blob: 88ccfde007d31aef2f285abd55ba3bd5d9a0ecd8 [file] [log] [blame]
//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
/// FreeBSD-specific code.
///
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
# include <dlfcn.h>
# include <elf.h>
# include <errno.h>
# include <link.h>
# include <pthread.h>
# include <signal.h>
# include <stdio.h>
# include <stdlib.h>
# include <sys/prctl.h>
# include <sys/resource.h>
# include <sys/time.h>
# include <unistd.h>
# include <unwind.h>
# include "hwasan.h"
# include "hwasan_dynamic_shadow.h"
# include "hwasan_interface_internal.h"
# include "hwasan_mapping.h"
# include "hwasan_report.h"
# include "hwasan_thread.h"
# include "hwasan_thread_list.h"
# include "sanitizer_common/sanitizer_common.h"
# include "sanitizer_common/sanitizer_procmaps.h"
# include "sanitizer_common/sanitizer_stackdepot.h"
// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
//
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
// Not currently tested.
// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
// Integration tests downstream exist.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
// Tested with check-hwasan on x86_64-linux.
// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
// Tested with check-hwasan on aarch64-linux-android.
# if !SANITIZER_ANDROID
SANITIZER_INTERFACE_ATTRIBUTE
THREADLOCAL uptr __hwasan_tls;
# endif
namespace __hwasan {
// With the zero shadow base we can not actually map pages starting from 0.
// This constant is somewhat arbitrary.
constexpr uptr kZeroBaseShadowStart = 0;
constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
static void ProtectGap(uptr addr, uptr size) {
__sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
kZeroBaseMaxShadowStart);
}
uptr kLowMemStart;
uptr kLowMemEnd;
uptr kHighMemStart;
uptr kHighMemEnd;
static void PrintRange(uptr start, uptr end, const char *name) {
Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
}
static void PrintAddressSpaceLayout() {
PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
if (kHighShadowEnd + 1 < kHighMemStart)
PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
else
CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
if (kLowShadowEnd + 1 < kHighShadowStart)
PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
if (kLowMemEnd + 1 < kLowShadowStart)
PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
CHECK_EQ(0, kLowMemStart);
}
static uptr GetHighMemEnd() {
// HighMem covers the upper part of the address space.
uptr max_address = GetMaxUserVirtualAddress();
// Adjust max address to make sure that kHighMemEnd and kHighMemStart are
// properly aligned:
max_address |= (GetMmapGranularity() << kShadowScale) - 1;
return max_address;
}
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
__hwasan_shadow_memory_dynamic_address =
FindDynamicShadowStart(shadow_size_bytes);
}
static void MaybeDieIfNoTaggingAbi(const char *message) {
if (!flags()->fail_without_syscall_abi)
return;
Printf("FATAL: %s\n", message);
Die();
}
# define PR_SET_TAGGED_ADDR_CTRL 55
# define PR_GET_TAGGED_ADDR_CTRL 56
# define PR_TAGGED_ADDR_ENABLE (1UL << 0)
# define ARCH_GET_UNTAG_MASK 0x4001
# define ARCH_ENABLE_TAGGED_ADDR 0x4002
# define ARCH_GET_MAX_TAG_BITS 0x4003
static bool CanUseTaggingAbi() {
# if defined(__x86_64__)
unsigned long num_bits = 0;
// Check for x86 LAM support. This API is based on a currently unsubmitted
// patch to the Linux kernel (as of August 2022) and is thus subject to
// change. The patch is here:
// https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
//
// arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
// bits the user can request, or zero if LAM is not supported by the hardware.
if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
reinterpret_cast<uptr>(&num_bits))))
return false;
// The platform must provide enough bits for HWASan tags.
if (num_bits < kTagBits)
return false;
return true;
# else
// Check for ARM TBI support.
return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
# endif // __x86_64__
}
static bool EnableTaggingAbi() {
# if defined(__x86_64__)
// Enable x86 LAM tagging for the process.
//
// arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
// tag bits requested by the user does not exceed that provided by the system.
// arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
// address bits. It is ~0ULL if either LAM is disabled for the process or LAM
// is not supported by the hardware.
if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
return false;
unsigned long mask = 0;
// Make sure the tag bits are where we expect them to be.
if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
reinterpret_cast<uptr>(&mask))))
return false;
// @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
// bits. Therefore these masks must not overlap.
if (mask & kAddressTagMask)
return false;
return true;
# else
// Enable ARM TBI tagging for the process. If for some reason tagging is not
// supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
// -EINVAL.
if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
return false;
// Ensure that TBI is enabled.
if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
PR_TAGGED_ADDR_ENABLE)
return false;
return true;
# endif // __x86_64__
}
void InitializeOsSupport() {
// Check we're running on a kernel that can use the tagged address ABI.
bool has_abi = CanUseTaggingAbi();
if (!has_abi) {
# if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
// Some older Android kernels have the tagged pointer ABI on
// unconditionally, and hence don't have the tagged-addr prctl while still
// allow the ABI.
// If targeting Android and the prctl is not around we assume this is the
// case.
return;
# else
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer requires a kernel with tagged address ABI.");
# endif
}
if (EnableTaggingAbi())
return;
# if SANITIZER_ANDROID
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
"Check the `sysctl abi.tagged_addr_disabled` configuration.");
# else
MaybeDieIfNoTaggingAbi(
"HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
# endif
}
bool InitShadow() {
// Define the entire memory range.
kHighMemEnd = GetHighMemEnd();
// Determine shadow memory base offset.
InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
// Place the low memory first.
kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
kLowMemStart = 0;
// Define the low shadow based on the already placed low memory.
kLowShadowEnd = MemToShadow(kLowMemEnd);
kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
// High shadow takes whatever memory is left up there (making sure it is not
// interfering with low memory in the fixed case).
kHighShadowEnd = MemToShadow(kHighMemEnd);
kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
// High memory starts where allocated shadow allows.
kHighMemStart = ShadowToMem(kHighShadowStart);
// Check the sanity of the defined memory ranges (there might be gaps).
CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
CHECK_GT(kHighMemStart, kHighShadowEnd);
CHECK_GT(kHighShadowEnd, kHighShadowStart);
CHECK_GT(kHighShadowStart, kLowMemEnd);
CHECK_GT(kLowMemEnd, kLowMemStart);
CHECK_GT(kLowShadowEnd, kLowShadowStart);
CHECK_GT(kLowShadowStart, kLowMemEnd);
if (Verbosity())
PrintAddressSpaceLayout();
// Reserve shadow memory.
ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
// Protect all the gaps.
ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
if (kLowMemEnd + 1 < kLowShadowStart)
ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
if (kLowShadowEnd + 1 < kHighShadowStart)
ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
if (kHighShadowEnd + 1 < kHighMemStart)
ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
return true;
}
void InitThreads() {
CHECK(__hwasan_shadow_memory_dynamic_address);
uptr guard_page_size = GetMmapGranularity();
uptr thread_space_start =
__hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
uptr thread_space_end =
__hwasan_shadow_memory_dynamic_address - guard_page_size;
ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
"hwasan threads", /*madvise_shadow*/ false);
ProtectGap(thread_space_end,
__hwasan_shadow_memory_dynamic_address - thread_space_end);
InitThreadList(thread_space_start, thread_space_end - thread_space_start);
hwasanThreadList().CreateCurrentThread();
}
bool MemIsApp(uptr p) {
// Memory outside the alias range has non-zero tags.
# if !defined(HWASAN_ALIASING_MODE)
CHECK(GetTagFromPointer(p) == 0);
# endif
return (p >= kHighMemStart && p <= kHighMemEnd) ||
(p >= kLowMemStart && p <= kLowMemEnd);
}
void InstallAtExitHandler() { atexit(HwasanAtExit); }
// ---------------------- TSD ---------------- {{{1
extern "C" void __hwasan_thread_enter() {
hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
}
extern "C" void __hwasan_thread_exit() {
Thread *t = GetCurrentThread();
// Make sure that signal handler can not see a stale current thread pointer.
atomic_signal_fence(memory_order_seq_cst);
if (t)
hwasanThreadList().ReleaseThread(t);
}
# if HWASAN_WITH_INTERCEPTORS
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;
void HwasanTSDThreadInit() {
if (tsd_key_inited)
CHECK_EQ(0, pthread_setspecific(tsd_key,
(void *)GetPthreadDestructorIterations()));
}
void HwasanTSDDtor(void *tsd) {
uptr iterations = (uptr)tsd;
if (iterations > 1) {
CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
return;
}
__hwasan_thread_exit();
}
void HwasanTSDInit() {
CHECK(!tsd_key_inited);
tsd_key_inited = true;
CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
}
# else
void HwasanTSDInit() {}
void HwasanTSDThreadInit() {}
# endif
# if SANITIZER_ANDROID
uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
# else
uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
# endif
# if SANITIZER_ANDROID
void AndroidTestTlsSlot() {
uptr kMagicValue = 0x010203040A0B0C0D;
uptr *tls_ptr = GetCurrentThreadLongPtr();
uptr old_value = *tls_ptr;
*tls_ptr = kMagicValue;
dlerror();
if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
Printf(
"ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
"for dlerror().\n");
Die();
}
*tls_ptr = old_value;
}
# else
void AndroidTestTlsSlot() {}
# endif
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
// Access type is passed in a platform dependent way (see below) and encoded
// as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
// log2(access_size), and 0xF, which means that access size is passed via
// platform dependent register (see below).
# if defined(__aarch64__)
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
// access size is stored in X1 register. Access address is always in X0
// register.
uptr pc = (uptr)info->si_addr;
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
if ((code & 0xff00) != 0x900)
return AccessInfo{}; // Not ours.
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.regs[0];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
# elif defined(__x86_64__)
// Access type is encoded in the instruction following INT3 as
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
// RSI register. Access address is always in RDI register.
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
uint8_t *nop = (uint8_t *)pc;
if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
*(nop + 3) < 0x40)
return AccessInfo{}; // Not ours.
const unsigned code = *(nop + 3);
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size =
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
# elif SANITIZER_RISCV64
// Access type is encoded in the instruction following EBREAK as
// ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
// X11 register. Access address is always in X10 register.
uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
uint8_t byte1 = *((u8 *)(pc + 0));
uint8_t byte2 = *((u8 *)(pc + 1));
uint8_t byte3 = *((u8 *)(pc + 2));
uint8_t byte4 = *((u8 *)(pc + 3));
uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
bool isFaultShort = false;
bool isEbreak = (ebreak == 0x100073);
bool isShortEbreak = false;
# if defined(__riscv_compressed)
isFaultShort = ((ebreak & 0x3) != 0x3);
isShortEbreak = ((ebreak & 0xffff) == 0x9002);
# endif
// faulted insn is not ebreak, not our case
if (!(isEbreak || isShortEbreak))
return AccessInfo{};
// advance pc to point after ebreak and reconstruct addi instruction
pc += isFaultShort ? 2 : 4;
byte1 = *((u8 *)(pc + 0));
byte2 = *((u8 *)(pc + 1));
byte3 = *((u8 *)(pc + 2));
byte4 = *((u8 *)(pc + 3));
// reconstruct instruction
uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
// check if this is really 32 bit instruction
// code is encoded in top 12 bits, since instruction is supposed to be with
// imm
const unsigned code = (instr >> 20) & 0xffff;
const uptr addr = uc->uc_mcontext.__gregs[10];
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not our case
const uptr size =
size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
# else
# error Unsupported architecture
# endif
return AccessInfo{addr, size, is_store, !is_store, recover};
}
static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
AccessInfo ai = GetAccessInfo(info, uc);
if (!ai.is_store && !ai.is_load)
return false;
SignalContext sig{info, uc};
HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
# if defined(__aarch64__)
uc->uc_mcontext.pc += 4;
# elif defined(__x86_64__)
# elif SANITIZER_RISCV64
// pc points to EBREAK which is 2 bytes long
uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
uint8_t byte1 = (uint8_t)(*(exception_source + 0));
uint8_t byte2 = (uint8_t)(*(exception_source + 1));
uint8_t byte3 = (uint8_t)(*(exception_source + 2));
uint8_t byte4 = (uint8_t)(*(exception_source + 3));
uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
bool isFaultShort = false;
# if defined(__riscv_compressed)
isFaultShort = ((faulted & 0x3) != 0x3);
# endif
uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
# else
# error Unsupported architecture
# endif
return true;
}
static void OnStackUnwind(const SignalContext &sig, const void *,
BufferedStackTrace *stack) {
stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
common_flags()->fast_unwind_on_fatal);
}
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
// Probably a tag mismatch.
if (signo == SIGTRAP)
if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
return;
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
}
void Thread::InitStackAndTls(const InitState *) {
uptr tls_size;
uptr stack_size;
GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
&tls_size);
stack_top_ = stack_bottom_ + stack_size;
tls_end_ = tls_begin_ + tls_size;
}
uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
CHECK(IsAligned(p, kShadowAlignment));
CHECK(IsAligned(size, kShadowAlignment));
uptr shadow_start = MemToShadow(p);
uptr shadow_size = MemToShadowSize(size);
uptr page_size = GetPageSizeCached();
uptr page_start = RoundUpTo(shadow_start, page_size);
uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
uptr threshold = common_flags()->clear_shadow_mmap_threshold;
if (SANITIZER_LINUX &&
UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
internal_memset((void *)shadow_start, tag, page_start - shadow_start);
internal_memset((void *)page_end, tag,
shadow_start + shadow_size - page_end);
// For an anonymous private mapping MADV_DONTNEED will return a zero page on
// Linux.
ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
} else {
internal_memset((void *)shadow_start, tag, shadow_size);
}
return AddTagToPointer(p, tag);
}
void HwasanInstallAtForkHandler() {
auto before = []() {
HwasanAllocatorLock();
StackDepotLockAll();
};
auto after = []() {
StackDepotUnlockAll();
HwasanAllocatorUnlock();
};
pthread_atfork(before, after, after);
}
} // namespace __hwasan
#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD