| //===-- tsan_rtl.cpp ------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Main file (entry points) for the TSan run-time. |
| //===----------------------------------------------------------------------===// |
| |
| #include "tsan_rtl.h" |
| |
| #include "sanitizer_common/sanitizer_atomic.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_file.h" |
| #include "sanitizer_common/sanitizer_interface_internal.h" |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_symbolizer.h" |
| #include "tsan_defs.h" |
| #include "tsan_interface.h" |
| #include "tsan_mman.h" |
| #include "tsan_platform.h" |
| #include "tsan_suppressions.h" |
| #include "tsan_symbolize.h" |
| #include "ubsan/ubsan_init.h" |
| |
| volatile int __tsan_resumed = 0; |
| |
| extern "C" void __tsan_resume() { |
| __tsan_resumed = 1; |
| } |
| |
| SANITIZER_WEAK_DEFAULT_IMPL |
| void __tsan_test_only_on_fork() {} |
| |
| namespace __tsan { |
| |
| #if !SANITIZER_GO |
| void (*on_initialize)(void); |
| int (*on_finalize)(int); |
| #endif |
| |
| #if !SANITIZER_GO && !SANITIZER_APPLE |
| __attribute__((tls_model("initial-exec"))) |
| THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED( |
| SANITIZER_CACHE_LINE_SIZE); |
| #endif |
| static char ctx_placeholder[sizeof(Context)] ALIGNED(SANITIZER_CACHE_LINE_SIZE); |
| Context *ctx; |
| |
| // Can be overriden by a front-end. |
| #ifdef TSAN_EXTERNAL_HOOKS |
| bool OnFinalize(bool failed); |
| void OnInitialize(); |
| #else |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL |
| bool OnFinalize(bool failed) { |
| # if !SANITIZER_GO |
| if (on_finalize) |
| return on_finalize(failed); |
| # endif |
| return failed; |
| } |
| |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL |
| void OnInitialize() { |
| # if !SANITIZER_GO |
| if (on_initialize) |
| on_initialize(); |
| # endif |
| } |
| #endif |
| |
| static TracePart* TracePartAlloc(ThreadState* thr) { |
| TracePart* part = nullptr; |
| { |
| Lock lock(&ctx->slot_mtx); |
| uptr max_parts = Trace::kMinParts + flags()->history_size; |
| Trace* trace = &thr->tctx->trace; |
| if (trace->parts_allocated == max_parts || |
| ctx->trace_part_finished_excess) { |
| part = ctx->trace_part_recycle.PopFront(); |
| DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part); |
| if (part && part->trace) { |
| Trace* trace1 = part->trace; |
| Lock trace_lock(&trace1->mtx); |
| part->trace = nullptr; |
| TracePart* part1 = trace1->parts.PopFront(); |
| CHECK_EQ(part, part1); |
| if (trace1->parts_allocated > trace1->parts.Size()) { |
| ctx->trace_part_finished_excess += |
| trace1->parts_allocated - trace1->parts.Size(); |
| trace1->parts_allocated = trace1->parts.Size(); |
| } |
| } |
| } |
| if (trace->parts_allocated < max_parts) { |
| trace->parts_allocated++; |
| if (ctx->trace_part_finished_excess) |
| ctx->trace_part_finished_excess--; |
| } |
| if (!part) |
| ctx->trace_part_total_allocated++; |
| else if (ctx->trace_part_recycle_finished) |
| ctx->trace_part_recycle_finished--; |
| } |
| if (!part) |
| part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart(); |
| return part; |
| } |
| |
| static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) { |
| DCHECK(part->trace); |
| part->trace = nullptr; |
| ctx->trace_part_recycle.PushFront(part); |
| } |
| |
| void TraceResetForTesting() { |
| Lock lock(&ctx->slot_mtx); |
| while (auto* part = ctx->trace_part_recycle.PopFront()) { |
| if (auto trace = part->trace) |
| CHECK_EQ(trace->parts.PopFront(), part); |
| UnmapOrDie(part, sizeof(*part)); |
| } |
| ctx->trace_part_total_allocated = 0; |
| ctx->trace_part_recycle_finished = 0; |
| ctx->trace_part_finished_excess = 0; |
| } |
| |
| static void DoResetImpl(uptr epoch) { |
| ThreadRegistryLock lock0(&ctx->thread_registry); |
| Lock lock1(&ctx->slot_mtx); |
| CHECK_EQ(ctx->global_epoch, epoch); |
| ctx->global_epoch++; |
| CHECK(!ctx->resetting); |
| ctx->resetting = true; |
| for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) { |
| ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked( |
| static_cast<Tid>(i)); |
| // Potentially we could purge all ThreadStatusDead threads from the |
| // registry. Since we reset all shadow, they can't race with anything |
| // anymore. However, their tid's can still be stored in some aux places |
| // (e.g. tid of thread that created something). |
| auto trace = &tctx->trace; |
| Lock lock(&trace->mtx); |
| bool attached = tctx->thr && tctx->thr->slot; |
| auto parts = &trace->parts; |
| bool local = false; |
| while (!parts->Empty()) { |
| auto part = parts->Front(); |
| local = local || part == trace->local_head; |
| if (local) |
| CHECK(!ctx->trace_part_recycle.Queued(part)); |
| else |
| ctx->trace_part_recycle.Remove(part); |
| if (attached && parts->Size() == 1) { |
| // The thread is running and this is the last/current part. |
| // Set the trace position to the end of the current part |
| // to force the thread to call SwitchTracePart and re-attach |
| // to a new slot and allocate a new trace part. |
| // Note: the thread is concurrently modifying the position as well, |
| // so this is only best-effort. The thread can only modify position |
| // within this part, because switching parts is protected by |
| // slot/trace mutexes that we hold here. |
| atomic_store_relaxed( |
| &tctx->thr->trace_pos, |
| reinterpret_cast<uptr>(&part->events[TracePart::kSize])); |
| break; |
| } |
| parts->Remove(part); |
| TracePartFree(part); |
| } |
| CHECK_LE(parts->Size(), 1); |
| trace->local_head = parts->Front(); |
| if (tctx->thr && !tctx->thr->slot) { |
| atomic_store_relaxed(&tctx->thr->trace_pos, 0); |
| tctx->thr->trace_prev_pc = 0; |
| } |
| if (trace->parts_allocated > trace->parts.Size()) { |
| ctx->trace_part_finished_excess += |
| trace->parts_allocated - trace->parts.Size(); |
| trace->parts_allocated = trace->parts.Size(); |
| } |
| } |
| while (ctx->slot_queue.PopFront()) { |
| } |
| for (auto& slot : ctx->slots) { |
| slot.SetEpoch(kEpochZero); |
| slot.journal.Reset(); |
| slot.thr = nullptr; |
| ctx->slot_queue.PushBack(&slot); |
| } |
| |
| DPrintf("Resetting shadow...\n"); |
| auto shadow_begin = ShadowBeg(); |
| auto shadow_end = ShadowEnd(); |
| #if SANITIZER_GO |
| CHECK_NE(0, ctx->mapped_shadow_begin); |
| shadow_begin = ctx->mapped_shadow_begin; |
| shadow_end = ctx->mapped_shadow_end; |
| VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n", |
| shadow_begin, shadow_end); |
| #endif |
| |
| #if SANITIZER_WINDOWS |
| auto resetFailed = |
| !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin); |
| #else |
| auto resetFailed = |
| !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow"); |
| #endif |
| if (resetFailed) { |
| Printf("failed to reset shadow memory\n"); |
| Die(); |
| } |
| DPrintf("Resetting meta shadow...\n"); |
| ctx->metamap.ResetClocks(); |
| StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty); |
| ctx->resetting = false; |
| } |
| |
| // Clang does not understand locking all slots in the loop: |
| // error: expecting mutex 'slot.mtx' to be held at start of each loop |
| void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| for (auto& slot : ctx->slots) { |
| slot.mtx.Lock(); |
| if (UNLIKELY(epoch == 0)) |
| epoch = ctx->global_epoch; |
| if (UNLIKELY(epoch != ctx->global_epoch)) { |
| // Epoch can't change once we've locked the first slot. |
| CHECK_EQ(slot.sid, 0); |
| slot.mtx.Unlock(); |
| return; |
| } |
| } |
| DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch); |
| DoResetImpl(epoch); |
| for (auto& slot : ctx->slots) slot.mtx.Unlock(); |
| } |
| |
| void FlushShadowMemory() { DoReset(nullptr, 0); } |
| |
| static TidSlot* FindSlotAndLock(ThreadState* thr) |
| SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| CHECK(!thr->slot); |
| TidSlot* slot = nullptr; |
| for (;;) { |
| uptr epoch; |
| { |
| Lock lock(&ctx->slot_mtx); |
| epoch = ctx->global_epoch; |
| if (slot) { |
| // This is an exhausted slot from the previous iteration. |
| if (ctx->slot_queue.Queued(slot)) |
| ctx->slot_queue.Remove(slot); |
| thr->slot_locked = false; |
| slot->mtx.Unlock(); |
| } |
| for (;;) { |
| slot = ctx->slot_queue.PopFront(); |
| if (!slot) |
| break; |
| if (slot->epoch() != kEpochLast) { |
| ctx->slot_queue.PushBack(slot); |
| break; |
| } |
| } |
| } |
| if (!slot) { |
| DoReset(thr, epoch); |
| continue; |
| } |
| slot->mtx.Lock(); |
| CHECK(!thr->slot_locked); |
| thr->slot_locked = true; |
| if (slot->thr) { |
| DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid, |
| slot->thr->tid); |
| slot->SetEpoch(slot->thr->fast_state.epoch()); |
| slot->thr = nullptr; |
| } |
| if (slot->epoch() != kEpochLast) |
| return slot; |
| } |
| } |
| |
| void SlotAttachAndLock(ThreadState* thr) { |
| TidSlot* slot = FindSlotAndLock(thr); |
| DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid)); |
| CHECK(!slot->thr); |
| CHECK(!thr->slot); |
| slot->thr = thr; |
| thr->slot = slot; |
| Epoch epoch = EpochInc(slot->epoch()); |
| CHECK(!EpochOverflow(epoch)); |
| slot->SetEpoch(epoch); |
| thr->fast_state.SetSid(slot->sid); |
| thr->fast_state.SetEpoch(epoch); |
| if (thr->slot_epoch != ctx->global_epoch) { |
| thr->slot_epoch = ctx->global_epoch; |
| thr->clock.Reset(); |
| #if !SANITIZER_GO |
| thr->last_sleep_stack_id = kInvalidStackID; |
| thr->last_sleep_clock.Reset(); |
| #endif |
| } |
| thr->clock.Set(slot->sid, epoch); |
| slot->journal.PushBack({thr->tid, epoch}); |
| } |
| |
| static void SlotDetachImpl(ThreadState* thr, bool exiting) { |
| TidSlot* slot = thr->slot; |
| thr->slot = nullptr; |
| if (thr != slot->thr) { |
| slot = nullptr; // we don't own the slot anymore |
| if (thr->slot_epoch != ctx->global_epoch) { |
| TracePart* part = nullptr; |
| auto* trace = &thr->tctx->trace; |
| { |
| Lock l(&trace->mtx); |
| auto* parts = &trace->parts; |
| // The trace can be completely empty in an unlikely event |
| // the thread is preempted right after it acquired the slot |
| // in ThreadStart and did not trace any events yet. |
| CHECK_LE(parts->Size(), 1); |
| part = parts->PopFront(); |
| thr->tctx->trace.local_head = nullptr; |
| atomic_store_relaxed(&thr->trace_pos, 0); |
| thr->trace_prev_pc = 0; |
| } |
| if (part) { |
| Lock l(&ctx->slot_mtx); |
| TracePartFree(part); |
| } |
| } |
| return; |
| } |
| CHECK(exiting || thr->fast_state.epoch() == kEpochLast); |
| slot->SetEpoch(thr->fast_state.epoch()); |
| slot->thr = nullptr; |
| } |
| |
| void SlotDetach(ThreadState* thr) { |
| Lock lock(&thr->slot->mtx); |
| SlotDetachImpl(thr, true); |
| } |
| |
| void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK(!thr->slot_locked); |
| #if SANITIZER_DEBUG |
| // Check these mutexes are not locked. |
| // We can call DoReset from SlotAttachAndLock, which will lock |
| // these mutexes, but it happens only every once in a while. |
| { ThreadRegistryLock lock(&ctx->thread_registry); } |
| { Lock lock(&ctx->slot_mtx); } |
| #endif |
| TidSlot* slot = thr->slot; |
| slot->mtx.Lock(); |
| thr->slot_locked = true; |
| if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast)) |
| return; |
| SlotDetachImpl(thr, false); |
| thr->slot_locked = false; |
| slot->mtx.Unlock(); |
| SlotAttachAndLock(thr); |
| } |
| |
| void SlotUnlock(ThreadState* thr) { |
| DCHECK(thr->slot_locked); |
| thr->slot_locked = false; |
| thr->slot->mtx.Unlock(); |
| } |
| |
| Context::Context() |
| : initialized(), |
| report_mtx(MutexTypeReport), |
| nreported(), |
| thread_registry([](Tid tid) -> ThreadContextBase* { |
| return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid); |
| }), |
| racy_mtx(MutexTypeRacy), |
| racy_stacks(), |
| fired_suppressions_mtx(MutexTypeFired), |
| slot_mtx(MutexTypeSlots), |
| resetting() { |
| fired_suppressions.reserve(8); |
| for (uptr i = 0; i < ARRAY_SIZE(slots); i++) { |
| TidSlot* slot = &slots[i]; |
| slot->sid = static_cast<Sid>(i); |
| slot_queue.PushBack(slot); |
| } |
| global_epoch = 1; |
| } |
| |
| TidSlot::TidSlot() : mtx(MutexTypeSlot) {} |
| |
| // The objects are allocated in TLS, so one may rely on zero-initialization. |
| ThreadState::ThreadState(Tid tid) |
| // Do not touch these, rely on zero initialization, |
| // they may be accessed before the ctor. |
| // ignore_reads_and_writes() |
| // ignore_interceptors() |
| : tid(tid) { |
| CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0); |
| #if !SANITIZER_GO |
| // C/C++ uses fixed size shadow stack. |
| const int kInitStackSize = kShadowStackSize; |
| shadow_stack = static_cast<uptr*>( |
| MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack")); |
| SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack), |
| kInitStackSize * sizeof(uptr)); |
| #else |
| // Go uses malloc-allocated shadow stack with dynamic size. |
| const int kInitStackSize = 8; |
| shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr))); |
| #endif |
| shadow_stack_pos = shadow_stack; |
| shadow_stack_end = shadow_stack + kInitStackSize; |
| } |
| |
| #if !SANITIZER_GO |
| void MemoryProfiler(u64 uptime) { |
| if (ctx->memprof_fd == kInvalidFd) |
| return; |
| InternalMmapVector<char> buf(4096); |
| WriteMemoryProfile(buf.data(), buf.size(), uptime); |
| WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data())); |
| } |
| |
| static bool InitializeMemoryProfiler() { |
| ctx->memprof_fd = kInvalidFd; |
| const char *fname = flags()->profile_memory; |
| if (!fname || !fname[0]) |
| return false; |
| if (internal_strcmp(fname, "stdout") == 0) { |
| ctx->memprof_fd = 1; |
| } else if (internal_strcmp(fname, "stderr") == 0) { |
| ctx->memprof_fd = 2; |
| } else { |
| InternalScopedString filename; |
| filename.append("%s.%d", fname, (int)internal_getpid()); |
| ctx->memprof_fd = OpenFile(filename.data(), WrOnly); |
| if (ctx->memprof_fd == kInvalidFd) { |
| Printf("ThreadSanitizer: failed to open memory profile file '%s'\n", |
| filename.data()); |
| return false; |
| } |
| } |
| MemoryProfiler(0); |
| return true; |
| } |
| |
| static void *BackgroundThread(void *arg) { |
| // This is a non-initialized non-user thread, nothing to see here. |
| // We don't use ScopedIgnoreInterceptors, because we want ignores to be |
| // enabled even when the thread function exits (e.g. during pthread thread |
| // shutdown code). |
| cur_thread_init()->ignore_interceptors++; |
| const u64 kMs2Ns = 1000 * 1000; |
| const u64 start = NanoTime(); |
| |
| u64 last_flush = start; |
| uptr last_rss = 0; |
| while (!atomic_load_relaxed(&ctx->stop_background_thread)) { |
| SleepForMillis(100); |
| u64 now = NanoTime(); |
| |
| // Flush memory if requested. |
| if (flags()->flush_memory_ms > 0) { |
| if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) { |
| VReport(1, "ThreadSanitizer: periodic memory flush\n"); |
| FlushShadowMemory(); |
| now = last_flush = NanoTime(); |
| } |
| } |
| if (flags()->memory_limit_mb > 0) { |
| uptr rss = GetRSS(); |
| uptr limit = uptr(flags()->memory_limit_mb) << 20; |
| VReport(1, |
| "ThreadSanitizer: memory flush check" |
| " RSS=%llu LAST=%llu LIMIT=%llu\n", |
| (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20); |
| if (2 * rss > limit + last_rss) { |
| VReport(1, "ThreadSanitizer: flushing memory due to RSS\n"); |
| FlushShadowMemory(); |
| rss = GetRSS(); |
| now = NanoTime(); |
| VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n", |
| (u64)rss >> 20); |
| } |
| last_rss = rss; |
| } |
| |
| MemoryProfiler(now - start); |
| |
| // Flush symbolizer cache if requested. |
| if (flags()->flush_symbolizer_ms > 0) { |
| u64 last = atomic_load(&ctx->last_symbolize_time_ns, |
| memory_order_relaxed); |
| if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) { |
| Lock l(&ctx->report_mtx); |
| ScopedErrorReportLock l2; |
| SymbolizeFlush(); |
| atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed); |
| } |
| } |
| } |
| return nullptr; |
| } |
| |
| static void StartBackgroundThread() { |
| ctx->background_thread = internal_start_thread(&BackgroundThread, 0); |
| } |
| |
| #ifndef __mips__ |
| static void StopBackgroundThread() { |
| atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed); |
| internal_join_thread(ctx->background_thread); |
| ctx->background_thread = 0; |
| } |
| #endif |
| #endif |
| |
| void DontNeedShadowFor(uptr addr, uptr size) { |
| ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)), |
| reinterpret_cast<uptr>(MemToShadow(addr + size))); |
| } |
| |
| #if !SANITIZER_GO |
| // We call UnmapShadow before the actual munmap, at that point we don't yet |
| // know if the provided address/size are sane. We can't call UnmapShadow |
| // after the actual munmap becuase at that point the memory range can |
| // already be reused for something else, so we can't rely on the munmap |
| // return value to understand is the values are sane. |
| // While calling munmap with insane values (non-canonical address, negative |
| // size, etc) is an error, the kernel won't crash. We must also try to not |
| // crash as the failure mode is very confusing (paging fault inside of the |
| // runtime on some derived shadow address). |
| static bool IsValidMmapRange(uptr addr, uptr size) { |
| if (size == 0) |
| return true; |
| if (static_cast<sptr>(size) < 0) |
| return false; |
| if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) |
| return false; |
| // Check that if the start of the region belongs to one of app ranges, |
| // end of the region belongs to the same region. |
| const uptr ranges[][2] = { |
| {LoAppMemBeg(), LoAppMemEnd()}, |
| {MidAppMemBeg(), MidAppMemEnd()}, |
| {HiAppMemBeg(), HiAppMemEnd()}, |
| }; |
| for (auto range : ranges) { |
| if (addr >= range[0] && addr < range[1]) |
| return addr + size <= range[1]; |
| } |
| return false; |
| } |
| |
| void UnmapShadow(ThreadState *thr, uptr addr, uptr size) { |
| if (size == 0 || !IsValidMmapRange(addr, size)) |
| return; |
| DontNeedShadowFor(addr, size); |
| ScopedGlobalProcessor sgp; |
| SlotLocker locker(thr, true); |
| ctx->metamap.ResetRange(thr->proc(), addr, size, true); |
| } |
| #endif |
| |
| void MapShadow(uptr addr, uptr size) { |
| // Ensure thead registry lock held, so as to synchronize |
| // with DoReset, which also access the mapped_shadow_* ctxt fields. |
| ThreadRegistryLock lock0(&ctx->thread_registry); |
| static bool data_mapped = false; |
| |
| #if !SANITIZER_GO |
| // Global data is not 64K aligned, but there are no adjacent mappings, |
| // so we can get away with unaligned mapping. |
| // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment |
| const uptr kPageSize = GetPageSizeCached(); |
| uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize); |
| uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize); |
| if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) |
| Die(); |
| #else |
| uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10)); |
| uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10)); |
| VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n", |
| addr, addr + size, shadow_begin, shadow_end); |
| |
| if (!data_mapped) { |
| // First call maps data+bss. |
| if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow")) |
| Die(); |
| } else { |
| VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n", |
| ctx->mapped_shadow_begin, ctx->mapped_shadow_end); |
| // Second and subsequent calls map heap. |
| if (shadow_end <= ctx->mapped_shadow_end) |
| return; |
| if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin) |
| ctx->mapped_shadow_begin = shadow_begin; |
| if (shadow_begin < ctx->mapped_shadow_end) |
| shadow_begin = ctx->mapped_shadow_end; |
| VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n", |
| shadow_begin, shadow_end); |
| if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, |
| "shadow")) |
| Die(); |
| ctx->mapped_shadow_end = shadow_end; |
| } |
| #endif |
| |
| // Meta shadow is 2:1, so tread carefully. |
| static uptr mapped_meta_end = 0; |
| uptr meta_begin = (uptr)MemToMeta(addr); |
| uptr meta_end = (uptr)MemToMeta(addr + size); |
| meta_begin = RoundDownTo(meta_begin, 64 << 10); |
| meta_end = RoundUpTo(meta_end, 64 << 10); |
| if (!data_mapped) { |
| // First call maps data+bss. |
| data_mapped = true; |
| if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, |
| "meta shadow")) |
| Die(); |
| } else { |
| // Mapping continuous heap. |
| // Windows wants 64K alignment. |
| meta_begin = RoundDownTo(meta_begin, 64 << 10); |
| meta_end = RoundUpTo(meta_end, 64 << 10); |
| CHECK_GT(meta_end, mapped_meta_end); |
| if (meta_begin < mapped_meta_end) |
| meta_begin = mapped_meta_end; |
| if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin, |
| "meta shadow")) |
| Die(); |
| mapped_meta_end = meta_end; |
| } |
| VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr, |
| addr + size, meta_begin, meta_end); |
| } |
| |
| #if !SANITIZER_GO |
| static void OnStackUnwind(const SignalContext &sig, const void *, |
| BufferedStackTrace *stack) { |
| stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context, |
| common_flags()->fast_unwind_on_fatal); |
| } |
| |
| static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) { |
| HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr); |
| } |
| #endif |
| |
| void CheckUnwind() { |
| // There is high probability that interceptors will check-fail as well, |
| // on the other hand there is no sense in processing interceptors |
| // since we are going to die soon. |
| ScopedIgnoreInterceptors ignore; |
| #if !SANITIZER_GO |
| ThreadState* thr = cur_thread(); |
| thr->nomalloc = false; |
| thr->ignore_sync++; |
| thr->ignore_reads_and_writes++; |
| atomic_store_relaxed(&thr->in_signal_handler, 0); |
| #endif |
| PrintCurrentStackSlow(StackTrace::GetCurrentPc()); |
| } |
| |
| bool is_initialized; |
| |
| void Initialize(ThreadState *thr) { |
| // Thread safe because done before all threads exist. |
| if (is_initialized) |
| return; |
| is_initialized = true; |
| // We are not ready to handle interceptors yet. |
| ScopedIgnoreInterceptors ignore; |
| SanitizerToolName = "ThreadSanitizer"; |
| // Install tool-specific callbacks in sanitizer_common. |
| SetCheckUnwindCallback(CheckUnwind); |
| |
| ctx = new(ctx_placeholder) Context; |
| const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS"; |
| const char *options = GetEnv(env_name); |
| CacheBinaryName(); |
| CheckASLR(); |
| InitializeFlags(&ctx->flags, options, env_name); |
| AvoidCVE_2016_2143(); |
| __sanitizer::InitializePlatformEarly(); |
| __tsan::InitializePlatformEarly(); |
| |
| #if !SANITIZER_GO |
| InitializeAllocator(); |
| ReplaceSystemMalloc(); |
| #endif |
| if (common_flags()->detect_deadlocks) |
| ctx->dd = DDetector::Create(flags()); |
| Processor *proc = ProcCreate(); |
| ProcWire(proc, thr); |
| InitializeInterceptors(); |
| InitializePlatform(); |
| InitializeDynamicAnnotations(); |
| #if !SANITIZER_GO |
| InitializeShadowMemory(); |
| InitializeAllocatorLate(); |
| InstallDeadlySignalHandlers(TsanOnDeadlySignal); |
| #endif |
| // Setup correct file descriptor for error reports. |
| __sanitizer_set_report_path(common_flags()->log_path); |
| InitializeSuppressions(); |
| #if !SANITIZER_GO |
| InitializeLibIgnore(); |
| Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer); |
| #endif |
| |
| VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n", |
| (int)internal_getpid()); |
| |
| // Initialize thread 0. |
| Tid tid = ThreadCreate(nullptr, 0, 0, true); |
| CHECK_EQ(tid, kMainTid); |
| ThreadStart(thr, tid, GetTid(), ThreadType::Regular); |
| #if TSAN_CONTAINS_UBSAN |
| __ubsan::InitAsPlugin(); |
| #endif |
| |
| #if !SANITIZER_GO |
| Symbolizer::LateInitialize(); |
| if (InitializeMemoryProfiler() || flags()->force_background_thread) |
| MaybeSpawnBackgroundThread(); |
| #endif |
| ctx->initialized = true; |
| |
| if (flags()->stop_on_start) { |
| Printf("ThreadSanitizer is suspended at startup (pid %d)." |
| " Call __tsan_resume().\n", |
| (int)internal_getpid()); |
| while (__tsan_resumed == 0) {} |
| } |
| |
| OnInitialize(); |
| } |
| |
| void MaybeSpawnBackgroundThread() { |
| // On MIPS, TSan initialization is run before |
| // __pthread_initialize_minimal_internal() is finished, so we can not spawn |
| // new threads. |
| #if !SANITIZER_GO && !defined(__mips__) |
| static atomic_uint32_t bg_thread = {}; |
| if (atomic_load(&bg_thread, memory_order_relaxed) == 0 && |
| atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) { |
| StartBackgroundThread(); |
| SetSandboxingCallback(StopBackgroundThread); |
| } |
| #endif |
| } |
| |
| int Finalize(ThreadState *thr) { |
| bool failed = false; |
| |
| #if !SANITIZER_GO |
| if (common_flags()->print_module_map == 1) |
| DumpProcessMap(); |
| #endif |
| |
| if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) |
| internal_usleep(u64(flags()->atexit_sleep_ms) * 1000); |
| |
| { |
| // Wait for pending reports. |
| ScopedErrorReportLock lock; |
| } |
| |
| #if !SANITIZER_GO |
| if (Verbosity()) AllocatorPrintStats(); |
| #endif |
| |
| ThreadFinalize(thr); |
| |
| if (ctx->nreported) { |
| failed = true; |
| #if !SANITIZER_GO |
| Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); |
| #else |
| Printf("Found %d data race(s)\n", ctx->nreported); |
| #endif |
| } |
| |
| if (common_flags()->print_suppressions) |
| PrintMatchedSuppressions(); |
| |
| failed = OnFinalize(failed); |
| |
| return failed ? common_flags()->exitcode : 0; |
| } |
| |
| #if !SANITIZER_GO |
| void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| GlobalProcessorLock(); |
| // Detaching from the slot makes OnUserFree skip writing to the shadow. |
| // The slot will be locked so any attempts to use it will deadlock anyway. |
| SlotDetach(thr); |
| for (auto& slot : ctx->slots) slot.mtx.Lock(); |
| ctx->thread_registry.Lock(); |
| ctx->slot_mtx.Lock(); |
| ScopedErrorReportLock::Lock(); |
| AllocatorLock(); |
| // Suppress all reports in the pthread_atfork callbacks. |
| // Reports will deadlock on the report_mtx. |
| // We could ignore sync operations as well, |
| // but so far it's unclear if it will do more good or harm. |
| // Unnecessarily ignoring things can lead to false positives later. |
| thr->suppress_reports++; |
| // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and |
| // we'll assert in CheckNoLocks() unless we ignore interceptors. |
| // On OS X libSystem_atfork_prepare/parent/child callbacks are called |
| // after/before our callbacks and they call free. |
| thr->ignore_interceptors++; |
| // Disables memory write in OnUserAlloc/Free. |
| thr->ignore_reads_and_writes++; |
| |
| __tsan_test_only_on_fork(); |
| } |
| |
| static void ForkAfter(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { |
| thr->suppress_reports--; // Enabled in ForkBefore. |
| thr->ignore_interceptors--; |
| thr->ignore_reads_and_writes--; |
| AllocatorUnlock(); |
| ScopedErrorReportLock::Unlock(); |
| ctx->slot_mtx.Unlock(); |
| ctx->thread_registry.Unlock(); |
| for (auto& slot : ctx->slots) slot.mtx.Unlock(); |
| SlotAttachAndLock(thr); |
| SlotUnlock(thr); |
| GlobalProcessorUnlock(); |
| } |
| |
| void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr); } |
| |
| void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) { |
| ForkAfter(thr); |
| u32 nthread = ctx->thread_registry.OnFork(thr->tid); |
| VPrintf(1, |
| "ThreadSanitizer: forked new process with pid %d," |
| " parent had %d threads\n", |
| (int)internal_getpid(), (int)nthread); |
| if (nthread == 1) { |
| if (start_thread) |
| StartBackgroundThread(); |
| } else { |
| // We've just forked a multi-threaded process. We cannot reasonably function |
| // after that (some mutexes may be locked before fork). So just enable |
| // ignores for everything in the hope that we will exec soon. |
| ctx->after_multithreaded_fork = true; |
| thr->ignore_interceptors++; |
| thr->suppress_reports++; |
| ThreadIgnoreBegin(thr, pc); |
| ThreadIgnoreSyncBegin(thr, pc); |
| } |
| } |
| #endif |
| |
| #if SANITIZER_GO |
| NOINLINE |
| void GrowShadowStack(ThreadState *thr) { |
| const int sz = thr->shadow_stack_end - thr->shadow_stack; |
| const int newsz = 2 * sz; |
| auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr)); |
| internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); |
| Free(thr->shadow_stack); |
| thr->shadow_stack = newstack; |
| thr->shadow_stack_pos = newstack + sz; |
| thr->shadow_stack_end = newstack + newsz; |
| } |
| #endif |
| |
| StackID CurrentStackId(ThreadState *thr, uptr pc) { |
| #if !SANITIZER_GO |
| if (!thr->is_inited) // May happen during bootstrap. |
| return kInvalidStackID; |
| #endif |
| if (pc != 0) { |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #else |
| if (thr->shadow_stack_pos == thr->shadow_stack_end) |
| GrowShadowStack(thr); |
| #endif |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| StackID id = StackDepotPut( |
| StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack)); |
| if (pc != 0) |
| thr->shadow_stack_pos--; |
| return id; |
| } |
| |
| static bool TraceSkipGap(ThreadState* thr) { |
| Trace *trace = &thr->tctx->trace; |
| Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos)); |
| DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0); |
| auto *part = trace->parts.Back(); |
| DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid, |
| trace, trace->parts.Front(), part, pos); |
| if (!part) |
| return false; |
| // We can get here when we still have space in the current trace part. |
| // The fast-path check in TraceAcquire has false positives in the middle of |
| // the part. Check if we are indeed at the end of the current part or not, |
| // and fill any gaps with NopEvent's. |
| Event* end = &part->events[TracePart::kSize]; |
| DCHECK_GE(pos, &part->events[0]); |
| DCHECK_LE(pos, end); |
| if (pos + 1 < end) { |
| if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) == |
| TracePart::kAlignment) |
| *pos++ = NopEvent; |
| *pos++ = NopEvent; |
| DCHECK_LE(pos + 2, end); |
| atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos)); |
| return true; |
| } |
| // We are indeed at the end. |
| for (; pos < end; pos++) *pos = NopEvent; |
| return false; |
| } |
| |
| NOINLINE |
| void TraceSwitchPart(ThreadState* thr) { |
| if (TraceSkipGap(thr)) |
| return; |
| #if !SANITIZER_GO |
| if (ctx->after_multithreaded_fork) { |
| // We just need to survive till exec. |
| TracePart* part = thr->tctx->trace.parts.Back(); |
| if (part) { |
| atomic_store_relaxed(&thr->trace_pos, |
| reinterpret_cast<uptr>(&part->events[0])); |
| return; |
| } |
| } |
| #endif |
| TraceSwitchPartImpl(thr); |
| } |
| |
| void TraceSwitchPartImpl(ThreadState* thr) { |
| SlotLocker locker(thr, true); |
| Trace* trace = &thr->tctx->trace; |
| TracePart* part = TracePartAlloc(thr); |
| part->trace = trace; |
| thr->trace_prev_pc = 0; |
| TracePart* recycle = nullptr; |
| // Keep roughly half of parts local to the thread |
| // (not queued into the recycle queue). |
| uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2; |
| { |
| Lock lock(&trace->mtx); |
| if (trace->parts.Empty()) |
| trace->local_head = part; |
| if (trace->parts.Size() >= local_parts) { |
| recycle = trace->local_head; |
| trace->local_head = trace->parts.Next(recycle); |
| } |
| trace->parts.PushBack(part); |
| atomic_store_relaxed(&thr->trace_pos, |
| reinterpret_cast<uptr>(&part->events[0])); |
| } |
| // Make this part self-sufficient by restoring the current stack |
| // and mutex set in the beginning of the trace. |
| TraceTime(thr); |
| { |
| // Pathologically large stacks may not fit into the part. |
| // In these cases we log only fixed number of top frames. |
| const uptr kMaxFrames = 1000; |
| // Check that kMaxFrames won't consume the whole part. |
| static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big"); |
| uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames); |
| for (; pos < thr->shadow_stack_pos; pos++) { |
| if (TryTraceFunc(thr, *pos)) |
| continue; |
| CHECK(TraceSkipGap(thr)); |
| CHECK(TryTraceFunc(thr, *pos)); |
| } |
| } |
| for (uptr i = 0; i < thr->mset.Size(); i++) { |
| MutexSet::Desc d = thr->mset.Get(i); |
| for (uptr i = 0; i < d.count; i++) |
| TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0, |
| d.addr, d.stack_id); |
| } |
| // Callers of TraceSwitchPart expect that TraceAcquire will always succeed |
| // after the call. It's possible that TryTraceFunc/TraceMutexLock above |
| // filled the trace part exactly up to the TracePart::kAlignment gap |
| // and the next TraceAcquire won't succeed. Skip the gap to avoid that. |
| EventFunc *ev; |
| if (!TraceAcquire(thr, &ev)) { |
| CHECK(TraceSkipGap(thr)); |
| CHECK(TraceAcquire(thr, &ev)); |
| } |
| { |
| Lock lock(&ctx->slot_mtx); |
| // There is a small chance that the slot may be not queued at this point. |
| // This can happen if the slot has kEpochLast epoch and another thread |
| // in FindSlotAndLock discovered that it's exhausted and removed it from |
| // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart |
| // was called with the slot locked and epoch already at kEpochLast, |
| // or (2) if we've acquired a new slot in SlotLock in the beginning |
| // of the function and the slot was at kEpochLast - 1, so after increment |
| // in SlotAttachAndLock it become kEpochLast. |
| if (ctx->slot_queue.Queued(thr->slot)) { |
| ctx->slot_queue.Remove(thr->slot); |
| ctx->slot_queue.PushBack(thr->slot); |
| } |
| if (recycle) |
| ctx->trace_part_recycle.PushBack(recycle); |
| } |
| DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid, |
| trace->parts.Front(), trace->parts.Back(), |
| atomic_load_relaxed(&thr->trace_pos)); |
| } |
| |
| void ThreadIgnoreBegin(ThreadState* thr, uptr pc) { |
| DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid); |
| thr->ignore_reads_and_writes++; |
| CHECK_GT(thr->ignore_reads_and_writes, 0); |
| thr->fast_state.SetIgnoreBit(); |
| #if !SANITIZER_GO |
| if (pc && !ctx->after_multithreaded_fork) |
| thr->mop_ignore_set.Add(CurrentStackId(thr, pc)); |
| #endif |
| } |
| |
| void ThreadIgnoreEnd(ThreadState *thr) { |
| DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid); |
| CHECK_GT(thr->ignore_reads_and_writes, 0); |
| thr->ignore_reads_and_writes--; |
| if (thr->ignore_reads_and_writes == 0) { |
| thr->fast_state.ClearIgnoreBit(); |
| #if !SANITIZER_GO |
| thr->mop_ignore_set.Reset(); |
| #endif |
| } |
| } |
| |
| #if !SANITIZER_GO |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __tsan_testonly_shadow_stack_current_size() { |
| ThreadState *thr = cur_thread(); |
| return thr->shadow_stack_pos - thr->shadow_stack; |
| } |
| #endif |
| |
| void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) { |
| DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid); |
| thr->ignore_sync++; |
| CHECK_GT(thr->ignore_sync, 0); |
| #if !SANITIZER_GO |
| if (pc && !ctx->after_multithreaded_fork) |
| thr->sync_ignore_set.Add(CurrentStackId(thr, pc)); |
| #endif |
| } |
| |
| void ThreadIgnoreSyncEnd(ThreadState *thr) { |
| DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid); |
| CHECK_GT(thr->ignore_sync, 0); |
| thr->ignore_sync--; |
| #if !SANITIZER_GO |
| if (thr->ignore_sync == 0) |
| thr->sync_ignore_set.Reset(); |
| #endif |
| } |
| |
| bool MD5Hash::operator==(const MD5Hash &other) const { |
| return hash[0] == other.hash[0] && hash[1] == other.hash[1]; |
| } |
| |
| #if SANITIZER_DEBUG |
| void build_consistency_debug() {} |
| #else |
| void build_consistency_release() {} |
| #endif |
| } // namespace __tsan |
| |
| #if SANITIZER_CHECK_DEADLOCKS |
| namespace __sanitizer { |
| using namespace __tsan; |
| MutexMeta mutex_meta[] = { |
| {MutexInvalid, "Invalid", {}}, |
| {MutexThreadRegistry, |
| "ThreadRegistry", |
| {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}}, |
| {MutexTypeReport, "Report", {MutexTypeTrace}}, |
| {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}}, |
| {MutexTypeAnnotations, "Annotations", {}}, |
| {MutexTypeAtExit, "AtExit", {}}, |
| {MutexTypeFired, "Fired", {MutexLeaf}}, |
| {MutexTypeRacy, "Racy", {MutexLeaf}}, |
| {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}}, |
| {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}}, |
| {MutexTypeTrace, "Trace", {}}, |
| {MutexTypeSlot, |
| "Slot", |
| {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry, |
| MutexTypeSlots}}, |
| {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}}, |
| {}, |
| }; |
| |
| void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); } |
| |
| } // namespace __sanitizer |
| #endif |