| // Vector implementation -*- C++ -*- |
| |
| // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 2, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License along |
| // with this library; see the file COPYING. If not, write to the Free |
| // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
| // USA. |
| |
| // As a special exception, you may use this file as part of a free software |
| // library without restriction. Specifically, if other files instantiate |
| // templates or use macros or inline functions from this file, or you compile |
| // this file and link it with other files to produce an executable, this |
| // file does not by itself cause the resulting executable to be covered by |
| // the GNU General Public License. This exception does not however |
| // invalidate any other reasons why the executable file might be covered by |
| // the GNU General Public License. |
| |
| /* |
| * |
| * Copyright (c) 1994 |
| * Hewlett-Packard Company |
| * |
| * Permission to use, copy, modify, distribute and sell this software |
| * and its documentation for any purpose is hereby granted without fee, |
| * provided that the above copyright notice appear in all copies and |
| * that both that copyright notice and this permission notice appear |
| * in supporting documentation. Hewlett-Packard Company makes no |
| * representations about the suitability of this software for any |
| * purpose. It is provided "as is" without express or implied warranty. |
| * |
| * |
| * Copyright (c) 1996 |
| * Silicon Graphics Computer Systems, Inc. |
| * |
| * Permission to use, copy, modify, distribute and sell this software |
| * and its documentation for any purpose is hereby granted without fee, |
| * provided that the above copyright notice appear in all copies and |
| * that both that copyright notice and this permission notice appear |
| * in supporting documentation. Silicon Graphics makes no |
| * representations about the suitability of this software for any |
| * purpose. It is provided "as is" without express or implied warranty. |
| */ |
| |
| /** @file stl_vector.h |
| * This is an internal header file, included by other library headers. |
| * You should not attempt to use it directly. |
| */ |
| |
| #ifndef _VECTOR_H |
| #define _VECTOR_H 1 |
| |
| #include <bits/stl_iterator_base_funcs.h> |
| #include <bits/functexcept.h> |
| #include <bits/concept_check.h> |
| |
| namespace _GLIBCXX_STD |
| { |
| /** |
| * @if maint |
| * See bits/stl_deque.h's _Deque_base for an explanation. |
| * @endif |
| */ |
| template<typename _Tp, typename _Alloc> |
| struct _Vector_base |
| { |
| struct _Vector_impl |
| : public _Alloc { |
| _Tp* _M_start; |
| _Tp* _M_finish; |
| _Tp* _M_end_of_storage; |
| _Vector_impl (_Alloc const& __a) |
| : _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) |
| { } |
| }; |
| |
| public: |
| typedef _Alloc allocator_type; |
| |
| allocator_type |
| get_allocator() const { return *static_cast<const _Alloc*>(&this->_M_impl); } |
| |
| _Vector_base(const allocator_type& __a) : _M_impl(__a) |
| { } |
| |
| _Vector_base(size_t __n, const allocator_type& __a) |
| : _M_impl(__a) |
| { |
| this->_M_impl._M_start = this->_M_allocate(__n); |
| this->_M_impl._M_finish = this->_M_impl._M_start; |
| this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; |
| } |
| |
| ~_Vector_base() |
| { _M_deallocate(this->_M_impl._M_start, |
| this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } |
| |
| public: |
| _Vector_impl _M_impl; |
| |
| _Tp* |
| _M_allocate(size_t __n) { return _M_impl.allocate(__n); } |
| |
| void |
| _M_deallocate(_Tp* __p, size_t __n) |
| { if (__p) _M_impl.deallocate(__p, __n); } |
| }; |
| |
| |
| /** |
| * @brief A standard container which offers fixed time access to |
| * individual elements in any order. |
| * |
| * @ingroup Containers |
| * @ingroup Sequences |
| * |
| * Meets the requirements of a <a href="tables.html#65">container</a>, a |
| * <a href="tables.html#66">reversible container</a>, and a |
| * <a href="tables.html#67">sequence</a>, including the |
| * <a href="tables.html#68">optional sequence requirements</a> with the |
| * %exception of @c push_front and @c pop_front. |
| * |
| * In some terminology a %vector can be described as a dynamic |
| * C-style array, it offers fast and efficient access to individual |
| * elements in any order and saves the user from worrying about |
| * memory and size allocation. Subscripting ( @c [] ) access is |
| * also provided as with C-style arrays. |
| */ |
| template<typename _Tp, typename _Alloc = allocator<_Tp> > |
| class vector : protected _Vector_base<_Tp, _Alloc> |
| { |
| // Concept requirements. |
| __glibcxx_class_requires(_Tp, _SGIAssignableConcept) |
| |
| typedef _Vector_base<_Tp, _Alloc> _Base; |
| typedef vector<_Tp, _Alloc> vector_type; |
| |
| public: |
| typedef _Tp value_type; |
| typedef typename _Alloc::pointer pointer; |
| typedef typename _Alloc::const_pointer const_pointer; |
| typedef typename _Alloc::reference reference; |
| typedef typename _Alloc::const_reference const_reference; |
| typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator; |
| typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type> |
| const_iterator; |
| typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef typename _Base::allocator_type allocator_type; |
| |
| protected: |
| /** @if maint |
| * These two functions and three data members are all from the |
| * base class. They should be pretty self-explanatory, as |
| * %vector uses a simple contiguous allocation scheme. @endif |
| */ |
| using _Base::_M_allocate; |
| using _Base::_M_deallocate; |
| using _Base::_M_impl; |
| |
| public: |
| // [23.2.4.1] construct/copy/destroy |
| // (assign() and get_allocator() are also listed in this section) |
| /** |
| * @brief Default constructor creates no elements. |
| */ |
| explicit |
| vector(const allocator_type& __a = allocator_type()) |
| : _Base(__a) { } |
| |
| /** |
| * @brief Create a %vector with copies of an exemplar element. |
| * @param n The number of elements to initially create. |
| * @param value An element to copy. |
| * |
| * This constructor fills the %vector with @a n copies of @a value. |
| */ |
| vector(size_type __n, const value_type& __value, |
| const allocator_type& __a = allocator_type()) |
| : _Base(__n, __a) |
| { this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, |
| __n, __value); } |
| |
| /** |
| * @brief Create a %vector with default elements. |
| * @param n The number of elements to initially create. |
| * |
| * This constructor fills the %vector with @a n copies of a |
| * default-constructed element. |
| */ |
| explicit |
| vector(size_type __n) |
| : _Base(__n, allocator_type()) |
| { this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, |
| __n, value_type()); } |
| |
| /** |
| * @brief %Vector copy constructor. |
| * @param x A %vector of identical element and allocator types. |
| * |
| * The newly-created %vector uses a copy of the allocation |
| * object used by @a x. All the elements of @a x are copied, |
| * but any extra memory in |
| * @a x (for fast expansion) will not be copied. |
| */ |
| vector(const vector& __x) |
| : _Base(__x.size(), __x.get_allocator()) |
| { this->_M_impl._M_finish = std::uninitialized_copy(__x.begin(), __x.end(), |
| this->_M_impl._M_start); |
| } |
| |
| /** |
| * @brief Builds a %vector from a range. |
| * @param first An input iterator. |
| * @param last An input iterator. |
| * |
| * Create a %vector consisting of copies of the elements from |
| * [first,last). |
| * |
| * If the iterators are forward, bidirectional, or |
| * random-access, then this will call the elements' copy |
| * constructor N times (where N is distance(first,last)) and do |
| * no memory reallocation. But if only input iterators are |
| * used, then this will do at most 2N calls to the copy |
| * constructor, and logN memory reallocations. |
| */ |
| template<typename _InputIterator> |
| vector(_InputIterator __first, _InputIterator __last, |
| const allocator_type& __a = allocator_type()) |
| : _Base(__a) |
| { |
| // Check whether it's an integral type. If so, it's not an iterator. |
| typedef typename _Is_integer<_InputIterator>::_Integral _Integral; |
| _M_initialize_dispatch(__first, __last, _Integral()); |
| } |
| |
| /** |
| * The dtor only erases the elements, and note that if the |
| * elements themselves are pointers, the pointed-to memory is |
| * not touched in any way. Managing the pointer is the user's |
| * responsibilty. |
| */ |
| ~vector() { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); } |
| |
| /** |
| * @brief %Vector assignment operator. |
| * @param x A %vector of identical element and allocator types. |
| * |
| * All the elements of @a x are copied, but any extra memory in |
| * @a x (for fast expansion) will not be copied. Unlike the |
| * copy constructor, the allocator object is not copied. |
| */ |
| vector& |
| operator=(const vector& __x); |
| |
| /** |
| * @brief Assigns a given value to a %vector. |
| * @param n Number of elements to be assigned. |
| * @param val Value to be assigned. |
| * |
| * This function fills a %vector with @a n copies of the given |
| * value. Note that the assignment completely changes the |
| * %vector and that the resulting %vector's size is the same as |
| * the number of elements assigned. Old data may be lost. |
| */ |
| void |
| assign(size_type __n, const value_type& __val) |
| { _M_fill_assign(__n, __val); } |
| |
| /** |
| * @brief Assigns a range to a %vector. |
| * @param first An input iterator. |
| * @param last An input iterator. |
| * |
| * This function fills a %vector with copies of the elements in the |
| * range [first,last). |
| * |
| * Note that the assignment completely changes the %vector and |
| * that the resulting %vector's size is the same as the number |
| * of elements assigned. Old data may be lost. |
| */ |
| template<typename _InputIterator> |
| void |
| assign(_InputIterator __first, _InputIterator __last) |
| { |
| // Check whether it's an integral type. If so, it's not an iterator. |
| typedef typename _Is_integer<_InputIterator>::_Integral _Integral; |
| _M_assign_dispatch(__first, __last, _Integral()); |
| } |
| |
| /// Get a copy of the memory allocation object. |
| using _Base::get_allocator; |
| |
| // iterators |
| /** |
| * Returns a read/write iterator that points to the first |
| * element in the %vector. Iteration is done in ordinary |
| * element order. |
| */ |
| iterator |
| begin() { return iterator (this->_M_impl._M_start); } |
| |
| /** |
| * Returns a read-only (constant) iterator that points to the |
| * first element in the %vector. Iteration is done in ordinary |
| * element order. |
| */ |
| const_iterator |
| begin() const { return const_iterator (this->_M_impl._M_start); } |
| |
| /** |
| * Returns a read/write iterator that points one past the last |
| * element in the %vector. Iteration is done in ordinary |
| * element order. |
| */ |
| iterator |
| end() { return iterator (this->_M_impl._M_finish); } |
| |
| /** |
| * Returns a read-only (constant) iterator that points one past |
| * the last element in the %vector. Iteration is done in |
| * ordinary element order. |
| */ |
| const_iterator |
| end() const { return const_iterator (this->_M_impl._M_finish); } |
| |
| /** |
| * Returns a read/write reverse iterator that points to the |
| * last element in the %vector. Iteration is done in reverse |
| * element order. |
| */ |
| reverse_iterator |
| rbegin() { return reverse_iterator(end()); } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to the last element in the %vector. Iteration is done in |
| * reverse element order. |
| */ |
| const_reverse_iterator |
| rbegin() const { return const_reverse_iterator(end()); } |
| |
| /** |
| * Returns a read/write reverse iterator that points to one |
| * before the first element in the %vector. Iteration is done |
| * in reverse element order. |
| */ |
| reverse_iterator |
| rend() { return reverse_iterator(begin()); } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to one before the first element in the %vector. Iteration |
| * is done in reverse element order. |
| */ |
| const_reverse_iterator |
| rend() const { return const_reverse_iterator(begin()); } |
| |
| // [23.2.4.2] capacity |
| /** Returns the number of elements in the %vector. */ |
| size_type |
| size() const { return size_type(end() - begin()); } |
| |
| /** Returns the size() of the largest possible %vector. */ |
| size_type |
| max_size() const { return size_type(-1) / sizeof(value_type); } |
| |
| /** |
| * @brief Resizes the %vector to the specified number of elements. |
| * @param new_size Number of elements the %vector should contain. |
| * @param x Data with which new elements should be populated. |
| * |
| * This function will %resize the %vector to the specified |
| * number of elements. If the number is smaller than the |
| * %vector's current size the %vector is truncated, otherwise |
| * the %vector is extended and new elements are populated with |
| * given data. |
| */ |
| void |
| resize(size_type __new_size, const value_type& __x) |
| { |
| if (__new_size < size()) |
| erase(begin() + __new_size, end()); |
| else |
| insert(end(), __new_size - size(), __x); |
| } |
| |
| /** |
| * @brief Resizes the %vector to the specified number of elements. |
| * @param new_size Number of elements the %vector should contain. |
| * |
| * This function will resize the %vector to the specified |
| * number of elements. If the number is smaller than the |
| * %vector's current size the %vector is truncated, otherwise |
| * the %vector is extended and new elements are |
| * default-constructed. |
| */ |
| void |
| resize(size_type __new_size) { resize(__new_size, value_type()); } |
| |
| /** |
| * Returns the total number of elements that the %vector can |
| * hold before needing to allocate more memory. |
| */ |
| size_type |
| capacity() const |
| { return size_type(const_iterator(this->_M_impl._M_end_of_storage) - begin()); } |
| |
| /** |
| * Returns true if the %vector is empty. (Thus begin() would |
| * equal end().) |
| */ |
| bool |
| empty() const { return begin() == end(); } |
| |
| /** |
| * @brief Attempt to preallocate enough memory for specified number of |
| * elements. |
| * @param n Number of elements required. |
| * @throw std::length_error If @a n exceeds @c max_size(). |
| * |
| * This function attempts to reserve enough memory for the |
| * %vector to hold the specified number of elements. If the |
| * number requested is more than max_size(), length_error is |
| * thrown. |
| * |
| * The advantage of this function is that if optimal code is a |
| * necessity and the user can determine the number of elements |
| * that will be required, the user can reserve the memory in |
| * %advance, and thus prevent a possible reallocation of memory |
| * and copying of %vector data. |
| */ |
| void |
| reserve(size_type __n); |
| |
| // element access |
| /** |
| * @brief Subscript access to the data contained in the %vector. |
| * @param n The index of the element for which data should be |
| * accessed. |
| * @return Read/write reference to data. |
| * |
| * This operator allows for easy, array-style, data access. |
| * Note that data access with this operator is unchecked and |
| * out_of_range lookups are not defined. (For checked lookups |
| * see at().) |
| */ |
| reference |
| operator[](size_type __n) { return *(begin() + __n); } |
| |
| /** |
| * @brief Subscript access to the data contained in the %vector. |
| * @param n The index of the element for which data should be |
| * accessed. |
| * @return Read-only (constant) reference to data. |
| * |
| * This operator allows for easy, array-style, data access. |
| * Note that data access with this operator is unchecked and |
| * out_of_range lookups are not defined. (For checked lookups |
| * see at().) |
| */ |
| const_reference |
| operator[](size_type __n) const { return *(begin() + __n); } |
| |
| protected: |
| /// @if maint Safety check used only from at(). @endif |
| void |
| _M_range_check(size_type __n) const |
| { |
| if (__n >= this->size()) |
| __throw_out_of_range(__N("vector::_M_range_check")); |
| } |
| |
| public: |
| /** |
| * @brief Provides access to the data contained in the %vector. |
| * @param n The index of the element for which data should be |
| * accessed. |
| * @return Read/write reference to data. |
| * @throw std::out_of_range If @a n is an invalid index. |
| * |
| * This function provides for safer data access. The parameter |
| * is first checked that it is in the range of the vector. The |
| * function throws out_of_range if the check fails. |
| */ |
| reference |
| at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } |
| |
| /** |
| * @brief Provides access to the data contained in the %vector. |
| * @param n The index of the element for which data should be |
| * accessed. |
| * @return Read-only (constant) reference to data. |
| * @throw std::out_of_range If @a n is an invalid index. |
| * |
| * This function provides for safer data access. The parameter |
| * is first checked that it is in the range of the vector. The |
| * function throws out_of_range if the check fails. |
| */ |
| const_reference |
| at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } |
| |
| /** |
| * Returns a read/write reference to the data at the first |
| * element of the %vector. |
| */ |
| reference |
| front() { return *begin(); } |
| |
| /** |
| * Returns a read-only (constant) reference to the data at the first |
| * element of the %vector. |
| */ |
| const_reference |
| front() const { return *begin(); } |
| |
| /** |
| * Returns a read/write reference to the data at the last |
| * element of the %vector. |
| */ |
| reference |
| back() { return *(end() - 1); } |
| |
| /** |
| * Returns a read-only (constant) reference to the data at the |
| * last element of the %vector. |
| */ |
| const_reference |
| back() const { return *(end() - 1); } |
| |
| // [23.2.4.3] modifiers |
| /** |
| * @brief Add data to the end of the %vector. |
| * @param x Data to be added. |
| * |
| * This is a typical stack operation. The function creates an |
| * element at the end of the %vector and assigns the given data |
| * to it. Due to the nature of a %vector this operation can be |
| * done in constant time if the %vector has preallocated space |
| * available. |
| */ |
| void |
| push_back(const value_type& __x) |
| { |
| if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) |
| { |
| std::_Construct(this->_M_impl._M_finish, __x); |
| ++this->_M_impl._M_finish; |
| } |
| else |
| _M_insert_aux(end(), __x); |
| } |
| |
| /** |
| * @brief Removes last element. |
| * |
| * This is a typical stack operation. It shrinks the %vector by one. |
| * |
| * Note that no data is returned, and if the last element's |
| * data is needed, it should be retrieved before pop_back() is |
| * called. |
| */ |
| void |
| pop_back() |
| { |
| --this->_M_impl._M_finish; |
| std::_Destroy(this->_M_impl._M_finish); |
| } |
| |
| /** |
| * @brief Inserts given value into %vector before specified iterator. |
| * @param position An iterator into the %vector. |
| * @param x Data to be inserted. |
| * @return An iterator that points to the inserted data. |
| * |
| * This function will insert a copy of the given value before |
| * the specified location. Note that this kind of operation |
| * could be expensive for a %vector and if it is frequently |
| * used the user should consider using std::list. |
| */ |
| iterator |
| insert(iterator __position, const value_type& __x); |
| |
| /** |
| * @brief Inserts a number of copies of given data into the %vector. |
| * @param position An iterator into the %vector. |
| * @param n Number of elements to be inserted. |
| * @param x Data to be inserted. |
| * |
| * This function will insert a specified number of copies of |
| * the given data before the location specified by @a position. |
| * |
| * Note that this kind of operation could be expensive for a |
| * %vector and if it is frequently used the user should |
| * consider using std::list. |
| */ |
| void |
| insert(iterator __position, size_type __n, const value_type& __x) |
| { _M_fill_insert(__position, __n, __x); } |
| |
| /** |
| * @brief Inserts a range into the %vector. |
| * @param position An iterator into the %vector. |
| * @param first An input iterator. |
| * @param last An input iterator. |
| * |
| * This function will insert copies of the data in the range |
| * [first,last) into the %vector before the location specified |
| * by @a pos. |
| * |
| * Note that this kind of operation could be expensive for a |
| * %vector and if it is frequently used the user should |
| * consider using std::list. |
| */ |
| template<typename _InputIterator> |
| void |
| insert(iterator __position, _InputIterator __first, |
| _InputIterator __last) |
| { |
| // Check whether it's an integral type. If so, it's not an iterator. |
| typedef typename _Is_integer<_InputIterator>::_Integral _Integral; |
| _M_insert_dispatch(__position, __first, __last, _Integral()); |
| } |
| |
| /** |
| * @brief Remove element at given position. |
| * @param position Iterator pointing to element to be erased. |
| * @return An iterator pointing to the next element (or end()). |
| * |
| * This function will erase the element at the given position and thus |
| * shorten the %vector by one. |
| * |
| * Note This operation could be expensive and if it is |
| * frequently used the user should consider using std::list. |
| * The user is also cautioned that this function only erases |
| * the element, and that if the element is itself a pointer, |
| * the pointed-to memory is not touched in any way. Managing |
| * the pointer is the user's responsibilty. |
| */ |
| iterator |
| erase(iterator __position); |
| |
| /** |
| * @brief Remove a range of elements. |
| * @param first Iterator pointing to the first element to be erased. |
| * @param last Iterator pointing to one past the last element to be |
| * erased. |
| * @return An iterator pointing to the element pointed to by @a last |
| * prior to erasing (or end()). |
| * |
| * This function will erase the elements in the range [first,last) and |
| * shorten the %vector accordingly. |
| * |
| * Note This operation could be expensive and if it is |
| * frequently used the user should consider using std::list. |
| * The user is also cautioned that this function only erases |
| * the elements, and that if the elements themselves are |
| * pointers, the pointed-to memory is not touched in any way. |
| * Managing the pointer is the user's responsibilty. |
| */ |
| iterator |
| erase(iterator __first, iterator __last); |
| |
| /** |
| * @brief Swaps data with another %vector. |
| * @param x A %vector of the same element and allocator types. |
| * |
| * This exchanges the elements between two vectors in constant time. |
| * (Three pointers, so it should be quite fast.) |
| * Note that the global std::swap() function is specialized such that |
| * std::swap(v1,v2) will feed to this function. |
| */ |
| void |
| swap(vector& __x) |
| { |
| std::swap(this->_M_impl._M_start, __x._M_impl._M_start); |
| std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); |
| std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage); |
| } |
| |
| /** |
| * Erases all the elements. Note that this function only erases the |
| * elements, and that if the elements themselves are pointers, the |
| * pointed-to memory is not touched in any way. Managing the pointer is |
| * the user's responsibilty. |
| */ |
| void |
| clear() { erase(begin(), end()); } |
| |
| protected: |
| /** |
| * @if maint |
| * Memory expansion handler. Uses the member allocation function to |
| * obtain @a n bytes of memory, and then copies [first,last) into it. |
| * @endif |
| */ |
| template<typename _ForwardIterator> |
| pointer |
| _M_allocate_and_copy(size_type __n, |
| _ForwardIterator __first, _ForwardIterator __last) |
| { |
| pointer __result = this->_M_allocate(__n); |
| try |
| { |
| std::uninitialized_copy(__first, __last, __result); |
| return __result; |
| } |
| catch(...) |
| { |
| _M_deallocate(__result, __n); |
| __throw_exception_again; |
| } |
| } |
| |
| |
| // Internal constructor functions follow. |
| |
| // Called by the range constructor to implement [23.1.1]/9 |
| template<typename _Integer> |
| void |
| _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) |
| { |
| this->_M_impl._M_start = _M_allocate(__n); |
| this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; |
| this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, |
| __n, __value); |
| } |
| |
| // Called by the range constructor to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, |
| __false_type) |
| { |
| typedef typename iterator_traits<_InputIterator>::iterator_category |
| _IterCategory; |
| _M_range_initialize(__first, __last, _IterCategory()); |
| } |
| |
| // Called by the second initialize_dispatch above |
| template<typename _InputIterator> |
| void |
| _M_range_initialize(_InputIterator __first, |
| _InputIterator __last, input_iterator_tag) |
| { |
| for ( ; __first != __last; ++__first) |
| push_back(*__first); |
| } |
| |
| // Called by the second initialize_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_range_initialize(_ForwardIterator __first, |
| _ForwardIterator __last, forward_iterator_tag) |
| { |
| size_type __n = std::distance(__first, __last); |
| this->_M_impl._M_start = this->_M_allocate(__n); |
| this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; |
| this->_M_impl._M_finish = std::uninitialized_copy(__first, __last, |
| this->_M_impl._M_start); |
| } |
| |
| |
| // Internal assign functions follow. The *_aux functions do the actual |
| // assignment work for the range versions. |
| |
| // Called by the range assign to implement [23.1.1]/9 |
| template<typename _Integer> |
| void |
| _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) |
| { |
| _M_fill_assign(static_cast<size_type>(__n), |
| static_cast<value_type>(__val)); |
| } |
| |
| // Called by the range assign to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_assign_dispatch(_InputIterator __first, _InputIterator __last, |
| __false_type) |
| { |
| typedef typename iterator_traits<_InputIterator>::iterator_category |
| _IterCategory; |
| _M_assign_aux(__first, __last, _IterCategory()); |
| } |
| |
| // Called by the second assign_dispatch above |
| template<typename _InputIterator> |
| void |
| _M_assign_aux(_InputIterator __first, _InputIterator __last, |
| input_iterator_tag); |
| |
| // Called by the second assign_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, |
| forward_iterator_tag); |
| |
| // Called by assign(n,t), and the range assign when it turns out |
| // to be the same thing. |
| void |
| _M_fill_assign(size_type __n, const value_type& __val); |
| |
| |
| // Internal insert functions follow. |
| |
| // Called by the range insert to implement [23.1.1]/9 |
| template<typename _Integer> |
| void |
| _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, |
| __true_type) |
| { |
| _M_fill_insert(__pos, static_cast<size_type>(__n), |
| static_cast<value_type>(__val)); |
| } |
| |
| // Called by the range insert to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_insert_dispatch(iterator __pos, _InputIterator __first, |
| _InputIterator __last, __false_type) |
| { |
| typedef typename iterator_traits<_InputIterator>::iterator_category |
| _IterCategory; |
| _M_range_insert(__pos, __first, __last, _IterCategory()); |
| } |
| |
| // Called by the second insert_dispatch above |
| template<typename _InputIterator> |
| void |
| _M_range_insert(iterator __pos, _InputIterator __first, |
| _InputIterator __last, input_iterator_tag); |
| |
| // Called by the second insert_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_range_insert(iterator __pos, _ForwardIterator __first, |
| _ForwardIterator __last, forward_iterator_tag); |
| |
| // Called by insert(p,n,x), and the range insert when it turns out to be |
| // the same thing. |
| void |
| _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); |
| |
| // Called by insert(p,x) |
| void |
| _M_insert_aux(iterator __position, const value_type& __x); |
| }; |
| |
| |
| /** |
| * @brief Vector equality comparison. |
| * @param x A %vector. |
| * @param y A %vector of the same type as @a x. |
| * @return True iff the size and elements of the vectors are equal. |
| * |
| * This is an equivalence relation. It is linear in the size of the |
| * vectors. Vectors are considered equivalent if their sizes are equal, |
| * and if corresponding elements compare equal. |
| */ |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { |
| return __x.size() == __y.size() && |
| std::equal(__x.begin(), __x.end(), __y.begin()); |
| } |
| |
| /** |
| * @brief Vector ordering relation. |
| * @param x A %vector. |
| * @param y A %vector of the same type as @a x. |
| * @return True iff @a x is lexicographically less than @a y. |
| * |
| * This is a total ordering relation. It is linear in the size of the |
| * vectors. The elements must be comparable with @c <. |
| * |
| * See std::lexicographical_compare() for how the determination is made. |
| */ |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { |
| return std::lexicographical_compare(__x.begin(), __x.end(), |
| __y.begin(), __y.end()); |
| } |
| |
| /// Based on operator== |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { return !(__x == __y); } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { return __y < __x; } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { return !(__y < __x); } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) |
| { return !(__x < __y); } |
| |
| /// See std::vector::swap(). |
| template<typename _Tp, typename _Alloc> |
| inline void |
| swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y) |
| { __x.swap(__y); } |
| } // namespace std |
| |
| #endif /* _VECTOR_H */ |