| //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Main internal TSan header file. |
| // |
| // Ground rules: |
| // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static |
| // function-scope locals) |
| // - All functions/classes/etc reside in namespace __tsan, except for those |
| // declared in tsan_interface.h. |
| // - Platform-specific files should be used instead of ifdefs (*). |
| // - No system headers included in header files (*). |
| // - Platform specific headres included only into platform-specific files (*). |
| // |
| // (*) Except when inlining is critical for performance. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef TSAN_RTL_H |
| #define TSAN_RTL_H |
| |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "sanitizer_common/sanitizer_allocator_internal.h" |
| #include "sanitizer_common/sanitizer_asm.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_deadlock_detector_interface.h" |
| #include "sanitizer_common/sanitizer_libignore.h" |
| #include "sanitizer_common/sanitizer_suppressions.h" |
| #include "sanitizer_common/sanitizer_thread_registry.h" |
| #include "sanitizer_common/sanitizer_vector.h" |
| #include "tsan_defs.h" |
| #include "tsan_flags.h" |
| #include "tsan_ignoreset.h" |
| #include "tsan_ilist.h" |
| #include "tsan_mman.h" |
| #include "tsan_mutexset.h" |
| #include "tsan_platform.h" |
| #include "tsan_report.h" |
| #include "tsan_shadow.h" |
| #include "tsan_stack_trace.h" |
| #include "tsan_sync.h" |
| #include "tsan_trace.h" |
| #include "tsan_vector_clock.h" |
| |
| #if SANITIZER_WORDSIZE != 64 |
| # error "ThreadSanitizer is supported only on 64-bit platforms" |
| #endif |
| |
| namespace __tsan { |
| |
| #if !SANITIZER_GO |
| struct MapUnmapCallback; |
| #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__) |
| |
| struct AP32 { |
| static const uptr kSpaceBeg = 0; |
| static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; |
| static const uptr kMetadataSize = 0; |
| typedef __sanitizer::CompactSizeClassMap SizeClassMap; |
| static const uptr kRegionSizeLog = 20; |
| using AddressSpaceView = LocalAddressSpaceView; |
| typedef __tsan::MapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| }; |
| typedef SizeClassAllocator32<AP32> PrimaryAllocator; |
| #else |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| # if defined(__s390x__) |
| typedef MappingS390x Mapping; |
| # else |
| typedef Mapping48AddressSpace Mapping; |
| # endif |
| static const uptr kSpaceBeg = Mapping::kHeapMemBeg; |
| static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg; |
| static const uptr kMetadataSize = 0; |
| typedef DefaultSizeClassMap SizeClassMap; |
| typedef __tsan::MapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
| #endif |
| typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| typedef Allocator::AllocatorCache AllocatorCache; |
| Allocator *allocator(); |
| #endif |
| |
| struct ThreadSignalContext; |
| |
| struct JmpBuf { |
| uptr sp; |
| int int_signal_send; |
| bool in_blocking_func; |
| uptr in_signal_handler; |
| uptr *shadow_stack_pos; |
| }; |
| |
| // A Processor represents a physical thread, or a P for Go. |
| // It is used to store internal resources like allocate cache, and does not |
| // participate in race-detection logic (invisible to end user). |
| // In C++ it is tied to an OS thread just like ThreadState, however ideally |
| // it should be tied to a CPU (this way we will have fewer allocator caches). |
| // In Go it is tied to a P, so there are significantly fewer Processor's than |
| // ThreadState's (which are tied to Gs). |
| // A ThreadState must be wired with a Processor to handle events. |
| struct Processor { |
| ThreadState *thr; // currently wired thread, or nullptr |
| #if !SANITIZER_GO |
| AllocatorCache alloc_cache; |
| InternalAllocatorCache internal_alloc_cache; |
| #endif |
| DenseSlabAllocCache block_cache; |
| DenseSlabAllocCache sync_cache; |
| DDPhysicalThread *dd_pt; |
| }; |
| |
| #if !SANITIZER_GO |
| // ScopedGlobalProcessor temporary setups a global processor for the current |
| // thread, if it does not have one. Intended for interceptors that can run |
| // at the very thread end, when we already destroyed the thread processor. |
| struct ScopedGlobalProcessor { |
| ScopedGlobalProcessor(); |
| ~ScopedGlobalProcessor(); |
| }; |
| #endif |
| |
| struct TidEpoch { |
| Tid tid; |
| Epoch epoch; |
| }; |
| |
| struct TidSlot { |
| Mutex mtx; |
| Sid sid; |
| atomic_uint32_t raw_epoch; |
| ThreadState *thr; |
| Vector<TidEpoch> journal; |
| INode node; |
| |
| Epoch epoch() const { |
| return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed)); |
| } |
| |
| void SetEpoch(Epoch v) { |
| atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed); |
| } |
| |
| TidSlot(); |
| } ALIGNED(SANITIZER_CACHE_LINE_SIZE); |
| |
| // This struct is stored in TLS. |
| struct ThreadState { |
| FastState fast_state; |
| int ignore_sync; |
| #if !SANITIZER_GO |
| int ignore_interceptors; |
| #endif |
| uptr *shadow_stack_pos; |
| |
| // Current position in tctx->trace.Back()->events (Event*). |
| atomic_uintptr_t trace_pos; |
| // PC of the last memory access, used to compute PC deltas in the trace. |
| uptr trace_prev_pc; |
| |
| // Technically `current` should be a separate THREADLOCAL variable; |
| // but it is placed here in order to share cache line with previous fields. |
| ThreadState* current; |
| |
| atomic_sint32_t pending_signals; |
| |
| VectorClock clock; |
| |
| // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. |
| // We do not distinguish beteween ignoring reads and writes |
| // for better performance. |
| int ignore_reads_and_writes; |
| int suppress_reports; |
| // Go does not support ignores. |
| #if !SANITIZER_GO |
| IgnoreSet mop_ignore_set; |
| IgnoreSet sync_ignore_set; |
| #endif |
| uptr *shadow_stack; |
| uptr *shadow_stack_end; |
| #if !SANITIZER_GO |
| Vector<JmpBuf> jmp_bufs; |
| int in_symbolizer; |
| bool in_ignored_lib; |
| bool is_inited; |
| #endif |
| MutexSet mset; |
| bool is_dead; |
| const Tid tid; |
| uptr stk_addr; |
| uptr stk_size; |
| uptr tls_addr; |
| uptr tls_size; |
| ThreadContext *tctx; |
| |
| DDLogicalThread *dd_lt; |
| |
| TidSlot *slot; |
| uptr slot_epoch; |
| bool slot_locked; |
| |
| // Current wired Processor, or nullptr. Required to handle any events. |
| Processor *proc1; |
| #if !SANITIZER_GO |
| Processor *proc() { return proc1; } |
| #else |
| Processor *proc(); |
| #endif |
| |
| atomic_uintptr_t in_signal_handler; |
| ThreadSignalContext *signal_ctx; |
| |
| #if !SANITIZER_GO |
| StackID last_sleep_stack_id; |
| VectorClock last_sleep_clock; |
| #endif |
| |
| // Set in regions of runtime that must be signal-safe and fork-safe. |
| // If set, malloc must not be called. |
| int nomalloc; |
| |
| const ReportDesc *current_report; |
| |
| explicit ThreadState(Tid tid); |
| } ALIGNED(SANITIZER_CACHE_LINE_SIZE); |
| |
| #if !SANITIZER_GO |
| #if SANITIZER_APPLE || SANITIZER_ANDROID |
| ThreadState *cur_thread(); |
| void set_cur_thread(ThreadState *thr); |
| void cur_thread_finalize(); |
| inline ThreadState *cur_thread_init() { return cur_thread(); } |
| # else |
| __attribute__((tls_model("initial-exec"))) |
| extern THREADLOCAL char cur_thread_placeholder[]; |
| inline ThreadState *cur_thread() { |
| return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current; |
| } |
| inline ThreadState *cur_thread_init() { |
| ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder); |
| if (UNLIKELY(!thr->current)) |
| thr->current = thr; |
| return thr->current; |
| } |
| inline void set_cur_thread(ThreadState *thr) { |
| reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr; |
| } |
| inline void cur_thread_finalize() { } |
| # endif // SANITIZER_APPLE || SANITIZER_ANDROID |
| #endif // SANITIZER_GO |
| |
| class ThreadContext final : public ThreadContextBase { |
| public: |
| explicit ThreadContext(Tid tid); |
| ~ThreadContext(); |
| ThreadState *thr; |
| StackID creation_stack_id; |
| VectorClock *sync; |
| uptr sync_epoch; |
| Trace trace; |
| |
| // Override superclass callbacks. |
| void OnDead() override; |
| void OnJoined(void *arg) override; |
| void OnFinished() override; |
| void OnStarted(void *arg) override; |
| void OnCreated(void *arg) override; |
| void OnReset() override; |
| void OnDetached(void *arg) override; |
| }; |
| |
| struct RacyStacks { |
| MD5Hash hash[2]; |
| bool operator==(const RacyStacks &other) const; |
| }; |
| |
| struct RacyAddress { |
| uptr addr_min; |
| uptr addr_max; |
| }; |
| |
| struct FiredSuppression { |
| ReportType type; |
| uptr pc_or_addr; |
| Suppression *supp; |
| }; |
| |
| struct Context { |
| Context(); |
| |
| bool initialized; |
| #if !SANITIZER_GO |
| bool after_multithreaded_fork; |
| #endif |
| |
| MetaMap metamap; |
| |
| Mutex report_mtx; |
| int nreported; |
| atomic_uint64_t last_symbolize_time_ns; |
| |
| void *background_thread; |
| atomic_uint32_t stop_background_thread; |
| |
| ThreadRegistry thread_registry; |
| |
| // This is used to prevent a very unlikely but very pathological behavior. |
| // Since memory access handling is not synchronized with DoReset, |
| // a thread running concurrently with DoReset can leave a bogus shadow value |
| // that will be later falsely detected as a race. For such false races |
| // RestoreStack will return false and we will not report it. |
| // However, consider that a thread leaves a whole lot of such bogus values |
| // and these values are later read by a whole lot of threads. |
| // This will cause massive amounts of ReportRace calls and lots of |
| // serialization. In very pathological cases the resulting slowdown |
| // can be >100x. This is very unlikely, but it was presumably observed |
| // in practice: https://github.com/google/sanitizers/issues/1552 |
| // If this happens, previous access sid+epoch will be the same for all of |
| // these false races b/c if the thread will try to increment epoch, it will |
| // notice that DoReset has happened and will stop producing bogus shadow |
| // values. So, last_spurious_race is used to remember the last sid+epoch |
| // for which RestoreStack returned false. Then it is used to filter out |
| // races with the same sid+epoch very early and quickly. |
| // It is of course possible that multiple threads left multiple bogus shadow |
| // values and all of them are read by lots of threads at the same time. |
| // In such case last_spurious_race will only be able to deduplicate a few |
| // races from one thread, then few from another and so on. An alternative |
| // would be to hold an array of such sid+epoch, but we consider such scenario |
| // as even less likely. |
| // Note: this can lead to some rare false negatives as well: |
| // 1. When a legit access with the same sid+epoch participates in a race |
| // as the "previous" memory access, it will be wrongly filtered out. |
| // 2. When RestoreStack returns false for a legit memory access because it |
| // was already evicted from the thread trace, we will still remember it in |
| // last_spurious_race. Then if there is another racing memory access from |
| // the same thread that happened in the same epoch, but was stored in the |
| // next thread trace part (which is still preserved in the thread trace), |
| // we will also wrongly filter it out while RestoreStack would actually |
| // succeed for that second memory access. |
| RawShadow last_spurious_race; |
| |
| Mutex racy_mtx; |
| Vector<RacyStacks> racy_stacks; |
| // Number of fired suppressions may be large enough. |
| Mutex fired_suppressions_mtx; |
| InternalMmapVector<FiredSuppression> fired_suppressions; |
| DDetector *dd; |
| |
| Flags flags; |
| fd_t memprof_fd; |
| |
| // The last slot index (kFreeSid) is used to denote freed memory. |
| TidSlot slots[kThreadSlotCount - 1]; |
| |
| // Protects global_epoch, slot_queue, trace_part_recycle. |
| Mutex slot_mtx; |
| uptr global_epoch; // guarded by slot_mtx and by all slot mutexes |
| bool resetting; // global reset is in progress |
| IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx); |
| IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle |
| SANITIZER_GUARDED_BY(slot_mtx); |
| uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx); |
| uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx); |
| uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx); |
| #if SANITIZER_GO |
| uptr mapped_shadow_begin; |
| uptr mapped_shadow_end; |
| #endif |
| }; |
| |
| extern Context *ctx; // The one and the only global runtime context. |
| |
| ALWAYS_INLINE Flags *flags() { |
| return &ctx->flags; |
| } |
| |
| struct ScopedIgnoreInterceptors { |
| ScopedIgnoreInterceptors() { |
| #if !SANITIZER_GO |
| cur_thread()->ignore_interceptors++; |
| #endif |
| } |
| |
| ~ScopedIgnoreInterceptors() { |
| #if !SANITIZER_GO |
| cur_thread()->ignore_interceptors--; |
| #endif |
| } |
| }; |
| |
| const char *GetObjectTypeFromTag(uptr tag); |
| const char *GetReportHeaderFromTag(uptr tag); |
| uptr TagFromShadowStackFrame(uptr pc); |
| |
| class ScopedReportBase { |
| public: |
| void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid, |
| StackTrace stack, const MutexSet *mset); |
| void AddStack(StackTrace stack, bool suppressable = false); |
| void AddThread(const ThreadContext *tctx, bool suppressable = false); |
| void AddThread(Tid tid, bool suppressable = false); |
| void AddUniqueTid(Tid unique_tid); |
| int AddMutex(uptr addr, StackID creation_stack_id); |
| void AddLocation(uptr addr, uptr size); |
| void AddSleep(StackID stack_id); |
| void SetCount(int count); |
| void SetSigNum(int sig); |
| |
| const ReportDesc *GetReport() const; |
| |
| protected: |
| ScopedReportBase(ReportType typ, uptr tag); |
| ~ScopedReportBase(); |
| |
| private: |
| ReportDesc *rep_; |
| // Symbolizer makes lots of intercepted calls. If we try to process them, |
| // at best it will cause deadlocks on internal mutexes. |
| ScopedIgnoreInterceptors ignore_interceptors_; |
| |
| ScopedReportBase(const ScopedReportBase &) = delete; |
| void operator=(const ScopedReportBase &) = delete; |
| }; |
| |
| class ScopedReport : public ScopedReportBase { |
| public: |
| explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone); |
| ~ScopedReport(); |
| |
| private: |
| ScopedErrorReportLock lock_; |
| }; |
| |
| bool ShouldReport(ThreadState *thr, ReportType typ); |
| ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack); |
| |
| // The stack could look like: |
| // <start> | <main> | <foo> | tag | <bar> |
| // This will extract the tag and keep: |
| // <start> | <main> | <foo> | <bar> |
| template<typename StackTraceTy> |
| void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) { |
| if (stack->size < 2) return; |
| uptr possible_tag_pc = stack->trace[stack->size - 2]; |
| uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc); |
| if (possible_tag == kExternalTagNone) return; |
| stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1]; |
| stack->size -= 1; |
| if (tag) *tag = possible_tag; |
| } |
| |
| template<typename StackTraceTy> |
| void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack, |
| uptr *tag = nullptr) { |
| uptr size = thr->shadow_stack_pos - thr->shadow_stack; |
| uptr start = 0; |
| if (size + !!toppc > kStackTraceMax) { |
| start = size + !!toppc - kStackTraceMax; |
| size = kStackTraceMax - !!toppc; |
| } |
| stack->Init(&thr->shadow_stack[start], size, toppc); |
| ExtractTagFromStack(stack, tag); |
| } |
| |
| #define GET_STACK_TRACE_FATAL(thr, pc) \ |
| VarSizeStackTrace stack; \ |
| ObtainCurrentStack(thr, pc, &stack); \ |
| stack.ReverseOrder(); |
| |
| void MapShadow(uptr addr, uptr size); |
| void MapThreadTrace(uptr addr, uptr size, const char *name); |
| void DontNeedShadowFor(uptr addr, uptr size); |
| void UnmapShadow(ThreadState *thr, uptr addr, uptr size); |
| void InitializeShadowMemory(); |
| void InitializeInterceptors(); |
| void InitializeLibIgnore(); |
| void InitializeDynamicAnnotations(); |
| |
| void ForkBefore(ThreadState *thr, uptr pc); |
| void ForkParentAfter(ThreadState *thr, uptr pc); |
| void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread); |
| |
| void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old, |
| AccessType typ); |
| bool OutputReport(ThreadState *thr, const ScopedReport &srep); |
| bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace); |
| bool IsExpectedReport(uptr addr, uptr size); |
| |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 |
| # define DPrintf Printf |
| #else |
| # define DPrintf(...) |
| #endif |
| |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 |
| # define DPrintf2 Printf |
| #else |
| # define DPrintf2(...) |
| #endif |
| |
| StackID CurrentStackId(ThreadState *thr, uptr pc); |
| ReportStack *SymbolizeStackId(StackID stack_id); |
| void PrintCurrentStack(ThreadState *thr, uptr pc); |
| void PrintCurrentStackSlow(uptr pc); // uses libunwind |
| MBlock *JavaHeapBlock(uptr addr, uptr *start); |
| |
| void Initialize(ThreadState *thr); |
| void MaybeSpawnBackgroundThread(); |
| int Finalize(ThreadState *thr); |
| |
| void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write); |
| void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write); |
| |
| void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ); |
| void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ); |
| // This creates 2 non-inlined specialized versions of MemoryAccessRange. |
| template <bool is_read> |
| void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| |
| ALWAYS_INLINE |
| void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| bool is_write) { |
| if (size == 0) |
| return; |
| if (is_write) |
| MemoryAccessRangeT<false>(thr, pc, addr, size); |
| else |
| MemoryAccessRangeT<true>(thr, pc, addr, size); |
| } |
| |
| void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v); |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, |
| uptr size); |
| |
| void ThreadIgnoreBegin(ThreadState *thr, uptr pc); |
| void ThreadIgnoreEnd(ThreadState *thr); |
| void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc); |
| void ThreadIgnoreSyncEnd(ThreadState *thr); |
| |
| Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); |
| void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id, |
| ThreadType thread_type); |
| void ThreadFinish(ThreadState *thr); |
| Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid); |
| void ThreadJoin(ThreadState *thr, uptr pc, Tid tid); |
| void ThreadDetach(ThreadState *thr, uptr pc, Tid tid); |
| void ThreadFinalize(ThreadState *thr); |
| void ThreadSetName(ThreadState *thr, const char *name); |
| int ThreadCount(ThreadState *thr); |
| void ProcessPendingSignalsImpl(ThreadState *thr); |
| void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid); |
| |
| Processor *ProcCreate(); |
| void ProcDestroy(Processor *proc); |
| void ProcWire(Processor *proc, ThreadState *thr); |
| void ProcUnwire(Processor *proc, ThreadState *thr); |
| |
| // Note: the parameter is called flagz, because flags is already taken |
| // by the global function that returns flags. |
| void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0, |
| int rec = 1); |
| int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0); |
| void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD |
| void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr); |
| |
| void Acquire(ThreadState *thr, uptr pc, uptr addr); |
| // AcquireGlobal synchronizes the current thread with all other threads. |
| // In terms of happens-before relation, it draws a HB edge from all threads |
| // (where they happen to execute right now) to the current thread. We use it to |
| // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal |
| // right before executing finalizers. This provides a coarse, but simple |
| // approximation of the actual required synchronization. |
| void AcquireGlobal(ThreadState *thr); |
| void Release(ThreadState *thr, uptr pc, uptr addr); |
| void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr); |
| void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); |
| void AfterSleep(ThreadState *thr, uptr pc); |
| void IncrementEpoch(ThreadState *thr); |
| |
| #if !SANITIZER_GO |
| uptr ALWAYS_INLINE HeapEnd() { |
| return HeapMemEnd() + PrimaryAllocator::AdditionalSize(); |
| } |
| #endif |
| |
| void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); |
| void SlotDetach(ThreadState *thr); |
| void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx); |
| void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx); |
| void DoReset(ThreadState *thr, uptr epoch); |
| void FlushShadowMemory(); |
| |
| ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags); |
| void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber); |
| void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags); |
| |
| // These need to match __tsan_switch_to_fiber_* flags defined in |
| // tsan_interface.h. See documentation there as well. |
| enum FiberSwitchFlags { |
| FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync |
| }; |
| |
| class SlotLocker { |
| public: |
| ALWAYS_INLINE |
| SlotLocker(ThreadState *thr, bool recursive = false) |
| : thr_(thr), locked_(recursive ? thr->slot_locked : false) { |
| if (!locked_) |
| SlotLock(thr_); |
| } |
| |
| ALWAYS_INLINE |
| ~SlotLocker() { |
| if (!locked_) |
| SlotUnlock(thr_); |
| } |
| |
| private: |
| ThreadState *thr_; |
| bool locked_; |
| }; |
| |
| class SlotUnlocker { |
| public: |
| SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) { |
| if (locked_) |
| SlotUnlock(thr_); |
| } |
| |
| ~SlotUnlocker() { |
| if (locked_) |
| SlotLock(thr_); |
| } |
| |
| private: |
| ThreadState *thr_; |
| bool locked_; |
| }; |
| |
| ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) { |
| if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals))) |
| ProcessPendingSignalsImpl(thr); |
| } |
| |
| extern bool is_initialized; |
| |
| ALWAYS_INLINE |
| void LazyInitialize(ThreadState *thr) { |
| // If we can use .preinit_array, assume that __tsan_init |
| // called from .preinit_array initializes runtime before |
| // any instrumented code. |
| #if !SANITIZER_CAN_USE_PREINIT_ARRAY |
| if (UNLIKELY(!is_initialized)) |
| Initialize(thr); |
| #endif |
| } |
| |
| void TraceResetForTesting(); |
| void TraceSwitchPart(ThreadState *thr); |
| void TraceSwitchPartImpl(ThreadState *thr); |
| bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size, |
| AccessType typ, Tid *ptid, VarSizeStackTrace *pstk, |
| MutexSet *pmset, uptr *ptag); |
| |
| template <typename EventT> |
| ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr, |
| EventT **ev) { |
| // TraceSwitchPart accesses shadow_stack, but it's called infrequently, |
| // so we check it here proactively. |
| DCHECK(thr->shadow_stack); |
| Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos)); |
| #if SANITIZER_DEBUG |
| // TraceSwitch acquires these mutexes, |
| // so we lock them here to detect deadlocks more reliably. |
| { Lock lock(&ctx->slot_mtx); } |
| { Lock lock(&thr->tctx->trace.mtx); } |
| TracePart *current = thr->tctx->trace.parts.Back(); |
| if (current) { |
| DCHECK_GE(pos, ¤t->events[0]); |
| DCHECK_LE(pos, ¤t->events[TracePart::kSize]); |
| } else { |
| DCHECK_EQ(pos, nullptr); |
| } |
| #endif |
| // TracePart is allocated with mmap and is at least 4K aligned. |
| // So the following check is a faster way to check for part end. |
| // It may have false positives in the middle of the trace, |
| // they are filtered out in TraceSwitch. |
| if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0)) |
| return false; |
| *ev = reinterpret_cast<EventT *>(pos); |
| return true; |
| } |
| |
| template <typename EventT> |
| ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) { |
| DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]); |
| atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1)); |
| } |
| |
| template <typename EventT> |
| void TraceEvent(ThreadState *thr, EventT ev) { |
| EventT *evp; |
| if (!TraceAcquire(thr, &evp)) { |
| TraceSwitchPart(thr); |
| UNUSED bool res = TraceAcquire(thr, &evp); |
| DCHECK(res); |
| } |
| *evp = ev; |
| TraceRelease(thr, evp); |
| } |
| |
| ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr, |
| uptr pc = 0) { |
| if (!kCollectHistory) |
| return true; |
| EventFunc *ev; |
| if (UNLIKELY(!TraceAcquire(thr, &ev))) |
| return false; |
| ev->is_access = 0; |
| ev->is_func = 1; |
| ev->pc = pc; |
| TraceRelease(thr, ev); |
| return true; |
| } |
| |
| WARN_UNUSED_RESULT |
| bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ); |
| WARN_UNUSED_RESULT |
| bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ); |
| void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ); |
| void TraceFunc(ThreadState *thr, uptr pc = 0); |
| void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr, |
| StackID stk); |
| void TraceMutexUnlock(ThreadState *thr, uptr addr); |
| void TraceTime(ThreadState *thr); |
| |
| void TraceRestartFuncExit(ThreadState *thr); |
| void TraceRestartFuncEntry(ThreadState *thr, uptr pc); |
| |
| void GrowShadowStack(ThreadState *thr); |
| |
| ALWAYS_INLINE |
| void FuncEntry(ThreadState *thr, uptr pc) { |
| DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc); |
| if (UNLIKELY(!TryTraceFunc(thr, pc))) |
| return TraceRestartFuncEntry(thr, pc); |
| DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack); |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #else |
| if (thr->shadow_stack_pos == thr->shadow_stack_end) |
| GrowShadowStack(thr); |
| #endif |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| |
| ALWAYS_INLINE |
| void FuncExit(ThreadState *thr) { |
| DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid()); |
| if (UNLIKELY(!TryTraceFunc(thr, 0))) |
| return TraceRestartFuncExit(thr); |
| DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack); |
| #if !SANITIZER_GO |
| DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end); |
| #endif |
| thr->shadow_stack_pos--; |
| } |
| |
| #if !SANITIZER_GO |
| extern void (*on_initialize)(void); |
| extern int (*on_finalize)(int); |
| #endif |
| } // namespace __tsan |
| |
| #endif // TSAN_RTL_H |