blob: 94e49caee04a26ce0fd6b55ebce083fb42f62ecc [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types
import "bytes"
// A termlist represents the type set represented by the union
// t1 ∪ y2 ∪ ... tn of the type sets of the terms t1 to tn.
// A termlist is in normal form if all terms are disjoint.
// termlist operations don't require the operands to be in
// normal form.
type termlist []*term
// allTermlist represents the set of all types.
// It is in normal form.
var allTermlist = termlist{new(term)}
// String prints the termlist exactly (without normalization).
func (xl termlist) String() string {
if len(xl) == 0 {
return "∅"
}
var buf bytes.Buffer
for i, x := range xl {
if i > 0 {
buf.WriteString(" ∪ ")
}
buf.WriteString(x.String())
}
return buf.String()
}
// isEmpty reports whether the termlist xl represents the empty set of types.
func (xl termlist) isEmpty() bool {
// If there's a non-nil term, the entire list is not empty.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil {
return false
}
}
return true
}
// isAll reports whether the termlist xl represents the set of all types.
func (xl termlist) isAll() bool {
// If there's a 𝓤 term, the entire list is 𝓤.
// If the termlist is in normal form, this requires at most
// one iteration.
for _, x := range xl {
if x != nil && x.typ == nil {
return true
}
}
return false
}
// norm returns the normal form of xl.
func (xl termlist) norm() termlist {
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
used := make([]bool, len(xl))
var rl termlist
for i, xi := range xl {
if xi == nil || used[i] {
continue
}
for j := i + 1; j < len(xl); j++ {
xj := xl[j]
if xj == nil || used[j] {
continue
}
if u1, u2 := xi.union(xj); u2 == nil {
// If we encounter a 𝓤 term, the entire list is 𝓤.
// Exit early.
// (Note that this is not just an optimization;
// if we continue, we may end up with a 𝓤 term
// and other terms and the result would not be
// in normal form.)
if u1.typ == nil {
return allTermlist
}
xi = u1
used[j] = true // xj is now unioned into xi - ignore it in future iterations
}
}
rl = append(rl, xi)
}
return rl
}
// union returns the union xl ∪ yl.
func (xl termlist) union(yl termlist) termlist {
return append(xl, yl...).norm()
}
// intersect returns the intersection xl ∩ yl.
func (xl termlist) intersect(yl termlist) termlist {
if xl.isEmpty() || yl.isEmpty() {
return nil
}
// Quadratic algorithm, but good enough for now.
// TODO(gri) fix asymptotic performance
var rl termlist
for _, x := range xl {
for _, y := range yl {
if r := x.intersect(y); r != nil {
rl = append(rl, r)
}
}
}
return rl.norm()
}
// equal reports whether xl and yl represent the same type set.
func (xl termlist) equal(yl termlist) bool {
// TODO(gri) this should be more efficient
return xl.subsetOf(yl) && yl.subsetOf(xl)
}
// includes reports whether t ∈ xl.
func (xl termlist) includes(t Type) bool {
for _, x := range xl {
if x.includes(t) {
return true
}
}
return false
}
// supersetOf reports whether y ⊆ xl.
func (xl termlist) supersetOf(y *term) bool {
for _, x := range xl {
if y.subsetOf(x) {
return true
}
}
return false
}
// subsetOf reports whether xl ⊆ yl.
func (xl termlist) subsetOf(yl termlist) bool {
if yl.isEmpty() {
return xl.isEmpty()
}
// each term x of xl must be a subset of yl
for _, x := range xl {
if !yl.supersetOf(x) {
return false // x is not a subset yl
}
}
return true
}