| /* Implementation of the MATMUL intrinsic |
| Copyright (C) 2002-2021 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <assert.h> |
| |
| |
| #if defined (HAVE_GFC_LOGICAL_4) |
| |
| /* Dimensions: retarray(x,y) a(x, count) b(count,y). |
| Either a or b can be rank 1. In this case x or y is 1. */ |
| |
| extern void matmul_l4 (gfc_array_l4 * const restrict, |
| gfc_array_l1 * const restrict, gfc_array_l1 * const restrict); |
| export_proto(matmul_l4); |
| |
| void |
| matmul_l4 (gfc_array_l4 * const restrict retarray, |
| gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b) |
| { |
| const GFC_LOGICAL_1 * restrict abase; |
| const GFC_LOGICAL_1 * restrict bbase; |
| GFC_LOGICAL_4 * restrict dest; |
| index_type rxstride; |
| index_type rystride; |
| index_type xcount; |
| index_type ycount; |
| index_type xstride; |
| index_type ystride; |
| index_type x; |
| index_type y; |
| int a_kind; |
| int b_kind; |
| |
| const GFC_LOGICAL_1 * restrict pa; |
| const GFC_LOGICAL_1 * restrict pb; |
| index_type astride; |
| index_type bstride; |
| index_type count; |
| index_type n; |
| |
| assert (GFC_DESCRIPTOR_RANK (a) == 2 |
| || GFC_DESCRIPTOR_RANK (b) == 2); |
| |
| if (retarray->base_addr == NULL) |
| { |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| } |
| else |
| { |
| GFC_DIMENSION_SET(retarray->dim[0], 0, |
| GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); |
| |
| GFC_DIMENSION_SET(retarray->dim[1], 0, |
| GFC_DESCRIPTOR_EXTENT(b,1) - 1, |
| GFC_DESCRIPTOR_EXTENT(retarray,0)); |
| } |
| |
| retarray->base_addr |
| = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_4)); |
| retarray->offset = 0; |
| } |
| else if (unlikely (compile_options.bounds_check)) |
| { |
| index_type ret_extent, arg_extent; |
| |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Incorrect extent in return array in" |
| " MATMUL intrinsic: is %ld, should be %ld", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Incorrect extent in return array in" |
| " MATMUL intrinsic: is %ld, should be %ld", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| else |
| { |
| arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); |
| if (arg_extent != ret_extent) |
| runtime_error ("Incorrect extent in return array in" |
| " MATMUL intrinsic for dimension 1:" |
| " is %ld, should be %ld", |
| (long int) ret_extent, (long int) arg_extent); |
| |
| arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); |
| ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); |
| if (arg_extent != ret_extent) |
| runtime_error ("Incorrect extent in return array in" |
| " MATMUL intrinsic for dimension 2:" |
| " is %ld, should be %ld", |
| (long int) ret_extent, (long int) arg_extent); |
| } |
| } |
| |
| abase = a->base_addr; |
| a_kind = GFC_DESCRIPTOR_SIZE (a); |
| |
| if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || a_kind == 16 |
| #endif |
| ) |
| abase = GFOR_POINTER_TO_L1 (abase, a_kind); |
| else |
| internal_error (NULL, "Funny sized logical array"); |
| |
| bbase = b->base_addr; |
| b_kind = GFC_DESCRIPTOR_SIZE (b); |
| |
| if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || b_kind == 16 |
| #endif |
| ) |
| bbase = GFOR_POINTER_TO_L1 (bbase, b_kind); |
| else |
| internal_error (NULL, "Funny sized logical array"); |
| |
| dest = retarray->base_addr; |
| |
| |
| if (GFC_DESCRIPTOR_RANK (retarray) == 1) |
| { |
| rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| rystride = rxstride; |
| } |
| else |
| { |
| rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); |
| rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); |
| } |
| |
| /* If we have rank 1 parameters, zero the absent stride, and set the size to |
| one. */ |
| if (GFC_DESCRIPTOR_RANK (a) == 1) |
| { |
| astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); |
| count = GFC_DESCRIPTOR_EXTENT(a,0); |
| xstride = 0; |
| rxstride = 0; |
| xcount = 1; |
| } |
| else |
| { |
| astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1); |
| count = GFC_DESCRIPTOR_EXTENT(a,1); |
| xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); |
| xcount = GFC_DESCRIPTOR_EXTENT(a,0); |
| } |
| if (GFC_DESCRIPTOR_RANK (b) == 1) |
| { |
| bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); |
| assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); |
| ystride = 0; |
| rystride = 0; |
| ycount = 1; |
| } |
| else |
| { |
| bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); |
| assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); |
| ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1); |
| ycount = GFC_DESCRIPTOR_EXTENT(b,1); |
| } |
| |
| for (y = 0; y < ycount; y++) |
| { |
| for (x = 0; x < xcount; x++) |
| { |
| /* Do the summation for this element. For real and integer types |
| this is the same as DOT_PRODUCT. For complex types we use do |
| a*b, not conjg(a)*b. */ |
| pa = abase; |
| pb = bbase; |
| *dest = 0; |
| |
| for (n = 0; n < count; n++) |
| { |
| if (*pa && *pb) |
| { |
| *dest = 1; |
| break; |
| } |
| pa += astride; |
| pb += bstride; |
| } |
| |
| dest += rxstride; |
| abase += xstride; |
| } |
| abase -= xstride * xcount; |
| bbase += ystride; |
| dest += rystride - (rxstride * xcount); |
| } |
| } |
| |
| #endif |
| |