sections if they aren't needed, but if |
| we've exported dynamic symbols from them we must leave them. |
| It's too late to tell BFD to get rid of the symbols. */ |
| |
| if (htab->elf.hplt != NULL) |
| strip_section = FALSE; |
| } |
| else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rel")) |
| { |
| if (s->size != 0 |
| && s != htab->elf.srelplt |
| && s != htab->srelplt2) |
| relocs = TRUE; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| s->reloc_count = 0; |
| } |
| else |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (s->size == 0) |
| { |
| /* If we don't need this section, strip it from the |
| output file. This is mostly to handle .rel.bss and |
| .rel.plt. We must create both sections in |
| create_dynamic_sections, because they must be created |
| before the linker maps input sections to output |
| sections. The linker does that before |
| adjust_dynamic_symbol is called, and it is that |
| function which decides whether anything needs to go |
| into these sections. */ |
| if (strip_section) |
| s->flags |= SEC_EXCLUDE; |
| continue; |
| } |
| |
| if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| continue; |
| |
| /* Allocate memory for the section contents. We use bfd_zalloc |
| here in case unused entries are not reclaimed before the |
| section's contents are written out. This should not happen, |
| but this way if it does, we get a R_386_NONE reloc instead |
| of garbage. */ |
| s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); |
| if (s->contents == NULL) |
| return FALSE; |
| } |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in elf_i386_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| #define add_dynamic_entry(TAG, VAL) \ |
| _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| |
| if (info->executable) |
| { |
| if (!add_dynamic_entry (DT_DEBUG, 0)) |
| return FALSE; |
| } |
| |
| if (htab->elf.splt->size != 0) |
| { |
| if (!add_dynamic_entry (DT_PLTGOT, 0) |
| || !add_dynamic_entry (DT_PLTRELSZ, 0) |
| || !add_dynamic_entry (DT_PLTREL, DT_REL) |
| || !add_dynamic_entry (DT_JMPREL, 0)) |
| return FALSE; |
| } |
| |
| if (relocs) |
| { |
| if (!add_dynamic_entry (DT_REL, 0) |
| || !add_dynamic_entry (DT_RELSZ, 0) |
| || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel))) |
| return FALSE; |
| |
| /* If any dynamic relocs apply to a read-only section, |
| then we need a DT_TEXTREL entry. */ |
| if ((info->flags & DF_TEXTREL) == 0) |
| elf_link_hash_traverse (&htab->elf, |
| elf_i386_readonly_dynrelocs, info); |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| return FALSE; |
| } |
| } |
| if (htab->is_vxworks |
| && !elf_vxworks_add_dynamic_entries (output_bfd, info)) |
| return FALSE; |
| } |
| #undef add_dynamic_entry |
| |
| return TRUE; |
| } |
| |
| static bfd_boolean |
| elf_i386_always_size_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| asection *tls_sec = elf_hash_table (info)->tls_sec; |
| |
| if (tls_sec) |
| { |
| struct elf_link_hash_entry *tlsbase; |
| |
| tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
| "_TLS_MODULE_BASE_", |
| FALSE, FALSE, FALSE); |
| |
| if (tlsbase && tlsbase->type == STT_TLS) |
| { |
| struct elf_i386_link_hash_table *htab; |
| struct bfd_link_hash_entry *bh = NULL; |
| const struct elf_backend_data *bed |
| = get_elf_backend_data (output_bfd); |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
| tls_sec, 0, NULL, FALSE, |
| bed->collect, &bh))) |
| return FALSE; |
| |
| htab->tls_module_base = bh; |
| |
| tlsbase = (struct elf_link_hash_entry *)bh; |
| tlsbase->def_regular = 1; |
| tlsbase->other = STV_HIDDEN; |
| (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set the correct type for an x86 ELF section. We do this by the |
| section name, which is a hack, but ought to work. */ |
| |
| static bfd_boolean |
| elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, |
| Elf_Internal_Shdr *hdr, |
| asection *sec) |
| { |
| const char *name; |
| |
| name = bfd_get_section_name (abfd, sec); |
| |
| /* This is an ugly, but unfortunately necessary hack that is |
| needed when producing EFI binaries on x86. It tells |
| elf.c:elf_fake_sections() not to consider ".reloc" as a section |
| containing ELF relocation info. We need this hack in order to |
| be able to generate ELF binaries that can be translated into |
| EFI applications (which are essentially COFF objects). Those |
| files contain a COFF ".reloc" section inside an ELFNN object, |
| which would normally cause BFD to segfault because it would |
| attempt to interpret this section as containing relocation |
| entries for section "oc". With this hack enabled, ".reloc" |
| will be treated as a normal data section, which will avoid the |
| segfault. However, you won't be able to create an ELFNN binary |
| with a section named "oc" that needs relocations, but that's |
| the kind of ugly side-effects you get when detecting section |
| types based on their names... In practice, this limitation is |
| unlikely to bite. */ |
| if (strcmp (name, ".reloc") == 0) |
| hdr->sh_type = SHT_PROGBITS; |
| |
| return TRUE; |
| } |
| |
| /* _TLS_MODULE_BASE_ needs to be treated especially when linking |
| executables. Rather than setting it to the beginning of the TLS |
| section, we have to set it to the end. This function may be called |
| multiple times, it is idempotent. */ |
| |
| static void |
| elf_i386_set_tls_module_base (struct bfd_link_info *info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| struct bfd_link_hash_entry *base; |
| |
| if (!info->executable) |
| return; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return; |
| |
| base = htab->tls_module_base; |
| if (base == NULL) |
| return; |
| |
| base->u.def.value = htab->elf.tls_size; |
| } |
| |
| /* Return the base VMA address which should be subtracted from real addresses |
| when resolving @dtpoff relocation. |
| This is PT_TLS segment p_vaddr. */ |
| |
| static bfd_vma |
| elf_i386_dtpoff_base (struct bfd_link_info *info) |
| { |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (elf_hash_table (info)->tls_sec == NULL) |
| return 0; |
| return elf_hash_table (info)->tls_sec->vma; |
| } |
| |
| /* Return the relocation value for @tpoff relocation |
| if STT_TLS virtual address is ADDRESS. */ |
| |
| static bfd_vma |
| elf_i386_tpoff (struct bfd_link_info *info, bfd_vma address) |
| { |
| struct elf_link_hash_table *htab = elf_hash_table (info); |
| const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd); |
| bfd_vma static_tls_size; |
| |
| /* If tls_sec is NULL, we should have signalled an error already. */ |
| if (htab->tls_sec == NULL) |
| return 0; |
| |
| /* Consider special static TLS alignment requirements. */ |
| static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment); |
| return static_tls_size + htab->tls_sec->vma - address; |
| } |
| |
| /* Relocate an i386 ELF section. */ |
| |
| static bfd_boolean |
| elf_i386_relocate_section (bfd *output_bfd, |
| struct bfd_link_info *info, |
| bfd *input_bfd, |
| asection *input_section, |
| bfd_byte *contents, |
| Elf_Internal_Rela *relocs, |
| Elf_Internal_Sym *local_syms, |
| asection **local_sections) |
| { |
| struct elf_i386_link_hash_table *htab; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_vma *local_got_offsets; |
| bfd_vma *local_tlsdesc_gotents; |
| Elf_Internal_Rela *rel; |
| Elf_Internal_Rela *relend; |
| bfd_boolean is_vxworks_tls; |
| |
| BFD_ASSERT (is_i386_elf (input_bfd)); |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| symtab_hdr = &elf_symtab_hdr (input_bfd); |
| sym_hashes = elf_sym_hashes (input_bfd); |
| local_got_offsets = elf_local_got_offsets (input_bfd); |
| local_tlsdesc_gotents = elf_i386_local_tlsdesc_gotent (input_bfd); |
| /* We have to handle relocations in vxworks .tls_vars sections |
| specially, because the dynamic loader is 'weird'. */ |
| is_vxworks_tls = (htab->is_vxworks && info->shared |
| && !strcmp (input_section->output_section->name, |
| ".tls_vars")); |
| |
| elf_i386_set_tls_module_base (info); |
| |
| rel = relocs; |
| relend = relocs + input_section->reloc_count; |
| for (; rel < relend; rel++) |
| { |
| unsigned int r_type; |
| reloc_howto_type *howto; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| asection *sec; |
| bfd_vma off, offplt; |
| bfd_vma relocation; |
| bfd_boolean unresolved_reloc; |
| bfd_reloc_status_type r; |
| unsigned int indx; |
| int tls_type; |
| |
| r_type = ELF32_R_TYPE (rel->r_info); |
| if (r_type == R_386_GNU_VTINHERIT |
| || r_type == R_386_GNU_VTENTRY) |
| continue; |
| |
| if ((indx = r_type) >= R_386_standard |
| && ((indx = r_type - R_386_ext_offset) - R_386_standard |
| >= R_386_ext - R_386_standard) |
| && ((indx = r_type - R_386_tls_offset) - R_386_ext |
| >= R_386_irelative - R_386_ext)) |
| { |
| (*_bfd_error_handler) |
| (_("%B: unrecognized relocation (0x%x) in section `%A'"), |
| input_bfd, input_section, r_type); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| howto = elf_howto_table + indx; |
| |
| r_symndx = ELF32_R_SYM (rel->r_info); |
| h = NULL; |
| sym = NULL; |
| sec = NULL; |
| unresolved_reloc = FALSE; |
| if (r_symndx < symtab_hdr->sh_info) |
| { |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| relocation = (sec->output_section->vma |
| + sec->output_offset |
| + sym->st_value); |
| |
| if (ELF_ST_TYPE (sym->st_info) == STT_SECTION |
| && ((sec->flags & SEC_MERGE) != 0 |
| || (info->relocatable |
| && sec->output_offset != 0))) |
| { |
| bfd_vma addend; |
| bfd_byte *where = contents + rel->r_offset; |
| |
| switch (howto->size) |
| { |
| case 0: |
| addend = bfd_get_8 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x80) - 0x80; |
| addend += 1; |
| } |
| break; |
| case 1: |
| addend = bfd_get_16 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x8000) - 0x8000; |
| addend += 2; |
| } |
| break; |
| case 2: |
| addend = bfd_get_32 (input_bfd, where); |
| if (howto->pc_relative) |
| { |
| addend = (addend ^ 0x80000000) - 0x80000000; |
| addend += 4; |
| } |
| break; |
| default: |
| abort (); |
| } |
| |
| if (info->relocatable) |
| addend += sec->output_offset; |
| else |
| { |
| asection *msec = sec; |
| addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, |
| addend); |
| addend -= relocation; |
| addend += msec->output_section->vma + msec->output_offset; |
| } |
| |
| switch (howto->size) |
| { |
| case 0: |
| /* FIXME: overflow checks. */ |
| if (howto->pc_relative) |
| addend -= 1; |
| bfd_put_8 (input_bfd, addend, where); |
| break; |
| case 1: |
| if (howto->pc_relative) |
| addend -= 2; |
| bfd_put_16 (input_bfd, addend, where); |
| break; |
| case 2: |
| if (howto->pc_relative) |
| addend -= 4; |
| bfd_put_32 (input_bfd, addend, where); |
| break; |
| } |
| } |
| else if (!info->relocatable |
| && ELF32_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| { |
| /* Relocate against local STT_GNU_IFUNC symbol. */ |
| h = elf_i386_get_local_sym_hash (htab, input_bfd, rel, |
| FALSE); |
| if (h == NULL) |
| abort (); |
| |
| /* Set STT_GNU_IFUNC symbol value. */ |
| h->root.u.def.value = sym->st_value; |
| h->root.u.def.section = sec; |
| } |
| } |
| else |
| { |
| bfd_boolean warned ATTRIBUTE_UNUSED; |
| |
| RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| r_symndx, symtab_hdr, sym_hashes, |
| h, sec, relocation, |
| unresolved_reloc, warned); |
| } |
| |
| if (sec != NULL && elf_discarded_section (sec)) |
| RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, |
| rel, relend, howto, contents); |
| |
| if (info->relocatable) |
| continue; |
| |
| /* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| it here if it is defined in a non-shared object. */ |
| if (h != NULL |
| && h->type == STT_GNU_IFUNC |
| && h->def_regular) |
| { |
| asection *plt, *gotplt, *base_got; |
| bfd_vma plt_index; |
| const char *name; |
| |
| if ((input_section->flags & SEC_ALLOC) == 0 |
| || h->plt.offset == (bfd_vma) -1) |
| abort (); |
| |
| /* STT_GNU_IFUNC symbol must go through PLT. */ |
| if (htab->elf.splt != NULL) |
| { |
| plt = htab->elf.splt; |
| gotplt = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt = htab->elf.iplt; |
| gotplt = htab->elf.igotplt; |
| } |
| |
| relocation = (plt->output_section->vma |
| + plt->output_offset + h->plt.offset); |
| |
| switch (r_type) |
| { |
| default: |
| if (h->root.root.string) |
| name = h->root.root.string; |
| else |
| name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| NULL); |
| (*_bfd_error_handler) |
| (_("%B: relocation %s against STT_GNU_IFUNC " |
| "symbol `%s' isn't handled by %s"), input_bfd, |
| elf_howto_table[r_type].name, |
| name, __FUNCTION__); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| |
| case R_386_32: |
| /* Generate dynamic relcoation only when there is a |
| non-GOF reference in a shared object. */ |
| if (info->shared && h->non_got_ref) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| asection *sreloc; |
| bfd_vma offset; |
| |
| /* Need a dynamic relocation to get the real function |
| adddress. */ |
| offset = _bfd_elf_section_offset (output_bfd, |
| info, |
| input_section, |
| rel->r_offset); |
| if (offset == (bfd_vma) -1 |
| || offset == (bfd_vma) -2) |
| abort (); |
| |
| outrel.r_offset = (input_section->output_section->vma |
| + input_section->output_offset |
| + offset); |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->executable) |
| { |
| /* This symbol is resolved locally. */ |
| outrel.r_info = ELF32_R_INFO (0, R_386_IRELATIVE); |
| bfd_put_32 (output_bfd, |
| (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset), |
| contents + offset); |
| } |
| else |
| outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| |
| sreloc = htab->elf.irelifunc; |
| loc = sreloc->contents; |
| loc += (sreloc->reloc_count++ |
| * sizeof (Elf32_External_Rel)); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| |
| /* If this reloc is against an external symbol, we |
| do not want to fiddle with the addend. Otherwise, |
| we need to include the symbol value so that it |
| becomes an addend for the dynamic reloc. For an |
| internal symbol, we have updated addend. */ |
| continue; |
| } |
| /* FALLTHROUGH */ |
| case R_386_PC32: |
| case R_386_PLT32: |
| goto do_relocation; |
| |
| case R_386_GOT32: |
| base_got = htab->elf.sgot; |
| off = h->got.offset; |
| |
| if (base_got == NULL) |
| abort (); |
| |
| if (off == (bfd_vma) -1) |
| { |
| /* We can't use h->got.offset here to save state, or |
| even just remember the offset, as finish_dynamic_symbol |
| would use that as offset into .got. */ |
| |
| if (htab->elf.splt != NULL) |
| { |
| plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; |
| off = (plt_index + 3) * 4; |
| base_got = htab->elf.sgotplt; |
| } |
| else |
| { |
| plt_index = h->plt.offset / PLT_ENTRY_SIZE; |
| off = plt_index * 4; |
| base_got = htab->elf.igotplt; |
| } |
| |
| if (h->dynindx == -1 |
| || h->forced_local |
| || info->symbolic) |
| { |
| /* This references the local defitionion. We must |
| initialize this entry in the global offset table. |
| Since the offset must always be a multiple of 8, |
| we use the least significant bit to record |
| whether we have initialized it already. |
| |
| When doing a dynamic link, we create a .rela.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| base_got->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| |
| relocation = off; |
| |
| /* Adjust for static executables. */ |
| if (htab->elf.splt == NULL) |
| relocation += gotplt->output_offset; |
| } |
| else |
| { |
| relocation = (base_got->output_section->vma |
| + base_got->output_offset + off |
| - gotplt->output_section->vma |
| - gotplt->output_offset); |
| /* Adjust for static executables. */ |
| if (htab->elf.splt == NULL) |
| relocation += gotplt->output_offset; |
| } |
| |
| goto do_relocation; |
| |
| case R_386_GOTOFF: |
| relocation -= (gotplt->output_section->vma |
| + gotplt->output_offset); |
| goto do_relocation; |
| } |
| } |
| |
| switch (r_type) |
| { |
| case R_386_GOT32: |
| /* Relocation is to the entry for this symbol in the global |
| offset table. */ |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| bfd_boolean dyn; |
| |
| off = h->got.offset; |
| dyn = htab->elf.dynamic_sections_created; |
| if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) |
| || (info->shared |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| || (ELF_ST_VISIBILITY (h->other) |
| && h->root.type == bfd_link_hash_undefweak)) |
| { |
| /* This is actually a static link, or it is a |
| -Bsymbolic link and the symbol is defined |
| locally, or the symbol was forced to be local |
| because of a version file. We must initialize |
| this entry in the global offset table. Since the |
| offset must always be a multiple of 4, we use the |
| least significant bit to record whether we have |
| initialized it already. |
| |
| When doing a dynamic link, we create a .rel.got |
| relocation entry to initialize the value. This |
| is done in the finish_dynamic_symbol routine. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| h->got.offset |= 1; |
| } |
| } |
| else |
| unresolved_reloc = FALSE; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| |
| /* The offset must always be a multiple of 4. We use |
| the least significant bit to record whether we have |
| already generated the necessary reloc. */ |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| bfd_put_32 (output_bfd, relocation, |
| htab->elf.sgot->contents + off); |
| |
| if (info->shared) |
| { |
| asection *s; |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| |
| s = htab->elf.srelgot; |
| if (s == NULL) |
| abort (); |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset |
| + off); |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| loc = s->contents; |
| loc += s->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| } |
| |
| local_got_offsets[r_symndx] |= 1; |
| } |
| } |
| |
| if (off >= (bfd_vma) -2) |
| abort (); |
| |
| relocation = htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - htab->elf.sgotplt->output_section->vma |
| - htab->elf.sgotplt->output_offset; |
| break; |
| |
| case R_386_GOTOFF: |
| /* Relocation is relative to the start of the global offset |
| table. */ |
| |
| /* Check to make sure it isn't a protected function symbol |
| for shared library since it may not be local when used |
| as function address. We also need to make sure that a |
| symbol is defined locally. */ |
| if (info->shared && h) |
| { |
| if (!h->def_regular) |
| { |
| const char *v; |
| |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_HIDDEN: |
| v = _("hidden symbol"); |
| break; |
| case STV_INTERNAL: |
| v = _("internal symbol"); |
| break; |
| case STV_PROTECTED: |
| v = _("protected symbol"); |
| break; |
| default: |
| v = _("symbol"); |
| break; |
| } |
| |
| (*_bfd_error_handler) |
| (_("%B: relocation R_386_GOTOFF against undefined %s `%s' can not be used when making a shared object"), |
| input_bfd, v, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else if (!info->executable |
| && h->type == STT_FUNC |
| && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
| { |
| (*_bfd_error_handler) |
| (_("%B: relocation R_386_GOTOFF against protected function `%s' can not be used when making a shared object"), |
| input_bfd, h->root.root.string); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| } |
| |
| /* Note that sgot is not involved in this |
| calculation. We always want the start of .got.plt. If we |
| defined _GLOBAL_OFFSET_TABLE_ in a different way, as is |
| permitted by the ABI, we might have to change this |
| calculation. */ |
| relocation -= htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| break; |
| |
| case R_386_GOTPC: |
| /* Use global offset table as symbol value. */ |
| relocation = htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_386_PLT32: |
| /* Relocation is to the entry for this symbol in the |
| procedure linkage table. */ |
| |
| /* Resolve a PLT32 reloc against a local symbol directly, |
| without using the procedure linkage table. */ |
| if (h == NULL) |
| break; |
| |
| if (h->plt.offset == (bfd_vma) -1 |
| || htab->elf.splt == NULL) |
| { |
| /* We didn't make a PLT entry for this symbol. This |
| happens when statically linking PIC code, or when |
| using -Bsymbolic. */ |
| break; |
| } |
| |
| relocation = (htab->elf.splt->output_section->vma |
| + htab->elf.splt->output_offset |
| + h->plt.offset); |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_386_32: |
| case R_386_PC32: |
| if ((input_section->flags & SEC_ALLOC) == 0 |
| || is_vxworks_tls) |
| break; |
| |
| if ((info->shared |
| && (h == NULL |
| || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| || h->root.type != bfd_link_hash_undefweak) |
| && (r_type != R_386_PC32 |
| || !SYMBOL_CALLS_LOCAL (info, h))) |
| || (ELIMINATE_COPY_RELOCS |
| && !info->shared |
| && h != NULL |
| && h->dynindx != -1 |
| && !h->non_got_ref |
| && ((h->def_dynamic |
| && !h->def_regular) |
| || h->root.type == bfd_link_hash_undefweak |
| || h->root.type == bfd_link_hash_undefined))) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| bfd_boolean skip, relocate; |
| asection *sreloc; |
| |
| /* When generating a shared object, these relocations |
| are copied into the output file to be resolved at run |
| time. */ |
| |
| skip = FALSE; |
| relocate = FALSE; |
| |
| outrel.r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, |
| rel->r_offset); |
| if (outrel.r_offset == (bfd_vma) -1) |
| skip = TRUE; |
| else if (outrel.r_offset == (bfd_vma) -2) |
| skip = TRUE, relocate = TRUE; |
| outrel.r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| |
| if (skip) |
| memset (&outrel, 0, sizeof outrel); |
| else if (h != NULL |
| && h->dynindx != -1 |
| && (r_type == R_386_PC32 |
| || !info->shared |
| || !SYMBOLIC_BIND (info, h) |
| || !h->def_regular)) |
| outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| else |
| { |
| /* This symbol is local, or marked to become local. */ |
| relocate = TRUE; |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| } |
| |
| sreloc = elf_section_data (input_section)->sreloc; |
| |
| if (sreloc == NULL || sreloc->contents == NULL) |
| { |
| r = bfd_reloc_notsupported; |
| goto check_relocation_error; |
| } |
| |
| loc = sreloc->contents; |
| loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| |
| /* If this reloc is against an external symbol, we do |
| not want to fiddle with the addend. Otherwise, we |
| need to include the symbol value so that it becomes |
| an addend for the dynamic reloc. */ |
| if (! relocate) |
| continue; |
| } |
| break; |
| |
| case R_386_TLS_IE: |
| if (!info->executable) |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| asection *sreloc; |
| |
| outrel.r_offset = rel->r_offset |
| + input_section->output_section->vma |
| + input_section->output_offset; |
| outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| sreloc = elf_section_data (input_section)->sreloc; |
| if (sreloc == NULL) |
| abort (); |
| loc = sreloc->contents; |
| loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| } |
| /* Fall through */ |
| |
| case R_386_TLS_GD: |
| case R_386_TLS_GOTDESC: |
| case R_386_TLS_DESC_CALL: |
| case R_386_TLS_IE_32: |
| case R_386_TLS_GOTIE: |
| tls_type = GOT_UNKNOWN; |
| if (h == NULL && local_got_offsets) |
| tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx]; |
| else if (h != NULL) |
| tls_type = elf_i386_hash_entry(h)->tls_type; |
| if (tls_type == GOT_TLS_IE) |
| tls_type = GOT_TLS_IE_NEG; |
| |
| if (! elf_i386_tls_transition (info, input_bfd, |
| input_section, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, tls_type, rel, |
| relend, h, r_symndx)) |
| return FALSE; |
| |
| if (r_type == R_386_TLS_LE_32) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD) |
| { |
| unsigned int type; |
| bfd_vma roff; |
| |
| /* GD->LE transition. */ |
| type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); |
| if (type == 0x04) |
| { |
| /* leal foo(,%reg,1), %eax; call ___tls_get_addr |
| Change it into: |
| movl %gs:0, %eax; subl $foo@tpoff, %eax |
| (6 byte form of subl). */ |
| memcpy (contents + rel->r_offset - 3, |
| "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); |
| roff = rel->r_offset + 5; |
| } |
| else |
| { |
| /* leal foo(%reg), %eax; call ___tls_get_addr; nop |
| Change it into: |
| movl %gs:0, %eax; subl $foo@tpoff, %eax |
| (6 byte form of subl). */ |
| memcpy (contents + rel->r_offset - 2, |
| "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); |
| roff = rel->r_offset + 6; |
| } |
| bfd_put_32 (output_bfd, elf_i386_tpoff (info, relocation), |
| contents + roff); |
| /* Skip R_386_PC32/R_386_PLT32. */ |
| rel++; |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC) |
| { |
| /* GDesc -> LE transition. |
| It's originally something like: |
| leal x@tlsdesc(%ebx), %eax |
| |
| leal x@ntpoff, %eax |
| |
| Registers other than %eax may be set up here. */ |
| |
| unsigned int val; |
| bfd_vma roff; |
| |
| roff = rel->r_offset; |
| val = bfd_get_8 (input_bfd, contents + roff - 1); |
| |
| /* Now modify the instruction as appropriate. */ |
| /* aoliva FIXME: remove the above and xor the byte |
| below with 0x86. */ |
| bfd_put_8 (output_bfd, val ^ 0x86, |
| contents + roff - 1); |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + roff); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL) |
| { |
| /* GDesc -> LE transition. |
| It's originally: |
| call *(%eax) |
| Turn it into: |
| xchg %ax,%ax */ |
| |
| bfd_vma roff; |
| |
| roff = rel->r_offset; |
| bfd_put_8 (output_bfd, 0x66, contents + roff); |
| bfd_put_8 (output_bfd, 0x90, contents + roff + 1); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_IE) |
| { |
| unsigned int val; |
| |
| /* IE->LE transition: |
| Originally it can be one of: |
| movl foo, %eax |
| movl foo, %reg |
| addl foo, %reg |
| We change it into: |
| movl $foo, %eax |
| movl $foo, %reg |
| addl $foo, %reg. */ |
| val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); |
| if (val == 0xa1) |
| { |
| /* movl foo, %eax. */ |
| bfd_put_8 (output_bfd, 0xb8, |
| contents + rel->r_offset - 1); |
| } |
| else |
| { |
| unsigned int type; |
| |
| type = bfd_get_8 (input_bfd, |
| contents + rel->r_offset - 2); |
| switch (type) |
| { |
| case 0x8b: |
| /* movl */ |
| bfd_put_8 (output_bfd, 0xc7, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, |
| 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| break; |
| case 0x03: |
| /* addl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, |
| 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| break; |
| default: |
| BFD_FAIL (); |
| break; |
| } |
| } |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| continue; |
| } |
| else |
| { |
| unsigned int val, type; |
| |
| /* {IE_32,GOTIE}->LE transition: |
| Originally it can be one of: |
| subl foo(%reg1), %reg2 |
| movl foo(%reg1), %reg2 |
| addl foo(%reg1), %reg2 |
| We change it into: |
| subl $foo, %reg2 |
| movl $foo, %reg2 (6 byte form) |
| addl $foo, %reg2. */ |
| type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); |
| val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); |
| if (type == 0x8b) |
| { |
| /* movl */ |
| bfd_put_8 (output_bfd, 0xc7, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else if (type == 0x2b) |
| { |
| /* subl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xe8 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else if (type == 0x03) |
| { |
| /* addl */ |
| bfd_put_8 (output_bfd, 0x81, |
| contents + rel->r_offset - 2); |
| bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), |
| contents + rel->r_offset - 1); |
| } |
| else |
| BFD_FAIL (); |
| if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTIE) |
| bfd_put_32 (output_bfd, -elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| else |
| bfd_put_32 (output_bfd, elf_i386_tpoff (info, relocation), |
| contents + rel->r_offset); |
| continue; |
| } |
| } |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| if (h != NULL) |
| { |
| off = h->got.offset; |
| offplt = elf_i386_hash_entry (h)->tlsdesc_got; |
| } |
| else |
| { |
| if (local_got_offsets == NULL) |
| abort (); |
| |
| off = local_got_offsets[r_symndx]; |
| offplt = local_tlsdesc_gotents[r_symndx]; |
| } |
| |
| if ((off & 1) != 0) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| int dr_type; |
| asection *sreloc; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| indx = h && h->dynindx != -1 ? h->dynindx : 0; |
| |
| if (GOT_TLS_GDESC_P (tls_type)) |
| { |
| outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_DESC); |
| BFD_ASSERT (htab->sgotplt_jump_table_size + offplt + 8 |
| <= htab->elf.sgotplt->size); |
| outrel.r_offset = (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + offplt |
| + htab->sgotplt_jump_table_size); |
| sreloc = htab->elf.srelplt; |
| loc = sreloc->contents; |
| loc += (htab->next_tls_desc_index++ |
| * sizeof (Elf32_External_Rel)); |
| BFD_ASSERT (loc + sizeof (Elf32_External_Rel) |
| <= sreloc->contents + sreloc->size); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_32 (output_bfd, |
| relocation - elf_i386_dtpoff_base (info), |
| htab->elf.sgotplt->contents + offplt |
| + htab->sgotplt_jump_table_size + 4); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgotplt->contents + offplt |
| + htab->sgotplt_jump_table_size + 4); |
| } |
| } |
| |
| sreloc = htab->elf.srelgot; |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off); |
| |
| if (GOT_TLS_GD_P (tls_type)) |
| dr_type = R_386_TLS_DTPMOD32; |
| else if (GOT_TLS_GDESC_P (tls_type)) |
| goto dr_done; |
| else if (tls_type == GOT_TLS_IE_POS) |
| dr_type = R_386_TLS_TPOFF; |
| else |
| dr_type = R_386_TLS_TPOFF32; |
| |
| if (dr_type == R_386_TLS_TPOFF && indx == 0) |
| bfd_put_32 (output_bfd, |
| relocation - elf_i386_dtpoff_base (info), |
| htab->elf.sgot->contents + off); |
| else if (dr_type == R_386_TLS_TPOFF32 && indx == 0) |
| bfd_put_32 (output_bfd, |
| elf_i386_dtpoff_base (info) - relocation, |
| htab->elf.sgot->contents + off); |
| else if (dr_type != R_386_TLS_DESC) |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| outrel.r_info = ELF32_R_INFO (indx, dr_type); |
| |
| loc = sreloc->contents; |
| loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| BFD_ASSERT (loc + sizeof (Elf32_External_Rel) |
| <= sreloc->contents + sreloc->size); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| |
| if (GOT_TLS_GD_P (tls_type)) |
| { |
| if (indx == 0) |
| { |
| BFD_ASSERT (! unresolved_reloc); |
| bfd_put_32 (output_bfd, |
| relocation - elf_i386_dtpoff_base (info), |
| htab->elf.sgot->contents + off + 4); |
| } |
| else |
| { |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgot->contents + off + 4); |
| outrel.r_info = ELF32_R_INFO (indx, |
| R_386_TLS_DTPOFF32); |
| outrel.r_offset += 4; |
| sreloc->reloc_count++; |
| loc += sizeof (Elf32_External_Rel); |
| BFD_ASSERT (loc + sizeof (Elf32_External_Rel) |
| <= sreloc->contents + sreloc->size); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| } |
| } |
| else if (tls_type == GOT_TLS_IE_BOTH) |
| { |
| bfd_put_32 (output_bfd, |
| (indx == 0 |
| ? relocation - elf_i386_dtpoff_base (info) |
| : 0), |
| htab->elf.sgot->contents + off + 4); |
| outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF); |
| outrel.r_offset += 4; |
| sreloc->reloc_count++; |
| loc += sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| } |
| |
| dr_done: |
| if (h != NULL) |
| h->got.offset |= 1; |
| else |
| local_got_offsets[r_symndx] |= 1; |
| } |
| |
| if (off >= (bfd_vma) -2 |
| && ! GOT_TLS_GDESC_P (tls_type)) |
| abort (); |
| if (r_type == R_386_TLS_GOTDESC |
| || r_type == R_386_TLS_DESC_CALL) |
| { |
| relocation = htab->sgotplt_jump_table_size + offplt; |
| unresolved_reloc = FALSE; |
| } |
| else if (r_type == ELF32_R_TYPE (rel->r_info)) |
| { |
| bfd_vma g_o_t = htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset; |
| relocation = htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off - g_o_t; |
| if ((r_type == R_386_TLS_IE || r_type == R_386_TLS_GOTIE) |
| && tls_type == GOT_TLS_IE_BOTH) |
| relocation += 4; |
| if (r_type == R_386_TLS_IE) |
| relocation += g_o_t; |
| unresolved_reloc = FALSE; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD) |
| { |
| unsigned int val, type; |
| bfd_vma roff; |
| |
| /* GD->IE transition. */ |
| type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); |
| val = bfd_get_8 (input_bfd, contents + rel->r_offset - 1); |
| if (type == 0x04) |
| { |
| /* leal foo(,%reg,1), %eax; call ___tls_get_addr |
| Change it into: |
| movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */ |
| val >>= 3; |
| roff = rel->r_offset - 3; |
| } |
| else |
| { |
| /* leal foo(%reg), %eax; call ___tls_get_addr; nop |
| Change it into: |
| movl %gs:0, %eax; subl $foo@gottpoff(%reg), %eax. */ |
| roff = rel->r_offset - 2; |
| } |
| memcpy (contents + roff, |
| "\x65\xa1\0\0\0\0\x2b\x80\0\0\0", 12); |
| contents[roff + 7] = 0x80 | (val & 7); |
| /* If foo is used only with foo@gotntpoff(%reg) and |
| foo@indntpoff, but not with foo@gottpoff(%reg), change |
| subl $foo@gottpoff(%reg), %eax |
| into: |
| addl $foo@gotntpoff(%reg), %eax. */ |
| if (tls_type == GOT_TLS_IE_POS) |
| contents[roff + 6] = 0x03; |
| bfd_put_32 (output_bfd, |
| htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - htab->elf.sgotplt->output_section->vma |
| - htab->elf.sgotplt->output_offset, |
| contents + roff + 8); |
| /* Skip R_386_PLT32. */ |
| rel++; |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GOTDESC) |
| { |
| /* GDesc -> IE transition. |
| It's originally something like: |
| leal x@tlsdesc(%ebx), %eax |
| |
| Change it to: |
| movl x@gotntpoff(%ebx), %eax # before xchg %ax,%ax |
| or: |
| movl x@gottpoff(%ebx), %eax # before negl %eax |
| |
| Registers other than %eax may be set up here. */ |
| |
| bfd_vma roff; |
| |
| /* First, make sure it's a leal adding ebx to a 32-bit |
| offset into any register, although it's probably |
| almost always going to be eax. */ |
| roff = rel->r_offset; |
| |
| /* Now modify the instruction as appropriate. */ |
| /* To turn a leal into a movl in the form we use it, it |
| suffices to change the first byte from 0x8d to 0x8b. |
| aoliva FIXME: should we decide to keep the leal, all |
| we have to do is remove the statement below, and |
| adjust the relaxation of R_386_TLS_DESC_CALL. */ |
| bfd_put_8 (output_bfd, 0x8b, contents + roff - 2); |
| |
| if (tls_type == GOT_TLS_IE_BOTH) |
| off += 4; |
| |
| bfd_put_32 (output_bfd, |
| htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - htab->elf.sgotplt->output_section->vma |
| - htab->elf.sgotplt->output_offset, |
| contents + roff); |
| continue; |
| } |
| else if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_DESC_CALL) |
| { |
| /* GDesc -> IE transition. |
| It's originally: |
| call *(%eax) |
| |
| Change it to: |
| xchg %ax,%ax |
| or |
| negl %eax |
| depending on how we transformed the TLS_GOTDESC above. |
| */ |
| |
| bfd_vma roff; |
| |
| roff = rel->r_offset; |
| |
| /* Now modify the instruction as appropriate. */ |
| if (tls_type != GOT_TLS_IE_NEG) |
| { |
| /* xchg %ax,%ax */ |
| bfd_put_8 (output_bfd, 0x66, contents + roff); |
| bfd_put_8 (output_bfd, 0x90, contents + roff + 1); |
| } |
| else |
| { |
| /* negl %eax */ |
| bfd_put_8 (output_bfd, 0xf7, contents + roff); |
| bfd_put_8 (output_bfd, 0xd8, contents + roff + 1); |
| } |
| |
| continue; |
| } |
| else |
| BFD_ASSERT (FALSE); |
| break; |
| |
| case R_386_TLS_LDM: |
| if (! elf_i386_tls_transition (info, input_bfd, |
| input_section, contents, |
| symtab_hdr, sym_hashes, |
| &r_type, GOT_UNKNOWN, rel, |
| relend, h, r_symndx)) |
| return FALSE; |
| |
| if (r_type != R_386_TLS_LDM) |
| { |
| /* LD->LE transition: |
| leal foo(%reg), %eax; call ___tls_get_addr. |
| We change it into: |
| movl %gs:0, %eax; nop; leal 0(%esi,1), %esi. */ |
| BFD_ASSERT (r_type == R_386_TLS_LE_32); |
| memcpy (contents + rel->r_offset - 2, |
| "\x65\xa1\0\0\0\0\x90\x8d\x74\x26", 11); |
| /* Skip R_386_PC32/R_386_PLT32. */ |
| rel++; |
| continue; |
| } |
| |
| if (htab->elf.sgot == NULL) |
| abort (); |
| |
| off = htab->tls_ldm_got.offset; |
| if (off & 1) |
| off &= ~1; |
| else |
| { |
| Elf_Internal_Rela outrel; |
| bfd_byte *loc; |
| |
| if (htab->elf.srelgot == NULL) |
| abort (); |
| |
| outrel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off); |
| |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgot->contents + off); |
| bfd_put_32 (output_bfd, 0, |
| htab->elf.sgot->contents + off + 4); |
| outrel.r_info = ELF32_R_INFO (0, R_386_TLS_DTPMOD32); |
| loc = htab->elf.srelgot->contents; |
| loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| htab->tls_ldm_got.offset |= 1; |
| } |
| relocation = htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset + off |
| - htab->elf.sgotplt->output_section->vma |
| - htab->elf.sgotplt->output_offset; |
| unresolved_reloc = FALSE; |
| break; |
| |
| case R_386_TLS_LDO_32: |
| if (!info->executable || (input_section->flags & SEC_CODE) == 0) |
| relocation -= elf_i386_dtpoff_base (info); |
| else |
| /* When converting LDO to LE, we must negate. */ |
| relocation = -elf_i386_tpoff (info, relocation); |
| break; |
| |
| case R_386_TLS_LE_32: |
| case R_386_TLS_LE: |
| if (!info->executable) |
| { |
| Elf_Internal_Rela outrel; |
| asection *sreloc; |
| bfd_byte *loc; |
| |
| outrel.r_offset = rel->r_offset |
| + input_section->output_section->vma |
| + input_section->output_offset; |
| if (h != NULL && h->dynindx != -1) |
| indx = h->dynindx; |
| else |
| indx = 0; |
| if (r_type == R_386_TLS_LE_32) |
| outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF32); |
| else |
| outrel.r_info = ELF32_R_INFO (indx, R_386_TLS_TPOFF); |
| sreloc = elf_section_data (input_section)->sreloc; |
| if (sreloc == NULL) |
| abort (); |
| loc = sreloc->contents; |
| loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| if (indx) |
| continue; |
| else if (r_type == R_386_TLS_LE_32) |
| relocation = elf_i386_dtpoff_base (info) - relocation; |
| else |
| relocation -= elf_i386_dtpoff_base (info); |
| } |
| else if (r_type == R_386_TLS_LE_32) |
| relocation = elf_i386_tpoff (info, relocation); |
| else |
| relocation = -elf_i386_tpoff (info, relocation); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Dynamic relocs are not propagated for SEC_DEBUGGING sections |
| because such sections are not SEC_ALLOC and thus ld.so will |
| not process them. */ |
| if (unresolved_reloc |
| && !((input_section->flags & SEC_DEBUGGING) != 0 |
| && h->def_dynamic)) |
| { |
| (*_bfd_error_handler) |
| (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), |
| input_bfd, |
| input_section, |
| (long) rel->r_offset, |
| howto->name, |
| h->root.root.string); |
| return FALSE; |
| } |
| |
| do_relocation: |
| r = _bfd_final_link_relocate (howto, input_bfd, input_section, |
| contents, rel->r_offset, |
| relocation, 0); |
| |
| check_relocation_error: |
| if (r != bfd_reloc_ok) |
| { |
| const char *name; |
| |
| if (h != NULL) |
| name = h->root.root.string; |
| else |
| { |
| name = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| if (name == NULL) |
| return FALSE; |
| if (*name == '\0') |
| name = bfd_section_name (input_bfd, sec); |
| } |
| |
| if (r == bfd_reloc_overflow) |
| { |
| if (! ((*info->callbacks->reloc_overflow) |
| (info, (h ? &h->root : NULL), name, howto->name, |
| (bfd_vma) 0, input_bfd, input_section, |
| rel->r_offset))) |
| return FALSE; |
| } |
| else |
| { |
| (*_bfd_error_handler) |
| (_("%B(%A+0x%lx): reloc against `%s': error %d"), |
| input_bfd, input_section, |
| (long) rel->r_offset, name, (int) r); |
| return FALSE; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| static bfd_boolean |
| elf_i386_finish_dynamic_symbol (bfd *output_bfd, |
| struct bfd_link_info *info, |
| struct elf_link_hash_entry *h, |
| Elf_Internal_Sym *sym) |
| { |
| struct elf_i386_link_hash_table *htab; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| bfd_vma plt_index; |
| bfd_vma got_offset; |
| Elf_Internal_Rela rel; |
| bfd_byte *loc; |
| asection *plt, *gotplt, *relplt; |
| |
| /* When building a static executable, use .iplt, .igot.plt and |
| .rel.iplt sections for STT_GNU_IFUNC symbols. */ |
| if (htab->elf.splt != NULL) |
| { |
| plt = htab->elf.splt; |
| gotplt = htab->elf.sgotplt; |
| relplt = htab->elf.srelplt; |
| } |
| else |
| { |
| plt = htab->elf.iplt; |
| gotplt = htab->elf.igotplt; |
| relplt = htab->elf.irelplt; |
| } |
| |
| /* This symbol has an entry in the procedure linkage table. Set |
| it up. */ |
| |
| if ((h->dynindx == -1 |
| && !((h->forced_local || info->executable) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| || plt == NULL |
| || gotplt == NULL |
| || relplt == NULL) |
| return FALSE; |
| |
| /* Get the index in the procedure linkage table which |
| corresponds to this symbol. This is the index of this symbol |
| in all the symbols for which we are making plt entries. The |
| first entry in the procedure linkage table is reserved. |
| |
| Get the offset into the .got table of the entry that |
| corresponds to this function. Each .got entry is 4 bytes. |
| The first three are reserved. |
| |
| For static executables, we don't reserve anything. */ |
| |
| if (plt == htab->elf.splt) |
| { |
| plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; |
| got_offset = (plt_index + 3) * 4; |
| } |
| else |
| { |
| plt_index = h->plt.offset / PLT_ENTRY_SIZE; |
| got_offset = plt_index * 4; |
| } |
| |
| /* Fill in the entry in the procedure linkage table. */ |
| if (! info->shared) |
| { |
| memcpy (plt->contents + h->plt.offset, elf_i386_plt_entry, |
| PLT_ENTRY_SIZE); |
| bfd_put_32 (output_bfd, |
| (gotplt->output_section->vma |
| + gotplt->output_offset |
| + got_offset), |
| plt->contents + h->plt.offset + 2); |
| |
| if (htab->is_vxworks) |
| { |
| int s, k, reloc_index; |
| |
| /* Create the R_386_32 relocation referencing the GOT |
| for this PLT entry. */ |
| |
| /* S: Current slot number (zero-based). */ |
| s = (h->plt.offset - PLT_ENTRY_SIZE) / PLT_ENTRY_SIZE; |
| /* K: Number of relocations for PLTResolve. */ |
| if (info->shared) |
| k = PLTRESOLVE_RELOCS_SHLIB; |
| else |
| k = PLTRESOLVE_RELOCS; |
| /* Skip the PLTresolve relocations, and the relocations for |
| the other PLT slots. */ |
| reloc_index = k + s * PLT_NON_JUMP_SLOT_RELOCS; |
| loc = (htab->srelplt2->contents + reloc_index |
| * sizeof (Elf32_External_Rel)); |
| |
| rel.r_offset = (htab->elf.splt->output_section->vma |
| + htab->elf.splt->output_offset |
| + h->plt.offset + 2), |
| rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); |
| |
| /* Create the R_386_32 relocation referencing the beginning of |
| the PLT for this GOT entry. */ |
| rel.r_offset = (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + got_offset); |
| rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, |
| loc + sizeof (Elf32_External_Rel)); |
| } |
| } |
| else |
| { |
| memcpy (plt->contents + h->plt.offset, elf_i386_pic_plt_entry, |
| PLT_ENTRY_SIZE); |
| bfd_put_32 (output_bfd, got_offset, |
| plt->contents + h->plt.offset + 2); |
| } |
| |
| /* Don't fill PLT entry for static executables. */ |
| if (plt == htab->elf.splt) |
| { |
| bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel), |
| plt->contents + h->plt.offset + 7); |
| bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE), |
| plt->contents + h->plt.offset + 12); |
| } |
| |
| /* Fill in the entry in the global offset table. */ |
| bfd_put_32 (output_bfd, |
| (plt->output_section->vma |
| + plt->output_offset |
| + h->plt.offset |
| + 6), |
| gotplt->contents + got_offset); |
| |
| /* Fill in the entry in the .rel.plt section. */ |
| rel.r_offset = (gotplt->output_section->vma |
| + gotplt->output_offset |
| + got_offset); |
| if (h->dynindx == -1 |
| || ((info->executable |
| || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| && h->def_regular |
| && h->type == STT_GNU_IFUNC)) |
| { |
| /* If an STT_GNU_IFUNC symbol is locally defined, generate |
| R_386_IRELATIVE instead of R_386_JUMP_SLOT. Store addend |
| in the .got.plt section. */ |
| bfd_put_32 (output_bfd, |
| (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset), |
| gotplt->contents + got_offset); |
| rel.r_info = ELF32_R_INFO (0, R_386_IRELATIVE); |
| } |
| else |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT); |
| loc = relplt->contents + plt_index * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); |
| |
| if (!h->def_regular) |
| { |
| /* Mark the symbol as undefined, rather than as defined in |
| the .plt section. Leave the value if there were any |
| relocations where pointer equality matters (this is a clue |
| for the dynamic linker, to make function pointer |
| comparisons work between an application and shared |
| library), otherwise set it to zero. If a function is only |
| called from a binary, there is no need to slow down |
| shared libraries because of that. */ |
| sym->st_shndx = SHN_UNDEF; |
| if (!h->pointer_equality_needed) |
| sym->st_value = 0; |
| } |
| } |
| |
| if (h->got.offset != (bfd_vma) -1 |
| && ! GOT_TLS_GD_ANY_P (elf_i386_hash_entry(h)->tls_type) |
| && (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE) == 0) |
| { |
| Elf_Internal_Rela rel; |
| bfd_byte *loc; |
| |
| /* This symbol has an entry in the global offset table. Set it |
| up. */ |
| |
| if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL) |
| abort (); |
| |
| rel.r_offset = (htab->elf.sgot->output_section->vma |
| + htab->elf.sgot->output_offset |
| + (h->got.offset & ~(bfd_vma) 1)); |
| |
| /* If this is a static link, or it is a -Bsymbolic link and the |
| symbol is defined locally or was forced to be local because |
| of a version file, we just want to emit a RELATIVE reloc. |
| The entry in the global offset table will already have been |
| initialized in the relocate_section function. */ |
| if (h->def_regular |
| && h->type == STT_GNU_IFUNC) |
| { |
| if (info->shared) |
| { |
| /* Generate R_386_GLOB_DAT. */ |
| goto do_glob_dat; |
| } |
| else |
| { |
| asection *plt; |
| |
| if (!h->pointer_equality_needed) |
| abort (); |
| |
| /* For non-shared object, we can't use .got.plt, which |
| contains the real function addres if we need pointer |
| equality. We load the GOT entry with the PLT entry. */ |
| plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; |
| bfd_put_32 (output_bfd, |
| (plt->output_section->vma |
| + plt->output_offset + h->plt.offset), |
| htab->elf.sgot->contents + h->got.offset); |
| return TRUE; |
| } |
| } |
| else if (info->shared |
| && SYMBOL_REFERENCES_LOCAL (info, h)) |
| { |
| BFD_ASSERT((h->got.offset & 1) != 0); |
| rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| } |
| else |
| { |
| BFD_ASSERT((h->got.offset & 1) == 0); |
| do_glob_dat: |
| bfd_put_32 (output_bfd, (bfd_vma) 0, |
| htab->elf.sgot->contents + h->got.offset); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT); |
| } |
| |
| loc = htab->elf.srelgot->contents; |
| loc += htab->elf.srelgot->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); |
| } |
| |
| if (h->needs_copy) |
| { |
| Elf_Internal_Rela rel; |
| bfd_byte *loc; |
| |
| /* This symbol needs a copy reloc. Set it up. */ |
| |
| if (h->dynindx == -1 |
| || (h->root.type != bfd_link_hash_defined |
| && h->root.type != bfd_link_hash_defweak) |
| || htab->srelbss == NULL) |
| abort (); |
| |
| rel.r_offset = (h->root.u.def.value |
| + h->root.u.def.section->output_section->vma |
| + h->root.u.def.section->output_offset); |
| rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY); |
| loc = htab->srelbss->contents; |
| loc += htab->srelbss->reloc_count++ * sizeof (Elf32_External_Rel); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, loc); |
| } |
| |
| /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may |
| be NULL for local symbols. |
| |
| On VxWorks, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it |
| is relative to the ".got" section. */ |
| if (sym != NULL |
| && (strcmp (h->root.root.string, "_DYNAMIC") == 0 |
| || (!htab->is_vxworks && h == htab->elf.hgot))) |
| sym->st_shndx = SHN_ABS; |
| |
| return TRUE; |
| } |
| |
| /* Finish up local dynamic symbol handling. We set the contents of |
| various dynamic sections here. */ |
| |
| static bfd_boolean |
| elf_i386_finish_local_dynamic_symbol (void **slot, void *inf) |
| { |
| struct elf_link_hash_entry *h |
| = (struct elf_link_hash_entry *) *slot; |
| struct bfd_link_info *info |
| = (struct bfd_link_info *) inf; |
| |
| return elf_i386_finish_dynamic_symbol (info->output_bfd, info, |
| h, NULL); |
| } |
| |
| /* Used to decide how to sort relocs in an optimal manner for the |
| dynamic linker, before writing them out. */ |
| |
| static enum elf_reloc_type_class |
| elf_i386_reloc_type_class (const Elf_Internal_Rela *rela) |
| { |
| switch (ELF32_R_TYPE (rela->r_info)) |
| { |
| case R_386_RELATIVE: |
| return reloc_class_relative; |
| case R_386_JUMP_SLOT: |
| return reloc_class_plt; |
| case R_386_COPY: |
| return reloc_class_copy; |
| default: |
| return reloc_class_normal; |
| } |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| static bfd_boolean |
| elf_i386_finish_dynamic_sections (bfd *output_bfd, |
| struct bfd_link_info *info) |
| { |
| struct elf_i386_link_hash_table *htab; |
| bfd *dynobj; |
| asection *sdyn; |
| |
| htab = elf_i386_hash_table (info); |
| if (htab == NULL) |
| return FALSE; |
| |
| dynobj = htab->elf.dynobj; |
| sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
| |
| if (htab->elf.dynamic_sections_created) |
| { |
| Elf32_External_Dyn *dyncon, *dynconend; |
| |
| if (sdyn == NULL || htab->elf.sgot == NULL) |
| abort (); |
| |
| dyncon = (Elf32_External_Dyn *) sdyn->contents; |
| dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
| for (; dyncon < dynconend; dyncon++) |
| { |
| Elf_Internal_Dyn dyn; |
| asection *s; |
| |
| bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); |
| |
| switch (dyn.d_tag) |
| { |
| default: |
| if (htab->is_vxworks |
| && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) |
| break; |
| continue; |
| |
| case DT_PLTGOT: |
| s = htab->elf.sgotplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_JMPREL: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; |
| break; |
| |
| case DT_PLTRELSZ: |
| s = htab->elf.srelplt; |
| dyn.d_un.d_val = s->size; |
| break; |
| |
| case DT_RELSZ: |
| /* My reading of the SVR4 ABI indicates that the |
| procedure linkage table relocs (DT_JMPREL) should be |
| included in the overall relocs (DT_REL). This is |
| what Solaris does. However, UnixWare can not handle |
| that case. Therefore, we override the DT_RELSZ entry |
| here to make it not include the JMPREL relocs. */ |
| s = htab->elf.srelplt; |
| if (s == NULL) |
| continue; |
| dyn.d_un.d_val -= s->size; |
| break; |
| |
| case DT_REL: |
| /* We may not be using the standard ELF linker script. |
| If .rel.plt is the first .rel section, we adjust |
| DT_REL to not include it. */ |
| s = htab->elf.srelplt; |
| if (s == NULL) |
| continue; |
| if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset) |
| continue; |
| dyn.d_un.d_ptr += s->size; |
| break; |
| } |
| |
| bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); |
| } |
| |
| /* Fill in the first entry in the procedure linkage table. */ |
| if (htab->elf.splt && htab->elf.splt->size > 0) |
| { |
| if (info->shared) |
| { |
| memcpy (htab->elf.splt->contents, elf_i386_pic_plt0_entry, |
| sizeof (elf_i386_pic_plt0_entry)); |
| memset (htab->elf.splt->contents + sizeof (elf_i386_pic_plt0_entry), |
| htab->plt0_pad_byte, |
| PLT_ENTRY_SIZE - sizeof (elf_i386_pic_plt0_entry)); |
| } |
| else |
| { |
| memcpy (htab->elf.splt->contents, elf_i386_plt0_entry, |
| sizeof(elf_i386_plt0_entry)); |
| memset (htab->elf.splt->contents + sizeof (elf_i386_plt0_entry), |
| htab->plt0_pad_byte, |
| PLT_ENTRY_SIZE - sizeof (elf_i386_plt0_entry)); |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + 4), |
| htab->elf.splt->contents + 2); |
| bfd_put_32 (output_bfd, |
| (htab->elf.sgotplt->output_section->vma |
| + htab->elf.sgotplt->output_offset |
| + 8), |
| htab->elf.splt->contents + 8); |
| |
| if (htab->is_vxworks) |
| { |
| Elf_Internal_Rela rel; |
| |
| /* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 4. |
| On IA32 we use REL relocations so the addend goes in |
| the PLT directly. */ |
| rel.r_offset = (htab->elf.splt->output_section->vma |
| + htab->elf.splt->output_offset |
| + 2); |
| rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, |
| htab->srelplt2->contents); |
| /* Generate a relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
| rel.r_offset = (htab->elf.splt->output_section->vma |
| + htab->elf.splt->output_offset |
| + 8); |
| rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, |
| htab->srelplt2->contents + |
| sizeof (Elf32_External_Rel)); |
| } |
| } |
| |
| /* UnixWare sets the entsize of .plt to 4, although that doesn't |
| really seem like the right value. */ |
| elf_section_data (htab->elf.splt->output_section) |
| ->this_hdr.sh_entsize = 4; |
| |
| /* Correct the .rel.plt.unloaded relocations. */ |
| if (htab->is_vxworks && !info->shared) |
| { |
| int num_plts = (htab->elf.splt->size / PLT_ENTRY_SIZE) - 1; |
| unsigned char *p; |
| |
| p = htab->srelplt2->contents; |
| if (info->shared) |
| p += PLTRESOLVE_RELOCS_SHLIB * sizeof (Elf32_External_Rel); |
| else |
| p += PLTRESOLVE_RELOCS * sizeof (Elf32_External_Rel); |
| |
| for (; num_plts; num_plts--) |
| { |
| Elf_Internal_Rela rel; |
| bfd_elf32_swap_reloc_in (output_bfd, p, &rel); |
| rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, p); |
| p += sizeof (Elf32_External_Rel); |
| |
| bfd_elf32_swap_reloc_in (output_bfd, p, &rel); |
| rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_386_32); |
| bfd_elf32_swap_reloc_out (output_bfd, &rel, p); |
| p += sizeof (Elf32_External_Rel); |
| } |
| } |
| } |
| } |
| |
| if (htab->elf.sgotplt) |
| { |
| if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) |
| { |
| (*_bfd_error_handler) |
| (_("discarded output section: `%A'"), htab->elf.sgotplt); |
| return FALSE; |
| } |
| |
| /* Fill in the first three entries in the global offset table. */ |
| if (htab->elf.sgotplt->size > 0) |
| { |
| bfd_put_32 (output_bfd, |
| (sdyn == NULL ? 0 |
| : sdyn->output_section->vma + sdyn->output_offset), |
| htab->elf.sgotplt->contents); |
| bfd_put_32 (output_bfd, 0, htab->elf.sgotplt->contents + 4); |
| bfd_put_32 (output_bfd, 0, htab->elf.sgotplt->contents + 8); |
| } |
| |
| elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize = 4; |
| } |
| |
| if (htab->elf.sgot && htab->elf.sgot->size > 0) |
| elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize = 4; |
| |
| /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ |
| htab_traverse (htab->loc_hash_table, |
| elf_i386_finish_local_dynamic_symbol, |
| info); |
| |
| return TRUE; |
| } |
| |
| /* Return address for Ith PLT stub in section PLT, for relocation REL |
| or (bfd_vma) -1 if it should not be included. */ |
| |
| static bfd_vma |
| elf_i386_plt_sym_val (bfd_vma i, const asection *plt, |
| const arelent *rel ATTRIBUTE_UNUSED) |
| { |
| return plt->vma + (i + 1) * PLT_ENTRY_SIZE; |
| } |
| |
| /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ |
| |
| static bfd_boolean |
| elf_i386_hash_symbol (struct elf_link_hash_entry *h) |
| { |
| if (h->plt.offset != (bfd_vma) -1 |
| && !h->def_regular |
| && !h->pointer_equality_needed) |
| return FALSE; |
| |
| return _bfd_elf_hash_symbol (h); |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. */ |
| |
| static bfd_boolean |
| elf_i386_add_symbol_hook (bfd * abfd, |
| struct bfd_link_info * info ATTRIBUTE_UNUSED, |
| Elf_Internal_Sym * sym, |
| const char ** namep ATTRIBUTE_UNUSED, |
| flagword * flagsp ATTRIBUTE_UNUSED, |
| asection ** secp ATTRIBUTE_UNUSED, |
| bfd_vma * valp ATTRIBUTE_UNUSED) |
| { |
| if ((abfd->flags & DYNAMIC) == 0 |
| && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC |
| || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)) |
| elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; |
| |
| return TRUE; |
| } |
| |
| #define TARGET_LITTLE_SYM bfd_elf32_i386_vec |
| #define TARGET_LITTLE_NAME "elf32-i386" |
| #define ELF_ARCH bfd_arch_i386 |
| #define ELF_TARGET_ID I386_ELF_DATA |
| #define ELF_MACHINE_CODE EM_386 |
| #define ELF_MAXPAGESIZE 0x1000 |
| |
| #define elf_backend_can_gc_sections 1 |
| #define elf_backend_can_refcount 1 |
| #define elf_backend_want_got_plt 1 |
| #define elf_backend_plt_readonly 1 |
| #define elf_backend_want_plt_sym 0 |
| #define elf_backend_got_header_size 12 |
| |
| /* Support RELA for objdump of prelink objects. */ |
| #define elf_info_to_howto elf_i386_info_to_howto_rel |
| #define elf_info_to_howto_rel elf_i386_info_to_howto_rel |
| |
| #define bfd_elf32_mkobject elf_i386_mkobject |
| |
| #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name |
| #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create |
| #define bfd_elf32_bfd_link_hash_table_free elf_i386_link_hash_table_free |
| #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup |
| #define bfd_elf32_bfd_reloc_name_lookup elf_i386_reloc_name_lookup |
| |
| #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol |
| #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible |
| #define elf_backend_check_relocs elf_i386_check_relocs |
| #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol |
| #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections |
| #define elf_backend_fake_sections elf_i386_fake_sections |
| #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections |
| #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol |
| #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook |
| #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook |
| #define elf_backend_grok_prstatus elf_i386_grok_prstatus |
| #define elf_backend_grok_psinfo elf_i386_grok_psinfo |
| #define elf_backend_reloc_type_class elf_i386_reloc_type_class |
| #define elf_backend_relocate_section elf_i386_relocate_section |
| #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections |
| #define elf_backend_always_size_sections elf_i386_always_size_sections |
| #define elf_backend_omit_section_dynsym \ |
| ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) |
| #define elf_backend_plt_sym_val elf_i386_plt_sym_val |
| #define elf_backend_hash_symbol elf_i386_hash_symbol |
| #define elf_backend_add_symbol_hook elf_i386_add_symbol_hook |
| #undef elf_backend_post_process_headers |
| #define elf_backend_post_process_headers _bfd_elf_set_osabi |
| |
| #include "elf32-target.h" |
| |
| /* FreeBSD support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM bfd_elf32_i386_freebsd_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf32-i386-freebsd" |
| #undef ELF_OSABI |
| #define ELF_OSABI ELFOSABI_FREEBSD |
| |
| /* The kernel recognizes executables as valid only if they carry a |
| "FreeBSD" label in the ELF header. So we put this label on all |
| executables and (for simplicity) also all other object files. */ |
| |
| static void |
| elf_i386_fbsd_post_process_headers (bfd *abfd, struct bfd_link_info *info) |
| { |
| _bfd_elf_set_osabi (abfd, info); |
| |
| #ifdef OLD_FREEBSD_ABI_LABEL |
| /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */ |
| memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8); |
| #endif |
| } |
| |
| #undef elf_backend_post_process_headers |
| #define elf_backend_post_process_headers elf_i386_fbsd_post_process_headers |
| #undef elf32_bed |
| #define elf32_bed elf32_i386_fbsd_bed |
| |
| #undef elf_backend_add_symbol_hook |
| |
| #include "elf32-target.h" |
| |
| /* Solaris 2. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM bfd_elf32_i386_sol2_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf32-i386-sol2" |
| |
| /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE |
| objects won't be recognized. */ |
| #undef ELF_OSABI |
| |
| #undef elf32_bed |
| #define elf32_bed elf32_i386_sol2_bed |
| |
| /* The 32-bit static TLS arena size is rounded to the nearest 8-byte |
| boundary. */ |
| #undef elf_backend_static_tls_alignment |
| #define elf_backend_static_tls_alignment 8 |
| |
| /* The Solaris 2 ABI requires a plt symbol on all platforms. |
| |
| Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output |
| File, p.63. */ |
| #undef elf_backend_want_plt_sym |
| #define elf_backend_want_plt_sym 1 |
| |
| #include "elf32-target.h" |
| |
| /* VxWorks support. */ |
| |
| #undef TARGET_LITTLE_SYM |
| #define TARGET_LITTLE_SYM bfd_elf32_i386_vxworks_vec |
| #undef TARGET_LITTLE_NAME |
| #define TARGET_LITTLE_NAME "elf32-i386-vxworks" |
| #undef ELF_OSABI |
| |
| /* Like elf_i386_link_hash_table_create but with tweaks for VxWorks. */ |
| |
| static struct bfd_link_hash_table * |
| elf_i386_vxworks_link_hash_table_create (bfd *abfd) |
| { |
| struct bfd_link_hash_table *ret; |
| struct elf_i386_link_hash_table *htab; |
| |
| ret = elf_i386_link_hash_table_create (abfd); |
| if (ret) |
| { |
| htab = (struct elf_i386_link_hash_table *) ret; |
| htab->is_vxworks = 1; |
| htab->plt0_pad_byte = 0x90; |
| } |
| |
| return ret; |
| } |
| |
| |
| #undef elf_backend_relocs_compatible |
| #undef elf_backend_post_process_headers |
| #undef bfd_elf32_bfd_link_hash_table_create |
| #define bfd_elf32_bfd_link_hash_table_create \ |
| elf_i386_vxworks_link_hash_table_create |
| #undef elf_backend_add_symbol_hook |
| #define elf_backend_add_symbol_hook \ |
| elf_vxworks_add_symbol_hook |
| #undef elf_backend_link_output_symbol_hook |
| #define elf_backend_link_output_symbol_hook \ |
| elf_vxworks_link_output_symbol_hook |
| #undef elf_backend_emit_relocs |
| #define elf_backend_emit_relocs elf_vxworks_emit_relocs |
| #undef elf_backend_final_write_processing |
| #define elf_backend_final_write_processing \ |
| elf_vxworks_final_write_processing |
| #undef elf_backend_static_tls_alignment |
| |
| /* On VxWorks, we emit relocations against _PROCEDURE_LINKAGE_TABLE_, so |
| define it. */ |
| #undef elf_backend_want_plt_sym |
| #define elf_backend_want_plt_sym 1 |
| |
| #undef elf32_bed |
| #define elf32_bed elf32_i386_vxworks_bed |
| |
| #include "elf32-target.h" |