| /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | /* | 
 |    Long double expansions are | 
 |    Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> | 
 |    and are incorporated herein by permission of the author.  The author | 
 |    reserves the right to distribute this material elsewhere under different | 
 |    copying permissions.  These modifications are distributed here under | 
 |    the following terms: | 
 |  | 
 |     This library is free software; you can redistribute it and/or | 
 |     modify it under the terms of the GNU Lesser General Public | 
 |     License as published by the Free Software Foundation; either | 
 |     version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |     This library is distributed in the hope that it will be useful, | 
 |     but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |     Lesser General Public License for more details. | 
 |  | 
 |     You should have received a copy of the GNU Lesser General Public | 
 |     License along with this library; if not, see | 
 |     <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | /* acosq(x) | 
 |  * Method : | 
 |  *      acos(x)  = pi/2 - asin(x) | 
 |  *      acos(-x) = pi/2 + asin(x) | 
 |  * For |x| <= 0.375 | 
 |  *      acos(x) = pi/2 - asin(x) | 
 |  * Between .375 and .5 the approximation is | 
 |  *      acos(0.4375 + x) = acos(0.4375) + x P(x) / Q(x) | 
 |  * Between .5 and .625 the approximation is | 
 |  *      acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) | 
 |  * For x > 0.625, | 
 |  *      acos(x) = 2 asin(sqrt((1-x)/2)) | 
 |  *      computed with an extended precision square root in the leading term. | 
 |  * For x < -0.625 | 
 |  *      acos(x) = pi - 2 asin(sqrt((1-|x|)/2)) | 
 |  * | 
 |  * Special cases: | 
 |  *      if x is NaN, return x itself; | 
 |  *      if |x|>1, return NaN with invalid signal. | 
 |  * | 
 |  * Functions needed: sqrtq. | 
 |  */ | 
 |  | 
 | #include "quadmath-imp.h" | 
 |  | 
 | static const __float128 | 
 |   one = 1, | 
 |   pio2_hi = 1.5707963267948966192313216916397514420986Q, | 
 |   pio2_lo = 4.3359050650618905123985220130216759843812E-35Q, | 
 |  | 
 |   /* acos(0.5625 + x) = acos(0.5625) + x rS(x) / sS(x) | 
 |      -0.0625 <= x <= 0.0625 | 
 |      peak relative error 3.3e-35  */ | 
 |  | 
 |   rS0 =  5.619049346208901520945464704848780243887E0Q, | 
 |   rS1 = -4.460504162777731472539175700169871920352E1Q, | 
 |   rS2 =  1.317669505315409261479577040530751477488E2Q, | 
 |   rS3 = -1.626532582423661989632442410808596009227E2Q, | 
 |   rS4 =  3.144806644195158614904369445440583873264E1Q, | 
 |   rS5 =  9.806674443470740708765165604769099559553E1Q, | 
 |   rS6 = -5.708468492052010816555762842394927806920E1Q, | 
 |   rS7 = -1.396540499232262112248553357962639431922E1Q, | 
 |   rS8 =  1.126243289311910363001762058295832610344E1Q, | 
 |   rS9 =  4.956179821329901954211277873774472383512E-1Q, | 
 |   rS10 = -3.313227657082367169241333738391762525780E-1Q, | 
 |  | 
 |   sS0 = -4.645814742084009935700221277307007679325E0Q, | 
 |   sS1 =  3.879074822457694323970438316317961918430E1Q, | 
 |   sS2 = -1.221986588013474694623973554726201001066E2Q, | 
 |   sS3 =  1.658821150347718105012079876756201905822E2Q, | 
 |   sS4 = -4.804379630977558197953176474426239748977E1Q, | 
 |   sS5 = -1.004296417397316948114344573811562952793E2Q, | 
 |   sS6 =  7.530281592861320234941101403870010111138E1Q, | 
 |   sS7 =  1.270735595411673647119592092304357226607E1Q, | 
 |   sS8 = -1.815144839646376500705105967064792930282E1Q, | 
 |   sS9 = -7.821597334910963922204235247786840828217E-2Q, | 
 |   /* 1.000000000000000000000000000000000000000E0 */ | 
 |  | 
 |   acosr5625 = 9.7338991014954640492751132535550279812151E-1Q, | 
 |   pimacosr5625 = 2.1682027434402468335351320579240000860757E0Q, | 
 |  | 
 |   /* acos(0.4375 + x) = acos(0.4375) + x rS(x) / sS(x) | 
 |      -0.0625 <= x <= 0.0625 | 
 |      peak relative error 2.1e-35  */ | 
 |  | 
 |   P0 =  2.177690192235413635229046633751390484892E0Q, | 
 |   P1 = -2.848698225706605746657192566166142909573E1Q, | 
 |   P2 =  1.040076477655245590871244795403659880304E2Q, | 
 |   P3 = -1.400087608918906358323551402881238180553E2Q, | 
 |   P4 =  2.221047917671449176051896400503615543757E1Q, | 
 |   P5 =  9.643714856395587663736110523917499638702E1Q, | 
 |   P6 = -5.158406639829833829027457284942389079196E1Q, | 
 |   P7 = -1.578651828337585944715290382181219741813E1Q, | 
 |   P8 =  1.093632715903802870546857764647931045906E1Q, | 
 |   P9 =  5.448925479898460003048760932274085300103E-1Q, | 
 |   P10 = -3.315886001095605268470690485170092986337E-1Q, | 
 |   Q0 = -1.958219113487162405143608843774587557016E0Q, | 
 |   Q1 =  2.614577866876185080678907676023269360520E1Q, | 
 |   Q2 = -9.990858606464150981009763389881793660938E1Q, | 
 |   Q3 =  1.443958741356995763628660823395334281596E2Q, | 
 |   Q4 = -3.206441012484232867657763518369723873129E1Q, | 
 |   Q5 = -1.048560885341833443564920145642588991492E2Q, | 
 |   Q6 =  6.745883931909770880159915641984874746358E1Q, | 
 |   Q7 =  1.806809656342804436118449982647641392951E1Q, | 
 |   Q8 = -1.770150690652438294290020775359580915464E1Q, | 
 |   Q9 = -5.659156469628629327045433069052560211164E-1Q, | 
 |   /* 1.000000000000000000000000000000000000000E0 */ | 
 |  | 
 |   acosr4375 = 1.1179797320499710475919903296900511518755E0Q, | 
 |   pimacosr4375 = 2.0236129215398221908706530535894517323217E0Q, | 
 |  | 
 |   /* asin(x) = x + x^3 pS(x^2) / qS(x^2) | 
 |      0 <= x <= 0.5 | 
 |      peak relative error 1.9e-35  */ | 
 |   pS0 = -8.358099012470680544198472400254596543711E2Q, | 
 |   pS1 =  3.674973957689619490312782828051860366493E3Q, | 
 |   pS2 = -6.730729094812979665807581609853656623219E3Q, | 
 |   pS3 =  6.643843795209060298375552684423454077633E3Q, | 
 |   pS4 = -3.817341990928606692235481812252049415993E3Q, | 
 |   pS5 =  1.284635388402653715636722822195716476156E3Q, | 
 |   pS6 = -2.410736125231549204856567737329112037867E2Q, | 
 |   pS7 =  2.219191969382402856557594215833622156220E1Q, | 
 |   pS8 = -7.249056260830627156600112195061001036533E-1Q, | 
 |   pS9 =  1.055923570937755300061509030361395604448E-3Q, | 
 |  | 
 |   qS0 = -5.014859407482408326519083440151745519205E3Q, | 
 |   qS1 =  2.430653047950480068881028451580393430537E4Q, | 
 |   qS2 = -4.997904737193653607449250593976069726962E4Q, | 
 |   qS3 =  5.675712336110456923807959930107347511086E4Q, | 
 |   qS4 = -3.881523118339661268482937768522572588022E4Q, | 
 |   qS5 =  1.634202194895541569749717032234510811216E4Q, | 
 |   qS6 = -4.151452662440709301601820849901296953752E3Q, | 
 |   qS7 =  5.956050864057192019085175976175695342168E2Q, | 
 |   qS8 = -4.175375777334867025769346564600396877176E1Q; | 
 |   /* 1.000000000000000000000000000000000000000E0 */ | 
 |  | 
 | __float128 | 
 | acosq (__float128 x) | 
 | { | 
 |   __float128 z, r, w, p, q, s, t, f2; | 
 |   int32_t ix, sign; | 
 |   ieee854_float128 u; | 
 |  | 
 |   u.value = x; | 
 |   sign = u.words32.w0; | 
 |   ix = sign & 0x7fffffff; | 
 |   u.words32.w0 = ix;		/* |x| */ | 
 |   if (ix >= 0x3fff0000)		/* |x| >= 1 */ | 
 |     { | 
 |       if (ix == 0x3fff0000 | 
 | 	  && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0) | 
 | 	{			/* |x| == 1 */ | 
 | 	  if ((sign & 0x80000000) == 0) | 
 | 	    return 0.0;		/* acos(1) = 0  */ | 
 | 	  else | 
 | 	    return (2.0 * pio2_hi) + (2.0 * pio2_lo);	/* acos(-1)= pi */ | 
 | 	} | 
 |       return (x - x) / (x - x);	/* acos(|x| > 1) is NaN */ | 
 |     } | 
 |   else if (ix < 0x3ffe0000)	/* |x| < 0.5 */ | 
 |     { | 
 |       if (ix < 0x3f8e0000)	/* |x| < 2**-113 */ | 
 | 	return pio2_hi + pio2_lo; | 
 |       if (ix < 0x3ffde000)	/* |x| < .4375 */ | 
 | 	{ | 
 | 	  /* Arcsine of x.  */ | 
 | 	  z = x * x; | 
 | 	  p = (((((((((pS9 * z | 
 | 		       + pS8) * z | 
 | 		      + pS7) * z | 
 | 		     + pS6) * z | 
 | 		    + pS5) * z | 
 | 		   + pS4) * z | 
 | 		  + pS3) * z | 
 | 		 + pS2) * z | 
 | 		+ pS1) * z | 
 | 	       + pS0) * z; | 
 | 	  q = (((((((( z | 
 | 		       + qS8) * z | 
 | 		     + qS7) * z | 
 | 		    + qS6) * z | 
 | 		   + qS5) * z | 
 | 		  + qS4) * z | 
 | 		 + qS3) * z | 
 | 		+ qS2) * z | 
 | 	       + qS1) * z | 
 | 	    + qS0; | 
 | 	  r = x + x * p / q; | 
 | 	  z = pio2_hi - (r - pio2_lo); | 
 | 	  return z; | 
 | 	} | 
 |       /* .4375 <= |x| < .5 */ | 
 |       t = u.value - 0.4375Q; | 
 |       p = ((((((((((P10 * t | 
 | 		    + P9) * t | 
 | 		   + P8) * t | 
 | 		  + P7) * t | 
 | 		 + P6) * t | 
 | 		+ P5) * t | 
 | 	       + P4) * t | 
 | 	      + P3) * t | 
 | 	     + P2) * t | 
 | 	    + P1) * t | 
 | 	   + P0) * t; | 
 |  | 
 |       q = (((((((((t | 
 | 		   + Q9) * t | 
 | 		  + Q8) * t | 
 | 		 + Q7) * t | 
 | 		+ Q6) * t | 
 | 	       + Q5) * t | 
 | 	      + Q4) * t | 
 | 	     + Q3) * t | 
 | 	    + Q2) * t | 
 | 	   + Q1) * t | 
 | 	+ Q0; | 
 |       r = p / q; | 
 |       if (sign & 0x80000000) | 
 | 	r = pimacosr4375 - r; | 
 |       else | 
 | 	r = acosr4375 + r; | 
 |       return r; | 
 |     } | 
 |   else if (ix < 0x3ffe4000)	/* |x| < 0.625 */ | 
 |     { | 
 |       t = u.value - 0.5625Q; | 
 |       p = ((((((((((rS10 * t | 
 | 		    + rS9) * t | 
 | 		   + rS8) * t | 
 | 		  + rS7) * t | 
 | 		 + rS6) * t | 
 | 		+ rS5) * t | 
 | 	       + rS4) * t | 
 | 	      + rS3) * t | 
 | 	     + rS2) * t | 
 | 	    + rS1) * t | 
 | 	   + rS0) * t; | 
 |  | 
 |       q = (((((((((t | 
 | 		   + sS9) * t | 
 | 		  + sS8) * t | 
 | 		 + sS7) * t | 
 | 		+ sS6) * t | 
 | 	       + sS5) * t | 
 | 	      + sS4) * t | 
 | 	     + sS3) * t | 
 | 	    + sS2) * t | 
 | 	   + sS1) * t | 
 | 	+ sS0; | 
 |       if (sign & 0x80000000) | 
 | 	r = pimacosr5625 - p / q; | 
 |       else | 
 | 	r = acosr5625 + p / q; | 
 |       return r; | 
 |     } | 
 |   else | 
 |     {				/* |x| >= .625 */ | 
 |       z = (one - u.value) * 0.5; | 
 |       s = sqrtq (z); | 
 |       /* Compute an extended precision square root from | 
 | 	 the Newton iteration  s -> 0.5 * (s + z / s). | 
 | 	 The change w from s to the improved value is | 
 | 	    w = 0.5 * (s + z / s) - s  = (s^2 + z)/2s - s = (z - s^2)/2s. | 
 | 	  Express s = f1 + f2 where f1 * f1 is exactly representable. | 
 | 	  w = (z - s^2)/2s = (z - f1^2 - 2 f1 f2 - f2^2)/2s . | 
 | 	  s + w has extended precision.  */ | 
 |       u.value = s; | 
 |       u.words32.w2 = 0; | 
 |       u.words32.w3 = 0; | 
 |       f2 = s - u.value; | 
 |       w = z - u.value * u.value; | 
 |       w = w - 2.0 * u.value * f2; | 
 |       w = w - f2 * f2; | 
 |       w = w / (2.0 * s); | 
 |       /* Arcsine of s.  */ | 
 |       p = (((((((((pS9 * z | 
 | 		   + pS8) * z | 
 | 		  + pS7) * z | 
 | 		 + pS6) * z | 
 | 		+ pS5) * z | 
 | 	       + pS4) * z | 
 | 	      + pS3) * z | 
 | 	     + pS2) * z | 
 | 	    + pS1) * z | 
 | 	   + pS0) * z; | 
 |       q = (((((((( z | 
 | 		   + qS8) * z | 
 | 		 + qS7) * z | 
 | 		+ qS6) * z | 
 | 	       + qS5) * z | 
 | 	      + qS4) * z | 
 | 	     + qS3) * z | 
 | 	    + qS2) * z | 
 | 	   + qS1) * z | 
 | 	+ qS0; | 
 |       r = s + (w + s * p / q); | 
 |  | 
 |       if (sign & 0x80000000) | 
 | 	w = pio2_hi + (pio2_lo - r); | 
 |       else | 
 | 	w = r; | 
 |       return 2.0 * w; | 
 |     } | 
 | } |