blob: e14051f4c0744c0ecb541cb7f97fdd40604fb7c4 [file] [log] [blame]
/* Instruction scheduling pass.
Copyright (C) 1992-2021 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
and currently maintained by, Jim Wilson (wilson@cygnus.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Instruction scheduling pass. This file, along with sched-deps.c,
contains the generic parts. The actual entry point for
the normal instruction scheduling pass is found in sched-rgn.c.
We compute insn priorities based on data dependencies. Flow
analysis only creates a fraction of the data-dependencies we must
observe: namely, only those dependencies which the combiner can be
expected to use. For this pass, we must therefore create the
remaining dependencies we need to observe: register dependencies,
memory dependencies, dependencies to keep function calls in order,
and the dependence between a conditional branch and the setting of
condition codes are all dealt with here.
The scheduler first traverses the data flow graph, starting with
the last instruction, and proceeding to the first, assigning values
to insn_priority as it goes. This sorts the instructions
topologically by data dependence.
Once priorities have been established, we order the insns using
list scheduling. This works as follows: starting with a list of
all the ready insns, and sorted according to priority number, we
schedule the insn from the end of the list by placing its
predecessors in the list according to their priority order. We
consider this insn scheduled by setting the pointer to the "end" of
the list to point to the previous insn. When an insn has no
predecessors, we either queue it until sufficient time has elapsed
or add it to the ready list. As the instructions are scheduled or
when stalls are introduced, the queue advances and dumps insns into
the ready list. When all insns down to the lowest priority have
been scheduled, the critical path of the basic block has been made
as short as possible. The remaining insns are then scheduled in
remaining slots.
The following list shows the order in which we want to break ties
among insns in the ready list:
1. choose insn with the longest path to end of bb, ties
broken by
2. choose insn with least contribution to register pressure,
ties broken by
3. prefer in-block upon interblock motion, ties broken by
4. prefer useful upon speculative motion, ties broken by
5. choose insn with largest control flow probability, ties
broken by
6. choose insn with the least dependences upon the previously
scheduled insn, or finally
7 choose the insn which has the most insns dependent on it.
8. choose insn with lowest UID.
Memory references complicate matters. Only if we can be certain
that memory references are not part of the data dependency graph
(via true, anti, or output dependence), can we move operations past
memory references. To first approximation, reads can be done
independently, while writes introduce dependencies. Better
approximations will yield fewer dependencies.
Before reload, an extended analysis of interblock data dependences
is required for interblock scheduling. This is performed in
compute_block_dependences ().
Dependencies set up by memory references are treated in exactly the
same way as other dependencies, by using insn backward dependences
INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
INSN_FORW_DEPS for the purpose of forward list scheduling.
Having optimized the critical path, we may have also unduly
extended the lifetimes of some registers. If an operation requires
that constants be loaded into registers, it is certainly desirable
to load those constants as early as necessary, but no earlier.
I.e., it will not do to load up a bunch of registers at the
beginning of a basic block only to use them at the end, if they
could be loaded later, since this may result in excessive register
utilization.
Note that since branches are never in basic blocks, but only end
basic blocks, this pass will not move branches. But that is ok,
since we can use GNU's delayed branch scheduling pass to take care
of this case.
Also note that no further optimizations based on algebraic
identities are performed, so this pass would be a good one to
perform instruction splitting, such as breaking up a multiply
instruction into shifts and adds where that is profitable.
Given the memory aliasing analysis that this pass should perform,
it should be possible to remove redundant stores to memory, and to
load values from registers instead of hitting memory.
Before reload, speculative insns are moved only if a 'proof' exists
that no exception will be caused by this, and if no live registers
exist that inhibit the motion (live registers constraints are not
represented by data dependence edges).
This pass must update information that subsequent passes expect to
be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
The information in the line number notes is carefully retained by
this pass. Notes that refer to the starting and ending of
exception regions are also carefully retained by this pass. All
other NOTE insns are grouped in their same relative order at the
beginning of basic blocks and regions that have been scheduled. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "insn-attr.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "sched-int.h"
#include "common/common-target.h"
#include "dbgcnt.h"
#include "cfgloop.h"
#include "dumpfile.h"
#include "print-rtl.h"
#include "function-abi.h"
#ifdef INSN_SCHEDULING
/* True if we do register pressure relief through live-range
shrinkage. */
static bool live_range_shrinkage_p;
/* Switch on live range shrinkage. */
void
initialize_live_range_shrinkage (void)
{
live_range_shrinkage_p = true;
}
/* Switch off live range shrinkage. */
void
finish_live_range_shrinkage (void)
{
live_range_shrinkage_p = false;
}
/* issue_rate is the number of insns that can be scheduled in the same
machine cycle. It can be defined in the config/mach/mach.h file,
otherwise we set it to 1. */
int issue_rate;
/* This can be set to true by a backend if the scheduler should not
enable a DCE pass. */
bool sched_no_dce;
/* The current initiation interval used when modulo scheduling. */
static int modulo_ii;
/* The maximum number of stages we are prepared to handle. */
static int modulo_max_stages;
/* The number of insns that exist in each iteration of the loop. We use this
to detect when we've scheduled all insns from the first iteration. */
static int modulo_n_insns;
/* The current count of insns in the first iteration of the loop that have
already been scheduled. */
static int modulo_insns_scheduled;
/* The maximum uid of insns from the first iteration of the loop. */
static int modulo_iter0_max_uid;
/* The number of times we should attempt to backtrack when modulo scheduling.
Decreased each time we have to backtrack. */
static int modulo_backtracks_left;
/* The stage in which the last insn from the original loop was
scheduled. */
static int modulo_last_stage;
/* sched-verbose controls the amount of debugging output the
scheduler prints. It is controlled by -fsched-verbose=N:
N=0: no debugging output.
N=1: default value.
N=2: bb's probabilities, detailed ready list info, unit/insn info.
N=3: rtl at abort point, control-flow, regions info.
N=5: dependences info. */
int sched_verbose = 0;
/* Debugging file. All printouts are sent to dump. */
FILE *sched_dump = 0;
/* This is a placeholder for the scheduler parameters common
to all schedulers. */
struct common_sched_info_def *common_sched_info;
#define INSN_TICK(INSN) (HID (INSN)->tick)
#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
/* Cached cost of the instruction. Use insn_sched_cost to get cost of the
insn. -1 here means that the field is not initialized. */
#define INSN_COST(INSN) (HID (INSN)->cost)
/* If INSN_TICK of an instruction is equal to INVALID_TICK,
then it should be recalculated from scratch. */
#define INVALID_TICK (-(max_insn_queue_index + 1))
/* The minimal value of the INSN_TICK of an instruction. */
#define MIN_TICK (-max_insn_queue_index)
/* Original order of insns in the ready list.
Used to keep order of normal insns while separating DEBUG_INSNs. */
#define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
/* The deciding reason for INSN's place in the ready list. */
#define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
/* List of important notes we must keep around. This is a pointer to the
last element in the list. */
rtx_insn *note_list;
static struct spec_info_def spec_info_var;
/* Description of the speculative part of the scheduling.
If NULL - no speculation. */
spec_info_t spec_info = NULL;
/* True, if recovery block was added during scheduling of current block.
Used to determine, if we need to fix INSN_TICKs. */
static bool haifa_recovery_bb_recently_added_p;
/* True, if recovery block was added during this scheduling pass.
Used to determine if we should have empty memory pools of dependencies
after finishing current region. */
bool haifa_recovery_bb_ever_added_p;
/* Counters of different types of speculative instructions. */
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
/* Array used in {unlink, restore}_bb_notes. */
static rtx_insn **bb_header = 0;
/* Basic block after which recovery blocks will be created. */
static basic_block before_recovery;
/* Basic block just before the EXIT_BLOCK and after recovery, if we have
created it. */
basic_block after_recovery;
/* FALSE if we add bb to another region, so we don't need to initialize it. */
bool adding_bb_to_current_region_p = true;
/* Queues, etc. */
/* An instruction is ready to be scheduled when all insns preceding it
have already been scheduled. It is important to ensure that all
insns which use its result will not be executed until its result
has been computed. An insn is maintained in one of four structures:
(P) the "Pending" set of insns which cannot be scheduled until
their dependencies have been satisfied.
(Q) the "Queued" set of insns that can be scheduled when sufficient
time has passed.
(R) the "Ready" list of unscheduled, uncommitted insns.
(S) the "Scheduled" list of insns.
Initially, all insns are either "Pending" or "Ready" depending on
whether their dependencies are satisfied.
Insns move from the "Ready" list to the "Scheduled" list as they
are committed to the schedule. As this occurs, the insns in the
"Pending" list have their dependencies satisfied and move to either
the "Ready" list or the "Queued" set depending on whether
sufficient time has passed to make them ready. As time passes,
insns move from the "Queued" set to the "Ready" list.
The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
unscheduled insns, i.e., those that are ready, queued, and pending.
The "Queued" set (Q) is implemented by the variable `insn_queue'.
The "Ready" list (R) is implemented by the variables `ready' and
`n_ready'.
The "Scheduled" list (S) is the new insn chain built by this pass.
The transition (R->S) is implemented in the scheduling loop in
`schedule_block' when the best insn to schedule is chosen.
The transitions (P->R and P->Q) are implemented in `schedule_insn' as
insns move from the ready list to the scheduled list.
The transition (Q->R) is implemented in 'queue_to_insn' as time
passes or stalls are introduced. */
/* Implement a circular buffer to delay instructions until sufficient
time has passed. For the new pipeline description interface,
MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
than maximal time of instruction execution computed by genattr.c on
the base maximal time of functional unit reservations and getting a
result. This is the longest time an insn may be queued. */
static rtx_insn_list **insn_queue;
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
#define QUEUE_SCHEDULED (-3)
#define QUEUE_NOWHERE (-2)
#define QUEUE_READY (-1)
/* QUEUE_SCHEDULED - INSN is scheduled.
QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
queue or ready list.
QUEUE_READY - INSN is in ready list.
N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
/* The following variable value refers for all current and future
reservations of the processor units. */
state_t curr_state;
/* The following variable value is size of memory representing all
current and future reservations of the processor units. */
size_t dfa_state_size;
/* The following array is used to find the best insn from ready when
the automaton pipeline interface is used. */
signed char *ready_try = NULL;
/* The ready list. */
struct ready_list ready = {NULL, 0, 0, 0, 0};
/* The pointer to the ready list (to be removed). */
static struct ready_list *readyp = &ready;
/* Scheduling clock. */
static int clock_var;
/* Clock at which the previous instruction was issued. */
static int last_clock_var;
/* Set to true if, when queuing a shadow insn, we discover that it would be
scheduled too late. */
static bool must_backtrack;
/* The following variable value is number of essential insns issued on
the current cycle. An insn is essential one if it changes the
processors state. */
int cycle_issued_insns;
/* This records the actual schedule. It is built up during the main phase
of schedule_block, and afterwards used to reorder the insns in the RTL. */
static vec<rtx_insn *> scheduled_insns;
static int may_trap_exp (const_rtx, int);
/* Nonzero iff the address is comprised from at most 1 register. */
#define CONST_BASED_ADDRESS_P(x) \
(REG_P (x) \
|| ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
|| (GET_CODE (x) == LO_SUM)) \
&& (CONSTANT_P (XEXP (x, 0)) \
|| CONSTANT_P (XEXP (x, 1)))))
/* Returns a class that insn with GET_DEST(insn)=x may belong to,
as found by analyzing insn's expression. */
static int haifa_luid_for_non_insn (rtx x);
/* Haifa version of sched_info hooks common to all headers. */
const struct common_sched_info_def haifa_common_sched_info =
{
NULL, /* fix_recovery_cfg */
NULL, /* add_block */
NULL, /* estimate_number_of_insns */
haifa_luid_for_non_insn, /* luid_for_non_insn */
SCHED_PASS_UNKNOWN /* sched_pass_id */
};
/* Mapping from instruction UID to its Logical UID. */
vec<int> sched_luids;
/* Next LUID to assign to an instruction. */
int sched_max_luid = 1;
/* Haifa Instruction Data. */
vec<haifa_insn_data_def> h_i_d;
void (* sched_init_only_bb) (basic_block, basic_block);
/* Split block function. Different schedulers might use different functions
to handle their internal data consistent. */
basic_block (* sched_split_block) (basic_block, rtx);
/* Create empty basic block after the specified block. */
basic_block (* sched_create_empty_bb) (basic_block);
/* Return the number of cycles until INSN is expected to be ready.
Return zero if it already is. */
static int
insn_delay (rtx_insn *insn)
{
return MAX (INSN_TICK (insn) - clock_var, 0);
}
static int
may_trap_exp (const_rtx x, int is_store)
{
enum rtx_code code;
if (x == 0)
return TRAP_FREE;
code = GET_CODE (x);
if (is_store)
{
if (code == MEM && may_trap_p (x))
return TRAP_RISKY;
else
return TRAP_FREE;
}
if (code == MEM)
{
/* The insn uses memory: a volatile load. */
if (MEM_VOLATILE_P (x))
return IRISKY;
/* An exception-free load. */
if (!may_trap_p (x))
return IFREE;
/* A load with 1 base register, to be further checked. */
if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
return PFREE_CANDIDATE;
/* No info on the load, to be further checked. */
return PRISKY_CANDIDATE;
}
else
{
const char *fmt;
int i, insn_class = TRAP_FREE;
/* Neither store nor load, check if it may cause a trap. */
if (may_trap_p (x))
return TRAP_RISKY;
/* Recursive step: walk the insn... */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
int tmp_class = may_trap_exp (XEXP (x, i), is_store);
insn_class = WORST_CLASS (insn_class, tmp_class);
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
{
int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
insn_class = WORST_CLASS (insn_class, tmp_class);
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
}
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
return insn_class;
}
}
/* Classifies rtx X of an insn for the purpose of verifying that X can be
executed speculatively (and consequently the insn can be moved
speculatively), by examining X, returning:
TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
TRAP_FREE: non-load insn.
IFREE: load from a globally safe location.
IRISKY: volatile load.
PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
being either PFREE or PRISKY. */
static int
haifa_classify_rtx (const_rtx x)
{
int tmp_class = TRAP_FREE;
int insn_class = TRAP_FREE;
enum rtx_code code;
if (GET_CODE (x) == PARALLEL)
{
int i, len = XVECLEN (x, 0);
for (i = len - 1; i >= 0; i--)
{
tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
insn_class = WORST_CLASS (insn_class, tmp_class);
if (insn_class == TRAP_RISKY || insn_class == IRISKY)
break;
}
}
else
{
code = GET_CODE (x);
switch (code)
{
case CLOBBER:
/* Test if it is a 'store'. */
tmp_class = may_trap_exp (XEXP (x, 0), 1);
break;
case SET:
/* Test if it is a store. */
tmp_class = may_trap_exp (SET_DEST (x), 1);
if (tmp_class == TRAP_RISKY)
break;
/* Test if it is a load. */
tmp_class =
WORST_CLASS (tmp_class,
may_trap_exp (SET_SRC (x), 0));
break;
case COND_EXEC:
tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
if (tmp_class == TRAP_RISKY)
break;
tmp_class = WORST_CLASS (tmp_class,
may_trap_exp (COND_EXEC_TEST (x), 0));
break;
case TRAP_IF:
tmp_class = TRAP_RISKY;
break;
default:;
}
insn_class = tmp_class;
}
return insn_class;
}
int
haifa_classify_insn (const_rtx insn)
{
return haifa_classify_rtx (PATTERN (insn));
}
/* After the scheduler initialization function has been called, this function
can be called to enable modulo scheduling. II is the initiation interval
we should use, it affects the delays for delay_pairs that were recorded as
separated by a given number of stages.
MAX_STAGES provides us with a limit
after which we give up scheduling; the caller must have unrolled at least
as many copies of the loop body and recorded delay_pairs for them.
INSNS is the number of real (non-debug) insns in one iteration of
the loop. MAX_UID can be used to test whether an insn belongs to
the first iteration of the loop; all of them have a uid lower than
MAX_UID. */
void
set_modulo_params (int ii, int max_stages, int insns, int max_uid)
{
modulo_ii = ii;
modulo_max_stages = max_stages;
modulo_n_insns = insns;
modulo_iter0_max_uid = max_uid;
modulo_backtracks_left = param_max_modulo_backtrack_attempts;
}
/* A structure to record a pair of insns where the first one is a real
insn that has delay slots, and the second is its delayed shadow.
I1 is scheduled normally and will emit an assembly instruction,
while I2 describes the side effect that takes place at the
transition between cycles CYCLES and (CYCLES + 1) after I1. */
struct delay_pair
{
struct delay_pair *next_same_i1;
rtx_insn *i1, *i2;
int cycles;
/* When doing modulo scheduling, we a delay_pair can also be used to
show that I1 and I2 are the same insn in a different stage. If that
is the case, STAGES will be nonzero. */
int stages;
};
/* Helpers for delay hashing. */
struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
{
typedef void *compare_type;
static inline hashval_t hash (const delay_pair *);
static inline bool equal (const delay_pair *, const void *);
};
/* Returns a hash value for X, based on hashing just I1. */
inline hashval_t
delay_i1_hasher::hash (const delay_pair *x)
{
return htab_hash_pointer (x->i1);
}
/* Return true if I1 of pair X is the same as that of pair Y. */
inline bool
delay_i1_hasher::equal (const delay_pair *x, const void *y)
{
return x->i1 == y;
}
struct delay_i2_hasher : free_ptr_hash <delay_pair>
{
typedef void *compare_type;
static inline hashval_t hash (const delay_pair *);
static inline bool equal (const delay_pair *, const void *);
};
/* Returns a hash value for X, based on hashing just I2. */
inline hashval_t
delay_i2_hasher::hash (const delay_pair *x)
{
return htab_hash_pointer (x->i2);
}
/* Return true if I2 of pair X is the same as that of pair Y. */
inline bool
delay_i2_hasher::equal (const delay_pair *x, const void *y)
{
return x->i2 == y;
}
/* Two hash tables to record delay_pairs, one indexed by I1 and the other
indexed by I2. */
static hash_table<delay_i1_hasher> *delay_htab;
static hash_table<delay_i2_hasher> *delay_htab_i2;
/* Called through htab_traverse. Walk the hashtable using I2 as
index, and delete all elements involving an UID higher than
that pointed to by *DATA. */
int
haifa_htab_i2_traverse (delay_pair **slot, int *data)
{
int maxuid = *data;
struct delay_pair *p = *slot;
if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
{
delay_htab_i2->clear_slot (slot);
}
return 1;
}
/* Called through htab_traverse. Walk the hashtable using I2 as
index, and delete all elements involving an UID higher than
that pointed to by *DATA. */
int
haifa_htab_i1_traverse (delay_pair **pslot, int *data)
{
int maxuid = *data;
struct delay_pair *p, *first, **pprev;
if (INSN_UID ((*pslot)->i1) >= maxuid)
{
delay_htab->clear_slot (pslot);
return 1;
}
pprev = &first;
for (p = *pslot; p; p = p->next_same_i1)
{
if (INSN_UID (p->i2) < maxuid)
{
*pprev = p;
pprev = &p->next_same_i1;
}
}
*pprev = NULL;
if (first == NULL)
delay_htab->clear_slot (pslot);
else
*pslot = first;
return 1;
}
/* Discard all delay pairs which involve an insn with an UID higher
than MAX_UID. */
void
discard_delay_pairs_above (int max_uid)
{
delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
}
/* This function can be called by a port just before it starts the final
scheduling pass. It records the fact that an instruction with delay
slots has been split into two insns, I1 and I2. The first one will be
scheduled normally and initiates the operation. The second one is a
shadow which must follow a specific number of cycles after I1; its only
purpose is to show the side effect that occurs at that cycle in the RTL.
If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
while I2 retains the original insn type.
There are two ways in which the number of cycles can be specified,
involving the CYCLES and STAGES arguments to this function. If STAGES
is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
which is multiplied by MODULO_II to give the number of cycles. This is
only useful if the caller also calls set_modulo_params to enable modulo
scheduling. */
void
record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
{
struct delay_pair *p = XNEW (struct delay_pair);
struct delay_pair **slot;
p->i1 = i1;
p->i2 = i2;
p->cycles = cycles;
p->stages = stages;
if (!delay_htab)
{
delay_htab = new hash_table<delay_i1_hasher> (10);
delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
}
slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
p->next_same_i1 = *slot;
*slot = p;
slot = delay_htab_i2->find_slot (p, INSERT);
*slot = p;
}
/* Examine the delay pair hashtable to see if INSN is a shadow for another,
and return the other insn if so. Return NULL otherwise. */
rtx_insn *
real_insn_for_shadow (rtx_insn *insn)
{
struct delay_pair *pair;
if (!delay_htab)
return NULL;
pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
if (!pair || pair->stages > 0)
return NULL;
return pair->i1;
}
/* For a pair P of insns, return the fixed distance in cycles from the first
insn after which the second must be scheduled. */
static int
pair_delay (struct delay_pair *p)
{
if (p->stages == 0)
return p->cycles;
else
return p->stages * modulo_ii;
}
/* Given an insn INSN, add a dependence on its delayed shadow if it
has one. Also try to find situations where shadows depend on each other
and add dependencies to the real insns to limit the amount of backtracking
needed. */
void
add_delay_dependencies (rtx_insn *insn)
{
struct delay_pair *pair;
sd_iterator_def sd_it;
dep_t dep;
if (!delay_htab)
return;
pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
if (!pair)
return;
add_dependence (insn, pair->i1, REG_DEP_ANTI);
if (pair->stages)
return;
FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
{
rtx_insn *pro = DEP_PRO (dep);
struct delay_pair *other_pair
= delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
if (!other_pair || other_pair->stages)
continue;
if (pair_delay (other_pair) >= pair_delay (pair))
{
if (sched_verbose >= 4)
{
fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
INSN_UID (other_pair->i1),
INSN_UID (pair->i1));
fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
INSN_UID (pair->i1),
INSN_UID (pair->i2),
pair_delay (pair));
fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
INSN_UID (other_pair->i1),
INSN_UID (other_pair->i2),
pair_delay (other_pair));
}
add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
}
}
}
/* Forward declarations. */
static int priority (rtx_insn *, bool force_recompute = false);
static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
static int rank_for_schedule (const void *, const void *);
static void swap_sort (rtx_insn **, int);
static void queue_insn (rtx_insn *, int, const char *);
static int schedule_insn (rtx_insn *);
static void adjust_priority (rtx_insn *);
static void advance_one_cycle (void);
static void extend_h_i_d (void);
/* Notes handling mechanism:
=========================
Generally, NOTES are saved before scheduling and restored after scheduling.
The scheduler distinguishes between two types of notes:
(1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
Before scheduling a region, a pointer to the note is added to the insn
that follows or precedes it. (This happens as part of the data dependence
computation). After scheduling an insn, the pointer contained in it is
used for regenerating the corresponding note (in reemit_notes).
(2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
these notes are put in a list (in rm_other_notes() and
unlink_other_notes ()). After scheduling the block, these notes are
inserted at the beginning of the block (in schedule_block()). */
static void ready_add (struct ready_list *, rtx_insn *, bool);
static rtx_insn *ready_remove_first (struct ready_list *);
static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
static void queue_to_ready (struct ready_list *);
static int early_queue_to_ready (state_t, struct ready_list *);
/* The following functions are used to implement multi-pass scheduling
on the first cycle. */
static rtx_insn *ready_remove (struct ready_list *, int);
static void ready_remove_insn (rtx_insn *);
static void fix_inter_tick (rtx_insn *, rtx_insn *);
static int fix_tick_ready (rtx_insn *);
static void change_queue_index (rtx_insn *, int);
/* The following functions are used to implement scheduling of data/control
speculative instructions. */
static void extend_h_i_d (void);
static void init_h_i_d (rtx_insn *);
static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
static void generate_recovery_code (rtx_insn *);
static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
static void begin_speculative_block (rtx_insn *);
static void add_to_speculative_block (rtx_insn *);
static void init_before_recovery (basic_block *);
static void create_check_block_twin (rtx_insn *, bool);
static void fix_recovery_deps (basic_block);
static bool haifa_change_pattern (rtx_insn *, rtx);
static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
static void restore_bb_notes (basic_block);
static void fix_jump_move (rtx_insn *);
static void move_block_after_check (rtx_insn *);
static void move_succs (vec<edge, va_gc> **, basic_block);
static void sched_remove_insn (rtx_insn *);
static void clear_priorities (rtx_insn *, rtx_vec_t *);
static void calc_priorities (const rtx_vec_t &);
static void add_jump_dependencies (rtx_insn *, rtx_insn *);
#endif /* INSN_SCHEDULING */
/* Point to state used for the current scheduling pass. */
struct haifa_sched_info *current_sched_info;
#ifndef INSN_SCHEDULING
void
schedule_insns (void)
{
}
#else
/* Do register pressure sensitive insn scheduling if the flag is set
up. */
enum sched_pressure_algorithm sched_pressure;
/* Map regno -> its pressure class. The map defined only when
SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
enum reg_class *sched_regno_pressure_class;
/* The current register pressure. Only elements corresponding pressure
classes are defined. */
static int curr_reg_pressure[N_REG_CLASSES];
/* Saved value of the previous array. */
static int saved_reg_pressure[N_REG_CLASSES];
/* Register living at given scheduling point. */
static bitmap curr_reg_live;
/* Saved value of the previous array. */
static bitmap saved_reg_live;
/* Registers mentioned in the current region. */
static bitmap region_ref_regs;
/* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
static bitmap tmp_bitmap;
/* Effective number of available registers of a given class (see comment
in sched_pressure_start_bb). */
static int sched_class_regs_num[N_REG_CLASSES];
/* The number of registers that the function would need to save before it
uses them, and the number of fixed_regs. Helpers for calculating of
sched_class_regs_num. */
static int call_saved_regs_num[N_REG_CLASSES];
static int fixed_regs_num[N_REG_CLASSES];
/* Initiate register pressure relative info for scheduling the current
region. Currently it is only clearing register mentioned in the
current region. */
void
sched_init_region_reg_pressure_info (void)
{
bitmap_clear (region_ref_regs);
}
/* PRESSURE[CL] describes the pressure on register class CL. Update it
for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
LIVE tracks the set of live registers; if it is null, assume that
every birth or death is genuine. */
static inline void
mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
{
enum reg_class pressure_class;
pressure_class = sched_regno_pressure_class[regno];
if (regno >= FIRST_PSEUDO_REGISTER)
{
if (pressure_class != NO_REGS)
{
if (birth_p)
{
if (!live || bitmap_set_bit (live, regno))
pressure[pressure_class]
+= (ira_reg_class_max_nregs
[pressure_class][PSEUDO_REGNO_MODE (regno)]);
}
else
{
if (!live || bitmap_clear_bit (live, regno))
pressure[pressure_class]
-= (ira_reg_class_max_nregs
[pressure_class][PSEUDO_REGNO_MODE (regno)]);
}
}
}
else if (pressure_class != NO_REGS
&& ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
{
if (birth_p)
{
if (!live || bitmap_set_bit (live, regno))
pressure[pressure_class]++;
}
else
{
if (!live || bitmap_clear_bit (live, regno))
pressure[pressure_class]--;
}
}
}
/* Initiate current register pressure related info from living
registers given by LIVE. */
static void
initiate_reg_pressure_info (bitmap live)
{
int i;
unsigned int j;
bitmap_iterator bi;
for (i = 0; i < ira_pressure_classes_num; i++)
curr_reg_pressure[ira_pressure_classes[i]] = 0;
bitmap_clear (curr_reg_live);
EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
if (sched_pressure == SCHED_PRESSURE_MODEL
|| current_nr_blocks == 1
|| bitmap_bit_p (region_ref_regs, j))
mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
}
/* Mark registers in X as mentioned in the current region. */
static void
setup_ref_regs (rtx x)
{
int i, j;
const RTX_CODE code = GET_CODE (x);
const char *fmt;
if (REG_P (x))
{
bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
return;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
setup_ref_regs (XEXP (x, i));
else if (fmt[i] == 'E')
{
for (j = 0; j < XVECLEN (x, i); j++)
setup_ref_regs (XVECEXP (x, i, j));
}
}
/* Initiate current register pressure related info at the start of
basic block BB. */
static void
initiate_bb_reg_pressure_info (basic_block bb)
{
unsigned int i ATTRIBUTE_UNUSED;
rtx_insn *insn;
if (current_nr_blocks > 1)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn))
setup_ref_regs (PATTERN (insn));
initiate_reg_pressure_info (df_get_live_in (bb));
if (bb_has_eh_pred (bb))
for (i = 0; ; ++i)
{
unsigned int regno = EH_RETURN_DATA_REGNO (i);
if (regno == INVALID_REGNUM)
break;
if (! bitmap_bit_p (df_get_live_in (bb), regno))
mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
regno, true);
}
}
/* Save current register pressure related info. */
static void
save_reg_pressure (void)
{
int i;
for (i = 0; i < ira_pressure_classes_num; i++)
saved_reg_pressure[ira_pressure_classes[i]]
= curr_reg_pressure[ira_pressure_classes[i]];
bitmap_copy (saved_reg_live, curr_reg_live);
}
/* Restore saved register pressure related info. */
static void
restore_reg_pressure (void)
{
int i;
for (i = 0; i < ira_pressure_classes_num; i++)
curr_reg_pressure[ira_pressure_classes[i]]
= saved_reg_pressure[ira_pressure_classes[i]];
bitmap_copy (curr_reg_live, saved_reg_live);
}
/* Return TRUE if the register is dying after its USE. */
static bool
dying_use_p (struct reg_use_data *use)
{
struct reg_use_data *next;
for (next = use->next_regno_use; next != use; next = next->next_regno_use)
if (NONDEBUG_INSN_P (next->insn)
&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
return false;
return true;
}
/* Print info about the current register pressure and its excess for
each pressure class. */
static void
print_curr_reg_pressure (void)
{
int i;
enum reg_class cl;
fprintf (sched_dump, ";;\t");
for (i = 0; i < ira_pressure_classes_num; i++)
{
cl = ira_pressure_classes[i];
gcc_assert (curr_reg_pressure[cl] >= 0);
fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
curr_reg_pressure[cl],
curr_reg_pressure[cl] - sched_class_regs_num[cl]);
}
fprintf (sched_dump, "\n");
}
/* Determine if INSN has a condition that is clobbered if a register
in SET_REGS is modified. */
static bool
cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
{
rtx pat = PATTERN (insn);
gcc_assert (GET_CODE (pat) == COND_EXEC);
if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
{
sd_iterator_def sd_it;
dep_t dep;
haifa_change_pattern (insn, ORIG_PAT (insn));
FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
DEP_STATUS (dep) &= ~DEP_CANCELLED;
TODO_SPEC (insn) = HARD_DEP;
if (sched_verbose >= 2)
fprintf (sched_dump,
";;\t\tdequeue insn %s because of clobbered condition\n",
(*current_sched_info->print_insn) (insn, 0));
return true;
}
return false;
}
/* This function should be called after modifying the pattern of INSN,
to update scheduler data structures as needed. */
static void
update_insn_after_change (rtx_insn *insn)
{
sd_iterator_def sd_it;
dep_t dep;
dfa_clear_single_insn_cache (insn);
sd_it = sd_iterator_start (insn,
SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
while (sd_iterator_cond (&sd_it, &dep))
{
DEP_COST (dep) = UNKNOWN_DEP_COST;
sd_iterator_next (&sd_it);
}
/* Invalidate INSN_COST, so it'll be recalculated. */
INSN_COST (insn) = -1;
/* Invalidate INSN_TICK, so it'll be recalculated. */
INSN_TICK (insn) = INVALID_TICK;
/* Invalidate autoprefetch data entry. */
INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
}
/* Two VECs, one to hold dependencies for which pattern replacements
need to be applied or restored at the start of the next cycle, and
another to hold an integer that is either one, to apply the
corresponding replacement, or zero to restore it. */
static vec<dep_t> next_cycle_replace_deps;
static vec<int> next_cycle_apply;
static void apply_replacement (dep_t, bool);
static void restore_pattern (dep_t, bool);
/* Look at the remaining dependencies for insn NEXT, and compute and return
the TODO_SPEC value we should use for it. This is called after one of
NEXT's dependencies has been resolved.
We also perform pattern replacements for predication, and for broken
replacement dependencies. The latter is only done if FOR_BACKTRACK is
false. */
static ds_t
recompute_todo_spec (rtx_insn *next, bool for_backtrack)
{
ds_t new_ds;
sd_iterator_def sd_it;
dep_t dep, modify_dep = NULL;
int n_spec = 0;
int n_control = 0;
int n_replace = 0;
bool first_p = true;
if (sd_lists_empty_p (next, SD_LIST_BACK))
/* NEXT has all its dependencies resolved. */
return 0;
if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
return HARD_DEP;
/* If NEXT is intended to sit adjacent to this instruction, we don't
want to try to break any dependencies. Treat it as a HARD_DEP. */
if (SCHED_GROUP_P (next))
return HARD_DEP;
/* Now we've got NEXT with speculative deps only.
1. Look at the deps to see what we have to do.
2. Check if we can do 'todo'. */
new_ds = 0;
FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
{
rtx_insn *pro = DEP_PRO (dep);
ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
continue;
if (ds)
{
n_spec++;
if (first_p)
{
first_p = false;
new_ds = ds;
}
else
new_ds = ds_merge (new_ds, ds);
}
else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
{
if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
{
n_control++;
modify_dep = dep;
}
DEP_STATUS (dep) &= ~DEP_CANCELLED;
}
else if (DEP_REPLACE (dep) != NULL)
{
if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
{
n_replace++;
modify_dep = dep;
}
DEP_STATUS (dep) &= ~DEP_CANCELLED;
}
}
if (n_replace > 0 && n_control == 0 && n_spec == 0)
{
if (!dbg_cnt (sched_breakdep))
return HARD_DEP;
FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
{
struct dep_replacement *desc = DEP_REPLACE (dep);
if (desc != NULL)
{
if (desc->insn == next && !for_backtrack)
{
gcc_assert (n_replace == 1);
apply_replacement (dep, true);
}
DEP_STATUS (dep) |= DEP_CANCELLED;
}
}
return 0;
}
else if (n_control == 1 && n_replace == 0 && n_spec == 0)
{
rtx_insn *pro, *other;
rtx new_pat;
rtx cond = NULL_RTX;
bool success;
rtx_insn *prev = NULL;
int i;
unsigned regno;
if ((current_sched_info->flags & DO_PREDICATION) == 0
|| (ORIG_PAT (next) != NULL_RTX
&& PREDICATED_PAT (next) == NULL_RTX))
return HARD_DEP;
pro = DEP_PRO (modify_dep);
other = real_insn_for_shadow (pro);
if (other != NULL_RTX)
pro = other;
cond = sched_get_reverse_condition_uncached (pro);
regno = REGNO (XEXP (cond, 0));
/* Find the last scheduled insn that modifies the condition register.
We can stop looking once we find the insn we depend on through the
REG_DEP_CONTROL; if the condition register isn't modified after it,
we know that it still has the right value. */
if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
{
HARD_REG_SET t;
find_all_hard_reg_sets (prev, &t, true);
if (TEST_HARD_REG_BIT (t, regno))
return HARD_DEP;
if (prev == pro)
break;
}
if (ORIG_PAT (next) == NULL_RTX)
{
ORIG_PAT (next) = PATTERN (next);
new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
success = haifa_change_pattern (next, new_pat);
if (!success)
return HARD_DEP;
PREDICATED_PAT (next) = new_pat;
}
else if (PATTERN (next) != PREDICATED_PAT (next))
{
bool success = haifa_change_pattern (next,
PREDICATED_PAT (next));
gcc_assert (success);
}
DEP_STATUS (modify_dep) |= DEP_CANCELLED;
return DEP_CONTROL;
}
if (PREDICATED_PAT (next) != NULL_RTX)
{
int tick = INSN_TICK (next);
bool success = haifa_change_pattern (next,
ORIG_PAT (next));
INSN_TICK (next) = tick;
gcc_assert (success);
}
/* We can't handle the case where there are both speculative and control
dependencies, so we return HARD_DEP in such a case. Also fail if
we have speculative dependencies with not enough points, or more than
one control dependency. */
if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
|| (n_spec > 0
/* Too few points? */
&& ds_weak (new_ds) < spec_info->data_weakness_cutoff)
|| n_control > 0
|| n_replace > 0)
return HARD_DEP;
return new_ds;
}
/* Pointer to the last instruction scheduled. */
static rtx_insn *last_scheduled_insn;
/* Pointer to the last nondebug instruction scheduled within the
block, or the prev_head of the scheduling block. Used by
rank_for_schedule, so that insns independent of the last scheduled
insn will be preferred over dependent instructions. */
static rtx_insn *last_nondebug_scheduled_insn;
/* Pointer that iterates through the list of unscheduled insns if we
have a dbg_cnt enabled. It always points at an insn prior to the
first unscheduled one. */
static rtx_insn *nonscheduled_insns_begin;
/* Compute cost of executing INSN.
This is the number of cycles between instruction issue and
instruction results. */
int
insn_sched_cost (rtx_insn *insn)
{
int cost;
if (sched_fusion)
return 0;
if (sel_sched_p ())
{
if (recog_memoized (insn) < 0)
return 0;
cost = insn_default_latency (insn);
if (cost < 0)
cost = 0;
return cost;
}
cost = INSN_COST (insn);
if (cost < 0)
{
/* A USE insn, or something else we don't need to
understand. We can't pass these directly to
result_ready_cost or insn_default_latency because it will
trigger a fatal error for unrecognizable insns. */
if (recog_memoized (insn) < 0)
{
INSN_COST (insn) = 0;
return 0;
}
else
{
cost = insn_default_latency (insn);
if (cost < 0)
cost = 0;
INSN_COST (insn) = cost;
}
}
return cost;
}
/* Compute cost of dependence LINK.
This is the number of cycles between instruction issue and
instruction results.
??? We also use this function to call recog_memoized on all insns. */
int
dep_cost_1 (dep_t link, dw_t dw)
{
rtx_insn *insn = DEP_PRO (link);
rtx_insn *used = DEP_CON (link);
int cost;
if (DEP_COST (link) != UNKNOWN_DEP_COST)
return DEP_COST (link);
if (delay_htab)
{
struct delay_pair *delay_entry;
delay_entry
= delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
if (delay_entry)
{
if (delay_entry->i1 == insn)
{
DEP_COST (link) = pair_delay (delay_entry);
return DEP_COST (link);
}
}
}
/* A USE insn should never require the value used to be computed.
This allows the computation of a function's result and parameter
values to overlap the return and call. We don't care about the
dependence cost when only decreasing register pressure. */
if (recog_memoized (used) < 0)
{
cost = 0;
recog_memoized (insn);
}
else
{
enum reg_note dep_type = DEP_TYPE (link);
cost = insn_sched_cost (insn);
if (INSN_CODE (insn) >= 0)
{
if (dep_type == REG_DEP_ANTI)
cost = 0;
else if (dep_type == REG_DEP_OUTPUT)
{
cost = (insn_default_latency (insn)
- insn_default_latency (used));
if (cost <= 0)
cost = 1;
}
else if (bypass_p (insn))
cost = insn_latency (insn, used);
}
if (targetm.sched.adjust_cost)
cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
dw);
if (cost < 0)
cost = 0;
}
DEP_COST (link) = cost;
return cost;
}
/* Compute cost of dependence LINK.
This is the number of cycles between instruction issue and
instruction results. */
int
dep_cost (dep_t link)
{
return dep_cost_1 (link, 0);
}
/* Use this sel-sched.c friendly function in reorder2 instead of increasing
INSN_PRIORITY explicitly. */
void
increase_insn_priority (rtx_insn *insn, int amount)
{
if (!sel_sched_p ())
{
/* We're dealing with haifa-sched.c INSN_PRIORITY. */
if (INSN_PRIORITY_KNOWN (insn))
INSN_PRIORITY (insn) += amount;
}
else
{
/* In sel-sched.c INSN_PRIORITY is not kept up to date.
Use EXPR_PRIORITY instead. */
sel_add_to_insn_priority (insn, amount);
}
}
/* Return 'true' if DEP should be included in priority calculations. */
static bool
contributes_to_priority_p (dep_t dep)
{
if (DEBUG_INSN_P (DEP_CON (dep))
|| DEBUG_INSN_P (DEP_PRO (dep)))
return false;
/* Critical path is meaningful in block boundaries only. */
if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
DEP_PRO (dep)))
return false;
if (DEP_REPLACE (dep) != NULL)
return false;
/* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
then speculative instructions will less likely be
scheduled. That is because the priority of
their producers will increase, and, thus, the
producers will more likely be scheduled, thus,
resolving the dependence. */
if (sched_deps_info->generate_spec_deps
&& !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
&& (DEP_STATUS (dep) & SPECULATIVE))
return false;
return true;
}
/* Compute the number of nondebug deps in list LIST for INSN. */
static int
dep_list_size (rtx_insn *insn, sd_list_types_def list)
{
sd_iterator_def sd_it;
dep_t dep;
int dbgcount = 0, nodbgcount = 0;
if (!MAY_HAVE_DEBUG_INSNS)
return sd_lists_size (insn, list);
FOR_EACH_DEP (insn, list, sd_it, dep)
{
if (DEBUG_INSN_P (DEP_CON (dep)))
dbgcount++;
else if (!DEBUG_INSN_P (DEP_PRO (dep)))
nodbgcount++;
}
gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
return nodbgcount;
}
bool sched_fusion;
/* Compute the priority number for INSN. */
static int
priority (rtx_insn *insn, bool force_recompute)
{
if (! INSN_P (insn))
return 0;
/* We should not be interested in priority of an already scheduled insn. */
gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
{
int this_priority = -1;
if (sched_fusion)
{
int this_fusion_priority;
targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
&this_fusion_priority, &this_priority);
INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
}
else if (dep_list_size (insn, SD_LIST_FORW) == 0)
/* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
has some forward deps but all of them are ignored by
contributes_to_priority hook. At the moment we set priority of
such insn to 0. */
this_priority = insn_sched_cost (insn);
else
{
rtx_insn *prev_first, *twin;
basic_block rec;
/* For recovery check instructions we calculate priority slightly
different than that of normal instructions. Instead of walking
through INSN_FORW_DEPS (check) list, we walk through
INSN_FORW_DEPS list of each instruction in the corresponding
recovery block. */
/* Selective scheduling does not define RECOVERY_BLOCK macro. */
rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
{
prev_first = PREV_INSN (insn);
twin = insn;
}
else
{
prev_first = NEXT_INSN (BB_HEAD (rec));
twin = PREV_INSN (BB_END (rec));
}
do
{
sd_iterator_def sd_it;
dep_t dep;
FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
{
rtx_insn *next;
int next_priority;
next = DEP_CON (dep);
if (BLOCK_FOR_INSN (next) != rec)
{
int cost;
if (!contributes_to_priority_p (dep))
continue;
if (twin == insn)
cost = dep_cost (dep);
else
{
struct _dep _dep1, *dep1 = &_dep1;
init_dep (dep1, insn, next, REG_DEP_ANTI);
cost = dep_cost (dep1);
}
next_priority = cost + priority (next);
if (next_priority > this_priority)
this_priority = next_priority;
}
}
twin = PREV_INSN (twin);
}
while (twin != prev_first);
}
if (this_priority < 0)
{
gcc_assert (this_priority == -1);
this_priority = insn_sched_cost (insn);
}
INSN_PRIORITY (insn) = this_priority;
INSN_PRIORITY_STATUS (insn) = 1;
}
return INSN_PRIORITY (insn);
}
/* Macros and functions for keeping the priority queue sorted, and
dealing with queuing and dequeuing of instructions. */
/* For each pressure class CL, set DEATH[CL] to the number of registers
in that class that die in INSN. */
static void
calculate_reg_deaths (rtx_insn *insn, int *death)
{
int i;
struct reg_use_data *use;
for (i = 0; i < ira_pressure_classes_num; i++)
death[ira_pressure_classes[i]] = 0;
for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
if (dying_use_p (use))
mark_regno_birth_or_death (0, death, use->regno, true);
}
/* Setup info about the current register pressure impact of scheduling
INSN at the current scheduling point. */
static void
setup_insn_reg_pressure_info (rtx_insn *insn)
{
int i, change, before, after, hard_regno;
int excess_cost_change;
machine_mode mode;
enum reg_class cl;
struct reg_pressure_data *pressure_info;
int *max_reg_pressure;
static int death[N_REG_CLASSES];
gcc_checking_assert (!DEBUG_INSN_P (insn));
excess_cost_change = 0;
calculate_reg_deaths (insn, death);
pressure_info = INSN_REG_PRESSURE (insn);
max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
for (i = 0; i < ira_pressure_classes_num; i++)
{
cl = ira_pressure_classes[i];
gcc_assert (curr_reg_pressure[cl] >= 0);
change = (int) pressure_info[i].set_increase - death[cl];
before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
after = MAX (0, max_reg_pressure[i] + change
- sched_class_regs_num[cl]);
hard_regno = ira_class_hard_regs[cl][0];
gcc_assert (hard_regno >= 0);
mode = reg_raw_mode[hard_regno];
excess_cost_change += ((after - before)
* (ira_memory_move_cost[mode][cl][0]
+ ira_memory_move_cost[mode][cl][1]));
}
INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
}
/* This is the first page of code related to SCHED_PRESSURE_MODEL.
It tries to make the scheduler take register pressure into account
without introducing too many unnecessary stalls. It hooks into the
main scheduling algorithm at several points:
- Before scheduling starts, model_start_schedule constructs a
"model schedule" for the current block. This model schedule is
chosen solely to keep register pressure down. It does not take the
target's pipeline or the original instruction order into account,
except as a tie-breaker. It also doesn't work to a particular
pressure limit.
This model schedule gives us an idea of what pressure can be
achieved for the block and gives us an example of a schedule that
keeps to that pressure. It also makes the final schedule less
dependent on the original instruction order. This is important
because the original order can either be "wide" (many values live
at once, such as in user-scheduled code) or "narrow" (few values
live at once, such as after loop unrolling, where several
iterations are executed sequentially).
We do not apply this model schedule to the rtx stream. We simply
record it in model_schedule. We also compute the maximum pressure,
MP, that was seen during this schedule.
- Instructions are added to the ready queue even if they require
a stall. The length of the stall is instead computed as:
MAX (INSN_TICK (INSN) - clock_var, 0)
(= insn_delay). This allows rank_for_schedule to choose between
introducing a deliberate stall or increasing pressure.
- Before sorting the ready queue, model_set_excess_costs assigns
a pressure-based cost to each ready instruction in the queue.
This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
(ECC for short) and is effectively measured in cycles.
- rank_for_schedule ranks instructions based on:
ECC (insn) + insn_delay (insn)
then as:
insn_delay (insn)
So, for example, an instruction X1 with an ECC of 1 that can issue
now will win over an instruction X0 with an ECC of zero that would
introduce a stall of one cycle. However, an instruction X2 with an
ECC of 2 that can issue now will lose to both X0 and X1.
- When an instruction is scheduled, model_recompute updates the model
schedule with the new pressures (some of which might now exceed the
original maximum pressure MP). model_update_limit_points then searches
for the new point of maximum pressure, if not already known. */
/* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
from surrounding debug information. */
#define MODEL_BAR \
";;\t\t+------------------------------------------------------\n"
/* Information about the pressure on a particular register class at a
particular point of the model schedule. */
struct model_pressure_data {
/* The pressure at this point of the model schedule, or -1 if the
point is associated with an instruction that has already been
scheduled. */
int ref_pressure;
/* The maximum pressure during or after this point of the model schedule. */
int max_pressure;
};
/* Per-instruction information that is used while building the model
schedule. Here, "schedule" refers to the model schedule rather
than the main schedule. */
struct model_insn_info {
/* The instruction itself. */
rtx_insn *insn;
/* If this instruction is in model_worklist, these fields link to the
previous (higher-priority) and next (lower-priority) instructions
in the list. */
struct model_insn_info *prev;
struct model_insn_info *next;
/* While constructing the schedule, QUEUE_INDEX describes whether an
instruction has already been added to the schedule (QUEUE_SCHEDULED),
is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
old_queue records the value that QUEUE_INDEX had before scheduling
started, so that we can restore it once the schedule is complete. */
int old_queue;
/* The relative importance of an unscheduled instruction. Higher
values indicate greater importance. */
unsigned int model_priority;
/* The length of the longest path of satisfied true dependencies
that leads to this instruction. */
unsigned int depth;
/* The length of the longest path of dependencies of any kind
that leads from this instruction. */
unsigned int alap;
/* The number of predecessor nodes that must still be scheduled. */
int unscheduled_preds;
};
/* Information about the pressure limit for a particular register class.
This structure is used when applying a model schedule to the main
schedule. */
struct model_pressure_limit {
/* The maximum register pressure seen in the original model schedule. */
int orig_pressure;
/* The maximum register pressure seen in the current model schedule
(which excludes instructions that have already been scheduled). */
int pressure;
/* The point of the current model schedule at which PRESSURE is first
reached. It is set to -1 if the value needs to be recomputed. */
int point;
};
/* Describes a particular way of measuring register pressure. */
struct model_pressure_group {
/* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
struct model_pressure_limit limits[N_REG_CLASSES];
/* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
on register class ira_pressure_classes[PCI] at point POINT of the
current model schedule. A POINT of model_num_insns describes the
pressure at the end of the schedule. */
struct model_pressure_data *model;
};
/* Index POINT gives the instruction at point POINT of the model schedule.
This array doesn't change during main scheduling. */
static vec<rtx_insn *> model_schedule;
/* The list of instructions in the model worklist, sorted in order of
decreasing priority. */
static struct model_insn_info *model_worklist;
/* Index I describes the instruction with INSN_LUID I. */
static struct model_insn_info *model_insns;
/* The number of instructions in the model schedule. */
static int model_num_insns;
/* The index of the first instruction in model_schedule that hasn't yet been
added to the main schedule, or model_num_insns if all of them have. */
static int model_curr_point;
/* Describes the pressure before each instruction in the model schedule. */
static struct model_pressure_group model_before_pressure;
/* The first unused model_priority value (as used in model_insn_info). */
static unsigned int model_next_priority;
/* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
at point POINT of the model schedule. */
#define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
(&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
/* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
after point POINT of the model schedule. */
#define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
(MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
/* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
of the model schedule. */
#define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
(MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
/* Information about INSN that is used when creating the model schedule. */
#define MODEL_INSN_INFO(INSN) \
(&model_insns[INSN_LUID (INSN)])
/* The instruction at point POINT of the model schedule. */
#define MODEL_INSN(POINT) \
(model_schedule[POINT])
/* Return INSN's index in the model schedule, or model_num_insns if it
doesn't belong to that schedule. */
static int
model_index (rtx_insn *insn)
{
if (INSN_MODEL_INDEX (insn) == 0)
return model_num_insns;
return INSN_MODEL_INDEX (insn) - 1;
}
/* Make sure that GROUP->limits is up-to-date for the current point
of the model schedule. */
static void
model_update_limit_points_in_group (struct model_pressure_group *group)
{
int pci, max_pressure, point;
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
/* We may have passed the final point at which the pressure in
group->limits[pci].pressure was reached. Update the limit if so. */
max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
group->limits[pci].pressure = max_pressure;
/* Find the point at which MAX_PRESSURE is first reached. We need
to search in three cases:
- We've already moved past the previous pressure point.
In this case we search forward from model_curr_point.
- We scheduled the previous point of maximum pressure ahead of
its position in the model schedule, but doing so didn't bring
the pressure point earlier. In this case we search forward
from that previous pressure point.
- Scheduling an instruction early caused the maximum pressure
to decrease. In this case we will have set the pressure
point to -1, and we search forward from model_curr_point. */
point = MAX (group->limits[pci].point, model_curr_point);
while (point < model_num_insns
&& MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
point++;
group->limits[pci].point = point;
gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
}
}
/* Make sure that all register-pressure limits are up-to-date for the
current position in the model schedule. */
static void
model_update_limit_points (void)
{
model_update_limit_points_in_group (&model_before_pressure);
}
/* Return the model_index of the last unscheduled use in chain USE
outside of USE's instruction. Return -1 if there are no other uses,
or model_num_insns if the register is live at the end of the block. */
static int
model_last_use_except (struct reg_use_data *use)
{
struct reg_use_data *next;
int last, index;
last = -1;
for (next = use->next_regno_use; next != use; next = next->next_regno_use)
if (NONDEBUG_INSN_P (next->insn)
&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
{
index = model_index (next->insn);
if (index == model_num_insns)
return model_num_insns;
if (last < index)
last = index;
}
return last;
}
/* An instruction with model_index POINT has just been scheduled, and it
adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
static void
model_start_update_pressure (struct model_pressure_group *group,
int point, int pci, int delta)
{
int next_max_pressure;
if (point == model_num_insns)
{
/* The instruction wasn't part of the model schedule; it was moved
from a different block. Update the pressure for the end of
the model schedule. */
MODEL_REF_PRESSURE (group, point, pci) += delta;
MODEL_MAX_PRESSURE (group, point, pci) += delta;
}
else
{
/* Record that this instruction has been scheduled. Nothing now
changes between POINT and POINT + 1, so get the maximum pressure
from the latter. If the maximum pressure decreases, the new
pressure point may be before POINT. */
MODEL_REF_PRESSURE (group, point, pci) = -1;
next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
{
MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
if (group->limits[pci].point == point)
group->limits[pci].point = -1;
}
}
}
/* Record that scheduling a later instruction has changed the pressure
at point POINT of the model schedule by DELTA (which might be 0).
Update GROUP accordingly. Return nonzero if these changes might
trigger changes to previous points as well. */
static int
model_update_pressure (struct model_pressure_group *group,
int point, int pci, int delta)
{
int ref_pressure, max_pressure, next_max_pressure;
/* If POINT hasn't yet been scheduled, update its pressure. */
ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
if (ref_pressure >= 0 && delta != 0)
{
ref_pressure += delta;
MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
/* Check whether the maximum pressure in the overall schedule
has increased. (This means that the MODEL_MAX_PRESSURE of
every point <= POINT will need to increase too; see below.) */
if (group->limits[pci].pressure < ref_pressure)
group->limits[pci].pressure = ref_pressure;
/* If we are at maximum pressure, and the maximum pressure
point was previously unknown or later than POINT,
bring it forward. */
if (group->limits[pci].pressure == ref_pressure
&& !IN_RANGE (group->limits[pci].point, 0, point))
group->limits[pci].point = point;
/* If POINT used to be the point of maximum pressure, but isn't
any longer, we need to recalculate it using a forward walk. */
if (group->limits[pci].pressure > ref_pressure
&& group->limits[pci].point == point)
group->limits[pci].point = -1;
}
/* Update the maximum pressure at POINT. Changes here might also
affect the maximum pressure at POINT - 1. */
next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
max_pressure = MAX (ref_pressure, next_max_pressure);
if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
{
MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
return 1;
}
return 0;
}
/* INSN has just been scheduled. Update the model schedule accordingly. */
static void
model_recompute (rtx_insn *insn)
{
struct {
int last_use;
int regno;
} uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
struct reg_use_data *use;
struct reg_pressure_data *reg_pressure;
int delta[N_REG_CLASSES];
int pci, point, mix, new_last, cl, ref_pressure, queue;
unsigned int i, num_uses, num_pending_births;
bool print_p;
/* The destinations of INSN were previously live from POINT onwards, but are
now live from model_curr_point onwards. Set up DELTA accordingly. */
point = model_index (insn);
reg_pressure = INSN_REG_PRESSURE (insn);
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
delta[cl] = reg_pressure[pci].set_increase;
}
/* Record which registers previously died at POINT, but which now die
before POINT. Adjust DELTA so that it represents the effect of
this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
registers that will be born in the range [model_curr_point, POINT). */
num_uses = 0;
num_pending_births = 0;
bitmap_clear (tmp_bitmap);
for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
{
new_last = model_last_use_except (use);
if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
{
gcc_assert (num_uses < ARRAY_SIZE (uses));
uses[num_uses].last_use = new_last;
uses[num_uses].regno = use->regno;
/* This register is no longer live after POINT - 1. */
mark_regno_birth_or_death (NULL, delta, use->regno, false);
num_uses++;
if (new_last >= 0)
num_pending_births++;
}
}
/* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
Also set each group pressure limit for POINT. */
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
model_start_update_pressure (&model_before_pressure,
point, pci, delta[cl]);
}
/* Walk the model schedule backwards, starting immediately before POINT. */
print_p = false;
if (point != model_curr_point)
do
{
point--;
insn = MODEL_INSN (point);
queue = QUEUE_INDEX (insn);
if (queue != QUEUE_SCHEDULED)
{
/* DELTA describes the effect of the move on the register pressure
after POINT. Make it describe the effect on the pressure
before POINT. */
i = 0;
while (i < num_uses)
{
if (uses[i].last_use == point)
{
/* This register is now live again. */
mark_regno_birth_or_death (NULL, delta,
uses[i].regno, true);
/* Remove this use from the array. */
uses[i] = uses[num_uses - 1];
num_uses--;
num_pending_births--;
}
else
i++;
}
if (sched_verbose >= 5)
{
if (!print_p)
{
fprintf (sched_dump, MODEL_BAR);
fprintf (sched_dump, ";;\t\t| New pressure for model"
" schedule\n");
fprintf (sched_dump, MODEL_BAR);
print_p = true;
}
fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
point, INSN_UID (insn),
str_pattern_slim (PATTERN (insn)));
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
point, pci);
fprintf (sched_dump, " %s:[%d->%d]",
reg_class_names[ira_pressure_classes[pci]],
ref_pressure, ref_pressure + delta[cl]);
}
fprintf (sched_dump, "\n");
}
}
/* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
might have changed as well. */
mix = num_pending_births;
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
mix |= delta[cl];
mix |= model_update_pressure (&model_before_pressure,
point, pci, delta[cl]);
}
}
while (mix && point > model_curr_point);
if (print_p)
fprintf (sched_dump, MODEL_BAR);
}
/* After DEP, which was cancelled, has been resolved for insn NEXT,
check whether the insn's pattern needs restoring. */
static bool
must_restore_pattern_p (rtx_insn *next, dep_t dep)
{
if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
return false;
if (DEP_TYPE (dep) == REG_DEP_CONTROL)
{
gcc_assert (ORIG_PAT (next) != NULL_RTX);
gcc_assert (next == DEP_CON (dep));
}
else
{
struct dep_replacement *desc = DEP_REPLACE (dep);
if (desc->insn != next)
{
gcc_assert (*desc->loc == desc->orig);
return false;
}
}
return true;
}
/* model_spill_cost (CL, P, P') returns the cost of increasing the
pressure on CL from P to P'. We use this to calculate a "base ECC",
baseECC (CL, X), for each pressure class CL and each instruction X.
Supposing X changes the pressure on CL from P to P', and that the
maximum pressure on CL in the current model schedule is MP', then:
* if X occurs before or at the next point of maximum pressure in
the model schedule and P' > MP', then:
baseECC (CL, X) = model_spill_cost (CL, MP, P')
The idea is that the pressure after scheduling a fixed set of
instructions -- in this case, the set up to and including the
next maximum pressure point -- is going to be the same regardless
of the order; we simply want to keep the intermediate pressure
under control. Thus X has a cost of zero unless scheduling it
now would exceed MP'.
If all increases in the set are by the same amount, no zero-cost
instruction will ever cause the pressure to exceed MP'. However,
if X is instead moved past an instruction X' with pressure in the
range (MP' - (P' - P), MP'), the pressure at X' will increase
beyond MP'. Since baseECC is very much a heuristic anyway,
it doesn't seem worth the overhead of tracking cases like these.
The cost of exceeding MP' is always based on the original maximum
pressure MP. This is so that going 2 registers over the original
limit has the same cost regardless of whether it comes from two
separate +1 deltas or from a single +2 delta.
* if X occurs after the next point of maximum pressure in the model
schedule and P' > P, then:
baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
That is, if we move X forward across a point of maximum pressure,
and if X increases the pressure by P' - P, then we conservatively
assume that scheduling X next would increase the maximum pressure
by P' - P. Again, the cost of doing this is based on the original
maximum pressure MP, for the same reason as above.
* if P' < P, P > MP, and X occurs at or after the next point of
maximum pressure, then:
baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
That is, if we have already exceeded the original maximum pressure MP,
and if X might reduce the maximum pressure again -- or at least push
it further back, and thus allow more scheduling freedom -- it is given
a negative cost to reflect the improvement.
* otherwise,
baseECC (CL, X) = 0
In this case, X is not expected to affect the maximum pressure MP',
so it has zero cost.
We then create a combined value baseECC (X) that is the sum of
baseECC (CL, X) for each pressure class CL.
baseECC (X) could itself be used as the ECC value described above.
However, this is often too conservative, in the sense that it
tends to make high-priority instructions that increase pressure
wait too long in cases where introducing a spill would be better.
For this reason the final ECC is a priority-adjusted form of
baseECC (X). Specifically, we calculate:
P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
baseP = MAX { P (X) | baseECC (X) <= 0 }
Then:
ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
Thus an instruction's effect on pressure is ignored if it has a high
enough priority relative to the ones that don't increase pressure.
Negative values of baseECC (X) do not increase the priority of X
itself, but they do make it harder for other instructions to
increase the pressure further.
This pressure cost is deliberately timid. The intention has been
to choose a heuristic that rarely interferes with the normal list
scheduler in cases where that scheduler would produce good code.
We simply want to curb some of its worst excesses. */
/* Return the cost of increasing the pressure in class CL from FROM to TO.
Here we use the very simplistic cost model that every register above
sched_class_regs_num[CL] has a spill cost of 1. We could use other
measures instead, such as one based on MEMORY_MOVE_COST. However:
(1) In order for an instruction to be scheduled, the higher cost
would need to be justified in a single saving of that many stalls.
This is overly pessimistic, because the benefit of spilling is
often to avoid a sequence of several short stalls rather than
a single long one.
(2) The cost is still arbitrary. Because we are not allocating
registers during scheduling, we have no way of knowing for
sure how many memory accesses will be required by each spill,
where the spills will be placed within the block, or even
which block(s) will contain the spills.
So a higher cost than 1 is often too conservative in practice,
forcing blocks to contain unnecessary stalls instead of spill code.
The simple cost below seems to be the best compromise. It reduces
the interference with the normal list scheduler, which helps make
it more suitable for a default-on option. */
static int
model_spill_cost (int cl, int from, int to)
{
from = MAX (from, sched_class_regs_num[cl]);
return MAX (to, from) - from;
}
/* Return baseECC (ira_pressure_classes[PCI], POINT), given that
P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
P' = P + DELTA. */
static int
model_excess_group_cost (struct model_pressure_group *group,
int point, int pci, int delta)
{
int pressure, cl;
cl = ira_pressure_classes[pci];
if (delta < 0 && point >= group->limits[pci].point)
{
pressure = MAX (group->limits[pci].orig_pressure,
curr_reg_pressure[cl] + delta);
return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
}
if (delta > 0)
{
if (point > group->limits[pci].point)
pressure = group->limits[pci].pressure + delta;
else
pressure = curr_reg_pressure[cl] + delta;
if (pressure > group->limits[pci].pressure)
return model_spill_cost (cl, group->limits[pci].orig_pressure,
pressure);
}
return 0;
}
/* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
if PRINT_P. */
static int
model_excess_cost (rtx_insn *insn, bool print_p)
{
int point, pci, cl, cost, this_cost, delta;
struct reg_pressure_data *insn_reg_pressure;
int insn_death[N_REG_CLASSES];
calculate_reg_deaths (insn, insn_death);
point = model_index (insn);
insn_reg_pressure = INSN_REG_PRESSURE (insn);
cost = 0;
if (print_p)
fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
/* Sum up the individual costs for each register class. */
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
this_cost = model_excess_group_cost (&model_before_pressure,
point, pci, delta);
cost += this_cost;
if (print_p)
fprintf (sched_dump, " %s:[%d base cost %d]",
reg_class_names[cl], delta, this_cost);
}
if (print_p)
fprintf (sched_dump, "\n");
return cost;
}
/* Dump the next points of maximum pressure for GROUP. */
static void
model_dump_pressure_points (struct model_pressure_group *group)
{
int pci, cl;
fprintf (sched_dump, ";;\t\t| pressure points");
for (pci = 0; pci < ira_pressure_classes_num; pci++)
{
cl = ira_pressure_classes[pci];
fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
curr_reg_pressure[cl], group->limits[pci].pressure);
if (group->limits[pci].point < model_num_insns)
fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
INSN_UID (MODEL_INSN (group->limits[pci].point)));
else
fprintf (sched_dump, "end]");
}
fprintf (sched_dump, "\n");
}
/* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
static void
model_set_excess_costs (rtx_insn **insns, int count)
{
int i, cost, priority_base, priority;
bool print_p;
/* Record the baseECC value for each instruction in the model schedule,
except that negative costs are converted to zero ones now rather than
later. Do not assign a cost to debug instructions, since they must
not change code-generation decisions. Experiments suggest we also
get better results by not assigning a cost to instructions from
a different block.
Set PRIORITY_BASE to baseP in the block comment above. This is the
maximum priority of the "cheap" instructions, which should always
include the next model instruction. */
priority_base = 0;
print_p = false;
for (i = 0; i < count; i++)
if (INSN_MODEL_INDEX (insns[i]))
{
if (sched_verbose >= 6 && !print_p)
{
fprintf (sched_dump, MODEL_BAR);
fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
model_dump_pressure_points (&model_before_pressure);
fprintf (sched_dump, MODEL_BAR);
print_p = true;
}
cost = model_excess_cost (insns[i], print_p);
if (cost <= 0)
{
priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
priority_base = MAX (priority_base, priority);
cost = 0;
}
INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
}
if (print_p)
fprintf (sched_dump, MODEL_BAR);
/* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
instruction. */
for (i = 0; i < count; i++)
{
cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
if (cost > 0 && priority > priority_base)
{
cost += priority_base - priority;
INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
}
}
}
/* Enum of rank_for_schedule heuristic decisions. */
enum rfs_decision {
RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_AUTOPREF, RFS_SPECULATION,
RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };
/* Corresponding strings for print outs. */
static const char *rfs_str[RFS_N] = {
"RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
"RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
"RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_AUTOPREF", "RFS_SPECULATION",
"RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
"RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };
/* Statistical breakdown of rank_for_schedule decisions. */
struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
static rank_for_schedule_stats_t rank_for_schedule_stats;
/* Return the result of comparing insns TMP and TMP2 and update
Rank_For_Schedule statistics. */
static int
rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
{
++rank_for_schedule_stats.stats[decision];
if (result < 0)
INSN_LAST_RFS_WIN (tmp) = decision;
else if (result > 0)
INSN_LAST_RFS_WIN (tmp2) = decision;
else
gcc_unreachable ();
return result;
}
/* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
keeping normal insns in original order. */
static int
rank_for_schedule_debug (const void *x, const void *y)
{
rtx_insn *tmp = *(rtx_insn * const *) y;
rtx_insn *tmp2 = *(rtx_insn * const *) x;
/* Schedule debug insns as early as possible. */
if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
return -1;
else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
return 1;
else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
return INSN_LUID (tmp) - INSN_LUID (tmp2);
else
return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
}
/* Returns a positive value if x is preferred; returns a negative value if
y is preferred. Should never return 0, since that will make the sort
unstable. */
static int
rank_for_schedule (const void *x, const void *y)
{
rtx_insn *tmp = *(rtx_insn * const *) y;
rtx_insn *tmp2 = *(rtx_insn * const *) x;
int tmp_class, tmp2_class;
int val, priority_val, info_val, diff;
if (live_range_shrinkage_p)
{
/* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
code. */
gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
|| INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
&& (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
- INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
/* Sort by INSN_LUID (original insn order), so that we make the
sort stable. This minimizes instruction movement, thus
minimizing sched's effect on debugging and cross-jumping. */
return rfs_result (RFS_LIVE_RANGE_SHRINK2,
INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
}
/* The insn in a schedule group should be issued the first. */
if (flag_sched_group_heuristic &&
SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
tmp, tmp2);
/* Make sure that priority of TMP and TMP2 are initialized. */
gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
if (sched_fusion)
{
/* The instruction that has the same fusion priority as the last
instruction is the instruction we picked next. If that is not
the case, we sort ready list firstly by fusion priority, then
by priority, and at last by INSN_LUID. */
int a = INSN_FUSION_PRIORITY (tmp);
int b = INSN_FUSION_PRIORITY (tmp2);
int last = -1;
if (last_nondebug_scheduled_insn
&& !NOTE_P (last_nondebug_scheduled_insn)
&& BLOCK_FOR_INSN (tmp)
== BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
if (a != last && b != last)
{
if (a == b)
{
a = INSN_PRIORITY (tmp);
b = INSN_PRIORITY (tmp2);
}
if (a != b)
return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
else
return rfs_result (RFS_FUSION,
INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
}
else if (a == b)
{
gcc_assert (last_nondebug_scheduled_insn
&& !NOTE_P (last_nondebug_scheduled_insn));
last = INSN_PRIORITY (last_nondebug_scheduled_insn);
a = abs (INSN_PRIORITY (tmp) - last);
b = abs (INSN_PRIORITY (tmp2) - last);
if (a != b)
return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
else
return rfs_result (RFS_FUSION,
INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
}
else if (a == last)
return rfs_result (RFS_FUSION, -1, tmp, tmp2);
else
return rfs_result (RFS_FUSION, 1, tmp, tmp2);
}
if (sched_pressure != SCHED_PRESSURE_NONE)
{
/* Prefer insn whose scheduling results in the smallest register
pressure excess. */
if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
+ insn_delay (tmp)
- INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
- insn_delay (tmp2))))
return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
}
if (sched_pressure != SCHED_PRESSURE_NONE
&& (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
&& INSN_TICK (tmp2) != INSN_TICK (tmp))
{
diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
}
/* If we are doing backtracking in this schedule, prefer insns that
have forward dependencies with negative cost against an insn that
was already scheduled. */
if (current_sched_info->flags & DO_BACKTRACKING)
{
priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
if (priority_val)
return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
}
/* Prefer insn with higher priority. */
priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
if (flag_sched_critical_path_heuristic && priority_val)
return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
if (param_sched_autopref_queue_depth >= 0)
{
int autopref = autopref_rank_for_schedule (tmp, tmp2);
if (autopref != 0)
return rfs_result (RFS_AUTOPREF, autopref, tmp, tmp2);
}
/* Prefer speculative insn with greater dependencies weakness. */
if (flag_sched_spec_insn_heuristic && spec_info)
{
ds_t ds1, ds2;
dw_t dw1, dw2;
int dw;
ds1 = TODO_SPEC (tmp) & SPECULATIVE;
if (ds1)
dw1 = ds_weak (ds1);
else
dw1 = NO_DEP_WEAK;
ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
if (ds2)
dw2 = ds_weak (ds2);
else
dw2 = NO_DEP_WEAK;
dw = dw2 - dw1;
if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
}
info_val = (*current_sched_info->rank) (tmp, tmp2);
if (flag_sched_rank_heuristic && info_val)
return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
/* Compare insns based on their relation to the last scheduled
non-debug insn. */
if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
{
dep_t dep1;
dep_t dep2;
rtx_insn *last = last_nondebug_scheduled_insn;
/* Classify the instructions into three classes:
1) Data dependent on last schedule insn.
2) Anti/Output dependent on last scheduled insn.
3) Independent of last scheduled insn, or has latency of one.
Choose the insn from the highest numbered class if different. */
dep1 = sd_find_dep_between (last, tmp, true);
if (dep1 == NULL || dep_cost (dep1) == 1)
tmp_class = 3;
else if (/* Data dependence. */
DEP_TYPE (dep1) == REG_DEP_TRUE)
tmp_class = 1;
else
tmp_class = 2;
dep2 = sd_find_dep_between (last, tmp2, true);
if (dep2 == NULL || dep_cost (dep2) == 1)
tmp2_class = 3;
else if (/* Data dependence. */
DEP_TYPE (dep2) == REG_DEP_TRUE)
tmp2_class = 1;
else
tmp2_class = 2;
if ((val = tmp2_class - tmp_class))
return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
}
/* Prefer instructions that occur earlier in the model schedule. */
if (sched_pressure == SCHED_PRESSURE_MODEL)
{
diff = model_index (tmp) - model_index (tmp2);
if (diff != 0)
return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
}
/* Prefer the insn which has more later insns that depend on it.
This gives the scheduler more freedom when scheduling later
instructions at the expense of added register pressure. */
val = (dep_list_size (tmp2, SD_LIST_FORW)
- dep_list_size (tmp, SD_LIST_FORW));
if (flag_sched_dep_count_heuristic && val != 0)
return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
/* Sort by INSN_COST rather than INSN_LUID. This means that instructions
which take longer to execute are prioritised and it leads to more
dual-issue opportunities on in-order cores which have this feature. */
if (INSN_COST (tmp) != INSN_COST (tmp2))
return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
tmp, tmp2);
/* If insns are equally good, sort by INSN_LUID (original insn order),
so that we make the sort stable. This minimizes instruction movement,
thus minimizing sched's effect on debugging and cross-jumping. */
return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
}
/* Resort the array A in which only element at index N may be out of order. */
HAIFA_INLINE static void
swap_sort (rtx_insn **a, int n)
{
rtx_insn *insn = a[n - 1];
int i = n - 2;
while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
{
a[i + 1] = a[i];
i -= 1;
}
a[i + 1] = insn;
}
/* Add INSN to the insn queue so that it can be executed at least
N_CYCLES after the currently executing insn. Preserve insns
chain for debugging purposes. REASON will be printed in debugging
output. */
HAIFA_INLINE static void
queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
{
int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
int new_tick;
gcc_assert (n_cycles <= max_insn_queue_index);
gcc_assert (!DEBUG_INSN_P (insn));
insn_queue[next_q] = link;
q_size += 1;
if (sched_verbose >= 2)
{
fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
(*current_sched_info->print_insn) (insn, 0));
fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
}
QUEUE_INDEX (insn) = next_q;
if (current_sched_info->flags & DO_BACKTRACKING)
{
new_tick = clock_var + n_cycles;
if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
INSN_TICK (insn) = new_tick;
if (INSN_EXACT_TICK (insn) != INVALID_TICK
&& INSN_EXACT_TICK (insn) < clock_var + n_cycles)
{
must_backtrack = true;
if (sched_verbose >= 2)
fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
}
}
}
/* Remove INSN from queue. */
static void
queue_remove (rtx_insn *insn)
{
gcc_assert (QUEUE_INDEX (insn) >= 0);
remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
q_size--;
QUEUE_INDEX (insn) = QUEUE_NOWHERE;
}
/* Return a pointer to the bottom of the ready list, i.e. the insn
with the lowest priority. */
rtx_insn **
ready_lastpos (struct ready_list *ready)
{
gcc_assert (ready->n_ready >= 1);
return ready->vec + ready->first - ready->n_ready + 1;
}
/* Add an element INSN to the ready list so that it ends up with the
lowest/highest priority depending on FIRST_P. */
HAIFA_INLINE static void
ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
{
if (!first_p)
{
if (ready->first == ready->n_ready)
{
memmove (ready->vec + ready->veclen - ready->n_ready,
ready_lastpos (ready),
ready->n_ready * sizeof (rtx));
ready->first = ready->veclen - 1;
}
ready->vec[ready->first - ready->n_ready] = insn;
}
else
{
if (ready->first == ready->veclen - 1)
{
if (ready->n_ready)
/* ready_lastpos() fails when called with (ready->n_ready == 0). */
memmove (ready->vec + ready->veclen - ready->n_ready - 1,
ready_lastpos (ready),
ready->n_ready * sizeof (rtx));
ready->first = ready->veclen - 2;
}
ready->vec[++(ready->first)] = insn;
}
ready->n_ready++;
if (DEBUG_INSN_P (insn))
ready->n_debug++;
gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
QUEUE_INDEX (insn) = QUEUE_READY;
if (INSN_EXACT_TICK (insn) != INVALID_TICK
&& INSN_EXACT_TICK (insn) < clock_var)
{
must_backtrack = true;
}
}
/* Remove the element with the highest priority from the ready list and
return it. */
HAIFA_INLINE static rtx_insn *
ready_remove_first (struct ready_list *ready)
{
rtx_insn *t;
gcc_assert (ready->n_ready);
t = ready->vec[ready->first--];
ready->n_ready--;
if (DEBUG_INSN_P (t))
ready->n_debug--;
/* If the queue becomes empty, reset it. */
if (ready->n_ready == 0)
ready->first = ready->veclen - 1;
gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
QUEUE_INDEX (t) = QUEUE_NOWHERE;
return t;
}
/* The following code implements multi-pass scheduling for the first
cycle. In other words, we will try to choose ready insn which
permits to start maximum number of insns on the same cycle. */
/* Return a pointer to the element INDEX from the ready. INDEX for
insn with the highest priority is 0, and the lowest priority has
N_READY - 1. */
rtx_insn *
ready_element (struct ready_list *ready, int index)
{
gcc_assert (ready->n_ready && index < ready->n_ready);
return ready->vec[ready->first - index];
}
/* Remove the element INDEX from the ready list and return it. INDEX
for insn with the highest priority is 0, and the lowest priority
has N_READY - 1. */
HAIFA_INLINE static rtx_insn *
ready_remove (struct ready_list *ready, int index)
{
rtx_insn *t;
int i;
if (index == 0)
return ready_remove_first (ready);
gcc_assert (ready->n_ready && index < ready->n_ready);
t = ready->vec[ready->first - index];
ready->n_ready--;
if (DEBUG_INSN_P (t))
ready->n_debug--;
for (i = index; i < ready->n_ready; i++)
ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
QUEUE_INDEX (t) = QUEUE_NOWHERE;
return t;
}
/* Remove INSN from the ready list. */
static void
ready_remove_insn (rtx_insn *insn)
{
int i;
for (i = 0; i < readyp->n_ready; i++)
if (ready_element (readyp, i) == insn)
{
ready_remove (readyp, i);
return;
}
gcc_unreachable ();
}
/* Calculate difference of two statistics set WAS and NOW.
Result returned in WAS. */
static void
rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
const rank_for_schedule_stats_t *now)
{
for (int i = 0; i < RFS_N; ++i)
was->stats[i] = now->stats[i] - was->stats[i];
}
/* Print rank_for_schedule statistics. */
static void
print_rank_for_schedule_stats (const char *prefix,
const rank_for_schedule_stats_t *stats,
struct ready_list *ready)
{
for (int i = 0; i < RFS_N; ++i)
if (stats->stats[i])
{
fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
if (ready != NULL)
/* Print out insns that won due to RFS_<I>. */
{
rtx_insn **p = ready_lastpos (ready);
fprintf (sched_dump, ":");
/* Start with 1 since least-priority insn didn't have any wins. */
for (int j = 1; j < ready->n_ready; ++j)
if (INSN_LAST_RFS_WIN (p[j]) == i)
fprintf (sched_dump, " %s",
(*current_sched_info->print_insn) (p[j], 0));
}
fprintf (sched_dump, "\n");
}
}
/* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
of array. */
static void
ready_sort_debug (struct ready_list *ready)
{
int i;
rtx_insn **first = ready_lastpos (ready);
for (i = 0; i < ready->n_ready; ++i)
if (!DEBUG_INSN_P (first[i]))
INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
}
/* Sort non-debug insns in the ready list READY by ascending priority.
Assumes that all debug insns are separated from the real insns. */
static void
ready_sort_real (struct ready_list *ready)
{
int i;
rtx_insn **first = ready_lastpos (ready);
int n_ready_real = ready->n_ready - ready->n_debug;
if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
for (i = 0; i < n_ready_real; ++i)
setup_insn_reg_pressure_info (first[i]);
else if (sched_pressure == SCHED_PRESSURE_MODEL
&& model_curr_point < model_num_insns)
model_set_excess_costs (first, n_ready_real);
rank_for_schedule_stats_t stats1;
if (sched_verbose >= 4)
stats1 = rank_for_schedule_stats;
if (n_ready_real == 2)
swap_sort (first, n_ready_real);
else if (n_ready_real > 2)
qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
if (sched_verbose >= 4)
{
rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
}
}
/* Sort the ready list READY by ascending priority. */
static void
ready_sort (struct ready_list *ready)
{
if (ready->n_debug > 0)
ready_sort_debug (ready);
else
ready_sort_real (ready);
}
/* PREV is an insn that is ready to execute. Adjust its priority if that
will help shorten or lengthen register lifetimes as appropriate. Also
provide a hook for the target to tweak itself. */
HAIFA_INLINE static void
adjust_priority (rtx_insn *prev)
{
/* ??? There used to be code here to try and estimate how an insn
affected register lifetimes, but it did it by looking at REG_DEAD
notes, which we removed in schedule_region. Nor did it try to
take into account register pressure or anything useful like that.
Revisit when we have a machine model to work with and not before. */
if (targetm.sched.adjust_priority)
INSN_PRIORITY (prev) =
targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
}
/* Advance DFA state STATE on one cycle. */
void
advance_state (state_t state)
{
if (targetm.sched.dfa_pre_advance_cycle)
targetm.sched.dfa_pre_advance_cycle ();
if (targetm.sched.dfa_pre_cycle_insn)
state_transition (state,
targetm.sched.dfa_pre_cycle_insn ());
state_transition (state, NULL);
if (targetm.sched.dfa_post_cycle_insn)
state_transition (state,
targetm.sched.dfa_post_cycle_insn ());
if (targetm.sched.dfa_post_advance_cycle)
targetm.sched.dfa_post_advance_cycle ();
}
/* Advance time on one cycle. */
HAIFA_INLINE static void
advance_one_cycle (void)
{
int i;
advance_state (curr_state);
for (i = 4; i <= sched_verbose; ++i)
fprintf (sched_dump, ";;\tAdvance the current state: %d.\n", clock_var);
}
/* Update register pressure after scheduling INSN. */
static void
update_register_pressure (rtx_insn *insn)
{
struct reg_use_data *use;
struct reg_set_data *set;
gcc_checking_assert (!DEBUG_INSN_P (insn));
for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
if (dying_use_p (use))
mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
use->regno, false);
for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
set->regno, true);
}
/* Set up or update (if UPDATE_P) max register pressure (see its
meaning in sched-int.h::_haifa_insn_data) for all current BB insns
after insn AFTER. */
static void
setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
{
int i, p;
bool eq_p;
rtx_insn *insn;
static int max_reg_pressure[N_REG_CLASSES];
save_reg_pressure ();
for (i = 0; i < ira_pressure_classes_num; i++)
max_reg_pressure[ira_pressure_classes[i]]
= curr_reg_pressure[ira_pressure_classes[i]];
for (insn = NEXT_INSN (after);
insn != NULL_RTX && ! BARRIER_P (insn)
&& BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
insn = NEXT_INSN (insn))
if (NONDEBUG_INSN_P (insn))
{
eq_p = true;
for (i = 0; i < ira_pressure_classes_num; i++)
{
p = max_reg_pressure[ira_pressure_classes[i]];
if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
{
eq_p = false;
INSN_MAX_REG_PRESSURE (insn)[i]
= max_reg_pressure[ira_pressure_classes[i]];
}
}
if (update_p && eq_p)
break;
update_register_pressure (insn);
for (i = 0; i < ira_pressure_classes_num; i++)
if (max_reg_pressure[ira_pressure_classes[i]]
< curr_reg_pressure[ira_pressure_classes[i]])
max_reg_pressure[ira_pressure_classes[i]]
= curr_reg_pressure[ira_pressure_classes[i]];
}
restore_reg_pressure ();
}
/* Update the current register pressure after scheduling INSN. Update
also max register pressure for unscheduled insns of the current
BB. */
static void
update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
{
int i;
int before[N_REG_CLASSES];
for (i = 0; i < ira_pressure_classes_num; i++)
before[i] = curr_reg_pressure[ira_pressure_classes[i]];
update_register_pressure (insn);
for (i = 0; i < ira_pressure_classes_num; i++)
if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
break;
if (i < ira_pressure_classes_num)
setup_insn_max_reg_pressure (insn, true);
}
/* Set up register pressure at the beginning of basic block BB whose
insns starting after insn AFTER. Set up also max register pressure
for all insns of the basic block. */
void
sched_setup_bb_reg_press