blob: e1e121e2ee073dc711aa79d056d79daedaba2764 [file] [log] [blame]
//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// This file is a part of ThreadSanitizer (TSan), a race detector.
// Main internal TSan header file.
// Ground rules:
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
// function-scope locals)
// - All functions/classes/etc reside in namespace __tsan, except for those
// declared in tsan_interface.h.
// - Platform-specific files should be used instead of ifdefs (*).
// - No system headers included in header files (*).
// - Platform specific headres included only into platform-specific files (*).
// (*) Except when inlining is critical for performance.
#ifndef TSAN_RTL_H
#define TSAN_RTL_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_asm.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
#include "sanitizer_common/sanitizer_libignore.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "sanitizer_common/sanitizer_vector.h"
#include "tsan_defs.h"
#include "tsan_flags.h"
#include "tsan_ignoreset.h"
#include "tsan_ilist.h"
#include "tsan_mman.h"
#include "tsan_mutexset.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_shadow.h"
#include "tsan_stack_trace.h"
#include "tsan_sync.h"
#include "tsan_trace.h"
#include "tsan_vector_clock.h"
# error "ThreadSanitizer is supported only on 64-bit platforms"
namespace __tsan {
struct MapUnmapCallback;
#if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = 0;
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = 20;
using AddressSpaceView = LocalAddressSpaceView;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
# if defined(__s390x__)
typedef MappingS390x Mapping;
# else
typedef Mapping48AddressSpace Mapping;
# endif
static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
static const uptr kMetadataSize = 0;
typedef DefaultSizeClassMap SizeClassMap;
typedef __tsan::MapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
Allocator *allocator();
struct ThreadSignalContext;
struct JmpBuf {
uptr sp;
int int_signal_send;
bool in_blocking_func;
uptr in_signal_handler;
uptr *shadow_stack_pos;
// A Processor represents a physical thread, or a P for Go.
// It is used to store internal resources like allocate cache, and does not
// participate in race-detection logic (invisible to end user).
// In C++ it is tied to an OS thread just like ThreadState, however ideally
// it should be tied to a CPU (this way we will have fewer allocator caches).
// In Go it is tied to a P, so there are significantly fewer Processor's than
// ThreadState's (which are tied to Gs).
// A ThreadState must be wired with a Processor to handle events.
struct Processor {
ThreadState *thr; // currently wired thread, or nullptr
AllocatorCache alloc_cache;
InternalAllocatorCache internal_alloc_cache;
DenseSlabAllocCache block_cache;
DenseSlabAllocCache sync_cache;
DDPhysicalThread *dd_pt;
// ScopedGlobalProcessor temporary setups a global processor for the current
// thread, if it does not have one. Intended for interceptors that can run
// at the very thread end, when we already destroyed the thread processor.
struct ScopedGlobalProcessor {
struct TidEpoch {
Tid tid;
Epoch epoch;
struct TidSlot {
Mutex mtx;
Sid sid;
atomic_uint32_t raw_epoch;
ThreadState *thr;
Vector<TidEpoch> journal;
INode node;
Epoch epoch() const {
return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
void SetEpoch(Epoch v) {
atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
// This struct is stored in TLS.
struct ThreadState {
FastState fast_state;
int ignore_sync;
int ignore_interceptors;
uptr *shadow_stack_pos;
// Current position in tctx->trace.Back()->events (Event*).
atomic_uintptr_t trace_pos;
// PC of the last memory access, used to compute PC deltas in the trace.
uptr trace_prev_pc;
// Technically `current` should be a separate THREADLOCAL variable;
// but it is placed here in order to share cache line with previous fields.
ThreadState* current;
atomic_sint32_t pending_signals;
VectorClock clock;
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
// We do not distinguish beteween ignoring reads and writes
// for better performance.
int ignore_reads_and_writes;
int suppress_reports;
// Go does not support ignores.
IgnoreSet mop_ignore_set;
IgnoreSet sync_ignore_set;
uptr *shadow_stack;
uptr *shadow_stack_end;
Vector<JmpBuf> jmp_bufs;
int in_symbolizer;
bool in_ignored_lib;
bool is_inited;
MutexSet mset;
bool is_dead;
const Tid tid;
uptr stk_addr;
uptr stk_size;
uptr tls_addr;
uptr tls_size;
ThreadContext *tctx;
DDLogicalThread *dd_lt;
TidSlot *slot;
uptr slot_epoch;
bool slot_locked;
// Current wired Processor, or nullptr. Required to handle any events.
Processor *proc1;
Processor *proc() { return proc1; }
Processor *proc();
atomic_uintptr_t in_signal_handler;
ThreadSignalContext *signal_ctx;
StackID last_sleep_stack_id;
VectorClock last_sleep_clock;
// Set in regions of runtime that must be signal-safe and fork-safe.
// If set, malloc must not be called.
int nomalloc;
const ReportDesc *current_report;
explicit ThreadState(Tid tid);
ThreadState *cur_thread();
void set_cur_thread(ThreadState *thr);
void cur_thread_finalize();
inline ThreadState *cur_thread_init() { return cur_thread(); }
# else
extern THREADLOCAL char cur_thread_placeholder[];
inline ThreadState *cur_thread() {
return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
inline ThreadState *cur_thread_init() {
ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
if (UNLIKELY(!thr->current))
thr->current = thr;
return thr->current;
inline void set_cur_thread(ThreadState *thr) {
reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
inline void cur_thread_finalize() { }
#endif // SANITIZER_GO
class ThreadContext final : public ThreadContextBase {
explicit ThreadContext(Tid tid);
ThreadState *thr;
StackID creation_stack_id;
VectorClock *sync;
uptr sync_epoch;
Trace trace;
// Override superclass callbacks.
void OnDead() override;
void OnJoined(void *arg) override;
void OnFinished() override;
void OnStarted(void *arg) override;
void OnCreated(void *arg) override;
void OnReset() override;
void OnDetached(void *arg) override;
struct RacyStacks {
MD5Hash hash[2];
bool operator==(const RacyStacks &other) const;
struct RacyAddress {
uptr addr_min;
uptr addr_max;
struct FiredSuppression {
ReportType type;
uptr pc_or_addr;
Suppression *supp;
struct Context {
bool initialized;
bool after_multithreaded_fork;
MetaMap metamap;
Mutex report_mtx;
int nreported;
atomic_uint64_t last_symbolize_time_ns;
void *background_thread;
atomic_uint32_t stop_background_thread;
ThreadRegistry thread_registry;
// This is used to prevent a very unlikely but very pathological behavior.
// Since memory access handling is not synchronized with DoReset,
// a thread running concurrently with DoReset can leave a bogus shadow value
// that will be later falsely detected as a race. For such false races
// RestoreStack will return false and we will not report it.
// However, consider that a thread leaves a whole lot of such bogus values
// and these values are later read by a whole lot of threads.
// This will cause massive amounts of ReportRace calls and lots of
// serialization. In very pathological cases the resulting slowdown
// can be >100x. This is very unlikely, but it was presumably observed
// in practice:
// If this happens, previous access sid+epoch will be the same for all of
// these false races b/c if the thread will try to increment epoch, it will
// notice that DoReset has happened and will stop producing bogus shadow
// values. So, last_spurious_race is used to remember the last sid+epoch
// for which RestoreStack returned false. Then it is used to filter out
// races with the same sid+epoch very early and quickly.
// It is of course possible that multiple threads left multiple bogus shadow
// values and all of them are read by lots of threads at the same time.
// In such case last_spurious_race will only be able to deduplicate a few
// races from one thread, then few from another and so on. An alternative
// would be to hold an array of such sid+epoch, but we consider such scenario
// as even less likely.
// Note: this can lead to some rare false negatives as well:
// 1. When a legit access with the same sid+epoch participates in a race
// as the "previous" memory access, it will be wrongly filtered out.
// 2. When RestoreStack returns false for a legit memory access because it
// was already evicted from the thread trace, we will still remember it in
// last_spurious_race. Then if there is another racing memory access from
// the same thread that happened in the same epoch, but was stored in the
// next thread trace part (which is still preserved in the thread trace),
// we will also wrongly filter it out while RestoreStack would actually
// succeed for that second memory access.
RawShadow last_spurious_race;
Mutex racy_mtx;
Vector<RacyStacks> racy_stacks;
// Number of fired suppressions may be large enough.
Mutex fired_suppressions_mtx;
InternalMmapVector<FiredSuppression> fired_suppressions;
DDetector *dd;
Flags flags;
fd_t memprof_fd;
// The last slot index (kFreeSid) is used to denote freed memory.
TidSlot slots[kThreadSlotCount - 1];
// Protects global_epoch, slot_queue, trace_part_recycle.
Mutex slot_mtx;
uptr global_epoch; // guarded by slot_mtx and by all slot mutexes
bool resetting; // global reset is in progress
IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
uptr mapped_shadow_begin;
uptr mapped_shadow_end;
extern Context *ctx; // The one and the only global runtime context.
ALWAYS_INLINE Flags *flags() {
return &ctx->flags;
struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptors() {
~ScopedIgnoreInterceptors() {
const char *GetObjectTypeFromTag(uptr tag);
const char *GetReportHeaderFromTag(uptr tag);
uptr TagFromShadowStackFrame(uptr pc);
class ScopedReportBase {
void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
StackTrace stack, const MutexSet *mset);
void AddStack(StackTrace stack, bool suppressable = false);
void AddThread(const ThreadContext *tctx, bool suppressable = false);
void AddThread(Tid tid, bool suppressable = false);
void AddUniqueTid(Tid unique_tid);
int AddMutex(uptr addr, StackID creation_stack_id);
void AddLocation(uptr addr, uptr size);
void AddSleep(StackID stack_id);
void SetCount(int count);
void SetSigNum(int sig);
const ReportDesc *GetReport() const;
ScopedReportBase(ReportType typ, uptr tag);
ReportDesc *rep_;
// Symbolizer makes lots of intercepted calls. If we try to process them,
// at best it will cause deadlocks on internal mutexes.
ScopedIgnoreInterceptors ignore_interceptors_;
ScopedReportBase(const ScopedReportBase &) = delete;
void operator=(const ScopedReportBase &) = delete;
class ScopedReport : public ScopedReportBase {
explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
ScopedErrorReportLock lock_;
bool ShouldReport(ThreadState *thr, ReportType typ);
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
// The stack could look like:
// <start> | <main> | <foo> | tag | <bar>
// This will extract the tag and keep:
// <start> | <main> | <foo> | <bar>
template<typename StackTraceTy>
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
if (stack->size < 2) return;
uptr possible_tag_pc = stack->trace[stack->size - 2];
uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
if (possible_tag == kExternalTagNone) return;
stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
stack->size -= 1;
if (tag) *tag = possible_tag;
template<typename StackTraceTy>
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
uptr *tag = nullptr) {
uptr size = thr->shadow_stack_pos - thr->shadow_stack;
uptr start = 0;
if (size + !!toppc > kStackTraceMax) {
start = size + !!toppc - kStackTraceMax;
size = kStackTraceMax - !!toppc;
stack->Init(&thr->shadow_stack[start], size, toppc);
ExtractTagFromStack(stack, tag);
#define GET_STACK_TRACE_FATAL(thr, pc) \
VarSizeStackTrace stack; \
ObtainCurrentStack(thr, pc, &stack); \
void MapShadow(uptr addr, uptr size);
void MapThreadTrace(uptr addr, uptr size, const char *name);
void DontNeedShadowFor(uptr addr, uptr size);
void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
void InitializeShadowMemory();
void InitializeInterceptors();
void InitializeLibIgnore();
void InitializeDynamicAnnotations();
void ForkBefore(ThreadState *thr, uptr pc);
void ForkParentAfter(ThreadState *thr, uptr pc);
void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
AccessType typ);
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
bool IsExpectedReport(uptr addr, uptr size);
# define DPrintf Printf
# define DPrintf(...)
# define DPrintf2 Printf
# define DPrintf2(...)
StackID CurrentStackId(ThreadState *thr, uptr pc);
ReportStack *SymbolizeStackId(StackID stack_id);
void PrintCurrentStack(ThreadState *thr, uptr pc);
void PrintCurrentStackSlow(uptr pc); // uses libunwind
MBlock *JavaHeapBlock(uptr addr, uptr *start);
void Initialize(ThreadState *thr);
void MaybeSpawnBackgroundThread();
int Finalize(ThreadState *thr);
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
// This creates 2 non-inlined specialized versions of MemoryAccessRange.
template <bool is_read>
void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
bool is_write) {
if (size == 0)
if (is_write)
MemoryAccessRangeT<false>(thr, pc, addr, size);
MemoryAccessRangeT<true>(thr, pc, addr, size);
void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
uptr size);
void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreEnd(ThreadState *thr);
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreSyncEnd(ThreadState *thr);
Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
ThreadType thread_type);
void ThreadFinish(ThreadState *thr);
Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
void ThreadFinalize(ThreadState *thr);
void ThreadSetName(ThreadState *thr, const char *name);
int ThreadCount(ThreadState *thr);
void ProcessPendingSignalsImpl(ThreadState *thr);
void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
Processor *ProcCreate();
void ProcDestroy(Processor *proc);
void ProcWire(Processor *proc, ThreadState *thr);
void ProcUnwire(Processor *proc, ThreadState *thr);
// Note: the parameter is called flagz, because flags is already taken
// by the global function that returns flags.
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
int rec = 1);
int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
void Acquire(ThreadState *thr, uptr pc, uptr addr);
// AcquireGlobal synchronizes the current thread with all other threads.
// In terms of happens-before relation, it draws a HB edge from all threads
// (where they happen to execute right now) to the current thread. We use it to
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
// right before executing finalizers. This provides a coarse, but simple
// approximation of the actual required synchronization.
void AcquireGlobal(ThreadState *thr);
void Release(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
void AfterSleep(ThreadState *thr, uptr pc);
void IncrementEpoch(ThreadState *thr);
uptr ALWAYS_INLINE HeapEnd() {
return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
void SlotDetach(ThreadState *thr);
void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
void DoReset(ThreadState *thr, uptr epoch);
void FlushShadowMemory();
ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
// These need to match __tsan_switch_to_fiber_* flags defined in
// tsan_interface.h. See documentation there as well.
enum FiberSwitchFlags {
FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
class SlotLocker {
SlotLocker(ThreadState *thr, bool recursive = false)
: thr_(thr), locked_(recursive ? thr->slot_locked : false) {
if (!locked_)
~SlotLocker() {
if (!locked_)
ThreadState *thr_;
bool locked_;
class SlotUnlocker {
SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
if (locked_)
~SlotUnlocker() {
if (locked_)
ThreadState *thr_;
bool locked_;
ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
extern bool is_initialized;
void LazyInitialize(ThreadState *thr) {
// If we can use .preinit_array, assume that __tsan_init
// called from .preinit_array initializes runtime before
// any instrumented code.
if (UNLIKELY(!is_initialized))
void TraceResetForTesting();
void TraceSwitchPart(ThreadState *thr);
void TraceSwitchPartImpl(ThreadState *thr);
bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
MutexSet *pmset, uptr *ptag);
template <typename EventT>
ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
EventT **ev) {
// TraceSwitchPart accesses shadow_stack, but it's called infrequently,
// so we check it here proactively.
Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
// TraceSwitch acquires these mutexes,
// so we lock them here to detect deadlocks more reliably.
{ Lock lock(&ctx->slot_mtx); }
{ Lock lock(&thr->tctx->trace.mtx); }
TracePart *current = thr->tctx->;
if (current) {
DCHECK_GE(pos, &current->events[0]);
DCHECK_LE(pos, &current->events[TracePart::kSize]);
} else {
DCHECK_EQ(pos, nullptr);
// TracePart is allocated with mmap and is at least 4K aligned.
// So the following check is a faster way to check for part end.
// It may have false positives in the middle of the trace,
// they are filtered out in TraceSwitch.
if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
return false;
*ev = reinterpret_cast<EventT *>(pos);
return true;
template <typename EventT>
ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
DCHECK_LE(evp + 1, &thr->tctx->>events[TracePart::kSize]);
atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
template <typename EventT>
void TraceEvent(ThreadState *thr, EventT ev) {
EventT *evp;
if (!TraceAcquire(thr, &evp)) {
UNUSED bool res = TraceAcquire(thr, &evp);
*evp = ev;
TraceRelease(thr, evp);
ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
uptr pc = 0) {
if (!kCollectHistory)
return true;
EventFunc *ev;
if (UNLIKELY(!TraceAcquire(thr, &ev)))
return false;
ev->is_access = 0;
ev->is_func = 1;
ev->pc = pc;
TraceRelease(thr, ev);
return true;
bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
AccessType typ);
void TraceFunc(ThreadState *thr, uptr pc = 0);
void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
StackID stk);
void TraceMutexUnlock(ThreadState *thr, uptr addr);
void TraceTime(ThreadState *thr);
void TraceRestartFuncExit(ThreadState *thr);
void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
void GrowShadowStack(ThreadState *thr);
void FuncEntry(ThreadState *thr, uptr pc) {
DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
if (UNLIKELY(!TryTraceFunc(thr, pc)))
return TraceRestartFuncEntry(thr, pc);
DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
if (thr->shadow_stack_pos == thr->shadow_stack_end)
thr->shadow_stack_pos[0] = pc;
void FuncExit(ThreadState *thr) {
DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
if (UNLIKELY(!TryTraceFunc(thr, 0)))
return TraceRestartFuncExit(thr);
DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
extern void (*on_initialize)(void);
extern int (*on_finalize)(int);
} // namespace __tsan
#endif // TSAN_RTL_H