| /* Polynomial integer classes. |
| Copyright (C) 2014-2020 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This file provides a representation of sizes and offsets whose exact |
| values depend on certain runtime properties. The motivating example |
| is the Arm SVE ISA, in which the number of vector elements is only |
| known at runtime. See doc/poly-int.texi for more details. |
| |
| Tests for poly-int.h are located in testsuite/gcc.dg/plugin, |
| since they are too expensive (in terms of binary size) to be |
| included as selftests. */ |
| |
| #ifndef HAVE_POLY_INT_H |
| #define HAVE_POLY_INT_H |
| |
| template<unsigned int N, typename T> struct poly_int_pod; |
| template<unsigned int N, typename T> class poly_int; |
| |
| /* poly_coeff_traiits<T> describes the properties of a poly_int |
| coefficient type T: |
| |
| - poly_coeff_traits<T1>::rank is less than poly_coeff_traits<T2>::rank |
| if T1 can promote to T2. For C-like types the rank is: |
| |
| (2 * number of bytes) + (unsigned ? 1 : 0) |
| |
| wide_ints don't have a normal rank and so use a value of INT_MAX. |
| Any fixed-width integer should be promoted to wide_int if possible |
| and lead to an error otherwise. |
| |
| - poly_coeff_traits<T>::int_type is the type to which an integer |
| literal should be cast before comparing it with T. |
| |
| - poly_coeff_traits<T>::precision is the number of bits that T can hold. |
| |
| - poly_coeff_traits<T>::signedness is: |
| 0 if T is unsigned |
| 1 if T is signed |
| -1 if T has no inherent sign (as for wide_int). |
| |
| - poly_coeff_traits<T>::max_value, if defined, is the maximum value of T. |
| |
| - poly_coeff_traits<T>::result is a type that can hold results of |
| operations on T. This is different from T itself in cases where T |
| is the result of an accessor like wi::to_offset. */ |
| template<typename T, wi::precision_type = wi::int_traits<T>::precision_type> |
| struct poly_coeff_traits; |
| |
| template<typename T> |
| struct poly_coeff_traits<T, wi::FLEXIBLE_PRECISION> |
| { |
| typedef T result; |
| typedef T int_type; |
| static const int signedness = (T (0) >= T (-1)); |
| static const int precision = sizeof (T) * CHAR_BIT; |
| static const T max_value = (signedness |
| ? ((T (1) << (precision - 2)) |
| + ((T (1) << (precision - 2)) - 1)) |
| : T (-1)); |
| static const int rank = sizeof (T) * 2 + !signedness; |
| }; |
| |
| template<typename T> |
| struct poly_coeff_traits<T, wi::VAR_PRECISION> |
| { |
| typedef T result; |
| typedef int int_type; |
| static const int signedness = -1; |
| static const int precision = WIDE_INT_MAX_PRECISION; |
| static const int rank = INT_MAX; |
| }; |
| |
| template<typename T> |
| struct poly_coeff_traits<T, wi::CONST_PRECISION> |
| { |
| typedef WI_UNARY_RESULT (T) result; |
| typedef int int_type; |
| /* These types are always signed. */ |
| static const int signedness = 1; |
| static const int precision = wi::int_traits<T>::precision; |
| static const int rank = precision * 2 / CHAR_BIT; |
| }; |
| |
| /* Information about a pair of coefficient types. */ |
| template<typename T1, typename T2> |
| struct poly_coeff_pair_traits |
| { |
| /* True if T1 can represent all the values of T2. |
| |
| Either: |
| |
| - T1 should be a type with the same signedness as T2 and no less |
| precision. This allows things like int16_t -> int16_t and |
| uint32_t -> uint64_t. |
| |
| - T1 should be signed, T2 should be unsigned, and T1 should be |
| wider than T2. This allows things like uint16_t -> int32_t. |
| |
| This rules out cases in which T1 has less precision than T2 or where |
| the conversion would reinterpret the top bit. E.g. int16_t -> uint32_t |
| can be dangerous and should have an explicit cast if deliberate. */ |
| static const bool lossless_p = (poly_coeff_traits<T1>::signedness |
| == poly_coeff_traits<T2>::signedness |
| ? (poly_coeff_traits<T1>::precision |
| >= poly_coeff_traits<T2>::precision) |
| : (poly_coeff_traits<T1>::signedness == 1 |
| && poly_coeff_traits<T2>::signedness == 0 |
| && (poly_coeff_traits<T1>::precision |
| > poly_coeff_traits<T2>::precision))); |
| |
| /* 0 if T1 op T2 should promote to HOST_WIDE_INT, |
| 1 if T1 op T2 should promote to unsigned HOST_WIDE_INT, |
| 2 if T1 op T2 should use wide-int rules. */ |
| #define RANK(X) poly_coeff_traits<X>::rank |
| static const int result_kind |
| = ((RANK (T1) <= RANK (HOST_WIDE_INT) |
| && RANK (T2) <= RANK (HOST_WIDE_INT)) |
| ? 0 |
| : (RANK (T1) <= RANK (unsigned HOST_WIDE_INT) |
| && RANK (T2) <= RANK (unsigned HOST_WIDE_INT)) |
| ? 1 : 2); |
| #undef RANK |
| }; |
| |
| /* SFINAE class that makes T3 available as "type" if T2 can represent all the |
| values in T1. */ |
| template<typename T1, typename T2, typename T3, |
| bool lossless_p = poly_coeff_pair_traits<T1, T2>::lossless_p> |
| struct if_lossless; |
| template<typename T1, typename T2, typename T3> |
| struct if_lossless<T1, T2, T3, true> |
| { |
| typedef T3 type; |
| }; |
| |
| /* poly_int_traits<T> describes an integer type T that might be polynomial |
| or non-polynomial: |
| |
| - poly_int_traits<T>::is_poly is true if T is a poly_int-based type |
| and false otherwise. |
| |
| - poly_int_traits<T>::num_coeffs gives the number of coefficients in T |
| if T is a poly_int and 1 otherwise. |
| |
| - poly_int_traits<T>::coeff_type gives the coefficent type of T if T |
| is a poly_int and T itself otherwise |
| |
| - poly_int_traits<T>::int_type is a shorthand for |
| typename poly_coeff_traits<coeff_type>::int_type. */ |
| template<typename T> |
| struct poly_int_traits |
| { |
| static const bool is_poly = false; |
| static const unsigned int num_coeffs = 1; |
| typedef T coeff_type; |
| typedef typename poly_coeff_traits<T>::int_type int_type; |
| }; |
| template<unsigned int N, typename C> |
| struct poly_int_traits<poly_int_pod<N, C> > |
| { |
| static const bool is_poly = true; |
| static const unsigned int num_coeffs = N; |
| typedef C coeff_type; |
| typedef typename poly_coeff_traits<C>::int_type int_type; |
| }; |
| template<unsigned int N, typename C> |
| struct poly_int_traits<poly_int<N, C> > : poly_int_traits<poly_int_pod<N, C> > |
| { |
| }; |
| |
| /* SFINAE class that makes T2 available as "type" if T1 is a non-polynomial |
| type. */ |
| template<typename T1, typename T2 = T1, |
| bool is_poly = poly_int_traits<T1>::is_poly> |
| struct if_nonpoly {}; |
| template<typename T1, typename T2> |
| struct if_nonpoly<T1, T2, false> |
| { |
| typedef T2 type; |
| }; |
| |
| /* SFINAE class that makes T3 available as "type" if both T1 and T2 are |
| non-polynomial types. */ |
| template<typename T1, typename T2, typename T3, |
| bool is_poly1 = poly_int_traits<T1>::is_poly, |
| bool is_poly2 = poly_int_traits<T2>::is_poly> |
| struct if_nonpoly2 {}; |
| template<typename T1, typename T2, typename T3> |
| struct if_nonpoly2<T1, T2, T3, false, false> |
| { |
| typedef T3 type; |
| }; |
| |
| /* SFINAE class that makes T2 available as "type" if T1 is a polynomial |
| type. */ |
| template<typename T1, typename T2 = T1, |
| bool is_poly = poly_int_traits<T1>::is_poly> |
| struct if_poly {}; |
| template<typename T1, typename T2> |
| struct if_poly<T1, T2, true> |
| { |
| typedef T2 type; |
| }; |
| |
| /* poly_result<T1, T2> describes the result of an operation on two |
| types T1 and T2, where at least one of the types is polynomial: |
| |
| - poly_result<T1, T2>::type gives the result type for the operation. |
| The intention is to provide normal C-like rules for integer ranks, |
| except that everything smaller than HOST_WIDE_INT promotes to |
| HOST_WIDE_INT. |
| |
| - poly_result<T1, T2>::cast is the type to which an operand of type |
| T1 should be cast before doing the operation, to ensure that |
| the operation is done at the right precision. Casting to |
| poly_result<T1, T2>::type would also work, but casting to this |
| type is more efficient. */ |
| template<typename T1, typename T2 = T1, |
| int result_kind = poly_coeff_pair_traits<T1, T2>::result_kind> |
| struct poly_result; |
| |
| /* Promote pair to HOST_WIDE_INT. */ |
| template<typename T1, typename T2> |
| struct poly_result<T1, T2, 0> |
| { |
| typedef HOST_WIDE_INT type; |
| /* T1 and T2 are primitive types, so cast values to T before operating |
| on them. */ |
| typedef type cast; |
| }; |
| |
| /* Promote pair to unsigned HOST_WIDE_INT. */ |
| template<typename T1, typename T2> |
| struct poly_result<T1, T2, 1> |
| { |
| typedef unsigned HOST_WIDE_INT type; |
| /* T1 and T2 are primitive types, so cast values to T before operating |
| on them. */ |
| typedef type cast; |
| }; |
| |
| /* Use normal wide-int rules. */ |
| template<typename T1, typename T2> |
| struct poly_result<T1, T2, 2> |
| { |
| typedef WI_BINARY_RESULT (T1, T2) type; |
| /* Don't cast values before operating on them; leave the wi:: routines |
| to handle promotion as necessary. */ |
| typedef const T1 &cast; |
| }; |
| |
| /* The coefficient type for the result of a binary operation on two |
| poly_ints, the first of which has coefficients of type C1 and the |
| second of which has coefficients of type C2. */ |
| #define POLY_POLY_COEFF(C1, C2) typename poly_result<C1, C2>::type |
| |
| /* Enforce that T2 is non-polynomial and provide the cofficient type of |
| the result of a binary operation in which the first operand is a |
| poly_int with coefficients of type C1 and the second operand is |
| a constant of type T2. */ |
| #define POLY_CONST_COEFF(C1, T2) \ |
| POLY_POLY_COEFF (C1, typename if_nonpoly<T2>::type) |
| |
| /* Likewise in reverse. */ |
| #define CONST_POLY_COEFF(T1, C2) \ |
| POLY_POLY_COEFF (typename if_nonpoly<T1>::type, C2) |
| |
| /* The result type for a binary operation on poly_int<N, C1> and |
| poly_int<N, C2>. */ |
| #define POLY_POLY_RESULT(N, C1, C2) poly_int<N, POLY_POLY_COEFF (C1, C2)> |
| |
| /* Enforce that T2 is non-polynomial and provide the result type |
| for a binary operation on poly_int<N, C1> and T2. */ |
| #define POLY_CONST_RESULT(N, C1, T2) poly_int<N, POLY_CONST_COEFF (C1, T2)> |
| |
| /* Enforce that T1 is non-polynomial and provide the result type |
| for a binary operation on T1 and poly_int<N, C2>. */ |
| #define CONST_POLY_RESULT(N, T1, C2) poly_int<N, CONST_POLY_COEFF (T1, C2)> |
| |
| /* Enforce that T1 and T2 are non-polynomial and provide the result type |
| for a binary operation on T1 and T2. */ |
| #define CONST_CONST_RESULT(N, T1, T2) \ |
| POLY_POLY_COEFF (typename if_nonpoly<T1>::type, \ |
| typename if_nonpoly<T2>::type) |
| |
| /* The type to which a coefficient of type C1 should be cast before |
| using it in a binary operation with a coefficient of type C2. */ |
| #define POLY_CAST(C1, C2) typename poly_result<C1, C2>::cast |
| |
| /* Provide the coefficient type for the result of T1 op T2, where T1 |
| and T2 can be polynomial or non-polynomial. */ |
| #define POLY_BINARY_COEFF(T1, T2) \ |
| typename poly_result<typename poly_int_traits<T1>::coeff_type, \ |
| typename poly_int_traits<T2>::coeff_type>::type |
| |
| /* The type to which an integer constant should be cast before |
| comparing it with T. */ |
| #define POLY_INT_TYPE(T) typename poly_int_traits<T>::int_type |
| |
| /* RES is a poly_int result that has coefficients of type C and that |
| is being built up a coefficient at a time. Set coefficient number I |
| to VALUE in the most efficient way possible. |
| |
| For primitive C it is better to assign directly, since it avoids |
| any further calls and so is more efficient when the compiler is |
| built at -O0. But for wide-int based C it is better to construct |
| the value in-place. This means that calls out to a wide-int.cc |
| routine can take the address of RES rather than the address of |
| a temporary. |
| |
| The dummy comparison against a null C * is just a way of checking |
| that C gives the right type. */ |
| #define POLY_SET_COEFF(C, RES, I, VALUE) \ |
| ((void) (&(RES).coeffs[0] == (C *) 0), \ |
| wi::int_traits<C>::precision_type == wi::FLEXIBLE_PRECISION \ |
| ? (void) ((RES).coeffs[I] = VALUE) \ |
| : (void) ((RES).coeffs[I].~C (), new (&(RES).coeffs[I]) C (VALUE))) |
| |
| /* A base POD class for polynomial integers. The polynomial has N |
| coefficients of type C. */ |
| template<unsigned int N, typename C> |
| struct poly_int_pod |
| { |
| public: |
| template<typename Ca> |
| poly_int_pod &operator = (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int_pod>::type &operator = (const Ca &); |
| |
| template<typename Ca> |
| poly_int_pod &operator += (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int_pod>::type &operator += (const Ca &); |
| |
| template<typename Ca> |
| poly_int_pod &operator -= (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int_pod>::type &operator -= (const Ca &); |
| |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int_pod>::type &operator *= (const Ca &); |
| |
| poly_int_pod &operator <<= (unsigned int); |
| |
| bool is_constant () const; |
| |
| template<typename T> |
| typename if_lossless<T, C, bool>::type is_constant (T *) const; |
| |
| C to_constant () const; |
| |
| template<typename Ca> |
| static poly_int<N, C> from (const poly_int_pod<N, Ca> &, unsigned int, |
| signop); |
| template<typename Ca> |
| static poly_int<N, C> from (const poly_int_pod<N, Ca> &, signop); |
| |
| bool to_shwi (poly_int_pod<N, HOST_WIDE_INT> *) const; |
| bool to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *) const; |
| poly_int<N, HOST_WIDE_INT> force_shwi () const; |
| poly_int<N, unsigned HOST_WIDE_INT> force_uhwi () const; |
| |
| #if POLY_INT_CONVERSION |
| operator C () const; |
| #endif |
| |
| C coeffs[N]; |
| }; |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int_pod<N, C>& |
| poly_int_pod<N, C>::operator = (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, a.coeffs[i]); |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & |
| poly_int_pod<N, C>::operator = (const Ca &a) |
| { |
| POLY_SET_COEFF (C, *this, 0, a); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int_pod<N, C>& |
| poly_int_pod<N, C>::operator += (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] += a.coeffs[i]; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & |
| poly_int_pod<N, C>::operator += (const Ca &a) |
| { |
| this->coeffs[0] += a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int_pod<N, C>& |
| poly_int_pod<N, C>::operator -= (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] -= a.coeffs[i]; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & |
| poly_int_pod<N, C>::operator -= (const Ca &a) |
| { |
| this->coeffs[0] -= a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & |
| poly_int_pod<N, C>::operator *= (const Ca &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] *= a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| inline poly_int_pod<N, C>& |
| poly_int_pod<N, C>::operator <<= (unsigned int a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] <<= a; |
| return *this; |
| } |
| |
| /* Return true if the polynomial value is a compile-time constant. */ |
| |
| template<unsigned int N, typename C> |
| inline bool |
| poly_int_pod<N, C>::is_constant () const |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (this->coeffs[i] != 0) |
| return false; |
| return true; |
| } |
| |
| /* Return true if the polynomial value is a compile-time constant, |
| storing its value in CONST_VALUE if so. */ |
| |
| template<unsigned int N, typename C> |
| template<typename T> |
| inline typename if_lossless<T, C, bool>::type |
| poly_int_pod<N, C>::is_constant (T *const_value) const |
| { |
| if (is_constant ()) |
| { |
| *const_value = this->coeffs[0]; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Return the value of a polynomial that is already known to be a |
| compile-time constant. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the value is constant in that context. */ |
| |
| template<unsigned int N, typename C> |
| inline C |
| poly_int_pod<N, C>::to_constant () const |
| { |
| gcc_checking_assert (is_constant ()); |
| return this->coeffs[0]; |
| } |
| |
| /* Convert X to a wide_int-based polynomial in which each coefficient |
| has BITSIZE bits. If X's coefficients are smaller than BITSIZE, |
| extend them according to SGN. */ |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int<N, C> |
| poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a, |
| unsigned int bitsize, signop sgn) |
| { |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], bitsize, sgn)); |
| return r; |
| } |
| |
| /* Convert X to a fixed_wide_int-based polynomial, extending according |
| to SGN. */ |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int<N, C> |
| poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a, signop sgn) |
| { |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], sgn)); |
| return r; |
| } |
| |
| /* Return true if the coefficients of this generic_wide_int-based |
| polynomial can be represented as signed HOST_WIDE_INTs without loss |
| of precision. Store the HOST_WIDE_INT representation in *R if so. */ |
| |
| template<unsigned int N, typename C> |
| inline bool |
| poly_int_pod<N, C>::to_shwi (poly_int_pod<N, HOST_WIDE_INT> *r) const |
| { |
| for (unsigned int i = 0; i < N; i++) |
| if (!wi::fits_shwi_p (this->coeffs[i])) |
| return false; |
| for (unsigned int i = 0; i < N; i++) |
| r->coeffs[i] = this->coeffs[i].to_shwi (); |
| return true; |
| } |
| |
| /* Return true if the coefficients of this generic_wide_int-based |
| polynomial can be represented as unsigned HOST_WIDE_INTs without |
| loss of precision. Store the unsigned HOST_WIDE_INT representation |
| in *R if so. */ |
| |
| template<unsigned int N, typename C> |
| inline bool |
| poly_int_pod<N, C>::to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *r) const |
| { |
| for (unsigned int i = 0; i < N; i++) |
| if (!wi::fits_uhwi_p (this->coeffs[i])) |
| return false; |
| for (unsigned int i = 0; i < N; i++) |
| r->coeffs[i] = this->coeffs[i].to_uhwi (); |
| return true; |
| } |
| |
| /* Force a generic_wide_int-based constant to HOST_WIDE_INT precision, |
| truncating if necessary. */ |
| |
| template<unsigned int N, typename C> |
| inline poly_int<N, HOST_WIDE_INT> |
| poly_int_pod<N, C>::force_shwi () const |
| { |
| poly_int_pod<N, HOST_WIDE_INT> r; |
| for (unsigned int i = 0; i < N; i++) |
| r.coeffs[i] = this->coeffs[i].to_shwi (); |
| return r; |
| } |
| |
| /* Force a generic_wide_int-based constant to unsigned HOST_WIDE_INT precision, |
| truncating if necessary. */ |
| |
| template<unsigned int N, typename C> |
| inline poly_int<N, unsigned HOST_WIDE_INT> |
| poly_int_pod<N, C>::force_uhwi () const |
| { |
| poly_int_pod<N, unsigned HOST_WIDE_INT> r; |
| for (unsigned int i = 0; i < N; i++) |
| r.coeffs[i] = this->coeffs[i].to_uhwi (); |
| return r; |
| } |
| |
| #if POLY_INT_CONVERSION |
| /* Provide a conversion operator to constants. */ |
| |
| template<unsigned int N, typename C> |
| inline |
| poly_int_pod<N, C>::operator C () const |
| { |
| gcc_checking_assert (this->is_constant ()); |
| return this->coeffs[0]; |
| } |
| #endif |
| |
| /* The main class for polynomial integers. The class provides |
| constructors that are necessarily missing from the POD base. */ |
| template<unsigned int N, typename C> |
| class poly_int : public poly_int_pod<N, C> |
| { |
| public: |
| poly_int () {} |
| |
| template<typename Ca> |
| poly_int (const poly_int<N, Ca> &); |
| template<typename Ca> |
| poly_int (const poly_int_pod<N, Ca> &); |
| template<typename C0> |
| poly_int (const C0 &); |
| template<typename C0, typename C1> |
| poly_int (const C0 &, const C1 &); |
| |
| template<typename Ca> |
| poly_int &operator = (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int>::type &operator = (const Ca &); |
| |
| template<typename Ca> |
| poly_int &operator += (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int>::type &operator += (const Ca &); |
| |
| template<typename Ca> |
| poly_int &operator -= (const poly_int_pod<N, Ca> &); |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int>::type &operator -= (const Ca &); |
| |
| template<typename Ca> |
| typename if_nonpoly<Ca, poly_int>::type &operator *= (const Ca &); |
| |
| poly_int &operator <<= (unsigned int); |
| }; |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline |
| poly_int<N, C>::poly_int (const poly_int<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, a.coeffs[i]); |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline |
| poly_int<N, C>::poly_int (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, a.coeffs[i]); |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename C0> |
| inline |
| poly_int<N, C>::poly_int (const C0 &c0) |
| { |
| POLY_SET_COEFF (C, *this, 0, c0); |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename C0, typename C1> |
| inline |
| poly_int<N, C>::poly_int (const C0 &c0, const C1 &c1) |
| { |
| STATIC_ASSERT (N >= 2); |
| POLY_SET_COEFF (C, *this, 0, c0); |
| POLY_SET_COEFF (C, *this, 1, c1); |
| for (unsigned int i = 2; i < N; i++) |
| POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int<N, C>& |
| poly_int<N, C>::operator = (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] = a.coeffs[i]; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int<N, C> >::type & |
| poly_int<N, C>::operator = (const Ca &a) |
| { |
| this->coeffs[0] = a; |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| this->coeffs[i] = wi::ints_for<C>::zero (this->coeffs[0]); |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int<N, C>& |
| poly_int<N, C>::operator += (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] += a.coeffs[i]; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int<N, C> >::type & |
| poly_int<N, C>::operator += (const Ca &a) |
| { |
| this->coeffs[0] += a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline poly_int<N, C>& |
| poly_int<N, C>::operator -= (const poly_int_pod<N, Ca> &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] -= a.coeffs[i]; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int<N, C> >::type & |
| poly_int<N, C>::operator -= (const Ca &a) |
| { |
| this->coeffs[0] -= a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| template<typename Ca> |
| inline typename if_nonpoly<Ca, poly_int<N, C> >::type & |
| poly_int<N, C>::operator *= (const Ca &a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] *= a; |
| return *this; |
| } |
| |
| template<unsigned int N, typename C> |
| inline poly_int<N, C>& |
| poly_int<N, C>::operator <<= (unsigned int a) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| this->coeffs[i] <<= a; |
| return *this; |
| } |
| |
| /* Return true if every coefficient of A is in the inclusive range [B, C]. */ |
| |
| template<typename Ca, typename Cb, typename Cc> |
| inline typename if_nonpoly<Ca, bool>::type |
| coeffs_in_range_p (const Ca &a, const Cb &b, const Cc &c) |
| { |
| return a >= b && a <= c; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cc> |
| inline typename if_nonpoly<Ca, bool>::type |
| coeffs_in_range_p (const poly_int_pod<N, Ca> &a, const Cb &b, const Cc &c) |
| { |
| for (unsigned int i = 0; i < N; i++) |
| if (a.coeffs[i] < b || a.coeffs[i] > c) |
| return false; |
| return true; |
| } |
| |
| namespace wi { |
| /* Poly version of wi::shwi, with the same interface. */ |
| |
| template<unsigned int N> |
| inline poly_int<N, hwi_with_prec> |
| shwi (const poly_int_pod<N, HOST_WIDE_INT> &a, unsigned int precision) |
| { |
| poly_int<N, hwi_with_prec> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (hwi_with_prec, r, i, wi::shwi (a.coeffs[i], precision)); |
| return r; |
| } |
| |
| /* Poly version of wi::uhwi, with the same interface. */ |
| |
| template<unsigned int N> |
| inline poly_int<N, hwi_with_prec> |
| uhwi (const poly_int_pod<N, unsigned HOST_WIDE_INT> &a, unsigned int precision) |
| { |
| poly_int<N, hwi_with_prec> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (hwi_with_prec, r, i, wi::uhwi (a.coeffs[i], precision)); |
| return r; |
| } |
| |
| /* Poly version of wi::sext, with the same interface. */ |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_POLY_RESULT (N, Ca, Ca) |
| sext (const poly_int_pod<N, Ca> &a, unsigned int precision) |
| { |
| typedef POLY_POLY_COEFF (Ca, Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::sext (a.coeffs[i], precision)); |
| return r; |
| } |
| |
| /* Poly version of wi::zext, with the same interface. */ |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_POLY_RESULT (N, Ca, Ca) |
| zext (const poly_int_pod<N, Ca> &a, unsigned int precision) |
| { |
| typedef POLY_POLY_COEFF (Ca, Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::zext (a.coeffs[i], precision)); |
| return r; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| operator + (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_POLY_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) + b.coeffs[i]); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| operator + (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) + b); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| operator + (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef CONST_POLY_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, a + NCb (b.coeffs[0])); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCb (b.coeffs[i])); |
| return r; |
| } |
| |
| namespace wi { |
| /* Poly versions of wi::add, with the same interface. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| add (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b)); |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], |
| wi::ints_for<Cb>::zero (b))); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| add (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::add (a, b.coeffs[0])); |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::add (wi::ints_for<Ca>::zero (a), |
| b.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, |
| signop sgn, wi::overflow_type *overflow) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b.coeffs[0], sgn, overflow)); |
| for (unsigned int i = 1; i < N; i++) |
| { |
| wi::overflow_type suboverflow; |
| POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i], sgn, |
| &suboverflow)); |
| wi::accumulate_overflow (*overflow, suboverflow); |
| } |
| return r; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| operator - (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_POLY_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) - b.coeffs[i]); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| operator - (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) - b); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| operator - (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef CONST_POLY_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, a - NCb (b.coeffs[0])); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, -NCb (b.coeffs[i])); |
| return r; |
| } |
| |
| namespace wi { |
| /* Poly versions of wi::sub, with the same interface. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| sub (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b)); |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], |
| wi::ints_for<Cb>::zero (b))); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| sub (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::sub (a, b.coeffs[0])); |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::sub (wi::ints_for<Ca>::zero (a), |
| b.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, |
| signop sgn, wi::overflow_type *overflow) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b.coeffs[0], sgn, overflow)); |
| for (unsigned int i = 1; i < N; i++) |
| { |
| wi::overflow_type suboverflow; |
| POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i], sgn, |
| &suboverflow)); |
| wi::accumulate_overflow (*overflow, suboverflow); |
| } |
| return r; |
| } |
| } |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_POLY_RESULT (N, Ca, Ca) |
| operator - (const poly_int_pod<N, Ca> &a) |
| { |
| typedef POLY_CAST (Ca, Ca) NCa; |
| typedef POLY_POLY_COEFF (Ca, Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, -NCa (a.coeffs[i])); |
| return r; |
| } |
| |
| namespace wi { |
| /* Poly version of wi::neg, with the same interface. */ |
| |
| template<unsigned int N, typename Ca> |
| inline poly_int<N, WI_UNARY_RESULT (Ca)> |
| neg (const poly_int_pod<N, Ca> &a) |
| { |
| typedef WI_UNARY_RESULT (Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca> |
| inline poly_int<N, WI_UNARY_RESULT (Ca)> |
| neg (const poly_int_pod<N, Ca> &a, wi::overflow_type *overflow) |
| { |
| typedef WI_UNARY_RESULT (Ca) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::neg (a.coeffs[0], overflow)); |
| for (unsigned int i = 1; i < N; i++) |
| { |
| wi::overflow_type suboverflow; |
| POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i], &suboverflow)); |
| wi::accumulate_overflow (*overflow, suboverflow); |
| } |
| return r; |
| } |
| } |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_POLY_RESULT (N, Ca, Ca) |
| operator ~ (const poly_int_pod<N, Ca> &a) |
| { |
| if (N >= 2) |
| return -1 - a; |
| return ~a.coeffs[0]; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| operator * (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) * b); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| operator * (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef CONST_POLY_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a) * b.coeffs[i]); |
| return r; |
| } |
| |
| namespace wi { |
| /* Poly versions of wi::mul, with the same interface. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| mul (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b)); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| mul (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::mul (a, b.coeffs[i])); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> |
| mul (const poly_int_pod<N, Ca> &a, const Cb &b, |
| signop sgn, wi::overflow_type *overflow) |
| { |
| typedef WI_BINARY_RESULT (Ca, Cb) C; |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, wi::mul (a.coeffs[0], b, sgn, overflow)); |
| for (unsigned int i = 1; i < N; i++) |
| { |
| wi::overflow_type suboverflow; |
| POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b, sgn, &suboverflow)); |
| wi::accumulate_overflow (*overflow, suboverflow); |
| } |
| return r; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Ca) |
| operator << (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Ca) NCa; |
| typedef POLY_POLY_COEFF (Ca, Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) << b); |
| return r; |
| } |
| |
| namespace wi { |
| /* Poly version of wi::lshift, with the same interface. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, WI_BINARY_RESULT (Ca, Ca)> |
| lshift (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef WI_BINARY_RESULT (Ca, Ca) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, wi::lshift (a.coeffs[i], b)); |
| return r; |
| } |
| } |
| |
| /* Return true if a0 + a1 * x might equal b0 + b1 * x for some nonnegative |
| integer x. */ |
| |
| template<typename Ca, typename Cb> |
| inline bool |
| maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b0, const Cb &b1) |
| { |
| if (a1 != b1) |
| /* a0 + a1 * x == b0 + b1 * x |
| ==> (a1 - b1) * x == b0 - a0 |
| ==> x == (b0 - a0) / (a1 - b1) |
| |
| We need to test whether that's a valid value of x. |
| (b0 - a0) and (a1 - b1) must not have opposite signs |
| and the result must be integral. */ |
| return (a1 < b1 |
| ? b0 <= a0 && (a0 - b0) % (b1 - a1) == 0 |
| : b0 >= a0 && (b0 - a0) % (a1 - b1) == 0); |
| return a0 == b0; |
| } |
| |
| /* Return true if a0 + a1 * x might equal b for some nonnegative |
| integer x. */ |
| |
| template<typename Ca, typename Cb> |
| inline bool |
| maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b) |
| { |
| if (a1 != 0) |
| /* a0 + a1 * x == b |
| ==> x == (b - a0) / a1 |
| |
| We need to test whether that's a valid value of x. |
| (b - a0) and a1 must not have opposite signs and the |
| result must be integral. */ |
| return (a1 < 0 |
| ? b <= a0 && (a0 - b) % a1 == 0 |
| : b >= a0 && (b - a0) % a1 == 0); |
| return a0 == b; |
| } |
| |
| /* Return true if A might equal B for some indeterminate values. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| maybe_eq (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| STATIC_ASSERT (N <= 2); |
| if (N == 2) |
| return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b.coeffs[0], b.coeffs[1]); |
| return a.coeffs[0] == b.coeffs[0]; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Cb, bool>::type |
| maybe_eq (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| STATIC_ASSERT (N <= 2); |
| if (N == 2) |
| return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b); |
| return a.coeffs[0] == b; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Ca, bool>::type |
| maybe_eq (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| STATIC_ASSERT (N <= 2); |
| if (N == 2) |
| return maybe_eq_2 (b.coeffs[0], b.coeffs[1], a); |
| return a == b.coeffs[0]; |
| } |
| |
| template<typename Ca, typename Cb> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| maybe_eq (const Ca &a, const Cb &b) |
| { |
| return a == b; |
| } |
| |
| /* Return true if A might not equal B for some indeterminate values. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| maybe_ne (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] != b.coeffs[i]) |
| return true; |
| return a.coeffs[0] != b.coeffs[0]; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Cb, bool>::type |
| maybe_ne (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] != 0) |
| return true; |
| return a.coeffs[0] != b; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Ca, bool>::type |
| maybe_ne (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (b.coeffs[i] != 0) |
| return true; |
| return a != b.coeffs[0]; |
| } |
| |
| template<typename Ca, typename Cb> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| maybe_ne (const Ca &a, const Cb &b) |
| { |
| return a != b; |
| } |
| |
| /* Return true if A is known to be equal to B. */ |
| #define known_eq(A, B) (!maybe_ne (A, B)) |
| |
| /* Return true if A is known to be unequal to B. */ |
| #define known_ne(A, B) (!maybe_eq (A, B)) |
| |
| /* Return true if A might be less than or equal to B for some |
| indeterminate values. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| maybe_le (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] < b.coeffs[i]) |
| return true; |
| return a.coeffs[0] <= b.coeffs[0]; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Cb, bool>::type |
| maybe_le (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] < 0) |
| return true; |
| return a.coeffs[0] <= b; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Ca, bool>::type |
| maybe_le (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (b.coeffs[i] > 0) |
| return true; |
| return a <= b.coeffs[0]; |
| } |
| |
| template<typename Ca, typename Cb> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| maybe_le (const Ca &a, const Cb &b) |
| { |
| return a <= b; |
| } |
| |
| /* Return true if A might be less than B for some indeterminate values. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| maybe_lt (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] < b.coeffs[i]) |
| return true; |
| return a.coeffs[0] < b.coeffs[0]; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Cb, bool>::type |
| maybe_lt (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (a.coeffs[i] < 0) |
| return true; |
| return a.coeffs[0] < b; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Ca, bool>::type |
| maybe_lt (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if (b.coeffs[i] > 0) |
| return true; |
| return a < b.coeffs[0]; |
| } |
| |
| template<typename Ca, typename Cb> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| maybe_lt (const Ca &a, const Cb &b) |
| { |
| return a < b; |
| } |
| |
| /* Return true if A may be greater than or equal to B. */ |
| #define maybe_ge(A, B) maybe_le (B, A) |
| |
| /* Return true if A may be greater than B. */ |
| #define maybe_gt(A, B) maybe_lt (B, A) |
| |
| /* Return true if A is known to be less than or equal to B. */ |
| #define known_le(A, B) (!maybe_gt (A, B)) |
| |
| /* Return true if A is known to be less than B. */ |
| #define known_lt(A, B) (!maybe_ge (A, B)) |
| |
| /* Return true if A is known to be greater than B. */ |
| #define known_gt(A, B) (!maybe_le (A, B)) |
| |
| /* Return true if A is known to be greater than or equal to B. */ |
| #define known_ge(A, B) (!maybe_lt (A, B)) |
| |
| /* Return true if A and B are ordered by the partial ordering known_le. */ |
| |
| template<typename T1, typename T2> |
| inline bool |
| ordered_p (const T1 &a, const T2 &b) |
| { |
| return ((poly_int_traits<T1>::num_coeffs == 1 |
| && poly_int_traits<T2>::num_coeffs == 1) |
| || known_le (a, b) |
| || known_le (b, a)); |
| } |
| |
| /* Assert that A and B are known to be ordered and return the minimum |
| of the two. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the values are ordered in that context. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| ordered_min (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (known_le (a, b)) |
| return a; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return b; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| ordered_min (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (known_le (a, b)) |
| return a; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return b; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| ordered_min (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (known_le (a, b)) |
| return a; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return b; |
| } |
| } |
| |
| /* Assert that A and B are known to be ordered and return the maximum |
| of the two. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the values are ordered in that context. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| ordered_max (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (known_le (a, b)) |
| return b; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return a; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| ordered_max (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (known_le (a, b)) |
| return b; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return a; |
| } |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| ordered_max (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (known_le (a, b)) |
| return b; |
| else |
| { |
| if (N > 1) |
| gcc_checking_assert (known_le (b, a)); |
| return a; |
| } |
| } |
| |
| /* Return a constant lower bound on the value of A, which is known |
| to be nonnegative. */ |
| |
| template<unsigned int N, typename Ca> |
| inline Ca |
| constant_lower_bound (const poly_int_pod<N, Ca> &a) |
| { |
| gcc_checking_assert (known_ge (a, POLY_INT_TYPE (Ca) (0))); |
| return a.coeffs[0]; |
| } |
| |
| /* Return the constant lower bound of A, given that it is no less than B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_COEFF (Ca, Cb) |
| constant_lower_bound_with_limit (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (known_ge (a, b)) |
| return a.coeffs[0]; |
| return b; |
| } |
| |
| /* Return the constant upper bound of A, given that it is no greater |
| than B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_COEFF (Ca, Cb) |
| constant_upper_bound_with_limit (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| if (known_le (a, b)) |
| return a.coeffs[0]; |
| return b; |
| } |
| |
| /* Return a value that is known to be no greater than A and B. This |
| will be the greatest lower bound for some indeterminate values but |
| not necessarily for all. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| lower_bound (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_INT_TYPE (Cb) ICb; |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, MIN (NCa (a.coeffs[0]), NCb (b))); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), ICb (0))); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| lower_bound (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| return lower_bound (b, a); |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| lower_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_POLY_COEFF (Ca, Cb) C; |
| |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), NCb (b.coeffs[i]))); |
| return r; |
| } |
| |
| template<typename Ca, typename Cb> |
| inline CONST_CONST_RESULT (N, Ca, Cb) |
| lower_bound (const Ca &a, const Cb &b) |
| { |
| return a < b ? a : b; |
| } |
| |
| /* Return a value that is known to be no less than A and B. This will |
| be the least upper bound for some indeterminate values but not |
| necessarily for all. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| upper_bound (const poly_int_pod<N, Ca> &a, const Cb &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_INT_TYPE (Cb) ICb; |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| |
| poly_int<N, C> r; |
| POLY_SET_COEFF (C, r, 0, MAX (NCa (a.coeffs[0]), NCb (b))); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), ICb (0))); |
| return r; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| upper_bound (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| return upper_bound (b, a); |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| upper_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_POLY_COEFF (Ca, Cb) C; |
| |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), NCb (b.coeffs[i]))); |
| return r; |
| } |
| |
| /* Return the greatest common divisor of all nonzero coefficients, or zero |
| if all coefficients are zero. */ |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_BINARY_COEFF (Ca, Ca) |
| coeff_gcd (const poly_int_pod<N, Ca> &a) |
| { |
| /* Find the first nonzero coefficient, stopping at 0 whatever happens. */ |
| unsigned int i; |
| for (i = N - 1; i > 0; --i) |
| if (a.coeffs[i] != 0) |
| break; |
| typedef POLY_BINARY_COEFF (Ca, Ca) C; |
| C r = a.coeffs[i]; |
| for (unsigned int j = 0; j < i; ++j) |
| if (a.coeffs[j] != 0) |
| r = gcd (r, C (a.coeffs[j])); |
| return r; |
| } |
| |
| /* Return a value that is a multiple of both A and B. This will be the |
| least common multiple for some indeterminate values but necessarily |
| for all. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| POLY_CONST_RESULT (N, Ca, Cb) |
| common_multiple (const poly_int_pod<N, Ca> &a, Cb b) |
| { |
| POLY_BINARY_COEFF (Ca, Ca) xgcd = coeff_gcd (a); |
| return a * (least_common_multiple (xgcd, b) / xgcd); |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline CONST_POLY_RESULT (N, Ca, Cb) |
| common_multiple (const Ca &a, const poly_int_pod<N, Cb> &b) |
| { |
| return common_multiple (b, a); |
| } |
| |
| /* Return a value that is a multiple of both A and B, asserting that |
| such a value exists. The result will be the least common multiple |
| for some indeterminate values but necessarily for all. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the values have a common multiple (which might |
| for example be because we know A / B is rational). */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| POLY_POLY_RESULT (N, Ca, Cb) |
| force_common_multiple (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b) |
| { |
| if (b.is_constant ()) |
| return common_multiple (a, b.coeffs[0]); |
| if (a.is_constant ()) |
| return common_multiple (a.coeffs[0], b); |
| |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_BINARY_COEFF (Ca, Cb) C; |
| typedef POLY_INT_TYPE (Ca) ICa; |
| |
| for (unsigned int i = 1; i < N; ++i) |
| if (a.coeffs[i] != ICa (0)) |
| { |
| C lcm = least_common_multiple (NCa (a.coeffs[i]), NCb (b.coeffs[i])); |
| C amul = lcm / a.coeffs[i]; |
| C bmul = lcm / b.coeffs[i]; |
| for (unsigned int j = 0; j < N; ++j) |
| gcc_checking_assert (a.coeffs[j] * amul == b.coeffs[j] * bmul); |
| return a * amul; |
| } |
| gcc_unreachable (); |
| } |
| |
| /* Compare A and B for sorting purposes, returning -1 if A should come |
| before B, 0 if A and B are identical, and 1 if A should come after B. |
| This is a lexicographical compare of the coefficients in reverse order. |
| |
| A consequence of this is that all constant sizes come before all |
| non-constant ones, regardless of magnitude (since a size is never |
| negative). This is what most callers want. For example, when laying |
| data out on the stack, it's better to keep all the constant-sized |
| data together so that it can be accessed as a constant offset from a |
| single base. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline int |
| compare_sizes_for_sort (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b) |
| { |
| for (unsigned int i = N; i-- > 0; ) |
| if (a.coeffs[i] != b.coeffs[i]) |
| return a.coeffs[i] < b.coeffs[i] ? -1 : 1; |
| return 0; |
| } |
| |
| /* Return true if we can calculate VALUE & (ALIGN - 1) at compile time. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| can_align_p (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| for (unsigned int i = 1; i < N; i++) |
| if ((value.coeffs[i] & (align - 1)) != 0) |
| return false; |
| return true; |
| } |
| |
| /* Return true if we can align VALUE up to the smallest multiple of |
| ALIGN that is >= VALUE. Store the aligned value in *ALIGNED if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| can_align_up (const poly_int_pod<N, Ca> &value, Cb align, |
| poly_int_pod<N, Ca> *aligned) |
| { |
| if (!can_align_p (value, align)) |
| return false; |
| *aligned = value + (-value.coeffs[0] & (align - 1)); |
| return true; |
| } |
| |
| /* Return true if we can align VALUE down to the largest multiple of |
| ALIGN that is <= VALUE. Store the aligned value in *ALIGNED if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| can_align_down (const poly_int_pod<N, Ca> &value, Cb align, |
| poly_int_pod<N, Ca> *aligned) |
| { |
| if (!can_align_p (value, align)) |
| return false; |
| *aligned = value - (value.coeffs[0] & (align - 1)); |
| return true; |
| } |
| |
| /* Return true if we can align A and B up to the smallest multiples of |
| ALIGN that are >= A and B respectively, and if doing so gives the |
| same value. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cc> |
| inline bool |
| known_equal_after_align_up (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| Cc align) |
| { |
| poly_int<N, Ca> aligned_a; |
| poly_int<N, Cb> aligned_b; |
| return (can_align_up (a, align, &aligned_a) |
| && can_align_up (b, align, &aligned_b) |
| && known_eq (aligned_a, aligned_b)); |
| } |
| |
| /* Return true if we can align A and B down to the largest multiples of |
| ALIGN that are <= A and B respectively, and if doing so gives the |
| same value. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cc> |
| inline bool |
| known_equal_after_align_down (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| Cc align) |
| { |
| poly_int<N, Ca> aligned_a; |
| poly_int<N, Cb> aligned_b; |
| return (can_align_down (a, align, &aligned_a) |
| && can_align_down (b, align, &aligned_b) |
| && known_eq (aligned_a, aligned_b)); |
| } |
| |
| /* Assert that we can align VALUE to ALIGN at compile time and return |
| the smallest multiple of ALIGN that is >= VALUE. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the non-constant coefficients must already |
| be a multiple of ALIGN. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| force_align_up (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| gcc_checking_assert (can_align_p (value, align)); |
| return value + (-value.coeffs[0] & (align - 1)); |
| } |
| |
| /* Assert that we can align VALUE to ALIGN at compile time and return |
| the largest multiple of ALIGN that is <= VALUE. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the non-constant coefficients must already |
| be a multiple of ALIGN. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| force_align_down (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| gcc_checking_assert (can_align_p (value, align)); |
| return value - (value.coeffs[0] & (align - 1)); |
| } |
| |
| /* Return a value <= VALUE that is a multiple of ALIGN. It will be the |
| greatest such value for some indeterminate values but not necessarily |
| for all. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| aligned_lower_bound (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| poly_int<N, Ca> r; |
| for (unsigned int i = 0; i < N; i++) |
| /* This form copes correctly with more type combinations than |
| value.coeffs[i] & -align would. */ |
| POLY_SET_COEFF (Ca, r, i, (value.coeffs[i] |
| - (value.coeffs[i] & (align - 1)))); |
| return r; |
| } |
| |
| /* Return a value >= VALUE that is a multiple of ALIGN. It will be the |
| least such value for some indeterminate values but not necessarily |
| for all. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| aligned_upper_bound (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| poly_int<N, Ca> r; |
| for (unsigned int i = 0; i < N; i++) |
| POLY_SET_COEFF (Ca, r, i, (value.coeffs[i] |
| + (-value.coeffs[i] & (align - 1)))); |
| return r; |
| } |
| |
| /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE |
| down to the largest multiple of ALIGN that is <= VALUE, then divide by |
| ALIGN. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the non-constant coefficients must already |
| be a multiple of ALIGN. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| force_align_down_and_div (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| gcc_checking_assert (can_align_p (value, align)); |
| |
| poly_int<N, Ca> r; |
| POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0] |
| - (value.coeffs[0] & (align - 1))) |
| / align)); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align); |
| return r; |
| } |
| |
| /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE |
| up to the smallest multiple of ALIGN that is >= VALUE, then divide by |
| ALIGN. |
| |
| NOTE: When using this function, please add a comment above the call |
| explaining why we know the non-constant coefficients must already |
| be a multiple of ALIGN. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline poly_int<N, Ca> |
| force_align_up_and_div (const poly_int_pod<N, Ca> &value, Cb align) |
| { |
| gcc_checking_assert (can_align_p (value, align)); |
| |
| poly_int<N, Ca> r; |
| POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0] |
| + (-value.coeffs[0] & (align - 1))) |
| / align)); |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align); |
| return r; |
| } |
| |
| /* Return true if we know at compile time the difference between VALUE |
| and the equal or preceding multiple of ALIGN. Store the value in |
| *MISALIGN if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline bool |
| known_misalignment (const poly_int_pod<N, Ca> &value, Cb align, Cm *misalign) |
| { |
| gcc_checking_assert (align != 0); |
| if (!can_align_p (value, align)) |
| return false; |
| *misalign = value.coeffs[0] & (align - 1); |
| return true; |
| } |
| |
| /* Return X & (Y - 1), asserting that this value is known. Please add |
| an a comment above callers to this function to explain why the condition |
| is known to hold. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_BINARY_COEFF (Ca, Ca) |
| force_get_misalignment (const poly_int_pod<N, Ca> &a, Cb align) |
| { |
| gcc_checking_assert (can_align_p (a, align)); |
| return a.coeffs[0] & (align - 1); |
| } |
| |
| /* Return the maximum alignment that A is known to have. Return 0 |
| if A is known to be zero. */ |
| |
| template<unsigned int N, typename Ca> |
| inline POLY_BINARY_COEFF (Ca, Ca) |
| known_alignment (const poly_int_pod<N, Ca> &a) |
| { |
| typedef POLY_BINARY_COEFF (Ca, Ca) C; |
| C r = a.coeffs[0]; |
| for (unsigned int i = 1; i < N; ++i) |
| r |= a.coeffs[i]; |
| return r & -r; |
| } |
| |
| /* Return true if we can compute A | B at compile time, storing the |
| result in RES if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cr> |
| inline typename if_nonpoly<Cb, bool>::type |
| can_ior_p (const poly_int_pod<N, Ca> &a, Cb b, Cr *result) |
| { |
| /* Coefficients 1 and above must be a multiple of something greater |
| than B. */ |
| typedef POLY_INT_TYPE (Ca) int_type; |
| if (N >= 2) |
| for (unsigned int i = 1; i < N; i++) |
| if ((-(a.coeffs[i] & -a.coeffs[i]) & b) != int_type (0)) |
| return false; |
| *result = a; |
| result->coeffs[0] |= b; |
| return true; |
| } |
| |
| /* Return true if A is a constant multiple of B, storing the |
| multiple in *MULTIPLE if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline typename if_nonpoly<Cb, bool>::type |
| constant_multiple_p (const poly_int_pod<N, Ca> &a, Cb b, Cm *multiple) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| |
| /* Do the modulus before the constant check, to catch divide by |
| zero errors. */ |
| if (NCa (a.coeffs[0]) % NCb (b) != 0 || !a.is_constant ()) |
| return false; |
| *multiple = NCa (a.coeffs[0]) / NCb (b); |
| return true; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline typename if_nonpoly<Ca, bool>::type |
| constant_multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_INT_TYPE (Ca) int_type; |
| |
| /* Do the modulus before the constant check, to catch divide by |
| zero errors. */ |
| if (NCa (a) % NCb (b.coeffs[0]) != 0 |
| || (a != int_type (0) && !b.is_constant ())) |
| return false; |
| *multiple = NCa (a) / NCb (b.coeffs[0]); |
| return true; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline bool |
| constant_multiple_p (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, Cm *multiple) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_INT_TYPE (Ca) ICa; |
| typedef POLY_INT_TYPE (Cb) ICb; |
| typedef POLY_BINARY_COEFF (Ca, Cb) C; |
| |
| if (NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0) |
| return false; |
| |
| C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); |
| for (unsigned int i = 1; i < N; ++i) |
| if (b.coeffs[i] == ICb (0) |
| ? a.coeffs[i] != ICa (0) |
| : (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0 |
| || NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != r)) |
| return false; |
| |
| *multiple = r; |
| return true; |
| } |
| |
| /* Return true if A is a multiple of B. */ |
| |
| template<typename Ca, typename Cb> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| multiple_p (Ca a, Cb b) |
| { |
| return a % b == 0; |
| } |
| |
| /* Return true if A is a (polynomial) multiple of B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Cb, bool>::type |
| multiple_p (const poly_int_pod<N, Ca> &a, Cb b) |
| { |
| for (unsigned int i = 0; i < N; ++i) |
| if (a.coeffs[i] % b != 0) |
| return false; |
| return true; |
| } |
| |
| /* Return true if A is a (constant) multiple of B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline typename if_nonpoly<Ca, bool>::type |
| multiple_p (Ca a, const poly_int_pod<N, Cb> &b) |
| { |
| typedef POLY_INT_TYPE (Ca) int_type; |
| |
| /* Do the modulus before the constant check, to catch divide by |
| potential zeros. */ |
| return a % b.coeffs[0] == 0 && (a == int_type (0) || b.is_constant ()); |
| } |
| |
| /* Return true if A is a (polynomial) multiple of B. This handles cases |
| where either B is constant or the multiple is constant. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline bool |
| multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (b.is_constant ()) |
| return multiple_p (a, b.coeffs[0]); |
| POLY_BINARY_COEFF (Ca, Ca) tmp; |
| return constant_multiple_p (a, b, &tmp); |
| } |
| |
| /* Return true if A is a (constant) multiple of B, storing the |
| multiple in *MULTIPLE if so. */ |
| |
| template<typename Ca, typename Cb, typename Cm> |
| inline typename if_nonpoly2<Ca, Cb, bool>::type |
| multiple_p (Ca a, Cb b, Cm *multiple) |
| { |
| if (a % b != 0) |
| return false; |
| *multiple = a / b; |
| return true; |
| } |
| |
| /* Return true if A is a (polynomial) multiple of B, storing the |
| multiple in *MULTIPLE if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline typename if_nonpoly<Cb, bool>::type |
| multiple_p (const poly_int_pod<N, Ca> &a, Cb b, poly_int_pod<N, Cm> *multiple) |
| { |
| if (!multiple_p (a, b)) |
| return false; |
| for (unsigned int i = 0; i < N; ++i) |
| multiple->coeffs[i] = a.coeffs[i] / b; |
| return true; |
| } |
| |
| /* Return true if B is a constant and A is a (constant) multiple of B, |
| storing the multiple in *MULTIPLE if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline typename if_nonpoly<Ca, bool>::type |
| multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| |
| /* Do the modulus before the constant check, to catch divide by |
| potential zeros. */ |
| if (a % b.coeffs[0] != 0 || (NCa (a) != 0 && !b.is_constant ())) |
| return false; |
| *multiple = a / b.coeffs[0]; |
| return true; |
| } |
| |
| /* Return true if A is a (polynomial) multiple of B, storing the |
| multiple in *MULTIPLE if so. This handles cases where either |
| B is constant or the multiple is constant. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cm> |
| inline bool |
| multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, |
| poly_int_pod<N, Cm> *multiple) |
| { |
| if (b.is_constant ()) |
| return multiple_p (a, b.coeffs[0], multiple); |
| return constant_multiple_p (a, b, multiple); |
| } |
| |
| /* Return A / B, given that A is known to be a multiple of B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_CONST_RESULT (N, Ca, Cb) |
| exact_div (const poly_int_pod<N, Ca> &a, Cb b) |
| { |
| typedef POLY_CONST_COEFF (Ca, Cb) C; |
| poly_int<N, C> r; |
| for (unsigned int i = 0; i < N; i++) |
| { |
| gcc_checking_assert (a.coeffs[i] % b == 0); |
| POLY_SET_COEFF (C, r, i, a.coeffs[i] / b); |
| } |
| return r; |
| } |
| |
| /* Return A / B, given that A is known to be a multiple of B. */ |
| |
| template<unsigned int N, typename Ca, typename Cb> |
| inline POLY_POLY_RESULT (N, Ca, Cb) |
| exact_div (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) |
| { |
| if (b.is_constant ()) |
| return exact_div (a, b.coeffs[0]); |
| |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_BINARY_COEFF (Ca, Cb) C; |
| typedef POLY_INT_TYPE (Cb) int_type; |
| |
| gcc_checking_assert (a.coeffs[0] % b.coeffs[0] == 0); |
| C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); |
| for (unsigned int i = 1; i < N; ++i) |
| gcc_checking_assert (b.coeffs[i] == int_type (0) |
| ? a.coeffs[i] == int_type (0) |
| : (a.coeffs[i] % b.coeffs[i] == 0 |
| && NCa (a.coeffs[i]) / NCb (b.coeffs[i]) == r)); |
| |
| return r; |
| } |
| |
| /* Return true if there is some constant Q and polynomial r such that: |
| |
| (1) a = b * Q + r |
| (2) |b * Q| <= |a| |
| (3) |r| < |b| |
| |
| Store the value Q in *QUOTIENT if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq> |
| inline typename if_nonpoly2<Cb, Cq, bool>::type |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, Cq *quotient) |
| { |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| |
| /* Do the division before the constant check, to catch divide by |
| zero errors. */ |
| Cq q = NCa (a.coeffs[0]) / NCb (b); |
| if (!a.is_constant ()) |
| return false; |
| *quotient = q; |
| return true; |
| } |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq> |
| inline typename if_nonpoly<Cq, bool>::type |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| Cq *quotient) |
| { |
| /* We can calculate Q from the case in which the indeterminates |
| are zero. */ |
| typedef POLY_CAST (Ca, Cb) NCa; |
| typedef POLY_CAST (Cb, Ca) NCb; |
| typedef POLY_INT_TYPE (Ca) ICa; |
| typedef POLY_INT_TYPE (Cb) ICb; |
| typedef POLY_BINARY_COEFF (Ca, Cb) C; |
| C q = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); |
| |
| /* Check the other coefficients and record whether the division is exact. |
| The only difficult case is when it isn't. If we require a and b to |
| ordered wrt zero, there can be no two coefficients of the same value |
| that have opposite signs. This means that: |
| |
| |a| = |a0| + |a1 * x1| + |a2 * x2| + ... |
| |b| = |b0| + |b1 * x1| + |b2 * x2| + ... |
| |
| The Q we've just calculated guarantees: |
| |
| |b0 * Q| <= |a0| |
| |a0 - b0 * Q| < |b0| |
| |
| and so: |
| |
| (2) |b * Q| <= |a| |
| |
| is satisfied if: |
| |
| |bi * xi * Q| <= |ai * xi| |
| |
| for each i in [1, N]. This is trivially true when xi is zero. |
| When it isn't we need: |
| |
| (2') |bi * Q| <= |ai| |
| |
| r is calculated as: |
| |
| r = r0 + r1 * x1 + r2 * x2 + ... |
| where ri = ai - bi * Q |
| |
| Restricting to ordered a and b also guarantees that no two ris |
| have opposite signs, so we have: |
| |
| |r| = |r0| + |r1 * x1| + |r2 * x2| + ... |
| |
| We know from the calculation of Q that |r0| < |b0|, so: |
| |
| (3) |r| < |b| |
| |
| is satisfied if: |
| |
| (3') |ai - bi * Q| <= |bi| |
| |
| for each i in [1, N]. */ |
| bool rem_p = NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0; |
| for (unsigned int i = 1; i < N; ++i) |
| { |
| if (b.coeffs[i] == ICb (0)) |
| { |
| /* For bi == 0 we simply need: (3') |ai| == 0. */ |
| if (a.coeffs[i] != ICa (0)) |
| return false; |
| } |
| else |
| { |
| if (q == 0) |
| { |
| /* For Q == 0 we simply need: (3') |ai| <= |bi|. */ |
| if (a.coeffs[i] != ICa (0)) |
| { |
| /* Use negative absolute to avoid overflow, i.e. |
| -|ai| >= -|bi|. */ |
| C neg_abs_a = (a.coeffs[i] < 0 ? a.coeffs[i] : -a.coeffs[i]); |
| C neg_abs_b = (b.coeffs[i] < 0 ? b.coeffs[i] : -b.coeffs[i]); |
| if (neg_abs_a < neg_abs_b) |
| return false; |
| rem_p = true; |
| } |
| } |
| else |
| { |
| /* Otherwise just check for the case in which ai / bi == Q. */ |
| if (NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != q) |
| return false; |
| if (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0) |
| rem_p = true; |
| } |
| } |
| } |
| |
| /* If the division isn't exact, require both values to be ordered wrt 0, |
| so that we can guarantee conditions (2) and (3) for all indeterminate |
| values. */ |
| if (rem_p && (!ordered_p (a, ICa (0)) || !ordered_p (b, ICb (0)))) |
| return false; |
| |
| *quotient = q; |
| return true; |
| } |
| |
| /* Likewise, but also store r in *REMAINDER. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr> |
| inline typename if_nonpoly<Cq, bool>::type |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| Cq *quotient, Cr *remainder) |
| { |
| if (!can_div_trunc_p (a, b, quotient)) |
| return false; |
| *remainder = a - *quotient * b; |
| return true; |
| } |
| |
| /* Return true if there is some polynomial q and constant R such that: |
| |
| (1) a = B * q + R |
| (2) |B * q| <= |a| |
| (3) |R| < |B| |
| |
| Store the value q in *QUOTIENT if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq> |
| inline typename if_nonpoly<Cb, bool>::type |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, |
| poly_int_pod<N, Cq> *quotient) |
| { |
| /* The remainder must be constant. */ |
| for (unsigned int i = 1; i < N; ++i) |
| if (a.coeffs[i] % b != 0) |
| return false; |
| for (unsigned int i = 0; i < N; ++i) |
| quotient->coeffs[i] = a.coeffs[i] / b; |
| return true; |
| } |
| |
| /* Likewise, but also store R in *REMAINDER. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr> |
| inline typename if_nonpoly<Cb, bool>::type |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, |
| poly_int_pod<N, Cq> *quotient, Cr *remainder) |
| { |
| if (!can_div_trunc_p (a, b, quotient)) |
| return false; |
| *remainder = a.coeffs[0] % b; |
| return true; |
| } |
| |
| /* Return true if we can compute A / B at compile time, rounding towards zero. |
| Store the result in QUOTIENT if so. |
| |
| This handles cases in which either B is constant or the result is |
| constant. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq> |
| inline bool |
| can_div_trunc_p (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| poly_int_pod<N, Cq> *quotient) |
| { |
| if (b.is_constant ()) |
| return can_div_trunc_p (a, b.coeffs[0], quotient); |
| if (!can_div_trunc_p (a, b, "ient->coeffs[0])) |
| return false; |
| for (unsigned int i = 1; i < N; ++i) |
| quotient->coeffs[i] = 0; |
| return true; |
| } |
| |
| /* Return true if there is some constant Q and polynomial r such that: |
| |
| (1) a = b * Q + r |
| (2) |a| <= |b * Q| |
| (3) |r| < |b| |
| |
| Store the value Q in *QUOTIENT if so. */ |
| |
| template<unsigned int N, typename Ca, typename Cb, typename Cq> |
| inline typename if_nonpoly<Cq, bool>::type |
| can_div_away_from_zero_p (const poly_int_pod<N, Ca> &a, |
| const poly_int_pod<N, Cb> &b, |
| Cq *quotient) |
| { |
| if (!can_div_trunc_p (a, b, quotient)) |
| return false; |
| if (maybe_ne (*quotient * b, a)) |
| *quotient += (*quotient < 0 ? -1 : 1); |
| return true; |
| } |
| |
| /* Use print_dec to print VALUE to FILE, where SGN is the sign |
| of the values. */ |
| |
| template<unsigned int N, typename C> |
| void |
| print_dec (const poly_int_pod<N, C> &value, FILE *file, signop sgn) |
| { |
| if (value.is_constant ()) |
| print_dec (value.coeffs[0], file, sgn); |
| else |
| { |
| fprintf (file, "["); |
| for (unsigned int i = 0; i < N; ++i) |
| { |
| print_dec (value.coeffs[i], file, sgn); |
| fputc (i == N - 1 ? ']' : ',', file); |
| } |
| } |
| } |
| |
| /* Likewise without the signop argument, for coefficients that have an |
| inherent signedness. */ |
| |
| template<unsigned int N, typename C> |
| void |
| print_dec (const poly_int_pod<N, C> &value, FILE *file) |
| { |
| STATIC_ASSERT (poly_coeff_traits<C>::signedness >= 0); |
| print_dec (value, file, |
| poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED); |
| } |
| |
| /* Use print_hex to print VALUE to FILE. */ |
| |
| template<unsigned int N, typename C> |
| void |
| print_hex (const poly_int_pod<N, C> &value, FILE *file) |
| { |
| if (value.is_constant ()) |
| print_hex (value.coeffs[0], file); |
| else |
| { |
| fprintf (file, "["); |
| for (unsigned int i = 0; i < N; ++i) |
| { |
| print_hex (value.coeffs[i], file); |
| fputc (i == N - 1 ? ']' : ',', file); |
| } |
| } |
| } |
| |
| /* Helper for calculating the distance between two points P1 and P2, |
| in cases where known_le (P1, P2). T1 and T2 are the types of the |
| two positions, in either order. The coefficients of P2 - P1 have |
| type unsigned HOST_WIDE_INT if the coefficients of both T1 and T2 |
| have C++ primitive type, otherwise P2 - P1 has its usual |
| wide-int-based type. |
| |
| The actual subtraction should look something like this: |
| |
| typedef poly_span_traits<T1, T2> span_traits; |
| span_traits::cast (P2) - span_traits::cast (P1) |
| |
| Applying the cast before the subtraction avoids undefined overflow |
| for signed T1 and T2. |
| |
| The implementation of the cast tries to avoid unnecessary arithmetic |
| or copying. */ |
| template<typename T1, typename T2, |
| typename Res = POLY_BINARY_COEFF (POLY_BINARY_COEFF (T1, T2), |
| unsigned HOST_WIDE_INT)> |
| struct poly_span_traits |
| { |
| template<typename T> |
| static const T &cast (const T &x) { return x; } |
| }; |
| |
| template<typename T1, typename T2> |
| struct poly_span_traits<T1, T2, unsigned HOST_WIDE_INT> |
| { |
| template<typename T> |
| static typename if_nonpoly<T, unsigned HOST_WIDE_INT>::type |
| cast (const T &x) { return x; } |
| |
| template<unsigned int N, typename T> |
| static poly_int<N, unsigned HOST_WIDE_INT> |
| cast (const poly_int_pod<N, T> &x) { return x; } |
| }; |
| |
| /* Return true if SIZE represents a known size, assuming that all-ones |
| indicates an unknown size. */ |
| |
| template<typename T> |
| inline bool |
| known_size_p (const T &a) |
| { |
| return maybe_ne (a, POLY_INT_TYPE (T) (-1)); |
| } |
| |
| /* Return true if range [POS, POS + SIZE) might include VAL. |
| SIZE can be the special value -1, in which case the range is |
| open-ended. */ |
| |
| template<typename T1, typename T2, typename T3> |
| inline bool |
| maybe_in_range_p (const T1 &val, const T2 &pos, const T3 &size) |
| { |
| typedef poly_span_traits<T1, T2> start_span; |
| typedef poly_span_traits<T3, T3> size_span; |
| if (known_lt (val, pos)) |
| return false; |
| if (!known_size_p (size)) |
| return true; |
| if ((poly_int_traits<T1>::num_coeffs > 1 |
| || poly_int_traits<T2>::num_coeffs > 1) |
| && maybe_lt (val, pos)) |
| /* In this case we don't know whether VAL >= POS is true at compile |
| time, so we can't prove that VAL >= POS + SIZE. */ |
| return true; |
| return maybe_lt (start_span::cast (val) - start_span::cast (pos), |
| size_span::cast (size)); |
| } |
| |
| /* Return true if range [POS, POS + SIZE) is known to include VAL. |
| SIZE can be the special value -1, in which case the range is |
| open-ended. */ |
| |
| template<typename T1, typename T2, typename T3> |
| inline bool |
| known_in_range_p (const T1 &val, const T2 &pos, const T3 &size) |
| { |
| typedef poly_span_traits<T1, T2> start_span; |
| typedef poly_span_traits<T3, T3> size_span; |
| return (known_size_p (size) |
| && known_ge (val, pos) |
| && known_lt (start_span::cast (val) - start_span::cast (pos), |
| size_span::cast (size))); |
| } |
| |
| /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2) |
| might overlap. SIZE1 and/or SIZE2 can be the special value -1, in which |
| case the range is open-ended. */ |
| |
| template<typename T1, typename T2, typename T3, typename T4> |
| inline bool |
| ranges_maybe_overlap_p (const T1 &pos1, const T2 &size1, |
| const T3 &pos2, const T4 &size2) |
| { |
| if (maybe_in_range_p (pos2, pos1, size1)) |
| return maybe_ne (size2, POLY_INT_TYPE (T4) (0)); |
| if (maybe_in_range_p (pos1, pos2, size2)) |
| return maybe_ne (size1, POLY_INT_TYPE (T2) (0)); |
| return false; |
| } |
| |
| /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2) |
| are known to overlap. SIZE1 and/or SIZE2 can be the special value -1, |
| in which case the range is open-ended. */ |
| |
| template<typename T1, typename T2, typename T3, typename T4> |
| inline bool |
| ranges_known_overlap_p (const T1 &pos1, const T2 &size1, |
| const T3 &pos2, const T4 &size2) |
| { |
| typedef poly_span_traits<T1, T3> start_span; |
| typedef poly_span_traits<T2, T2> size1_span; |
| typedef poly_span_traits<T4, T4> size2_span; |
| /* known_gt (POS1 + SIZE1, POS2) [infinite precision] |
| --> known_gt (SIZE1, POS2 - POS1) [infinite precision] |
| --> known_gt (SIZE1, POS2 - lower_bound (POS1, POS2)) [infinite precision] |
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ always nonnegative |
| --> known_gt (SIZE1, span1::cast (POS2 - lower_bound (POS1, POS2))). |
| |
| Using the saturating subtraction enforces that SIZE1 must be |
| nonzero, since known_gt (0, x) is false for all nonnegative x. |
| If POS2.coeff[I] < POS1.coeff[I] for some I > 0, increasing |
| indeterminate number I makes the unsaturated condition easier to |
| satisfy, so using a saturated coefficient of zero tests the case in |
| which the indeterminate is zero (the minimum value). */ |
| return (known_size_p (size1) |
| && known_size_p (size2) |
| && known_lt (start_span::cast (pos2) |
| - start_span::cast (lower_bound (pos1, pos2)), |
| size1_span::cast (size1)) |
| && known_lt (start_span::cast (pos1) |
| - start_span::cast (lower_bound (pos1, pos2)), |
| size2_span::cast (size2))); |
| } |
| |
| /* Return true if range [POS1, POS1 + SIZE1) is known to be a subrange of |
| [POS2, POS2 + SIZE2). SIZE1 and/or SIZE2 can be the special value -1, |
| in which case the range is open-ended. */ |
| |
| template<typename T1, typename T2, typename T3, typename T4> |
| inline bool |
| known_subrange_p (const T1 &pos1, const T2 &size1, |
| const T3 &pos2, const T4 &size2) |
| { |
| typedef typename poly_int_traits<T2>::coeff_type C2; |
| typedef poly_span_traits<T1, T3> start_span; |
| typedef poly_span_traits<T2, T4> size_span; |
| return (known_gt (size1, POLY_INT_TYPE (T2) (0)) |
| && (poly_coeff_traits<C2>::signedness > 0 |
| || known_size_p (size1)) |
| && known_size_p (size2) |
| && known_ge (pos1, pos2) |
| && known_le (size1, size2) |
| && known_le (start_span::cast (pos1) - start_span::cast (pos2), |
| size_span::cast (size2) - size_span::cast (size1))); |
| } |
| |
| /* Return true if the endpoint of the range [POS, POS + SIZE) can be |
| stored in a T, or if SIZE is the special value -1, which makes the |
| range open-ended. */ |
| |
| template<typename T> |
| inline typename if_nonpoly<T, bool>::type |
| endpoint_representable_p (const T &pos, const T &size) |
| { |
| return (!known_size_p (size) |
| || pos <= poly_coeff_traits<T>::max_value - size); |
| } |
| |
| template<unsigned int N, typename C> |
| inline bool |
| endpoint_representable_p (const poly_int_pod<N, C> &pos, |
| const poly_int_pod<N, C> &size) |
| { |
| if (known_size_p (size)) |
| for (unsigned int i = 0; i < N; ++i) |
| if (pos.coeffs[i] > poly_coeff_traits<C>::max_value - size.coeffs[i]) |
| return false; |
| return true; |
| } |
| |
| template<unsigned int N, typename C> |
| void |
| gt_ggc_mx (poly_int_pod<N, C> *) |
| { |
| } |
| |
| template<unsigned int N, typename C> |
| void |
| gt_pch_nx (poly_int_pod<N, C> *) |
| { |
| } |
| |
| template<unsigned int N, typename C> |
| void |
| gt_pch_nx (poly_int_pod<N, C> *, void (*) (void *, void *), void *) |
| { |
| } |
| |
| #undef POLY_SET_COEFF |
| #undef POLY_INT_TYPE |
| #undef POLY_BINARY_COEFF |
| #undef CONST_CONST_RESULT |
| #undef POLY_CONST_RESULT |
| #undef CONST_POLY_RESULT |
| #undef POLY_POLY_RESULT |
| #undef POLY_CONST_COEFF |
| #undef CONST_POLY_COEFF |
| #undef POLY_POLY_COEFF |
| |
| #endif |